SA WG2 Temporary Document

Page 1

SA WG2 Meeting #126
S2-182118
Feb 26 – Mar 2, 2018, Montreal, Canada
(revision of S2-18xxxx)
Source:
Motorola Mobility, Lenovo
Title:
UE-based Solution for Encrypted Traffic Detection
Document for:
Approval
Agenda Item:
6.10
Work Item / Release:
FS_ENTRADE / Rel-16
Abstract of the contribution:
1. Proposal
This document specifies a solution that enables the network to detect the application associated with an encrypted data flow by using the "detection information" provided by the UE. This "detection information" is an Application Key (AppKey), i.e. a short-length number that is embedded by the UE into the first packet which initiates an encrypted data flow, e.g. into a TCP SYN packet to port 443.
* * * 1st Change * * *

6.X
Solution #X: UE-based Solution
6.X.1
Functional Description
6.X.1.1
General
The clauses below specify a solution that enables the network to detect the application associated with an encrypted data flow by using the "detection information" embedded by the UE into the first packet that initiates the encrypted data flow. This solution relies only on the "detection information" provided by the UE and does not require interfaces with external application servers, thus, it fulfils the requirements of Key Issue #2 (detection of encrypted traffic for applications without agreements with the MNO).
It is important to note that, before the network applies the "detection information" provided by the UE, a new authentication procedure takes place between the UE and the network, which verifies that the function in the UE which provides the "detection information" is authentic and can be trusted.
6.X.1.2
Reference Architecture
The reference architecture for 5GS is shown in Fig. 6.X.1.2-1. Two new functions are introduced: An Encrypted Traffic Detection Function in the UE (UE-ETDF) and an Encrypted Traffic Detection Function in the network (NW-ETDF). The UE-ETDF can communicate with the NW-ETDF over a new interface (Netdf) by using the user plane (as shown in the figure), or by using the control plane (i.e. NAS transport).
[image: image1.emf]5G

Access

Network

5GC

UE-ETDF

UE

PCF SMF

UPF

Data Network

Remote Server

NW-ETDF

N4

N6

N5 N7

Netdf

Fig. 6.X.1.2-1: Reference architecture for 5GS
6.X.1.2.1
UE-ETDF

The UE-ETDF performs the following functions:

(a) It authenticates with the NW-ETDF and proves it is an authentic function in the UE (this is further discussed in clause 6.X.2.1);

(b) It detects when a new encrypted data flow is initiated in the UE (e.g. by detecting TCP SYN packets to port 443);

(c)
It determines the UE application that initiated the encrypted data flow; and

(d) It piggybacks in the first packet of an encrypted data flow an Application Key (AppKey) which can be used by a network (UPF) to determine the application that initiated the encrypted data flow. How the AppKey is created for an application is discussed later. The AppKey is essentially the "encrypted traffic detection information" that is provided by the UE to the network.

The main objective of UE-ETDF is to include an AppKey in the first packet of an encrypted data flow. The first packet of an encrypted data flow can be e.g. a TCP SYN packet to port 443, a TLS ClientHello packet, a UDP packet to port 80 (QUIC), etc. When the UE-ETDF detects the first packet that initiates an encrypted data flow, it determines the application that triggered this packet and then piggybacks to this first packet the AppKey corresponding to this application. As shown in Fig. 6.X.1.2.1-1, the AppKey is piggybacked only to the first packet of an encrypted data flow. The subsequent packets of the encrypted data flow do not carry the AppKey or any other additional information. The UPF in the network uses the AppKey in the first packet of an encrypted data flow to associate this data flow with the application that corresponds to this AppKey.

[image: image2.emf]UE

AppKey

Remote

Server

Header

Payload

First packet of an

encrypted data flow

Network uses the AppKey to

determine the application associated

with the encrypted data flow

Network

Subsequent packets of

the encrypted data flow

Fig. 6.X.1.2.1-1
The AppKey can be piggybacked to the first packet of an encrypted data flow with various mechanisms. For example:

1.
When the UE uses IPv6 communication, the AppKey could be included in a new IPv6 Extension Header, as shown below.

[image: image3.emf]Version

Class

Flow-label

Payload

length

Next

Header

= ETDF

Source

Address

Destination

Address

Destination

Address

Next

Header

= TCP

AppKey TCP Payload

New Extension

Header

IPv6 header

2.
When the UE uses IPv4 communication, the AppKey could be included by using a new Protocol Type.

3.
The AppKey could be included in the TCP header, e.g. by using a new TCP Option.

4.
The AppKey could be included in the TLS header, e.g. by using a new TLS Extension Type.

5.
The first packet could be encapsulated within GRE and use the AppKey as a GRE Key, as shown below.

[image: image4.emf]Version

Class

Flow-label

Payload

length

Next

Header

= GRE

Source

Address

Destination

Address

Destination

Address

Protocol

Type =

TCP

GRE

Key =

AppKey

TCP Payload

GRE Header

IPv6 header (it can be applied to IPv4 header)

Editor’s note: The exact mechanism for including the AppKey into the first packet of an encrypted data flow is FFS.
6.X.1.2.2
NW-ETDF

The NW-ETDF performs the following functions:

(a)
It verifies the authenticity of the UE-ETDF (see clause 6.X.2.1).
(b)
It provides to UE-ETDF a list of applications for which "encrypted traffic detection information" (i.e. an AppKey) should be provided to the network. This list of applications could be pre-configured by the operator in the NW-ETDF and could be the same for all UEs or could be UE-specific.

(c) It creates an Application Key (AppKey) for each application of which encrypted traffic should be detected.

(d)
It provides to PCF a list of applications and the AppKey corresponding to each application. This list is then transferred to UPF (via SMF) and is used by UPF to detect the application associated to an encrypted data flow.
6.X.2
Procedures

6.X.2.1
ETDF Authentication and Provisioning

Before the network can reliably detect the applications associated with encrypted data flows, the ETDF Authentication and Provisioning procedure must take place. This procedure is shown in the Fig. 6.X.2.1-1.
The purpose of the ETDF Authentication and Provisioning is twofold:

1)
The network verifies the authenticity of the UE-ETDF in the UE, i.e. of the UE function that detects the applications which initiate encrypted data flows and provides "detection information" to the network. This authenticity verification is very important because the network must trust the UE providing the right "detection information" (i.e. the right AppKey). In some scenarios, a malicious UE may provide fake detection information, e.g. it may fraudulently indicate that an encrypted data flow is originated by App-X although the data flow is really originated by App-Y. The purpose of UE-ETDF authenticity verification is to confirm that the UE-ETDF is trusted and that it provides rightful detection information to the network. When the UE-ETDF authenticity verification fails, the network cannot trust the UE providing the right detection information and it may enforce various policies for such UEs (e.g. block all encrypted traffic).
2)
The network may provide a list of applications to UE. In this case, the UE shall provide "detection information" to the network only for the encrypted data flows initiated by these applications.
[image: image5.emf]2. List of Application Ids for encrypted traffic detection

5GC

NW

ETDF

1. ETDF authentication

(Verify the authenticity of UE ETDF and derive an ETDF key)

UE

ETDF

4. Send to PCF the

list of Application

Ids and the AppKey

for each application

3. Use the ETDF key

to derive an AppKey

for each application

in the transmitted list

3. Use the ETDF key

to derive an AppKey

for each application

in the received list

4. The list of

Application Ids and

the AppKeys are

sent to UPF via SMF

(e.g. AppKey = 0x17A3)

Fig. 6.X.2.1-1

1.
After the UE registers to 5GC and after it establishes a PDU session, the UE-ETDF sends a request to the NW-ETDF to initiate the ETDF authentication. The communication between the UE-ETDF and the NW-ETDF can take place over the control plane (e.g. by using NAS transport) or over the user plane (e.g. by using IPv6 transport).

The ETDF authentication verifies that the UE-ETDF is authentic (so it can be trusted) and also creates a common ETDF key in the UE-ETDF and in the NW-ETDF. As an example, the UE-ETDF may be considered authentic if it presents a valid identity certificate. Further details should be considered by SA3.

The UE may initiate the ETDF authentication procedure after receiving a PDU Session Establishment Accept message which contains a special indication. This indication could be a new ETDF flag or the address of the NW-ETDF, and it could be provided by the network only when the UE should provide "detection information" for the encrypted traffic exchanged over this PDU session.

Alternatively, the ETDF authentication could be initiated, not after, but during the establishment of a PDU session in a similar way as the "secondary authorization/authentication" procedure specified in 3GPP TS 23.502, clause 4.3.2.3. In this case, the NW-ETDF would play the role of a Data Network-Authentication, Authorization & Accounting (DN-AAA) server.

Editor’s note: The text above provides some examples of how the ETDF authentication procedure could be initiated. However, more details for this procedure and how exactly it is initiated should be further studied.
2.
After the successful ETDF authentication, the NW-ETDF may provide a list of applications to UE-ETDF. This list includes the applications of which the UE-ETDF must detect encrypted data flows and must send detection information (i.e. an AppKey) to the network. It is expected that, in most scenarios, the network would be interested in detecting encrypted data flows associated with certain applications only. In other scenarios, the network may have a "default" policy that would apply to all encrypted data flows. For example, if the network wants to apply one policy for the encrypted data flows of application com.example.myapp and another policy for the encrypted data flows of all other applications, then the list of applications sent to UE-ETDF would include two application identities:

com.example.myapp
com.3gpp.wildcard (this is a special application identity that matches all applications

3.
The UE-ETDF and the NW-ETDF derive an AppKey for each application included in the list application by using the ETDF key created during the ETDF authentication in step 1. As an example, the AppKey of an application may be created by hashing the ETDF key and the Application Id: AppKey = Hash(ETDF key || Application Id).

The AppKey has a fixed size and it is small enough (e.g. 16 bits) so it can efficiently be piggybacked in a data packet.

4.
The NW-ETDF discovers the PCF related to a certain PDU session (as already specified in TS 23.502, i.e. by using the Nbsf_Management_Discovery service operation) and sends to PCF the list of application ids and the AppKey corresponding to each application. Subsequently, this list of application ids and corresponding AppKeys is forwarded to UPF (via the SMF). The UPF then can detects which application is associated with an encrypted data flow by using the AppKey received from the UE and finding the corresponding application.
Editor’s note: How exactly the UPF receives the AppKeys associated with the applications sent to UE-ETDF is step 2 needs further study.
6.X.2.2
Encrypted Traffic Detection
After the ETDF Authentication and Provisioning is executed, the network can reliably detect an application associated with an encrypted data flow by using the "detection information" (the AppKey) provided by the UE. The entire procedure is shown in the figure below.
[image: image6.emf]5GC

NW

ETDF

2. Detect a packet that

initiates an encrypted data

flow and find the application

which requested the

encrypted data flow

3. Retrieve the AppKey for

this application

4. Transmit the packet of the encrypted

data flow including the AppKey

Header

Payload

AppKey

5. UPF uses the AppKey

to detect the application

associated with the

encrypted data flow

Remote

Server

6. Forward the packet

to the remote server

Subsequent packets of the encrypted data flow (packets sharing the same 5-tuple)

7. UPF applies the traffic policy configured for the detected

application

UE

ETDF

1. ETDF Authentication & Provisioning

Fig. 6.X.2.2-1: UE-based solution for encrypted traffic detection

1.
The ETDF Authentication and Provisioning procedure is executed, as discussed in the previous clause.
2.
The UE-ETDF detects the first packet of an encrypted data flow and finds the UE application which initiated this data flow. The first packet of an encrypted data flow could be a TCP SYN packet to port 443, a TLS ClientHello packet, etc.
3.
If the application which initiated the encrypted data flow is included in the list of applications received from the network, then the UE-ETDF shall provide detection information for this data flow. This detection information is the AppKey corresponding to the application that initiated the data flow. The UE-ETDF retrieves the AppKey corresponding to the application that initiated the data flow and embeds this AppKey in the first packet of the data flow.
4.
Subsequently, the UE transmits the data packet of the encrypted data flow to the network including the AppKey. As discussed in clause 6.X.1.2.1, the AppKey could be embedded in an IPv6 header (e.g. by using a new IPv6 Extended Header), in an IPv4 packet (e.g. by using a new Protocol Type), in a GRE header, etc. The AppKey is constructed as a small-length number (e.g. 16 bits) that can be easily embedded into the first data packet.
5.
When the UPF receives the packet, it uses the embedded AppKey to detect the application associated with the new encrypted data flow. As discussed before, the UPF has received from PCF (via SMF) a list of application ids and their corresponding AppKeys.
6.
Finally, the UPF forwards the packet to its final destination (the remote server) after removing the AppKey.
7.
If the UPF is provisioned with traffic policy for the detected application, the UPF applies this policy for all the packets of the encrypted data flow. These packets share the same value of 5-tuple (source/destination address, source/destination port, protocol).
6.X.3
Impact on existing entities and interfaces
Editor's note: Impacts on existing nodes or functionality will be added.
* * * End of Changes * * *

3GPP

SA WG2 TD

_1580055614.vsd
Version Class Flow-label

Payload length

Next Header = ETDF

Source Address

Destination Address

Destination Address

Next Header = TCP

AppKey

TCP Payload

New Extension Header

IPv6 header

_1580055615.vsd
Version Class Flow-label

Payload length

Next Header = GRE

Source Address

Destination Address

Destination Address

Protocol Type = TCP

GRE Key =
AppKey

TCP Payload

GRE Header

IPv6 header (it can be applied to IPv4 header)

