SA WG2 Temporary Document

Page 2

SA WG2 Meeting #118
S2-166513
14-18 November 2016, Reno, US
(revision of S2-16xxxx)
Source:
Nokia, Alcatel-Lucent Shanghai Bell, Ericsson, ZTE?
Title:
Functional split for SDCI
Document for:
Discussion

Agenda Item:
6.8
Work Item / Release:
CUPS / Rel-14
Abstract of the contribution: This contribution discusses several aspects while considering how to apply SDCI in CUPS with the evaluation to different options
1. Introduction

In SA2#117, working assumption of SDCI support in CUPS was agreed to terminate Gw/Gwn interface at the CP function, hence:

· for pull mode, the PFD fetching is performed by the CP function, and the fetched PFD is provided to the UP function;

· for push mode, the PFDF provision/modify/remove PFD(s) to the CP function, and the CP function provision/modify/remove PFD(s) to the UP function. 

However, there are still some other issues to be clarified:
1. Where is the PFD(s) cached?

2. How the PFD(s) is provided when a single UP function is controlled by multiple CP functions?
3. Is the PFD(s) provided from the CP function to the UP function as part of PDR or in a standalone message?

This contribution attempts to resolve the above issues.
2. Discussion
Q1. Where is the PFD(s) cached?

Caching PFD(s) in the CP function can save the Gw/Gwn signalling, if the PFD(s) corresponding to the same application identifier is used by multiple UP functions. i.e, the CP function does not have to perform multiple PFD fetching for different UP function, but it may require extra storage in the CP to cache the fetched PFD(s)
Caching PFD(s) in the UP function can save the storage of the CP function, but CP function has to perform multiple PFD fetching for different UP function.

Conclusion: Since the CP function is assumed to be centralized deployed, a large storage is expected for the management of session context, the PCC/ADC rules, operator policies and other information, the storage of PFD(s) would not add too much extra cost. Moreover, Gw/Gwn signalling saving is more critical than the storage saving, so it is preferred to cache the PFD(s) in the CP function, and CP function provides the PFD(s) to the UP function.
Q2. How the PFD(s) is provided when a single UP function is controlled by multiple CP functions?
For the case a single UP function is controlled by multiple CP functions, the conflicts should be avoided when the UP function receives PFD(s) corresponding to the same application identifier from different CP functions. The multiple CP functions which control the single UP function is assumed to be in the same administrative domain with the UP function.
If the multiple CP functions interact with the same PFDFs to obtain/manage the PFD(s), the same PFD(s) corresponding to an application identifier might be provided to the UP function for multiple times, and the latest received one can overwrites the old ones, but there’s no conflict.

Rarely there are multiple PFDFs in the same administrative domain of the CP/UP function, because PFDF is assumed to be more centralized deployed than the CP function. If there are multiple PFDFs in the same administrative domain of the CP/UP function, the multiple CP functions may interact with multiple PFDFs to obtain/manage the PFD(s). In that case, the PFD(s) from different PFDFs should correspond to different application identifiers, and operators should avoid managing the PFD(s) corresponding to the same application identifier in different PFDFs in the same administrative domain. 
Conclusion: the conflict of PFD(s) corresponding to the same application identifier provided by different CP functions should be avoided by operator with a well-planned PFDF and CP/UP function deployment.
Q3. Is the PFD(s) provided from the CP function to the UP function as part of PDR or in a standalone message?

For pull mode, the PFD fetching is triggered by either Gx interaction (the PCC/ADC rule received over Gx includes the application identifier which require PFD retrieval) or caching timer expiration, and the CP function provides PFD(s) to the UP function; for push mode, the PFDF provision/modify/remove PFD(s) to the CP function, and the CP function provision/modify/remove PFD(s) to the UP function. The pull mode and push mode can be used in combination.
In order to save the PFD storage of the UP function, it is more preferred that the CP function only provides the PFD(s) to the UP function when/after the session, which the PFD(s) is applied is, alive. Then when the PFD fetching is triggered by Gx (e.g. during initial attach), the CP function can start providing the PFD(s) to the UP function. The PFD(s) can be provided to the UP function PFD(s) in the PDR as the extension of application identifier when PDR is initially provided or the PFD(s) can be provided to the UP function in a standalone message which is off the PDN session. In the latter case, multiple PFD(s) of different UE sessions can be provided to the UP function at one time, and the signalling is largely saved. However, the initial PFD provision for various UE sessions could not happen at the same time, so the initial PFD provision over PDR may also be needed.
Conclusion: PFD(s) is provided from the CP function to the UP function either over PDR or a standalone message.
3. Proposal
Based on the above discussion, the following conclusion is proposed for the normative text of TS 23.214 to reference 
· PFD(s) is cached in the CP function, and CP function provides the PFD(s) to the UP function;

· PFD(s) is provided from the CP function to the UP function either over PDR or a standalone message
· The conflict of PFD(s) corresponding to the same application identifier provided by different CP functions should be avoided by operator enforcing a well-planned PFDF and CP/UP function deployment. When the UP function receives the PFD(s) from different CP functions for the same application identifier, the latest received PFD(s) can overwrite the old ones.
3GPP
SA WG2 TD

