

Abstract

This document specifies the architecture of software defined networking (SDN). Issue 1.1 ex-

tends SDN architecture issue 1 in light of further work in the industry and in the ONF architec-

ture working group. It also clarifies a number of topics in light of experience with issue 1.

SDN architecture

Issue 1.1 (draft PA8)
2015

SDN architecture Issue 1.1

Page 2 of 56 © Open Networking Foundation

ONF Document Type: TR (Technical Reference), non-normative, type 2

ONF Document Name: SDN Architecture 1.1

Disclaimer

THIS SPECIFICATION IS PROVIDED “ AS IS” WITH NO WARRANTIES

WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR

ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECI-

FICATION OR SAMPLE.

Any marks and brands contained herein are the property of their respective owners.

Open Networking Foundation

2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303

www.opennetworking.org

©2014 Open Networking Foundation. All rights reserved.

Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the

Open Networking Foundation, in the United States and/or in other countries. All other brands,

products, or service names are or may be trademarks or service marks of, and are used to identify,

products or services of their respective owners.

http://www.opennetworking.org/

SDN architecture Issue 1.1

Page 3 of 56 © Open Networking Foundation

1 Introduction ... 6

2 Executive summary... 7

3 Scope ... 9

4 Definitions .. 11

4.1 Abstraction .. 11

4.2 Client ... 11

4.3 Client context .. 11

4.4 Domain.. 11

4.5 Management-control continuum (MCC) .. 11

4.6 Orchestration .. 11

4.7 Policy .. 11

4.8 Recursion .. 12

4.9 Resource... 12

4.10 Server ... 12

4.11 Server context ... 12

4.12 Service .. 12

4.13 Service context ... 12

4.14 Virtualization ... 12

5 Concepts .. 12

5.1 Principles of SDN .. 12

5.2 Roles ... 15

5.3 Service and resource oriented models .. 16

5.4 Primitives .. 19

5.5 Controllers and planes .. 21

6 SDN controller ... 22

6.1 SDN controller as feedback node ... 23

6.2 Orchestration .. 24

6.3 Virtualization ... 25

6.4 Resource sharing .. 26

6.5 Delegation ... 27

6.6 Client context .. 27

6.7 Service context ... 29

6.8 Server context ... 30

7 Applications ... 31

8 Putting it together: the integrated architecture .. 32

8.1 Interfaces .. 34

8.2 Notifications .. 36

SDN architecture Issue 1.1

Page 4 of 56 © Open Networking Foundation

8.3 Peer controllers ... 37

9 Specific perspectives on the architecture .. 37

9.1 Security ... 37

9.2 Reliability, availability .. 38

9.3 Identifiers .. 39

9.4 Realization considerations .. 40

9.5 Initialization ... 40

9.6 Complexity .. 41

9.7 Persistence ... 42

9.8 Migration and coexistence .. 43

9.9 Relationship of SDN and NFV ... 43

Appendix A. Appendices .. 43

A.1. Discussion of definitions.. 44

A.1.1. Abstraction .. 44

A.1.2. Client... 44

A.1.3. Client context .. 44

A.1.4. Domain ... 44

A.1.5. Management-control continuum (MCC) .. 45

A.1.6. Orchestration .. 45

A.1.7. Policy .. 45

A.1.8. Recursion .. 46

A.1.9. Resource .. 47

A.1.10. Server .. 48

A.1.11. Server context ... 48

A.1.12. Service .. 48

A.1.13. Service context .. 48

A.1.14. Virtualization .. 49

A.2. Observations about models .. 49

A.3. Multiple logins ... 49

A.4. Evolution from issue 1 to issue 1.1 ... 53

Appendix B. Back matter .. 54

A.5. Acronyms .. 54

A.6. References.. 55

A.7. Contributors .. 55

List of Figures

Figure 1 – Basic model ... 7

Figure 2 – Core of the SDN architecture ... 8

Figure 3 – Administrator role ... 15

Figure 4 – User and provider roles .. 16

SDN architecture Issue 1.1

Page 5 of 56 © Open Networking Foundation

Figure 5 – Control as feedback ... 23

Figure 6 – Client context ... 28

Figure 7 – Server context .. 31

Figure 8 – SDN controller illustrating contexts .. 33

Figure 9 – Supplementary function example ... 34

Figure 10 – Peers as symmetric requestors and providers ... 37

Figure 11 – Multiple users of a client context .. 50

Figure 12 – Separated SDN controller Green ... 51

Figure 13 – Issue 1 architecture .. 53

SDN architecture Issue 1.1

Page 6 of 56 © Open Networking Foundation

1 Introduction

This architecture issue 1.1 is a stand-alone document that clarifies and extends issue 1 [1], but

does not obsolete it. Clause 10.4 describes and explains the differences.

A great deal of work on SDN has already been done, and continues, in a number of ONF work-

ing groups, standards development organizations (SDOs), and open-source communities. Even if

it were possible, the architecture would not attempt to invalidate existing work. However, it does

aspire to unify the discussion across these groups.

Except for illustrative examples, this architecture intentionally remains abstract and avoids de-

tails of target technologies. Additional documents, existing and potential, expand the architecture

into focused areas. These include:

 TR-xxx, SDN architecture for transport [ref to onf2014.301 when published] [could be
ITU-T G.astdn]

 TR-518, Relationship of SDN and NFV [2]

 <designator>, Intent NBI – Principles and information model [ref to onf2015.327 when
published]

Document structure

Ed: revise this when we converge on a final outline

Clause 2 is an executive summary, an abbreviated statement of the essentials. Subsequent clauses

build up the terminology and concepts in detail, then use them to support the overall architecture.

Clause 3 describes the scope and purpose of the architecture.

Clause 4 defines a number of key terms.

Clause 5 identifies some of the key concepts of SDN and expands on their interpretation.

Clause 5.5 discusses the SDN controller in some detail.

Clause 7 describes applications, in less detail. Maximum freedom is allowed by intentionally un-

derspecifying their internals and functions.

Clause 8 is an integrated view of SDN interfaces.

Clause 9 views the architecture from a number of particular angles.

Clause 10 includes appendices whose content warrants inclusion in the main architecture text,

although not inline. Other material to clarify and expand on inline text may be published in the

form of separate white papers or architecture notes.

Finally, clause 11 lists acronyms, references, and contributors.

SDN architecture Issue 1.1

Page 7 of 56 © Open Networking Foundation

2 Executive summary

An architecture is a necessarily incomplete collection of perspectives over a set of underlying

ideas. A consistent architecture reveals no contradictions when viewed from any of these per-

spectives. A useful architecture facilitates productive development of concepts into realities. An

open architecture minimizes the difficulty of extension in previously unforeseen directions. The

architecture described in this document aspires to be consistent, useful, and open.

Data plane

Applications plane

Controller plane

SDN controller

Management-control

Service requestor role

Data exchange
Resource

group

R

R R

R
R

Service consumer

RR
R

Service
requestor role

Service
provider role

Data-controller plane
interface D-CPI

Applications-controller
plane interface A-CPI

Service
invocation/

control

Local data
consumption/

production Resource user role

Service
provider role

Figure 1 – Basic model

Figure 1 illustrates the basic model of SDN, that of a service consumer (client, user, customer,)

Green, who exchanges both data and management-control operations with some SDN server or

provider, Blue. Although user data is ultimately forwarded or processed by some set of resources

(R) that are owned by Blue, Green controls its service via a management-control association by

invoking actions on a set of virtual resources (R) that it perceives to be its own. Among other

responsibilities, the SDN controller virtualizes and orchestrates the Green resource and service

view onto its own underlying Blue resources and services. The concepts of resources and ser-

vices are intentionally unbounded.

The SDN architecture extends the basic model and clarifies its implications. Key extensions in-

clude sharing resources a) among multiple clients, b) dynamically, c) in an optimum way. Other

essentials of a complete architecture include management in the classical sense, both of network

resources and of services.

This architecture usually portrays client and server as existing in separate business domains, il-

lustrated with separate colors. The reason for this is to emphasize the need for traffic isolation,

information hiding, security and policy enforcement at interface points. Depending on the rela-

tionship between client and server, visibility and security criteria may be strict or relaxed in any

particular deployment situation, including full transparency when appropriate.

SDN architecture Issue 1.1

Page 8 of 56 © Open Networking Foundation

SDN controller relationships

The central entity in an SDN is the SDN controller. Figure 2 illustrates some of its key functions

and interfaces.

SDN is modelled as a set of client-server relationships between SDN controllers and other enti-

ties that may themselves be SDN controllers. In its role as a server, an SDN controller may offer

services to any number of clients, while an SDN controller acting as client may invoke services

from any number of servers. As long as they exhibit appropriate interface behavior, the details of

entities that are not SDN controllers are beyond the scope of the architecture.

SDN
controller

A-CPI

Resource
group

Resource
group

A-CPI

Application RedSDN controller Green

Resource
group

Resource
group

Resource
group

Resource
group

Resource
group

Resource
group

Resource
group

A-CPI

Application
Blue .n

Resource
group

A-CPI

Administrator
Blue

D-CPID-CPID-CPI

CC Green CC Red

Server context
SC Blue.1

Server context
SC Blue.2

Server context
SC Aqua

CC Blue .n
Client context
CC Blue.admin

Server context
SC Gold

Orchestration
Virtualization

Client

Server

Client

Server

Service
provider

Service
requestor

Service
provider

Service
requestor

Resource
group

D-CPI

Server context
SC Green

Figure 2 – Core of the SDN architecture

The architecture recognizes dual perspectives on the nature of client-server interfaces. The ser-

vices perspective is particularly appropriate from a top-down or customer-provider viewpoint.

The resources perspective is particularly appropriate from the bottom-up viewpoint of a resource

owner, especially an internal administrator. The perspectives are complementary, but emphasize

different things. The construction of views and mappings on a common underlying information

model helps tie these perspectives together.

The SDN controller satisfies client requests by virtualizing and orchestrating its underlying re-

sources. As the network environment changes and client demands change, the SDN controller is

responsible for continuously updating network and service state toward a policy-based optimum

configuration.

SDN architecture Issue 1.1

Page 9 of 56 © Open Networking Foundation

An SDN controller exposes services and resources to clients via applications-controller plane

interfaces (A-CPIs), and consumes underlying services and resources via data-controller plane

interfaces (D-CPIs) (note). Each of these interfaces is a reference point for information hiding,

traffic and namespace isolation, and policy enforcement.

Management and control are viewed as a continuum, in which an administrator role differs from

that of ordinary applications by having greater scope and privilege. The administrator has author-

ity to configure the SDN controller itself, along with client and server contexts.

Recursion may be deduced from figure 1 by recognizing the repetitive service requestor and ser-

vice provider roles. SDN controllers may associate with other SDN controllers and non-SDN

management-control entities in hierarchical or peer arrangements, within or across administrative

domains. This permits SDN to span the range from end-user service negotiation to world-wide

service provisioning to finely granular control of individual network elements.

3 Scope

Software-defined networking (SDN) applies the flexibility of software to the entirety of the net-

working space. It includes unlimited numbers of business relationships, geography spanning the

world, and everything from end-user service negotiation and delivery to the planning, installation,

provisioning and maintenance of network infrastructure. As well as forwarding traffic, an SDN

may process traffic, either as part of added-value services or for service and network mainte-

nance purposes.

The overall architecture is intended to span the entirety of the space. Nevertheless, it is structured

for easy subsetting, for example into carrier, cloud, campus or enterprise environments that pur-

chase much of their network service from third parties, across opaque or semi-opaque business

domain boundaries.

SDN is based on three principles, which are further explored in clause 5.1.

 Decoupling of traffic forwarding and processing from control

 Centralized control

 Programmability of network services

The major components of an SDN are resources and controllers. SDN controllers mediate be-

tween clients and resources to deliver services. Most resources are related to traffic in some way,

but support resources are also recognized, for example security credentials and notification sub-

scriptions.

The primitive roles in an SDN are those of administrator, service requestor and provider, and re-

source user. Additional roles are not precluded.

This architecture document expands the meaning and implications of the principles, the required

and optional functions of the components, and the interfaces, rights and responsibilities of the

roles.

SDN architecture Issue 1.1

Page 10 of 56 © Open Networking Foundation

Architecture goals

The overall goal of the architecture is to assist providers in better serving their customers – in

any number of dimensions – while reducing their own cost to deliver those services. SDN ad-

dresses all aspects of this goal, a few examples of which are:

 An environment that reduces the time and cost of developing new services

 Flexible definition and availability of resources, including virtual network functions

(VNFs)

 On demand assembly of resources into services

 More efficient resource loading

 Facilitating global semantic agreement with a common information model

 Merging traditional BSS/OSS functions with control

Because of its wide scope, not all aspects of SDN can be addressed in depth immediately. The

architecture is intended to create a common understanding that facilitates parallel development as

cost-benefit opportunities arise across the broadly defined problem space. While alignment on

principles is important, the single most important underpinning of consistency is arguably a

common information model.

The architecture describes principles, components and roles in abstract ways. Any number of

implementations can therefore claim to comply with the architecture. Rather than as a vehicle for

compliance statements, the architecture may better be used as a reference to which an implemen-

tation can be compared. Many open-source projects implement aspects of SDN; the architecture

helps understand the gaps. Gaps are not necessarily deficiencies; partial solutions may be com-

pletely adequate for their target markets.

One of the long-standing problems of the industry has been silos, separate areas with separate

expertise, separate staffing, separate business, service, and investment considerations. While the

classic voice-data silo partition is finally gone, or nearly so, other silos persist. A few examples:

 Transport vs packet

 Wireline vs wireless

 Local vs long-haul (access vs core)

And new silos:

 Data center, cloud vs dedicated and dispersed physical elements

 NFV vs SDN

There will continue to be important differences along these, and other, dimensions. However,

SDN ought never provide a technical justification for the perpetuation or creation of silos. The

goal of the architecture is to open possibilities, and especially to expose common ground, such

that silos can be collapsed whenever and however it makes sense.

SDN architecture Issue 1.1

Page 11 of 56 © Open Networking Foundation

4 Definitions

A good definition is concise, correct and pedantic, avoids direct or indirect self-reference, and

aligns well with at least one of the understandings in common usage. If multiple understandings

exist in common usage, a definition must take a position, rather than sanctioning confusion.

Further, a good definition should be narrow enough and crisp enough to exclude invalid candi-

dates. Fuzzy outer bounds are a major flaw in many definitions in the industry.

The implications of a definition are often important, but not obvious. A definition may therefore

require informative material that is not essential to the definition itself, but that assists in its un-

derstanding. Informal descriptions of the category and qualifiers may be helpful. Examples are

often useful, both of candidates that do, and also of candidates that do not, satisfy the criteria.

For brevity in the main text, these discussions appear in clause 10.1.

4.1 Abstraction

Definition: The representation of an entity or group of entities according to some criterion, while

ignoring aspects that do not match the criterion.

4.2 Client

Definition: An entity that receives services from a server.

4.3 Client context

Definition: The conceptual component of a server that represents all information about a given

client and is responsible for participation in active server-client management-control operations.

4.4 Domain

Definition: A grouping of entities according to some criterion.

4.5 Management-control continuum (MCC)

Definition: The principle that the functions of management and of control are largely, if not en-

tirely, the same.

Note – In keeping with SDN convention, this document mostly uses the term control, and

refers to one of the key entities as an SDN controller.

4.6 Orchestration

Definition: The ongoing selection and use of resources by a server to satisfy client demands ac-

cording to optimization criteria.

4.7 Policy

Definition: A rule that guides and constrains subsequent actions of, and interactions between,

other parties.

SDN architecture Issue 1.1

Page 12 of 56 © Open Networking Foundation

4.8 Recursion

Definition: The repeated application of a process in which the input to each iteration except the

first is derived from the output of the previous iteration.

4.9 Resource

Definition: Anything that can be used to deliver a service.

4.10 Server

Definition: An entity that provides services to a client.

4.11 Server context

Definition: The conceptual component of a client that represents all information about a given

server and is responsible for participation in active server-client management-control operations.

4.12 Service

Definition: The delivery of value for some time interval by a provider to a consumer.

4.13 Service context

Definition: The conceptual component of a client context that represents all information about a

given service.

4.14 Virtualization

Definition: An abstraction of underlying resources on a server, whose criterion is allocation of

those resources to a particular client, application, or service.

5 Concepts

5.1 Principles of SDN

SDN is based on three principles, as described below. All require interpretation.

5.1.1 Decoupling of traffic forwarding and processing from control

The purpose of this principle is to permit independent deployment of control and traffic forward-

ing and processing entities. This principle is not obviously a game changer per se. Transport

equipment, for example, has long decoupled control from forwarding and traffic processing.

However, decoupling is a necessary precondition of centralized control and of recursion, specifi-

cally hierarchical recursion. Decoupling also allows for separate optimization of platform tech-

nology and life cycles.

The architecture reflects the decoupling principle in the form of an entity called the SDN control-

ler, which has management-control responsibility for some set of resources. The resources are

SDN architecture Issue 1.1

Page 13 of 56 © Open Networking Foundation

considered to be in a data plane, so-called because most of them are directly or indirectly associ-

ated with processing client traffic. Recursive decoupling is embodied in the idea that a client has

management-control access to a set of resources and services that is exposed by an SDN control-

ler.

Further reading: open interfaces, client context, control as feedback, recursion, delegation, re-

sources and resource groups

5.1.2 Centralized control

Decoupling of traffic processing from control is a precondition of centralized control. The cen-

tralized control principle asserts that resources can be used more efficiently when viewed from a

wider perspective. A centralized SDN controller can orchestrate resources that span a number of

subordinate entities, and thereby offer better abstractions to its clients than if it could only ab-

stract subsets of individual subordinate entities. The best example of this is the exposure of a

single monolithic forwarding domain that is built atop an arbitrarily large and complex underly-

ing network.

However, a number of factors argue against a single monolithic control point for the entire global

telecoms network.

 Scale is the obvious reason, along with related factors such as sheer propagation delay.

The optimal choice among a large number of options may not justify the increased com-

plexity, as compared with a slightly suboptimal choice among a smaller set of options.

 Management-control information exchange is highly constrained across trust boundaries.
By separating SDN controllers along (at least) trust domain boundaries, the architecture

exposes the necessary security and policy enforcement points.

 It is necessary that SDN co-exist with non-SDN technology in all possible ways: as con-
trolling or controlled entities or as peers, within and across administrative, technology

and other domains, responsible for greater or lesser functionality.

 Resources can themselves be active, in a number of ways and for a number of reasons.

Local control loops ought not be centralized without justification.

 A more subtle reason is that management-control communication is distributed around
the network on a network of its own, which itself requires management-control. Domain

partitioning is likely to be a better solution than an all-inclusive network attempting to

control itself.

The principle of centralized control is best understood as a recommendation to consider cost-

benefit trade-offs of centralization.

Further reading: complexity, control as feedback

5.1.3 Programmability of network services

This principle permits a client to exchange information with an SDN controller, either by discov-

ery or negotiation prior to the establishment of a service, or during the lifetime of a service ac-

cording to changes in client needs or the state of the client’s virtual resources. Agility is the pay-

SDN architecture Issue 1.1

Page 14 of 56 © Open Networking Foundation

back, both in negotiating a satisfactory service and in turning it up. This is tied into the ability of

SDN to dynamically tap a wide domain of existing resources, or to create new resources on de-

mand, especially virtual network functions (VNFs).

The programmability principle is based on the premise that service-consuming applications and

resources benefit from collaborating in detail in negotiating and delivering services, even on a

continuing basis. This may be true of some applications. At the other end of a continuum, the

intent interface model expects the client to express its desired outcome – possibly in considerable

detail, possibly after considerable negotiation – but then leave the realization and real-time opti-

mization to the SDN controller.

The merit of the intent model is that it disentangles resource operation from the client’s purpose,

allowing for simpler clients that may be more independent of the infrastructure. The client trades

off simplicity for participation in fine tuning or continuing optimization, while if the ongoing

service cannot be delivered as committed, the feedback is more likely to be an abrupt failure in-

dication.

Further reading: client context, multiple logins, service and resource models

5.1.4 Open interfaces

This fourth principle concerns SDN implementation and deployment, not the fundamentals of the

architecture. It presupposes the well-defined partition of functions and interfaces, and specifies

that the interfaces be public and open to community definition. The purpose of this principle is to

encourage competition. The desired competition is most likely to emerge in the support of com-

pletely mainstream features on completely mainstream white box hardware.

In other circumstances, open interfaces are of less value, and it may be preferable for both sides

of an interface to be provided by the same vendor.

 When proprietary hardware offers features that outweigh the disadvantage of proprietary

interfaces. Such features may be supported with proprietary extensions of standard inter-

faces.

 When the market for a given hardware class is so small that few competitors find it
worthwhile.

 When the data-plane functionality is implemented in software, e.g., as a virtual network
function VNF.

Interface standardization in the service-consuming applications space is difficult, not only be-

cause the scope of new and innovative services is intentionally unbounded, but because the best

solutions may only be apparent in retrospect. The experimental approach of the open-source

community may be able to evolve best practices more effectively than would be possible through

formal standardization.

It may be considered that the principle is better thought of as open integration, rather than open

interfaces. Whatever the nature of the functionality and interfaces, integral fit into an industry

information model is key.

SDN architecture Issue 1.1

Page 15 of 56 © Open Networking Foundation

5.2 Roles

The roles described in this clause are useful to the SDN architecture, but it is not implied that no

other roles exist.

5.2.1 Administrator role

An administrator is characterized by having greater visibility and privilege than an ordinary cli-

ent. Normally, an administrator would be a trusted employee of the same organization that oper-

ates the SDN controller. The administrator’s responsibility is to create an environment that can

offer services, to modify the environment from time to time, to monitor the environment for

proper operation, and to act on exceptions beyond the ability of the environment to resolve inter-

nally.

Administrator
role

Client business agreements

Operator policy

Underlying resources

Local resources

Input

Server business agreements

Client contexts

Server contexts

SDN controller configuration

Environment configuration

Process Output

Figure 3 – Administrator role

Figure 3 shows that the administrator configures SDN controllers and the necessary contexts.

The administrator creates a working SDN controller from some substrate (creation of an SDN

controller, possibly as a VNF, downloading its code, etc, is beyond the scope of the current dis-

cussion). The SDN controller is created by default with an administrator client context with un-

restricted visibility and authority to perform all other operations. The administrator configures

the controller with server contexts to expose underlying resources, and updates them from time

to time as needed. The underlying resources are themselves configured by their own administra-

tors at their own (underlying) levels.

The administrator then creates client contexts for each of its clients, which includes allocation of

underlying resources to clients in the process called virtualization, as well as supplementary con-

figuration. The administrator configures each client context with policy that defines the actions

and bounds permitted to the client. An administrator may modify a client context during its life-

time, and may destroy a client context if the client relationship terminates.

An SDN controller is responsible for continuously optimizing its use of resources according to a

global optimization policy. The administrator installs and modifies the optimization policy as

needed. An administrator may also be expected to create subscriptions and logs on its own behalf.

Further reading: client context, server context, controller as feedback node, realization considera-

tions

SDN architecture Issue 1.1

Page 16 of 56 © Open Networking Foundation

5.2.2 User and provider roles

Clients or service consumers satisfy their needs by requesting services from SDN controllers as

providers, and they achieve their data transfer and data processing objectives as users of those

resources (figure 1).

Service
requestor role

Resource user role

Service provider
role

Resources

Figure 4 – User and provider roles

As illustrated in figure 4, the resources explicitly or implicitly available to a client play a service

provider role, offering services to a service requestor for configuration. The service requestor

represents the management-control aspect of the client in setting up the desired service; it may

also subscribe to notifications from the provider. A given service requestor may invoke and

manage-control any number of simultaneous services.

While the service requestor represents the setup of service by a client, the resource user role rep-

resents the client’s use of the according resources to satisfy its service needs. Usually this is ac-

complished by exchanges in the data plane. The services offered by the provider are constrained

only by the nature and functions of the available resources and the agreement between server and

client.

Further reading: client context, server context

5.3 Service and resource oriented models

As described in clause 2, a service-oriented model is especially appropriate from the top-down

viewpoint of a customer, while a resource-oriented model is appropriate from the bottom-up

viewpoint of an operator, and especially from the viewpoint of an operator’s administrator.

5.3.1 Service-oriented model

From the service-oriented perspective, the basic operation across an SDN interface is service in-

vocation and management. According to this model, a client requests creation, read, update or

delete (CRUD) operations on all or a component of a service context object. The server is an

SDN controller, which is expected to validate the request against policy and available resources,

and either satisfy the request or provide an appropriate exception response.

In most cases (note), the service context governs the behavior of data-plane resources that permit

the client to exchange traffic with other network entities. Examples of such service contexts

range from contracts for residential telephony to corporate VPNs. At a very detailed level, a ser-

vice context might represent a connection through a network.

SDN architecture Issue 1.1

Page 17 of 56 © Open Networking Foundation

Note – Examples of value received by a client that do not involve data-plane exchanges

include information discovery and negotiation of various kinds, and directory lookups. In

some such interactions, it may not be necessary to instantiate a service context object.

Service-related resources are released when the service context is deleted. A service context may

persist indefinitely, i.e., until explicitly deleted, or it may terminate due to events such as signal-

ing or the expiration of an explicit schedule. The management-control association between client

and server may or may not exist continuously during the lifetime of a service context.

A service request (CRUD operation) is necessarily expressed in terms of entities, actions, and

names/addresses known to the client. Internal functions of the client are not subject to architec-

tural standardization, but it would be expected that the client retain a view of the service, as ex-

pressed in its own terms, possibly updated with state information derived by query or notification

from the server.

The server necessarily retains the service context, which may include the service invocation as

expressed by the client. The client’s request is the desired outcome that guides the server in or-

chestrating and virtualizing underlying resources to satisfy the client’s demand. This is a continu-

ing process, not only as clients amend their existing services, but as network state and resource

contention change over time.

The architecture does not constrain the entities and actions known to the client. In general, these

client entities and actions must be mapped into entities and actions known to the SDN controller

acting as server (note). In general, neither client nor server is in a position to supply complete

mapping information, which must therefore be a shared responsibility.

Note – Transparent mappings are not precluded. They may be appropriate, especially for

server administrators.

A number of ways may be appropriate to populate the mapping function. A few of them include:

 Offline business or technical level negotiation, e.g., of access points of presence (PoPs),
with subsequent provisioning of explicit mapping equivalents into a mapping database.

 Auto-discovery, e.g., of the speed of an Ethernet PoP. Protocols such as LLDP [8] may
operate across the client-server data-plane boundary.

 Publication by the server of a service catalog, or the equivalent, the schema of which may

be used to express the desired service. Some such schemas may be known a priori from

standards.

 Negotiation of agreement by protocol, for example through proposing and accepting in-
ter-domain labels.

A given client may have any number of service contexts in place on a given server at any given

time. The service context identifier allows for unambiguous CRUD operations on new or exist-

ing services.

A server may offer services to a number of clients. All of the server’s information for a particular

client is contained in a conceptual component called a client context (CC). A CC may contain

any number of service contexts.

SDN architecture Issue 1.1

Page 18 of 56 © Open Networking Foundation

A client may orchestrate services that span one or more servers. Such a client may be modelled

as an SDN controller in its own right. Orchestration of composite services requires that the client

be responsible for choosing and provisioning intermediate interface points, as well as the service-

specific behavior of each node. Successive partitioning is one expected way to realize a service,

where a single SDN controller may perform the entire process for the subnetwork within its own

domain, or a hierarchical stack of controllers may successively process successively more de-

tailed service invocations, or anything in between. Peer controllers may invoke neighbor recur-

sion to achieve the same ultimate goal. In all cases, the edge points must be coordinated and

therefore recursively visible, while the internal details of the service are optionally visible, but

are often left for the immediate controller.

The selection, connection, and provisioning of network topology and nodes shades into the re-

source-based perspective on SDN.

Further reading: Peering, client context, service context, additional interfaces

5.3.2 Resource-oriented model

Resources represent the things that are available for use by SDN. An underlying resource is an

instance (actual or potential) of some managed object class in an information model, and is re-

garded by its client as a black box (note). Virtual resources exposed to clients are views of the

underlying resources, with static mapping detail in the virtualization function, or dynamic map-

ping shared by the orchestration and virtualization functions.

Note – The internals of the black box would be visible in the underlying (server) frame of

reference.

The inventory of resources is not necessarily static. Given a suitable substrate and policy, non-

physical resources can often be created and deleted by SDN operations, especially as they invoke

NFV capabilities. Physical resources can be created and deleted by operations such as network

construction and renovation, and brought into the scope of an SDN domain via discovery or pro-

visioning.

In the simplest resource-based model, the owner of the SDN controller (server administrator

role) allocates resources to clients. In this case, the mapping process for the service perspective

may be the static result of a collaboration (note) between client and server administrators. The

collaboration may occur offline, e.g., as part of a business-technical negotiation, but online or

real-time negotiation is not precluded.

Note – When an organization constructs a client-server relationship within its own domain,

for example for scaling reasons, a single entity may play both client administrator and server

administrator roles.

Virtualized client resources are views of complete, partitioned, composite, sliced or shared parts

of underlying resources, with namespace and possibly address space translation. These virtual

resources are things that a client can use as black-box entities in its service invocations. An ex-

ample of detailed pre-allocated resources would be the leasing of an entire subnetwork by one

company to another.

It may also be the case that only a few resources are mapped one-to-one to client resources. A

common example of this case is the interface to a residential or business subscriber, in which on-

SDN architecture Issue 1.1

Page 19 of 56 © Open Networking Foundation

ly the subscriber’s (client’s) points of presence need to be mapped. The remainder of the server’s

resources are hidden from the client, including access to the E.164 telephony number space or

the Internet. Underlying resources are orchestrated by the server as required, depending on net-

work state, service demand, or traffic load. Even with client-specified class of service and traffic

processing constraints, this minimal mapping allows maximum freedom to the server to orches-

trate resources according to its own optimization policy.

Further reading: resource groups, client context, service context, resource data base

5.4 Primitives

5.4.1 Information model

One of the SDN value propositions asserts that the communications environment of the future

will include more vendors with a wide range of product offerings, on short and unsynchronized

release schedules. Especially if a service invocation goes through several APIs from several ven-

dors before reaching a data-plane device, semantic mismatches in the information conveyed will

clearly result in chaos. A common information model (note) is key. As new fragments are devel-

oped, it is important that they be integrated into the common model.

Note – RFC 3444 [9] describes the difference between an information model and a data

model. Compared to information model mismatch, data model incompatibility is far less

difficult to diagnose and resolve.

Purpose-specific data models and customized views can be derived from the common infor-

mation model as necessary. These are comparatively easy to adapt pragmatically, as long as se-

mantics are preserved. This allows purpose-specific APIs to be produced, while enforcing con-

sistent semantics.

5.4.2 Resources and resource groups

Any SDN service is built upon some set of resources, whose functions and interfaces are config-

ured to the particular need. Resources may be physical or virtual, active or passive, and in many

cases, may be created, scaled, or destroyed, by or at the behest of the client or the server. The

ETSI network functions virtualization (NFV) initiative [3] is an important source of SDN re-

sources.

A resource is modeled as an instance of a managed object class in an information model. Re-

sources can be repeatedly subdivided or combined into larger resources in any way that makes

sense, either by definition of the underlying information model, by management-control configu-

ration, or by real-time orchestration and virtualization. This includes so-called slices of resources,

in which it may be desired to only abstract part of an underlying resource, for example some part

of the capacity of a link.

A client sees a resource as defined by a view. A view may restrict the information available to

the client, the actions that can be invoked, and the notifications that it publishes. If it is shared,

the same underlying resource may be virtualized to present different views to different clients. A

view may also represent information such as subdivided allocation, potential or actual existence,

and potential scalability.

SDN architecture Issue 1.1

Page 20 of 56 © Open Networking Foundation

The resource or data plane is sometimes considered to be simply an undifferentiated cloud.

However, resources naturally tend to fall into groups. Resource groups are not architecturally

fundamental; they are convenient abstractions.

Resource groups may exhibit some or all of the following properties:

 Fate sharing; the likelihood that all resources in the group lose or regain connectivity to
the SDN controller together, that all fail or recover together, that all are subject to backup,

restoration and migration together.

 Through common security attributes, the ability for a single outer management-control

association (e.g., IPsec) to serve one or more inner management-control associations.

 The ability to use relative distinguished names and addresses of resources within the con-
text of a group, rather than more global names and addresses.

 Tightly integrated functionality within the resources of the group. Delegated or autono-
mous functions exemplify this property: dynamic sharing of bandwidth, local fault recov-

ery, fault correlation, the ability to inject test or other stimuli at one point and detect the

consequences locally at some other point.

 A common notifications publication and subscription scope for all resources in the group.

 A knowable upper bound on the ability of resources to be augmented or scaled without

having to migrate into other groups.

 A holding space for resources that are available for use, but are not actually in use at any
given time.

 A topologically significant point in a network graph, useful in optimizing path or other
computations.

Further reading: client context, service context, resource-oriented model, resource data base, per-

sistence, notifications

5.4.3 Resource data base

The resource data base (RDB) is the conceptual container for information that needs to be re-

tained in an SDN controller beyond some small locality in process space and time (note). Among

other things, the RDB is conceived as the local repository of all underlying resources. The RDB

does not appear on the architectural drawings because it exists everywhere in an SDN controller,

as needed to support the various active functions and interfaces.

Note – This is to exclude cached information that remains within a single function and

calling parameters between functions.

An important criterion for retention of a data fragment in the RDB is the need for its availability

after controller reinitialization or replacement. Large fractions of the information in client and

server contexts are appropriate for the RDB, including views of underlying resources that are

presented to clients, services and their resource mappings, topology and resource inventories,

policies, logs, profiles, and subscriptions. The identifier mapping between underlying resources

SDN architecture Issue 1.1

Page 21 of 56 © Open Networking Foundation

and client resources must be retained here, as must the optimization criteria used by the orches-

tration function.

A second criterion for RDB storage recognizes that some information is created by one entity

and may subsequently be used on a continuing basis by other entities. A prime example is the

mirror of an underlying resource, conceptually contained in a server context.

Note – It must be understood that CRUD operations on a mirrored copy of a resource

would have no effect on the corresponding underlying resource.

Local persistent objects may also be regarded as stored in the RDB. Examples include subscrip-

tions and profiles. Logs and PM history would probably not be regarded as RDB material.

Ed: do we take a definite position?

Nothing is said about the implementation of the RDB, whether it is a formal database of some

type, whether it is distributed or centralized, whether all data is represented in a mutually con-

sistent format, etc. It is recognized that different backup and restoration regimens will be appro-

priate for different data fragments.

An administrator role would have unrestricted access to the entire RDB. For other users, fine-

grained access policy must be enforced on data fragments in the RDB, as they relate to provider,

client or server contexts. Some policy may be implicit, e.g., no client can view information in the

provider’s or another client’s context, but it may also be necessary to explicitly define additional

access policy. Being persistent, such a policy would itself be contained in the conceptual RDB.

Further reading: Persistence, Client context, Server context, Controller as feedback node, Identi-

fiers

5.5 Controllers and planes

The conventional view of SDN is structured into planes. A data plane processes user traffic, a

control or controller plane hosts SDN controller instances, and instances of service-consuming

applications reside in an applications plane. While this is a good introductory model, it is less

useful when conceptualizing SDN in depth.

A given SDN controller governs some set of resource groups (in a data plane), whose state it

controls in a feedback loop. It virtualizes these underlying resources and exposes a customized

virtual resource environment (as a data plane) to each of its clients.

In much the same way that a controller is thus sandwiched between data planes, a network re-

source (note) is supported by an underlying virtualization (controller plane), and is used by a cli-

ent or SDN controller (controller or applications plane). Even a hardware network element ex-

poses virtual resources to its SDN controller by way of a (possibly minimal) client context,

which must have been configured by an administrator.

Note – The term network resources distinguishes entities that have some relation to traf-

fic processing from support resources such as client-server security credentials, notifica-

tions subscriptions, profiles, etc. These latter resources are typically not virtual.

SDN architecture Issue 1.1

Page 22 of 56 © Open Networking Foundation

As to applications, the SDN architecture can say nothing about what may or may not exist as

their superior entities, whether and how they serve end users directly or are themselves interme-

diaries of some kind.

The strongly recursive nature of the architecture reduces the conceptual value of the original

SDN data, controller, and applications planes. Sometimes, management is also regarded as a

plane, which does not fit well into pictorial representations of the architecture (note). As man-

agement and control are recognized as different aspects of the same thing, roles are a more useful

way to model the relationships.

Note – Parallel planes are meaningful and useful in terms of geometric analogy. Each

plane is independent and sees only the planes above and below itself. The geometric im-

plications of intersecting planes (i.e., lines) convey no useful analogies.

A final objection to planes as a fundamental concept is that everything of interest exists in in-

stances. It can be argued that amorphous plane models have obscured important aspects of the

problem space, such as controller-controller peer interactions and resource grouping.

For these reasons, this SDN architecture document uses the concept of planes occasionally, de-

scriptively, informally, colloquially, but not rigorously.

Further reading: recursion, client context, roles, observations about models, SDN controller as

feedback node

6 SDN controller

The SDN controller is at the heart of the architecture. It is the intelligent node that controls re-

sources to deliver services. Its core function is the real-time multi-dimensional convergence of a

changing resource environment and a changing service demand environment toward an optimum,

where the optimization criteria may also change in time.

A given resource is controlled by only one SDN controller, this being an important resource

grouping criterion (note). An SDN controller exercises management-control over some set of

resource groups, conventionally portrayed in a resource or data plane to the south of the control-

ler, and accessed through a data-controller plane interface (D-CPI). The aggregate of resource

groups under a given SDN controller is referred to as an SDN domain; the term may also include

the SDN controller itself.

Note – It is recognized that some aspects of a resource may be controlled by other means.

Coordination of these activities is necessary, but the details are beyond the scope of the

architecture. An example would be an operations support system (OSS) locking a re-

source via the SDN controller before performing a software upgrade.

An SDN controller offers services to its clients by exposing a virtual resource group to each cli-

ent. The interface to clients is conventionally drawn to the north of the controller, and called an

applications-control plane interface (A-CPI). The interface is also often called a northbound in-

terface (NBI), sometimes an intent interface.

SDN architecture Issue 1.1

Page 23 of 56 © Open Networking Foundation

An SDN controller may act as a service-consuming application by consuming resources and in-

voking services offered by a subordinate or peer SDN controller. An SDN controller may have

peer interfaces to non-SDNs, and may invoke services from non-SDNs or offer services to them.

An SDN controller may be implemented via centralized or distributed computing technology,

with or without redundancy. These are important considerations, but are implementation details

of the SDN controller as a functional block, and lie beyond the scope of the SDN architecture.

Note – Architectures are recursive. It would be perfectly legitimate to develop an imple-

mentation architecture for SDN controllers, subject to alignment with the functional view

of this top-level SDN architecture.

Further reading: control as feedback, business boundaries, virtualization, orchestration, client

environment, non-CPI interfaces, complexity, reliability and availability, interfaces

6.1 SDN controller as feedback node

As an architectural functional block, an SDN controller may appear in any number of environ-

ments. It is fair to ask what makes it an SDN controller, what aspect, should it be absent, would

preclude a candidate body of software from being an SDN controller.

The core function of an SDN controller is to continually adapt the state of its resources to serve

its clients according to an optimization policy. The concept of state is interpreted broadly. The

very existence of a particular resource is itself a state, as are the values of all of its attributes and

its relationship to other resources, both within and beyond the controller’s domain. Figure 5 illus-

trates this, the SDN controller as the active node in a feedback loop.

Polled

Notified

Provisioned by admin

Requested by client

Compare

Policy (by admin)

Modify resource state

Deny request

Notify exception

AdjustDelta

Actual

resource state

Desired

resource state

Figure 5 – Control as feedback

Control is the process of establishing and maintaining a desired state. Open-loop control is of

little value in the SDN context; feedback is the essence of control.

Figure 5 illustrates that the administrator of the resources configures some desired state, which

may change from time to time. The various clients invoke service requests, which translate into

desired state. These also change from time to time, both as clients come and go, and also as each

client modifies its service demands. The actual state of the resources includes measures of load,

changes due to failure and repair, and administrative actions. Actual state may be polled on an

ongoing basis or updated asynchronously by notification. The controller evaluates the difference

between desired and actual state in light of the optimization policy (note), which may also

change from time to time, and attempts to modify the state of the resources accordingly. The op-

timization policy may include the ability to create (or request the creation of) new resources,

scale or migrate existing resources, etc. State convergence may include negotiation with neigh-

boring domains.

SDN architecture Issue 1.1

Page 24 of 56 © Open Networking Foundation

Note – It is expected that the optimization policy would include compliance with all of

the client SLAs. Nevertheless, there could be provider policies that govern how the ef-

fects of network overload or failure are distributed among clients of various types.

If desired and actual states cannot be reconciled within the bounds of the policy, the SDN con-

troller issues an exception, either immediately by rejecting a client request or as a notification

during ongoing operation.

In addition to its core feedback control function, an SDN controller may invoke arbitrary sup-

plementary functions, support arbitrary collections of additional features, any number of inter-

faces and protocols, any number of applications of arbitrary type and complexity, resources of

any and all categories, etc., according to its particular deployed purpose.

Further reading: orchestration, resource groups, complexity, delegation, notifications

6.2 Orchestration

In the sense of feedback control, orchestration is the defining characteristic of an SDN controller.

It is the selection of resources to satisfy service demands in an optimal way, where the available

resources, the service demands and the optimization criteria are all subject to change.

When the optimization function indicates that a better optimum can be achieved, the orchestra-

tion function adjusts the state of the resources under its control to move toward that optimum.

Note – Policy may or may not prevent in-service reassignment of resources.

Depending on its environment and the optimization criteria, the orchestration function may be

complex or relatively simple. Candidate orchestration algorithms may be evaluated on their abil-

ity to deal with complexity, as well as on their real-time responsiveness to change.

Orchestration includes at least the following functions:

 Validating service requests from clients against client-specific policy, denying requests
that fall outside policy.

 Configuring resources and subordinate services to satisfy client service requests accord-
ing to the provider’s controller-wide policy and the specific policy and SLA associated

with the client.

o This includes configuring data plane entities to enforce policy themselves, for ex-

ample by policing ingress traffic rates and priorities, by filtering ingress traffic

address fields.

o This includes creating and configuring data plane mechanisms for dynamic shar-

ing such as prioritized weighted fair queueing engines.

o This includes the configuration of encapsulation, address translation, or other

means to ensure mutual isolation of client traffic.

o If permitted by client and provider policy, this includes requesting the instantia-

tion, scaling, migration or deletion of resources, as may be appropriate.

SDN architecture Issue 1.1

Page 25 of 56 © Open Networking Foundation

o This includes configuring and operating network support functions such as protec-

tion switch engines, CFM, STP, performance monitoring, if specified by provider

policy or specified or implied by the client SLA.

o These operations may need to be recursively invoked from one SDN controller

downward to another before they reach actual traffic-processing engines.

 Coordinating service requests and service changes with neighbor domains, be they SDN
domains or otherwise, and whether the other domains are peers or hierarchically subordi-

nate.

 Publishing notifications of interest to particular client subscribers, in the terms of the per-

tinent client context, and notifications of global interest to global subscribers (the admin-

istrator of the SDN controller).

Virtual resources in the CC are dedicated to the given client, and exist because the client needs to

express its service demands in terms of some kind of entities, usually at least its points of pres-

ence on the provider’s network. The satisfaction of a client service request often requires the or-

chestration function to select additional resources from the underlying pool available to the serv-

er, i.e., resources that are not dedicated to the given client, and invoke services against those re-

sources. The selection of such shared resources is affected by policy and resource traffic load or

congestion.

Because virtual resources, service requests, and notifications exist in specific client contexts, it is

necessary that the orchestration function collaborate intimately with virtualization.

Further reading: Control as feedback, complexity, virtualization, client context, policy, notifica-

tions

6.3 Virtualization

As stated, orchestration is the core active component of an SDN controller. Virtualization is the

process that populates and maintains the resource and naming environments that link orchestra-

tion with clients. Orchestration and virtualization interoperate inextricably; for clarity, they are

described as separate functions, without meaning to imply anything about separability of imple-

mentations.

Recall that virtualization is the abstraction of resources allocated to a particular client, applica-

tion, or service. Because virtual resources are conceptually contained in client contexts, a client

context is a precondition for a virtualization.

The initial state of an SDN controller is a default CC for the administrator. This default CC con-

ceptually contains all of the underlying resources. Each non-default client context receives a cus-

tom virtualization, in the form of allocations from the underlying resource pool.

Not all of a client’s virtual resources are necessarily visible to the client. Of those resources that

are exposed to the client, not all attributes are necessarily visible, and not all exposed administra-

tor-writeable attributes are necessarily writeable by the client. Namespace translation is needed

only for resources that are visible to the client.

A virtualization may be created and populated in any way suitable for the circumstances.

SDN architecture Issue 1.1

Page 26 of 56 © Open Networking Foundation

Implicit creation and population is exemplified by a residential subscriber who supplies a street

address to a portal as part of signing up for service, from which a fixed access point of presence

can be derived as the necessary initial virtual resource. Additional client resources may also be

populated from equipment and inventory records, such as DSL modem or PON ONU, and a

physical or virtual residential gateway (RG). The services delivered to such a client are otherwise

free to use whatever resources may be selected by the orchestration function.

Another method is dynamic assignment. In satisfying client service requests, the orchestration

function may subdivide, combine or otherwise abstract underlying resources as necessary. The

resulting resource would be recorded in the appropriate client and service context, though it

would not be visible to the client.

A third method is explicit negotiation between customer and provider, for example to agree on

the detail of a number of UNIs of a corporate customer, or to specify an entire topology of a sub-

network that may be leased by the provider to a re-seller. Explicitly pre-negotiated resources

permit the client to exercise greater detail in its service requests, while correspondingly reducing

the number of choices available to the orchestrator in satisfying service requests.

Changes to resource environment, business agreements, or other factors, necessitate the ability to

incrementally update virtualizations in place. Updates must be coordinated with the orchestration

function.

Further reading: client context, roles, virtualization definition discussion, orchestration

6.4 Resource sharing

The principle of centralized control implies that no given resource is controlled by more than one

external entity. If several clients contend for the resource, they must contend as clients of an

SDN controller, which is responsible to arbitrate amongst their claims. There can be no multiple-

writer problem in an architecturally compliant SDN.

Resources may be allocated to a given client or service in their entirety, in which case there is no

possibility of contention. This allocation may be static during CC creation, or by the orchestra-

tion function according to a schedule or on demand. Examples of such wholly allocated re-

sources – at some level of virtualization – include physical points of presence (UNI, NNI data

plane ports), dedicated wavelengths, dedicated spectrum, dedicated time slots.

Resources may also be shared dynamically, i.e., packet by packet. This requires that the infra-

structure to be able to support at least some aspects of prioritized weighted fair queueing, that the

SDN controller (potentially in a hierarchy) recognize attributes such as priority, committed, and

extended information rate in service requests, and that it combine such requests in accordance

with the provider’s policy on oversubscription.

Arbitrary dynamic sharing on all network resources is complicated by the need to identify specif-

ic underlying resources in a mix of arbitrary client topologies and at least a partial mesh in which

arbitrary flows may be multiplexed on arbitrary links, changing the mix at every node. This

complexity encourages the allocation of large flows to fixed capacity paths through the core net-

work, with the core network engineered to achieve statistically satisfactory performance for

smaller flows.

SDN architecture Issue 1.1

Page 27 of 56 © Open Networking Foundation

Another resource that can be shared is address space. Depending on business agreement, a client

is often free to use all of the (e.g., IPv4, C-VID) address space that exists at its hand-off network

layer; the client relies on the server to isolate traffic. This may be done by physical separation, by

encapsulation, or by network address translation (NAT). Alternatively, addresses or address

blocks may be administratively allocated (and represented in policy form) when the client con-

text is created, or may be requested as needed during operation.

Further reading: orchestration, virtualization, complexity

6.5 Delegation

In the simple SDN model, a resource is a passive entity that exposes actions and attributes for

query and manipulation by an SDN controller or application. Nothing requires resources to be

passive, however, and there are strong reasons for certain resources or resource groups to have

active functionality.

The boundary between active and passive resources is not necessarily strict. For example, other-

wise passive resources may be instrumented to collect performance statistics and either upload

them autonomously or generate threshold crossing notifications.

Accordingly, the architecture provides for active resources. Active resources must be visible to

and controllable by the SDN controller or application, to a degree that satisfies the engineering

design or service requirements of the particular situation. The algorithmic intelligence of an ac-

tive resource may be built in or may be downloaded and installed on demand, either by the SDN

controller itself or by out of band means that are not explicit in the architecture.

Active resources may publish notifications, to which the SDN controller or application can sub-

scribe. Active resources may engage in peer interactions, for example those of STP or CFM. If

an active resource qualifies as a control function, in the sense of driving a feedback loop, the de-

ployment engineer is responsible to ensure that all feedback loops, including that of the SDN

controller itself, are configured such that they do not destabilize one another.

Further reading: control as feedback, orchestration, resource groups

6.6 Client context

A client context (CC) models everything that needs to exist in an SDN controller (note) to sup-

port a given client. To a given SDN controller, a client exists only during the lifetime of an asso-

ciated CC. If the relationship with the client terminates, all trace of the client may be removed by

deleting its CC and performing suitable resource reclamation.

Note – By the principles of recursion and abstraction, SDN access to a hardware network

element still requires a virtualization of its resources and a client context.

A client business relationship and its services are required to persist even in the absence of a

management-control association (session) between client and server. When the client re-

establishes a management-control association, its policy, resource, and service views must be

restored. This includes, for example, notification subscriptions and client-specific profiles. Logs

may be needed, in part to permit clients to view events of interest that occurred during disassoci-

SDN architecture Issue 1.1

Page 28 of 56 © Open Networking Foundation

ation. Much of the CC must therefore be persistent. As the repository of client-sensitive infor-

mation, backup and restoration of a CC must be secured from unauthorized access.

A session is an association between a specific instance of a client organization and an SDN con-

troller. It may be modeled in terms of user login. A session normally begins with an exchange of

identity and security credentials, followed by agreement on an initial state, much of which may

be restored from prior sessions. A session continues with the exchange of information. Each in-

formation exchange can be attributed to that session, for example in an audit log. A session may

continue indefinitely, or end with an explicit logout, a failure, or a timeout. In many cases, the

client will automatically restore a lost session, and it may be expected that the SDN controller

also be able to restore a lost session.

A business agreement may allow for any number of user logins – sessions – from one or several

client platforms. In a minimal client context that supports only one login, session identification

may be implicit.

SDN controller

Resource group

Client context CC Green CC Red

Virtual resourcesSupport resources

R
Client

support R

R
R

RG

CS

R
R

A-CPIA-CPI

Client RedClient Green

SC

SRs VRs

Orchestration
Virtualization

Figure 6 – Client context

Figure 6 illustrates that, logically, a client has visibility and control of the resources in its re-

source group. Semantically, the A-CPI between client and controller is at the boundary of the RG.

The CC also conceptually contains support information and functionality that are needed to sup-

port the client but that are not exposed to the client.

The functional contents of a CC are:

 One resource group. The RG defines the protocol interface (A-CPI) exposed to the client.
Two sub-groups are identified.

o Virtual resources represent infrastructure resources that are created from the SDN

controller’s underlying resources through the process of virtualization, and that

are exposed to the client by way of a mapping function. The most pertinent exam-

ple is the client’s point(s) of presence.

SDN architecture Issue 1.1

Page 29 of 56 © Open Networking Foundation

o Support resources, which represent functions hosted in the SDN controller itself.

Their purpose is to enable or facilitate interaction with the client. Examples of

support resources include client login profiles, notification subscriptions, logs. As

suggested by the resource called SC, current service contexts are also retained

here, including the client’s SLA expectation.

 Client support, CS. This function supports the client in as many ways as may be neces-
sary. It may include both code, ephemeral data, and persistent data. While the client’s RG

contains resources that are at least visible to the client, though not necessarily writeable,

the CS block may contain additional resources that are not exposed to the client at all, or

private views of resources dedicated to the client. Content of the CS includes information

to map names and actions between client and server, policies on what the client is al-

lowed to see and do (client view definition), how client traffic is to be isolated (e.g., NAT,

encapsulation, reserved or on-demand addresses or ranges), and provider logs or usage

measurement for billing or other purposes. Part of the policy function deals with security,

representing everything necessary to allow the client to connect to the SDN controller, for

example certificates, keys, management-control channel encryption policy, client logins,

policies on single or multiple login.

As will be apparent from the overlapping descriptions above, the blocks in figure 6 are not in-

tended to be sharply bounded discrete components with defined interfaces, merely to clarify the

functions of the CC. Additional functions may be included, subject to the definition that the CC

represents all things and only things that support a given client.

When an SDN controller is created, a default CC is required, with unrestricted privileges and

views. As well as configuring the SDN controller itself, and importing underlying resources, this

permits the SDN administrator to create and populate CCs for additional clients.

Further reading: multiple logins, policy, resource groups, virtualization, realization, server con-

text, service context, persistence

6.7 Service context

NB – Not to be confused with server context

Services usually involve data plane information exchanges with the client domain (figure 1).

These data plane exchanges typically persist during intervals when no active management-

control session exists between the SDN controller and the client. The existence and characteris-

tics of a service are represented by a persistent service context object in the client context of its

owner.

A service context conceptually contains at least all of the attributes of a service as requested by

the client, and server-specific information necessary to map service attributes into the realization

of the service. Notifications, logs, and profiles may or may not be associated with a service.

There is no implication that a given service be owned by any particular user login, but also no

prohibition.

SDN architecture Issue 1.1

Page 30 of 56 © Open Networking Foundation

A service context is populated by the server, driven by events that may include any or all of:

 Client context creation by server administrator, to provide prenegotiated or default ser-
vice

 Service creation operation by client, specifying service type and attributes

 Service update operation by client, modifying existing service

 Changes in network state or policy on the part of the server that alter the static attributes
of orchestration and virtualization necessary to realize the service.

When a service context is deleted, all resources dedicated to that service are released and no fur-

ther trace of the service remains in the server’s environment.

The identifier of the service context allows for unambiguous exchange of service-related control,

query and notification information between client and server. In the general case, a client can

create, read, update and delete (CRUD operation) services at will. If policy restricts a client to a

single service, the service context may be created by the server administrator, and not subject to

create-delete operations by the client.

At any given time, zero or more services may exist for any given client.

Further reading: client context, multiple logins, server context

6.8 Server context

NB – Not to be confused with service context

Recall that a client context contains everything needed by an SDN controller to support an appli-

cation. By symmetry, a server context (SC) contains everything necessary for an application to

support the client end of that association. The existence of a properly matched SC is necessary

and sufficient for a client application to communicate with an RG. As with the CC, an adminis-

trator creates SCs as needed.

As with the CC, an SC is at least partly persistent. Figure 7 illustrates an application client that is

an SDN controller, with server contexts that relate it to underlying services and resources, two of

which are within the same Blue trust domain as the controller itself.

SDN architecture Issue 1.1

Page 31 of 56 © Open Networking Foundation

SDN controller

D-CPI,
server Blue1

Resource group Blue1

A-CPI,
client Blue

R

R

R

sc

D-CPI,
server Blue2

RG Blue2

A-CPI,
client Blue

D-CPI,
server Gold

RG Gold

A-CPI,
client Blue

D-CPI,
server Aqua

RG Aqua

A-CPI,
client Blue

R R

R

Client

Server
Service
provider

Service
requestor

Server context SC Blue 1 SC Blue 2 SC Gold SC Aqua

Orchestration
Virtualization

Figure 7 – Server context

An application’s SC must contain information for each RG to which it may connect. This in-

cludes login and security information that will be acceptable to the server’s RG environment, and

whatever stack parameters are needed to achieve semantic compatibility. If multiple logins from

the same client SC are contemplated (e.g., parallel OpenFlow, OF-config, SNMP sessions), this

information would be accordingly multiplied. Local logs may be required in the SC.

Customized software may be included, for example to adapt the application’s internal APIs to

the protocol and information model of the subordinate RG. While the A-CPI references on figure

7 imply that the underlying RGs are themselves aligned with the SDN architecture, this is not

necessarily the case. They may well be non-SDN entities of any arbitrary nature, as long as the

application’s SC is capable of importing their capabilities.

Note – OpenDaylight plug-ins may exemplify such customized software.

Dynamic information retained in the SC would include off-normal state information, such as

alarms or notifications of reduced capacity.

The underlying RG is mirrored into the client-side RDB, specifically in the SC.

The SC may also contain information such as logs. Performance monitoring uploads may be re-

tained here, at least temporarily until deleted or offloaded onto analytics systems. Other func-

tions are other storage are not precluded.

It is for further study whether a client application requires policy enforcement to protect itself

from the server.

Further reading: service context, client context, resource database

7 Applications

The classical SDN model describes an application plane, populated by instances of applications.

An application is an entity that requests a service of some kind from an SDN controller. The idea

SDN architecture Issue 1.1

Page 32 of 56 © Open Networking Foundation

is recursive; an application can itself be an SDN controller. Sometimes applications are described

in terms of end users, but from the perspective of a server SDN controller, there is no way to

know. An SDN controller offers services; an application-plane entity on the other side of its A-

CPI invokes the services.

Recognizing that an application may be an SDN controller, it may be useful to list some charac-

teristics to clarify the terminology.

 From the viewpoint of an SDN controller, anything that invokes services from one of its
A-CPIs is an application.

 If an entity orchestrates more than one resource group across its D-CPIs, it is an SDN

controller.

 As the intelligent node in a feedback loop, an SDN controller is likely to engage in fine-
grained state monitoring and to have a wide repertoire of nuanced responses to deviations

from the desired state. A service-consuming application is more likely to express only its

purpose (intent) against a single server, leaving the satisfaction of that purpose to under-

lying intelligence. Feedback to a non-SDN controller application is more likely to be

coarse-grained: accept-deny or alarm on failure, with little expectation that the applica-

tion can remedy the situation. A non-SDN controller application is more likely to have no

ongoing management-control sessions and minimal or no notifications subscriptions.

 If an entity exposes its functionality to human users, it is probably an application. Be-
cause humans always communicate with software through mediation devices, the depth

and sophistication of the mediation affects the interpretation of this criterion.

Further reading: control as feedback, orchestration, principles of SDN

8 Putting it together: the integrated architecture

Figure 8 reiterates the earlier figure 2. It shows the controller as the central element in an SDN,

and with its conceptual content of contexts and the orchestration-virtualization function. In this

illustration, SDN controller Blue offers services to clients Green, Red and itself, Blue. CC

boundaries and resource groups are colored to indicate dedication to clients, while RG border

colors identify the underlying resource owner and the accompanying isolation and policy en-

forcement barrier. An administrator in the Blue organization has unrestricted view and privilege

over the SDN controller itself, along with all client and server contexts.

SDN architecture Issue 1.1

Page 33 of 56 © Open Networking Foundation

SDN
controller

A-CPI

Resource
group

Resource
group

A-CPI

Application RedSDN controller Green

Resource
group

Resource
group

Resource
group

Resource
group

Resource
group

Resource
group

Resource
group

A-CPI

Application
Blue .n

Resource
group

A-CPI

Administrator
Blue

D-CPID-CPID-CPI

CC Green CC Red

Server context
SC Blue.1

Server context
SC Blue.2

Server context
SC Aqua

CC Blue .n
Client context
CC Blue.admin

Server context
SC Gold

Orchestration
Virtualization

Client

Server

Client

Server

Service
provider

Service
requestor

Service
provider

Service
requestor

Resource
group

D-CPI

Server context
SC Green

Figure 8 – SDN controller illustrating contexts

The SDN controller consumes underlying resources offered by Gold and Aqua, as well as two

resource groups owned by itself, Blue. The Green client application is shown as an SDN control-

ler in its own right, orchestrating services and resources across several domains, one of which is

Blue. At the D-CPI, the Blue SDN controller is shown in the same way, and in fact as a service

requestor client to Green. Reciprocal requestor-provider roles allow Blue and Green to operate as

peers in providing services that may have been requested by some client above either domain.

The resource group in the administrator client context includes the default unrestricted policy,

and the information necessary to manage (note) the SDN controller and the various client and

server contexts. In addition, it contains support objects (resources) for use by the administrator

login, for example logs, subscriptions, and profiles.

Note – Because the idea of a CC or an SC is that they contain all of the information related

to a client or server, the administrator’s RG is modeled as containing only the information

needed to manage such CCs and SCs, but not their contents. Whether this distinction actu-

ally matters is an open question.

SDN architecture Issue 1.1

Page 34 of 56 © Open Networking Foundation

8.1 Interfaces

8.1.1 Controller plane interfaces

The data-controller plane interface (D-CPI) is the interface between an SDN controller and the

resources under its direct control. The application-controller plane interface (A-CPI, also called

NBI) is the interface between application and SDN controller, across which an application in-

vokes services from the SDN controller.

By recursion, A-CPI and D-CPI are instances of a common interface, as viewed from the server

and client sides, respectively. The semantic content that may be conveyed across the interface is

unbounded, though the architecture models the entities as client and server. A client should be

able to query or discover the underlying environment and subscribe to notifications from a server.

A client commands; a server responds.

From semantics down through the various levels of the stack, any given association must support

at least a subset of some common information view and should deal with misalignment graceful-

ly. Exact or partial compatibility across an interface may be known a priori, discovered or nego-

tiated when the client-server association is established, custom-configured, or any combination

of those.

The idea of a priori knowledge deserves explanation. In real-world deployments, functionality,

information model compatibility and stack compatibility will be known and specified from the

initial engineering of the network through vendor and product selection, through product qualifi-

cation, and into coordinated deployment, along with integration into related systems including

business processes such as product catalog development, advertising and billing. Random ad-hoc

associations of applications, controllers and network resources are of no concern.

8.1.2 Additional interfaces

An SDN controller may be implemented as a collection of distributed components, the interfaces

between which are internal, and out of scope. This clause describes external interfaces to the

controller that are not explicitly shown in the architecture. These fall into three broad categories,

which overlap widely.

SDN controller

Service-consuming
application

Supplementary
function

Supplementary function
interface (non-ACPI)

Client context

A-CPI

Resource group

Service-consuming interface

Figure 9 – Supplementary function example

SDN architecture Issue 1.1

Page 35 of 56 © Open Networking Foundation

Supplementary functions

An SDN controller may use other interfaces and other functions, and in particular may

invoke supplementary functions as exemplified in figure 9. If a supplementary function

modifies the state of network resources or services, the modified state must be flagged to

the SDN controller that invoked the function, for example via notification or function re-

turn parameters.

Supplementary functions may also be internal to the SDN controller. An SDN controller

may perform a given function by executing its own code, including library code, or by

invoking supplementary functions that reside externally. For example, scope and clean

partitioning suggest that path computation will almost certainly be external to an SDN

controller, as will services such as AAA, DHCP, DNS.

The architecture makes no distinction between internal and external functions; it assumes

that the SDN controller can achieve the necessary outcome.

An SDN controller is architecturally allowed to instantiate, destroy and scale resources,

some types of which may be subsumed under the concepts and tools of the ETSI NFV

discipline. Because of the current prominence of NFV, it is worth emphasizing a strong

preference that the outcome be an invocation by the SDN controller of NFV-related tools,

either from a library or across a protocol interface, but not by way of reinvention.

Note – If an NFV-related entity invokes SDN functions, it should align with the

usual SDN server-client model at an A-CPI.

Directories and databases

An SDN controller requires considerable information for its normal operation, which is

architecturally modelled as being available in a conceptual resource data base. It may also

be desirable that some of this information reside elsewhere, accessible to the SDN con-

troller when needed.

Such information might include widely shared subsets of a common information base,

such as inventory, common service profiles, client contexts. The SDN controller may up-

date such common information, and may require transactional interfaces to them to as-

sure consistency. The SDN controller may also need to subscribe to change notifications

from such external information.

Information to support mappings between client and server views of resources and ser-

vices may reside externally to the SDN controller. Reasons for external hosting may in-

clude security aspects of read-write access shared between the server (provider) admin-

istration and various clients.

Backup and restoration datasets are additional examples of pertinent external information

stores, as are logs and performance monitoring archives, and software management re-

positories.

Other FCAPS functions

An SDN controller is responsible for establishing and maintaining services for its clients.

A number of additional functions fall in the FCAPS definition (fault, configuration, ac-

SDN architecture Issue 1.1

Page 36 of 56 © Open Networking Foundation

counting, performance, security), some of which may be partly or entirely outside the

scope of a given SDN controller.

A prime example is the exception thrown by an SDN controller when it is unable to con-

verge desired state to actual state. This may trigger diagnostic, fault isolation, and repair

activity that is not part of the SDN controller’s normal functions. Similarly, functions

such as equipment installation may be beyond the normal scope of an SDN controller’s

duties.

The reason for a possible non-CPI interface to the SDN controller is that such activities

typically involve the SDN controller, at least to the extent of overriding its normal opera-

tion in relation to certain resources, and often as proxy for external activities such as test-

ing or diagnosis.

Note – In some such circumstances, an ordinary administrator access may suffice.

Restoration from backup and software upgrade are related functions that may need to be

performed on SDN controllers that are at least partially operational during these process-

es.

Further reading: Persistence, initialization, Resource data base

8.2 Notifications

Notifications are an important link in the feedback mechanism that is the core of an SDN con-

troller. All SDN entities are expected to follow a publish-subscribe notifications model. Sub-

scriptions and profiles are associated with particular client logins and are persistent.

A client context includes a definition of the notifications available to that client, and is thus part

of the virtualization of underlying resources configured by the server administrator.

The notifications available to any given client must be discoverable by that client, and notifica-

tions management capabilities must be supported. These include subscription management and,

if alarms are subscribed, severity assignment profiles, active alarms lists, and alarm reporting

control (ARC).

Notifications from an underlying layer may be of interest to clients, but must be virtualized into

the client context. This may require more than a namespace change; for example, an attribute

value change notification from the underlying resources may become an object creation notifica-

tion to a client. Notifications delivered to a client should also be available to the administrator or

a log for troubleshooting, correlated with the triggering notification from the infrastructure.

Particularly because a client need not maintain a continuing login session with the SDN control-

ler, client-visible notification logs may also be required.

The administrator role can control notification subscriptions on behalf of itself or any of its cli-

ents. This is recursive to a client that plays the administrator role in its own CC.

ITU-T M.3702 [10] is the recommended baseline for notifications management. Further detail of

the SDN notification framework appears in a Notifications Framework document, in progress.

Further reading: control as feedback, client context, multiple logins

SDN architecture Issue 1.1

Page 37 of 56 © Open Networking Foundation

8.3 Peer controllers

SDN controller
Green

CC Blue

D-CPI

RG

SDN controller
Blue

CC Green

A-CPI A-CPI

Data plane handoff
point(s)

D-CPI

RG

Server
context Blue

SC
Aqua

SC
Grn

Server
context
Green

SC
Blue

SC
Red

RG RG RGRG

Figure 10 – Peers as symmetric requestors and providers

Figure 10 illustrates two SDN controllers in a peer relationship, in which either may act as client

to invoke services from the other as server. Each requires a client context and a server context for

the other. SLA, enforced policy and information hiding are applicable between peers just as be-

tween hierarchical provider and customer. The CC and SC for a peer may be separate, as shown,

but they could combine certain aspects such as association credentials and security policy.

9 Specific perspectives on the architecture

9.1 Security

Data plane connections face the same security concerns in SDN and in current networks. Traffic

in and out of the network must be traceable to a known client, policed for SLA compliance as

well as against DOS, spoofing, or other attacks, and isolated from other traffic that may use the

same address space.

Many other security concerns are also the same as in current networks, for example the procure-

ment and deployment of executable software, the security of the management communications

network, the integrity of directories and network services such as DNS, and the need to safe-

guard against insider errors and attacks.

What is different in SDN is the widespread exposure of management-control interfaces to third

parties, and the wide range of services that may be offered by way of these interfaces. With more

parties involved across more interfaces that offer greater functionality, the difficulty of assuring

proper behavior across each interface increases manifold, whether misbehavior is due to error or

malice. Interfaces traceable to a common information model are an important way to ensure API

integrity from the beginning.

The SDN architecture specifies that a management-control association between a client applica-

tion and an SDN controller be properly authenticated and secured. Not least because a client ap-

SDN architecture Issue 1.1

Page 38 of 56 © Open Networking Foundation

plication may not be fully trustworthy, the architecture provides for limited information exposure

by way of the virtual resources offered to the client, and policy enforcement on all of the client’s

management-control operations. The combination of access security, tailored virtual resources

and policy enforcement is called a client context.

Flaws in the client context may result from software or configuration error, from insider tamper-

ing, or from network environment shifts that expose new possibilities beyond those covered by

policy rules. Probing and auditing of client contexts may be valuable in discovering such flaws,

with audit logs available for post facto analysis.

It may also be permitted that a client download executable code onto an SDN controller. Even if

such code is certified and secured, it behooves the SDN controller to bound its execution envi-

ronment within at least the same client context, information hiding, and policy enforcement con-

straints.

Possibly as a new, or exaggerated, feature of SDN, backups from SDN controllers and applica-

tions may contain commercially sensitive information, for example about customers and partners,

and must be protected from leakage, not only during storage but also upon re-installation or sub-

sequent analysis. Historically, much of this information would have been localized in semi-

isolated BSS/OSS environments.

Further reading: persistence

9.2 Reliability, availability

In the data plane, reliability and availability considerations are largely unchanged when man-

agement-control is logically separated from traffic processing infrastructure. Protection switch-

ing and load sharing concepts remain applicable, and the ability of an SDN controller to delegate

functions into the infrastructure helps to avoid unacceptably slow responses to events.

Although SDN does not mandate a move of existing hardware functions into software, such a

move is facilitated by SDN, and in particular NFV, and is under way today. From the reliability

and availability viewpoint, a network implemented in software, as distinguished from a network

controlled by software, requires re-examination.

 Software data plane functions may be more finely decomposed and therefore require
more network assets, and more dynamic network assets, to chain them together, than was

the case before.

 The dynamics of failure discovery may differ. For example, loss of signal on a physical
link can be signaled immediately to concerned parties, while loss of heartbeat may be

recognized only after several heartbeat intervals elapse. This will affect the agility of re-

sponse, the proper kinds of response, and the commitments that can be made to customers.

 Virtual network functions reside on general purpose substrates. New instances may be

readily created as an alternative to repair of a failed instance, or hot spares may be avail-

able for immediate use, subject to correspondingly agile updates to connectivity.

 Because failures may lose state, restoring state from checkpoints or continuously syn-
chronizing spare instances will be important.

SDN architecture Issue 1.1

Page 39 of 56 © Open Networking Foundation

As to control, the possible separation of an SDN controller from traffic processing resources im-

plies a reduction in availability. This may be addressed in several ways.

 Traffic processing engines should be designed to continue their function unchanged in the
absence of an active controller connection (note). This will affect partitioning and delega-

tion of functionality from the SDN controller into data plane elements.

Note – This is another way of pointing out that services normally continue to operate dur-

ing the absence of a management-control session.

 SDN controllers may be implemented in load-sharing or redundant configurations, with

near real-time synchronization. Subordinate systems will need to support multiple con-

troller sessions or fast establishment of new controller sessions.

The notion of recursion implies that a service request may need to propagate through a number

of hierarchical or neighbor SDN controllers before it is satisfied. If a controller fails or is other-

wise unable to perform its expected functions, it will be necessary to unwind intermediate re-

source commitments, either for a new attempt or for a failure indication to the originating client.

It may be helpful to re-use concepts such as resource reservation in the forward direction and

commitment in the reverse, or acknowledgement, direction.

Further reading: persistence

9.3 Identifiers

The core information model [3] includes material on identity, names, labels, and addresses. This

architecture document refers to them generically as identifiers. Identifiers are essential to deter-
mine what is under consideration and where it is to be found, both of these within some space

that may be implicit.

In the SDN architecture, identifiers are significant because clients view resources and services in

their own terms, which must be mapped into the server’s identifier space, as well as possibly

translated into quite different resources.

It is not specified how identifiers in either space are initially established.

 They may be administratively configured and known by manual provisioning, discovery,

directory query or other means. Recognition of a wireless client by SIM card identity is

one example; another is translation from a customer’s service address to a provider’s

equipment or cross-connect panel appearance.

 They may be proposed by one side and accepted by the other during negotiation.

 Other mechanisms are not precluded.

When a client’s virtual resource is derived as a one to one view of some underlying resource, a

simple identifier mapping suffices. A virtual resource may also be based on a complex view of

several underlying resources. As an example, a single subnetwork identifier exposed to a client

may map onto a set of underlying resources that represents arbitrary functions, technologies, ad-

ministrations, geographic locations, etc. Creating and traversing such mappings are major func-

SDN architecture Issue 1.1

Page 40 of 56 © Open Networking Foundation

tions of virtualization and orchestration. Because the orchestration function generally has a

choice of underlying resources, the mapping may change over time.

9.4 Realization considerations

The administrator role creates and modifies client and server contexts and the SDN controller’s

optimization criteria. Any or all of these could be done through offline tools, with the result in-

stalled in the SDN controller as a subsequent step.

An SDN controller requires a significant amount of persistent information, particularly in client

and server contexts. Backup and restoration may be appropriate for such information. It will be

important to understand the gold reference for each fragment of persistent information and to en-

sure timely consistency in mirrors, copies or derivations. These issues exist in current networks;

whether there are new aspects in an SDN is a matter for further study.

Given suitable definition of which instances of client application are permitted to connect with

which instances of SDN controller, at least part of the CC may be amenable to common external

storage, accessible through a directory service, such that it can be downloaded to any of several

possible SDN controllers that allow association with the given client. As an example of this flex-

ibility, if a roaming user were to connect to a foreign SDN, a partial CC for that user could be

dynamically downloaded and installed on the SDN controller from the user’s home location,

whereupon the SDN controller could dynamically instantiate services as specified by the includ-

ed service contexts.

An SDN controller may be implemented in a distributed computing form, with redundancy or

functional separation or both. Maintaining synchronized state during operation and during excep-

tion recovery is important.

As a new network entity of arbitrary and varying complexity, it may be expected that an SDN

controller will very often be implemented as a virtual network function (VNF). If the SDN con-

troller has responsibility within the same NFV domain, it will be important to plan a controllabil-

ity tree that avoids the SDN controller unintentionally disrupting its own operation.

Further reading: persistence

9.5 Initialization

The preparation of network resources for service requires operations such as code installation

and configuration of initial parameters. Ultimately, these may come down to craft terminals and

faceplate connectors, factory-installed software that is at least capable of downloading and in-

stalling operational software, and the like. Some equipment may be able to configure itself and

appear autonomously to its neighbors as a new resource without manual intervention. Certain

levels of test and equipment management may also be required during initial turn-up. These

functions are not new to SDN. It is for further study whether the SDN architecture has anything

special to say about them.

The SDN architecture presupposes an initial SDN controller environment that includes working

software with an administrator client context. The administrator client context permits the crea-

tion of additional client and server contexts. As the administrator creates server contexts and the

controller contacts the server, the resources exposed by that server are made available in the

SDN architecture Issue 1.1

Page 41 of 56 © Open Networking Foundation

RDB, from which they may be statically allocated by the administrator to particular CCs or con-

sumed dynamically by the orchestration function.

Note – Architecturally, transparent pass-through of underlying resources is thought of as

a degenerate case of virtualization. Just as with similar situations in information hiding,

strong security, and policy enforcement, transparent virtualization may explain why many

existing approaches to intra-administration SDN do not recognize the need for these func-

tions.

Given the necessary physical or virtual raw material, an SDN controller may instantiate or cause

the instantiation of, new resources from scratch, e.g., VNFs on VMs or on bare metal compute

servers.

Further reading: Persistence, resource data base

9.6 Complexity

Orchestration, the core function of an SDN controller, is a multi-dimensional real-time optimiza-

tion problem over a complex and potentially large space. Further, it must simultaneously work

across the underlying resources and all of their various virtualizations. The complexity of the

controller is a legitimate concern. Several approaches are available; all of them are likely to be

useful in various combinations and according to circumstances.

Continuing improvements in computing technology assist in the ability of an SDN con-

troller to handle larger workloads, especially when the controller is implemented as a

VNF that can be distributed, scaled, or migrated.

Subdividing the problem space is a common scaling technique, whether by defining a

greater number of smaller SDN domains or by allocating separate functional areas to sep-

arate SDN controller components. Existing BSS/OSS/NMS functionality may be re-used

en bloc or incrementally.

An important opportunity for separation of concerns is the ETSI NFV focus on life cycle

maintenance of certain resources, and the SDN focus on services and the use of resources

for service delivery. To illustrate the point, a soft switch may be a virtual network func-

tion (VNF), created by NFV entities and made available as a network node to an SDN

controller. The SDN controller would then dynamically configure layering and forward-

ing of particular flows or flow bundles through the switch.

The optimization problem may be simplified if the SDN controller’s feedback criteria de-

fine a range of results that is considered to be good enough, rather than seeking to con-

verge on a precise optimum. It may both simplify the problem and improve customer

quality of experience if resources are not reallocated while they are in use.

Although its functionality is reduced, an SDN controller is simplified if it deals only with

the allocation of pre-existing resources, and does not consider the possibility of scaling

resources or creating new resources. In such a case, some other entity (e.g., related to

ETSI NFV) might have responsibility for dynamic resource inventory, updates to which

could be made known to the SDN controller.

SDN architecture Issue 1.1

Page 42 of 56 © Open Networking Foundation

The architecture assumes that some part of the underlying resources can be efficiently

virtualized into disjoint subsets that satisfy the needs of various clients, including QoS

and availability commitments, while isolating each from the others, and instrumenting the

lot for monitoring, fault management, billing, and network engineering. The virtualiza-

tion is assumed to remain optimal, or near optimal, in the face of customer churn, net-

work build-out, and other such factors.

Some aspects of this problem are comparatively easy to address, for example isolating

customers in a common address space, or the policing and prioritizing of traffic near the

point of network ingress. Other aspects may be harder to automate.

Whether intentional or otherwise, over-engineering reduces the complexity of resource

management. This is particularly true in the core, where elephant services (few, large,

long-lived) are worth managing explicitly, while mouse services are best treated statisti-

cally. The cost of under-utilized resources is visible, but when compared to the compara-

tively hidden cost of complexity, especially the development and maintenance of algo-

rithms, a certain amount of over-engineering may well be cost-effective.

As suggested, the greatest cost may be that of human effort in developing and – not to be

underestimated – validating resource allocation and optimization algorithms. Machine

learning or artificial intelligence may play an important role in this regard.

9.7 Persistence

Information has a useful scope and a useful lifetime. Information also exhibits primacy charac-

teristics, in the sense that some information is primary and other information is derived.

Note – Global business agreements exemplify primary information; the interpretation of a

global business agreement into SLA or policy for a specific SDN controller or service ex-

emplifies derived information. An accepted service request is primary, its implementation

is derived. Except for planned resources that do not yet exist, it is widely accepted that

the network itself is the primary source of resource state, from which additional infor-

mation may be derived.

Policy for redundant and persistent information storage should trade off primacy and reconcilia-

tion against the cost of derivation. Factors to be considered include security, synchronization,

storage, bandwidth, code, practices development, training, and administration. The choice of

hosting site for redundant and persistent information must also consider the likelihood and con-

sequences of various exception cases. For a given SDN entity, several policies and hosting sites

may be appropriate for different classes of information.

It is expected that much of the content of client and server contexts and the provider’s optimiza-

tion policy will justify remote persistent storage and possibly local redundancy to reduce the ef-

fect of SDN controller failure. When several business entities are involved in a relationship, each

bears primary responsibility for its own information storage, but nothing precludes one player

from offering synchronization, backup and restoration services to other players.

Further reading: security, realization considerations, resource database, client context, server

context, service context, notifications, reliability and availability, initialization

SDN architecture Issue 1.1

Page 43 of 56 © Open Networking Foundation

9.8 Migration and coexistence

When new resources are developed and installed, for example virtual network functions from

concepts developed by ETSI NFV ISG, it is natural to deploy them in an SDN domain and use

them in alignment with this SDN architecture. However, the broad scope of SDN and the ab-

stract nature of its architecture are also intended to facilitate its incremental adoption and coex-

istence with current networks.

An SDN controller may be instantiated above a non-SDN domain, abstracting the views present-

ed by non-SDN network elements, element management systems (EMSs), or network manage-

ment systems (NMSs) into a common information model that can be virtualized and used to de-

liver services to clients.

A subnetwork, which may be as small as a single network element, may be an SDN island do-

main, in which the SDN controller adapts its underlying resources to control and management by

non-SDN entities, be they peer or superordinate entities. An SDN controller may act as a peer in

multi-domain information exchanges such as via BGP.

An SDN controller may have responsibility for certain aspects of resource control, but not others.

In the near term, much existing FCAPS and OSS/BSS functionality will remain with current

OSS/BSS/NMS entities. When distinct entities control different aspects of the same resources, it

will be important to ensure that they do not disrupt each other.

In short, SDN principles can be applied incrementally to peer, subordinate, and superordinate

entities, as opportunity and business justification arises, and need not be viewed as all or nothing,

or as a strong push into asset replacement.

9.9 Relationship of SDN and NFV

The ETSI NFV ISG focuses primarily on the creation of virtual network functions (VNFs). SDN

can help organize VNFs into network services (NS). VNFs and NSs then become resources for

use in constructing services for clients, which is the focus of SDN. To a significant extent, these

disciplines thus complement each other. The SDN architecture fully recognizes the value in the

work done in ETSI NFV ISG, and encourages its use.

ONF TR-518 [2] is a more detailed comparison of SDN and NFV perspectives. ETSI NFV ISG

has also published a less abstract view of the topic [7].

It may be expected that all OSS/BSS/NMS/EMS and SDN controllers will be or become VNFs,

along with utility services such as DNS, DHCP, etc. These are already software entities, and may

already be able to run on x86 cores, so the migration should be straightforward. But much or all

of the “data plane” exposed by these entities is network management-control traffic, so the levels

of abstraction will need to be carefully considered.

10 Appendices

Having intentionally minimized the size of the main document text, it is recognized that a num-

ber of topics justify wider discussion. Some of them may be developed as stand-alone Architec-

SDN architecture Issue 1.1

Page 44 of 56 © Open Networking Foundation

ture Notes documents over the course of time. These appendices contain material of sufficient

interest to warrant inclusion in the main document.

10.1 Discussion of definitions

A definition should be concise, precise and pedantic. However, informative material is often

helpful in interpreting the definition, drawing out its implications, and relating it to other con-

cepts. Clause 4 contains the definitions used in this document; this appendix contains their dis-

cussions.

Ed note: definition text is hyperlinked from clause 4. Edit it there, not here!

10.1.1 Abstraction

Definition: The representation of an entity or group of entities according to some criterion, while

ignoring aspects that do not match the criterion.

Discussion: Even when the underlying object is completely physical, it is always viewed through

a filter of some sort. The filter necessarily loses some aspects of the original and thus necessarily

provides an abstract view. Some filters are natural, for example human visual or tactile percep-

tions, but those of interest to SDN are software representations chosen to expose aspects of inter-

est. Any number of filters (abstractions) can exist for a given underlying object.

It is sometimes considered that, at the bottom of a recursive hierarchy, the lowest level SDN con-

troller controls a bare metal switch, for example through OpenFlow. It must be understood that,

even in this case, the hypothetical bare metal switch necessarily exposes an abstraction, namely

an OpenFlow logical switch. This observation changes only in detail if it is asserted that the bare

metal switch is directly visible to OF-config, rather than to OpenFlow, or if OpenFlow is used to

program chips rather than network elements.

A similar case can be made about any other management-control interface, and about even fur-

ther descent into the internal structure of managed entities.

The inclusion of groups of entities in the definition is recognition that entities may be merged or

combined in an abstraction.

10.1.2 Client

Definition: An entity that receives services from a server.

Discussion: See clause 10.1.10 Server.

10.1.3 Client context

Definition: The conceptual component of a server that represents all information about a given

client and is responsible for participation in active server-client management-control operations.

Discussion: Refer to clause 6.1 SDN controller as feedback node and multiple logins

10.1.4 Domain

Definition: A grouping of entities according to some criterion.

SDN architecture Issue 1.1

Page 45 of 56 © Open Networking Foundation

Discussion: Common domains of interest to SDN include

 Administrative domains, the complete set of resources owned by a given business entity.

 Geographic domains, partitioned within an administration for scaling, or across admin-

istrations for other reasons, for example the North American [telephony] Numbering Plan.

 SDN domain, the set of resources directly controlled by a given SDN controller.

 Technology or deployment domains, for example transport, access, wireless, cloud. NFV
may be a separate domain. Non-SDN domains would be distinguished from SDN do-

mains.

10.1.5 Management-control continuum (MCC)

Definition: The principle that the functions of management and of control are largely, if not en-

tirely, the same.

Discussion: Ultimately, the existence and behavior of networks can be traced to decisions and

actions by humans. Activities performed by humans are often thought of as management. The

further away from human involvement, the more likely an activity is thought of as control, per-

haps exemplified at the extreme by automatic gain control built into a hardware feedback loop.

In the continuum, a great many activities may be performed at a greater or lesser remove from

specific human involvement. The MCC concept observes that, to the managed or controlled tar-

get entities, it makes no difference why it is being asked to perform some action, or by whom. A

practical consequence is that management-control functional components may be re-used in

products or deployments that are thought of as managers, as controllers, or anything in between.

In SDN, both terms may be used where their functions align with common usage, but control is

the preferred default term, as it better matches the idea of feedback in real time.

Note – It may be observed that the resource life cycle maintenance perspective of the

ETSI NFV ISG causes it to use the term management by default.

10.1.6 Orchestration

Definition: The ongoing selection and use of resources by a server to satisfy client demands ac-

cording to optimization criteria.

Discussion: Refer to clause 6.2 Orchestration

10.1.7 Policy

Definition: A rule that guides and constrains subsequent actions of, and interactions between,

other parties.

Discussion: The term policy is widely used but rarely defined. In some contexts, any rule is a

policy, including for example, a match-action entry in a switch. In this architecture, a policy is

understood to focus on aspects of management (human) purpose, and/or directing the response to

exceptions or violations.

SDN architecture Issue 1.1

Page 46 of 56 © Open Networking Foundation

A policy is the result of some thought, not just flipping a coin (note). So an administration antic-

ipates conditions that might arise, decides what to do under the foreseen circumstances, then in-

stalls a policy on some engine that is capable of observing the circumstance and taking the speci-

fied action. Every time the circumstance arises, the action is the same.

Note – A policy could of course obtain a specified amount of randomness from a speci-

fied source, when required by a specified event, and use that randomness in a specified

way to determine an action. The policy is nevertheless a fixed rule, and the action to be

taken is the same each time.

As a counterexample, if some circumstance arose that had not been previously considered, it

might be necessary to make an instant decision, but the decision criteria could hardly be called

policy-based. (Of course, if an ad hoc decision proved to be optimal, it could later be formulated

as a policy.)

The word subsequent captures the ideas of forethought and persistence.

As to the word other, an administrator role may install a policy that pertains to itself in a subse-

quent client or user role, but it is not meaningful to pre-constrain actions in the same role.

The idea of interacting parties implies correctly that policy is enforced at interfaces.

In the SDN architecture, an administrator installs a policy whose enforcement protects the server

resources from possible abuse by the client, either intentionally or otherwise. The policy also

captures the server’s commitment to the client, for example by way of SLAs. Finally, the policy

could define details about how the server satisfies client demands. An example might be a policy

to encapsulate traffic, physically isolate it, or use some particular subset of a common address

space.

10.1.8 Recursion

Definition: The repeated application of a process in which the input to each iteration except the

first is derived from the output of the previous iteration.

Discussion: In a computational context, recursive iterations are usually executed by the same

process, and the result delivered by the recursive process is realized when recursion ceases. In

SDN, however, the usual case is that the output of an iteration is passed as input to a different

software entity, usually on a different platform. It is therefore the usual case that each entity in-

crementally realizes some part of the ultimate added value as a side effect of its iterative step.

The entities involved in recursion are often SDN controllers, but especially at the beginning or

end of a recursive sequence, they may be other entity types.

In mathematical recursion, the input and output of an iteration are of the same data type, for ex-

ample floating-point reals. However, especially in hierarchical SDN recursion, successive itera-

tions on successive platforms may involve very different protocol stacks, data models, services,

and actions. This is also the case in layered networks: each layer is recursively a client of the

layer below it and a server to the layer above it. This is recursive, but the details of inter-layer

interfaces may differ substantially from one another.

SDN architecture Issue 1.1

Page 47 of 56 © Open Networking Foundation

The principle of recursion requires that every interface and every iteration be the same, but the

principle must be understood at a high level of abstraction, not necessarily as a statement about

details.

No entity has visibility beyond its immediate neighbors, and therefore has no way to know

whether it is part of a deep recursion or a shallow recursion. Knowledge of recursion beyond

immediate neighbors is possible only from a perspective of omniscience.

Repeated local iteration is available to SDN entities as needed, but has no special or unique sig-

nificance. SDN identifies two kinds of recursion that are significant.

Hierarchical recursion is a pattern in which higher-level SDN controllers orchestrate a

broad scope of resources and services across one or more lower-level SDN controllers

with narrower scopes and less abstract resources. In the inverse direction, resources ex-

posed at lower levels of abstraction are recursively partitioned and recombined into in-

creasingly abstract resources and services at higher levels.

Neighbor recursion is a pattern in which SDN controllers peer to deliver services across

domains. All participants would be expected to expose comparable levels of abstraction

and service, and any SDN controller could act as either client or server to its neighbors,

ad hoc. Services invoked by neighbor recursion are more likely to fit a call model – ser-

vice invocation, service usage, service release – rather than persisting indefinitely.

10.1.9 Resource

Definition: Anything that can be used to deliver a service.

Discussion: A resource is modelled as an instance of a managed object class. Resources may be

subdivided and combined with other resources in any way supported by the information model.

When underlying resources are virtualized by an SDN controller, the result is a new resource that

may be offered to a client. When exposed resources are manipulated by a client over an A-CPI,

possibly with additional resources as marshalled by the server, the result is a service.

Resources are intentionally defined very broadly, in keeping with the broad scope of SDN. The

following examples illustrate the range of possible resources:

 A dark fiber

 An equipment plug-in

 A termination point

 A virtual machine

 A virtual network function

 A switch

 A firewall

 A subnetwork

 A catalog of service offerings

SDN architecture Issue 1.1

Page 48 of 56 © Open Networking Foundation

10.1.10 Server

Definition: An entity that provides services to a client.

Discussion: The SDN architecture is extensively based on client-server concepts. A server,

which may be an SDN controller, exposes resources to zero or more clients (q.v.), which may

themselves be SDN controllers or service-consuming applications. The clients invoke various

operations on these resources to realize services.

Especially when client and server are in separate administrative domains, the server may be

called a provider, and the client may be called a user, customer, or consumer (note). A client may

also be called an application.

Note – The industry sometimes uses the term tenant in this context. However, the coun-

ter-party to a tenant is a landlord, which is usually inappropriate for an SDN context, so

the term is deprecated in this architecture.

10.1.11 Server context

Definition: The conceptual component of a client that represents all information about a given

server and is responsible for participation in active server-client management-control operations.

Discussion: Refer to clause 6.8 Server context.

10.1.12 Service

Definition: The delivery of value for some time interval by a provider to a consumer.

Discussion: It is understood that a relationship usually involves a mutual exchange of value, for

example, but not necessarily, financial compensation. As used in SDN, a service is usually closer

to the network resources than the counter-flow of compensation. Temporally, a service invoca-

tion is generally the acceptance of an offer, with subsequent compensation.

A given set of entities may offer and invoke services from each other ad hoc. There need not be a

fixed server-client relationship.

A service continues to exist during intervals when there is no association between client and

server management-control entities. Services such as VoIP may be quiescent during such inter-

vals; other services such as transport may include continuing data-plane activity. In the case of

roaming and mobile services, the physical point of attachment may vary over time, even across

administrative domains.

In many cases, the actual delivery and use of the service happens across a data plane interface

(see figure 1). In such cases, the management-control interface to the SDN controller (A-CPI) is

used to invoke, control, modify, and terminate the service, but not to receive the value delivered

by the service.

10.1.13 Service context

Definition: The conceptual component of a client context that represents all information about a

given service.

Discussion: Refer to clause 6.7 Service context.

SDN architecture Issue 1.1

Page 49 of 56 © Open Networking Foundation

10.1.14 Virtualization

Definition: An abstraction of underlying resources on a server, whose criterion is allocation of

those resources to a particular client, application, or service.

Discussion: Refer also to clause 6.3 Virtualization.

It must be understood that virtual has a number of meanings in the industry, sometimes implying

nothing more than a software implementation on general-purpose computing hardware. This ap-

proximates its meaning in ETSI NFV [2], [6].

The SDN meaning is independent of underlying implementation. Further, an SDN virtualization

may be several steps of abstraction away from any implementation. These steps of abstraction

may subdivide and combine underlying implementations in arbitrarily complex ways. As an ex-

ample, a VPN may abstract “real” layered networks from a number of administrative domains,

with some topology visible and tunnels to conceal further underlying connectivity, and with re-

served or on-demand capacity on its various links.

10.2 Observations about models

A model is an abstraction of some underlying reality. The same underlying reality will support

any number of models from different perspectives. Different models will be useful in emphasiz-

ing different aspects of the underlying reality.

Criteria for the value of a model include

 No model should contradict itself or the laws of physics.

 No two models of the same underlying reality should contradict each other.

 Occam’s razor: a model should be no more complex than necessary.

 Nor should a model be less complex than necessary.

 A model should imply no conclusions that are not true.

 A model should lead to productive insights.

This document includes a number of mutually consistent perspectives and explains their relation-

ship. The objective is to offer integrated insights that lead to better solutions in all of the multiple

dimensions of concern to SDN. To assist in integrating views, many clauses end with cross-

references for further reading.

Although a model may be described in pictorial form, no picture tells a complete story. A picture

must be accompanied by explanatory text that relates graphic entities to the model and to the un-

derlying reality. As with models themselves, pictures may be deficient in any number of ways,

not least clutter and ambiguity.

10.3 Multiple logins

The client context CC of architecture issue 1.1 is a deep dive into the agent of architecture 1.0.

Among other things, it recognizes that the client may not have a continuous management-control

SDN architecture Issue 1.1

Page 50 of 56 © Open Networking Foundation

session with the controller, but that the client environment and the services must persist never-

theless.

Having recognized that there can be zero active sessions in a given client context at any given

time, it is natural to enquire whether there can be more than one, either sequentially or simulta-

neously. The simultaneous case is more complex for various reasons, and is the basis for these

notes.

SDN controller Blue

Client context Green

Resource
group

User1

User 1
Security
Protocol stack
Subscription
View, privileges

User 2
...

User2

User 3
...

User3

UserAdmin
...

UserAdmin

User 4
...

User4

Can read,
create,
update,
delete

Separate client
platforms

A-CPI

Figure 11 – Multiple users of a client context

Figure 11 serves as the basis for discussion. As to notation: Blue is a provider, the owner of the

SDN controller; Green is a client. The Green bound around the client context suggests that eve-

rything within is dedicated to Green, as distinct from other clients or general purpose use. Users

are hosted by green boxes, and are semantically connected to the resource group in the Green CC.

All interactions between Green users and the Blue SDN controller occur within the context of

some overarching business agreement, the concrete manifestation of which is the blue bound

around the RG, a policy enforcement barrier. A Green user has no visibility or control outside the

RG.

White boxes with thin green boundaries indicate user-specific information and code, some of

which may be internal to the RG. These may be designated client sub-contexts.

It would be possible to support only a single client sub-context, allowing multiple sessions. In

such a case, every user of the single login would have the same credentials, privileges, and pro-

files, including for example notifications subscription. If Green includes human users, however

(or proxies thereof), each user may be expected to have different interests and different responsi-

SDN architecture Issue 1.1

Page 51 of 56 © Open Networking Foundation

bilities, and therefore to require different views, different privileges, and different profiles. That

is, beyond the global policy applicable to all of Green’s operations, each user login is expected to

be further constrained by an independent policy.

Figure 11 therefore shows a user administrator login (which would be the default login created

by Blue at the time of CC creation). The user administrator has unlimited visibility and privilege

(unrestricted sub-context policy), but only within the Green RG. Among its privileges is the abil-

ity to create and manage client sub-contexts for other Green users.

Code in the Green CC is responsible to orchestrate and virtualize Green resources and services,

and in particular to resolve contention issues within Green’s resource and service environment.

At this point, it should be apparent that Green’s environment is an SDN controller itself (figure

12).

SDN controller Blue

SDN controller Green

Orch,
Virt

Client context Green

User1

User2

User3

UserAdmin

User4

Resource
group

A-CPI

A-CPI

RG

RG

RG

RG

RG

SC

Figure 12 – Separated SDN controller Green

The separate Green SDN controller is now in a position to orchestrate resources across more than

one SDN or legacy resource groups (see Green in figure 2). Further, the separate Green SDN

controller can contain arbitrary code and use arbitrary external databases and supplementary

functions, completely independent of Blue business or security concerns.

This arrangement may offer considerable benefits. Examples include:

1. Enterprise client Green.com, with custom-tailored policies about which of its employees

are allowed to see and do what, under the control of a Green administrator. These policies

are of no concern to Blue in any event, and Green could well regard them as business

SDN architecture Issue 1.1

Page 52 of 56 © Open Networking Foundation

confidential. Specific subdivision of responsibilities might be to a group of service ad-

ministrators with minimal privilege, and to a separate group of troubleshooters with full

visibility of the Green context.

2. Interpreting an intent interface. To say, “Bob is (or is not) allowed to connect to the In-

ternet,” is to raise questions that cannot possibly be answered by Blue. The Green SDN

controller may look at directories, policies, or anything else of interest to interpret the in-

tent into terms known to Blue. The Green-Green A-CPI can be whatever is appropriate to

the custom service; the Green-Blue A-CPI would be a standardized view of an infor-

mation model.

3. The Green SDN controller could be a web portal, fielding requests from various users for

various Green services, validating and billing the users, and passing the requests into

Blue for implementation. In this context, Green could be the external services division of

network operator Blue.

4. As a variation on the previous point, Green CCs could accept association requests from

anonymous clients. Two options could be offered.

Log in as an existing client. The Green SDN controller might need to refer to ex-

ternal directories or data bases to authenticate the user and discover enough in-

formation to redirect the user session to the proper CC on (in this case) the Blue

SDN controller.

Negotiate service and business offerings with a potential new customer, for ex-

ample by exposing a catalag for user browsing and ordering. If an agreement was

reached, a CC would need to be created on the spot on (in this case) the Blue SDN

controller, and the client session redirected into that CC.

5. The possibility of parallel protocols, for example OpenFlow-switch, OF-config and

SNMP logins, having appropriately different views over the same underlying resource

base.

6. The possibility of an open wireless interface, available for anyone to connect. Upon con-

nection, an open service could be established with a default SLA and policy for each de-

vice. For premium service, it would also be possible to identify the device or user, for ex-

ample via SIM card or web portal login, thereupon download and install a customized

SLA and policy for that device, and collect usage and billing information.

7. Customer self-install of residential access service, using a similar model, either modify-

ing an existing service (e.g., when moving house) or newly subscribing. In this case, sub-

scriber SLA and policy might need to be customized on the spot.

Figure 12 is an omniscient view that shows how the SDN architecture may be extended, but Blue

neither knows nor cares whether the Green application is structured as an SDN controller. This

illustrates both the broad scope of SDN and also its ability to seamlessly interwork with non-

SDN entities.

As to the SDN architecture, this analysis suggests that a single instance of A-CPI per CC suffices,

and that multiple logins need not be supported. That said, it might yet be worthwhile for Blue to

offer an embedded controller-lite feature that permitted, for example, one writer and multiple

readers with individual notification subscriptions. Another possibly worthwhile option might be

SDN architecture Issue 1.1

Page 53 of 56 © Open Networking Foundation

for Blue to offer parallel logins for OpenFlow-switch, OF-config, OVSDB, and/or SNMP, with

appropriately predefined profiles for each.

10.4 Evolution from issue 1 to issue 1.1

As described in clause 1, SDN architecture issue 1.1 clarifies and extends issue 1[1]. Experience

with issue 1 identified the need for clarification in a number of areas, including some of the ter-

minology. A number of concepts evolved, and several new concepts were brought into the fore-

front of issue 1.1. The differences in terminology, presentation, and emphasis are sufficient to

warrant an explicit comparison. Figure 13 is quoted from figure 3.3 in SDN architecture issue 1.

Management

Controller
plane

Data
plane

OSS

SDN
controller

Network element
(≥ 1)

NE resources

Application
planeSDN

application
(≥ 1)

SDN
application

OSS

OSS

Coordinator

Coordinator Agent (≥ 1)

SDN control logic

(business
agreements,
credentials, policy,
etc.)

A-CPI: Virtual resource
information model

D-CPI: Resource
information model

Agent (≥ 0)...

Figure 13 – Issue 1 architecture

Issue 1 shows a management block with a distinct interface and termination in the managed enti-

ties. Issue 1.1 incorporates the concept of management-control continuum (MCC), in which an

administrator has greater scope and privilege than non-administrator roles, but is not fundamen-

tally different. Both issues expect that the administrator would exist within the same business or

trust domain as the entities being managed-controlled.

The data plane in issue 1 is described as a set of (virtual) network elements. The term network

element has implications within the industry that may be misleading in some cases. In issue 1.1,

the issue 1 network element is subsumed as one class of the resource group concept.

While issue 1 refers to resources in general, nothing more than a reference to (virtual) network

elements is said about their organization. As a matter of clarification, resource grouping has been

added to issue 1.1.

SDN architecture Issue 1.1

Page 54 of 56 © Open Networking Foundation

The agent in issue 1 is conceived as a window through which a remote SDN controller or appli-

cation could manage its underlying resources. In issue 1.1, the term has changed to client context,

and a great deal of its functionality has been explicated.

Suggested by arguments of symmetry, issue 1.1 introduces a server context concept, which is

responsible for interaction with an underlying server instance.

Issue 1 identifies virtualization, orchestration and real-time responsiveness as attributes of an

SDN controller, but the controller’s role as the intelligence in a feedback loop is described as an

option. Issue 1.1 recognizes that feedback intelligence is the essential characteristic of anything

that purports to be an SDN controller.

Although it is not apparent from figure 13, issue 1 takes an omniscient view of recursion. Issue

1.1 emphasizes the fact that individual entities see only their neighbors and have no visibility of

possible further recursion. While the omniscient perspective is valid, the view from a single giv-

en entity is easier to relate to current open-source or vendor-specific product development.

Issue 1.1 introduces the idea that a client may have more than one service active simultaneously

(hence the service context concept) and that a client may not have continuous management-

control access to the server during the lifetime of its services. Further, a client business may re-

quire server logins for a number of its employees. Sessions and persistence are needed for these

and other reasons.

Issue 1 describes a resource-based SDN architecture. Work on intent interfaces has been synthe-

sized into issue 1.1 as a complementary service-based view of the architecture. In the general

case, the client and server are jointly responsible for developing mappings that translate between

the client’s frame of reference and the server’s frame. The mapping allows for separation be-

tween standard information models and arbitrary client- or application-specific models.

Issue 1 refers to resources generically; issue 1.1 explicitly includes the contributions of the ETSI

NFV ISG in offering virtual resources to SDN environments.

Further reading: management-control continuum, resource groups, client context, server context,

control as feedback, orchestration, service context, multiple logins, persistence, service and re-

source oriented models

11 Back matter

11.1 Acronyms

AAA Authentication, authorization, ac-

counting

A-CPI Applications-controller plane interface

API Applications programming interface

BSS Business support system

CC Client context

CFM Connectivity fault management

CPI Controller plane interface

CS Client support

C-VID Customer VLAN identifier

D-CPI Data-controller plane interface

DHCP Dynamic host configuration protocol

DNS Domain name system

DOS Denial of service

EMS Element management system

SDN architecture Issue 1.1

Page 55 of 56 © Open Networking Foundation

ETSI NFV ISG

European Telecommunications Stand-

ards Institute – Network functions vir-

tualization – Industry specification

group

FCAPS Fault, configuration, accounting, per-

formance, security

IP Internet protocol

LLDP Link layer discovery protocol

MAC Medium access control

MCC Management-control continuum

MIMO Multiple input, multiple output

NAT Network address translation

NBI Northbound interface (A-CPI)

NFV Network functions virtualization

NMS Network management system

NNI Network-network interface

NS Network service

OF OpenFlow

ONF Open Networking Foundation

ONU Optical network unit

OSS Operations support system

PON Passive optical network

RDB Resource data base

RG Resource group, Residential gateway

RP Resource provider

RU Resource user

SC Server context, sometimes Service

context

SDN Software defined networks

SDO Standards development organization

SLA Service level agreement

SNMP Simple network management protocol

STP Spanning tree protocol

UNI User-network interface

VLAN Virtual local access network

VM Virtual machine

VNF Virtual network function

WDM Wavelength division multiplexing

11.2 References

[1] ONF TR-502, SDN architecture, 2014,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-

reports/TR_SDN_ARCH_1.0_06062014.pdf

[2] ONF TR-518, Relationship of SDN and NFV, 2015,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-

reports/onf2015.310_Architectural_comparison.08-2.pdf

[3] ONF TR-512, Core information model (CoreModel), 2015 – Ed: under revision. Will

the revised version still be TR-512?

[4] ETSI NFV, Network Functions Virtualisation, An introduction, benefits, enablers, chal-

lenges and call for action, 2012, http://portal.etsi.org/NFV/NFV_White_Paper.pdf

[5] ETSI NFV GS NFV-INF 001 V1.1.1, Network Functions Virtualisation (NFV); Infra-

structure Overview, 2015

[6] ETSI NFV GS NFV 004 V1.1.1, Virtualisation Requirements, 2013

[7] ETSI NFV EVE005 – supply proper ref when published

[8] IEEE Std 802.1AB-2009, IEEE Standard for Local and Metropolitan Area Networks –

Station and Media Access Control Connectivity Discovery, LLDP

[9] IETF RFC 3444, On the difference between information models and data models, 2003

[10] ITU-T Recommendation M.3702, Notification management – Protocol neutral re-

quirement and analysis, 2010

11.3 Contributors

Malcolm Betts, ZTE Chen Qiaogang, ZTE

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://standards.ieee.org/getieee802/download/802.1AB-2009.pdf
https://tools.ietf.org/html/rfc3444

SDN architecture Issue 1.1

Page 56 of 56 © Open Networking Foundation

Luis Miguel Contreras Murillo, Telefonica

Nigel Davis, Ciena

Paul Doolan, Coriant

Dave Hood, Ericsson

Chris Janz, Ciena

Lothar Reith, DT

Sibylle Schaller, NEC Labs

Fabian Schneider, NEC Labs

Stephen Shew, Ciena

Eve Varma, Alcatel-Lucent

Maarten Vissers, Huawei

