3GPP TSG-SA Working Group 2 meeting #11

TSGS2#11 Tdoc S2-000188
January 24 - 28, 2000

Puerto Vallarta, Mexico

Title:
Removal of Leg interface class in Call Control SCF (VHE/OSA)

Agenda Item:
‘VHE’
Source:
Ericsson
Document for:
Discussion

1 Introduction

Stage 3 having confirmed that Camel phase 3 does not permit call leg management, this contribution proposes corresponding changes to section 7.1 of document 23.127.

The Leg interface class is removed, as well as leg management methods in the call interface class. Some changes were also made in method descriptions.

Additionally, some mistakes have been corrected (forgotten methods in table 1, charging method and prepaid scenario have been removed).

2 Text to be modified

Starts here

7.1
Call Control

The Call control network service consist of two interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

3.
A call can be controlled by one Call Manager; A call can consist of up to n legs, where n is determined by the Service Capability used.

[image: image1.wmf]Call

Manager

Call

0..1

Figure 1 Call control class hierarchy

The Call Control service capability features are described in terms of the methods in the Call Control interface classes. Table 1 gives an overview of the Call Control methods and to which interface classes these methods belong.

CallManager
Call

CreateCall
RouteCallToDestination_Req

EnableCallNotification
RouteCallToDestination_Res

DisableCallNotification
RouteCallToDestination_Err

CallNotificationTerminated
ReleaseCall

CallEventNotify
DeassignCall

CallFaultDetected
GetCallInfo_Req

GetCallInfo_Res

GetCallInfo_Err

SuperviseCall_Req

SuperviseCall_Res

SuperviseCall_Err

GetCallState

Table 1
Overview of Call Control interface classes and their methods
7.1.1
Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability Features. The application programmer can use this interface, to create call objects and to enable or disable call-related event notifications.

Method
CreateCall()

This method is used to create a new call object.

Direction
Application to network

Parameters
AppCall

Specifies the application interface for callbacks from the call created.

Returns
Call

Specifies the interface reference of the call created.

CallSessionID

Specifies the call session ID of the call created.

Errors

Method
EnableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction
Application to network

Parameters
AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

EventCriteria

Specifies the event specific criteria used by the application to define the event required. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

Returns
AssignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Errors
-

Method
DisableCallNotification()

This method is used by the application to disable call notifications.

Direction
Application to network

Parameters
EventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

AssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
CallEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction
Network to application

Parameters
Call

Specifies the reference to the call interface to which the notification relates.

EventInfo

Specifies data associated with this event. These data include originatingAddress, originalDestinationAddress, redirectingAddress and AppInfo (see for more explanation on these data the RouteCallToDestination() method).

AssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

AppInterface

Specifies a reference to the application interface which implements the callback interface for the new call.

Returns
-

Errors
-

Method
CallAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further communication will be possible between the call and application.

Direction
Network to application

Parameters
call

Specifies the call interface that has aborted or terminated abnormally.

callSessionID

Specifies the call session ID of the call that has aborted or terminated abnormally.

Returns
-

Errors
-

Method
CallFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction
Network to application

Parameters
Call

Specifies the call interface in which the fault has been detected.

CallSessionID

Specifies the call session ID of the call in which the fault has been detected.

Fault

Specifies the fault that has been detected.

Returns
-

Errors
-

Method
CallNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

7.1.2
Call

The generic call interface represents the interface to the generic call Service Capability Feature. It provides a structure to allow simple and complex call behaviour to be used.

Method
RouteCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party (specified in the parameter TargetAddress). The destination party is attached to the call via a passive leg. This means that the call is not automatically released if the destination party disconnects from the call; only the leg with which the destination party was attached to the call is released in that case. RouteCallToDestination_Req implicitly creates the passive leg.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

ResponseRequested

Specifies the set of observed events that will result in a routeCallToDestination_Res() being generated.

TargetAddress

Specifies the destination party to which the call should be routed.

OriginatingAddress

Specifies the address of the originating (calling) party.

OriginalDestinationAddress

Specifies the original destination address of the call, i.e. the address as specified by the originating party. This parameter should be equal to the OriginalDestinationAddress as received by the application in the EventInfo parameter of the CallEventNotify method.

RedirectingAddress

Specifies the last address from which the call was redirected.

AppInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns
-

Errors
-

Method
RouteCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

Direction
Network to application

Parameters
CallSessionID

Specifies the call session ID of the call.

EventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Returns
-

Errors
-

Method
RouteCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
ReleaseCall()

This method requests the release of the call and associated objects.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Cause

Specifies the cause of the release.

Returns
-

Errors
-

Method
DeassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports or call information reports requested, then these reports will be disabled and any related information discarded.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Returns
-

Errors
-

Method
GetCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Note: At the end of the call with respect to either a particular call leg or the entire call, the call information must be sent before the objects of concern are deleted.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

CallInfoRequested

Specifies the call information that is requested.

Returns
-

Errors
-

Method
GetCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
CallSessionID

Specifies the call session ID of the call.

CallInfoReport

Specifies the call information requested.

Returns
-

Errors
-

Method
GetCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
CallSessionID

Specifies the call session ID of the call.

Error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
SuperviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestination_Req() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Direction
Application to network

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Duration

Specifies the granted duration of the call/session in:

· time in milliseconds for the connection, or;

· Total data transferred in …

TarrifSwitch

Specifies an optional tariff switch indicating a change in tariff.

Treatment

Specifies how the network should react after the granted connection time expired.

Returns
-

Errors
-

Method
SuperviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Direction
Network to application

Parameters
CallSessionID

Specifies the call session ID of the call.

Report

Specifies the situation, which triggered the sending of the call supervision response.

UsedTime

Specifies the used time for the call supervision (in milliseconds).

Returns
-

Errors
-

Method
SuperviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Direction
Network to application

Parameters
CallSessionID

Specifies the call session ID of the call.

Error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
GetCallState()

This method requests the current state of the call.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Returns
State

Specifies the current state of the call (e.g. “idle”, “active”, “inactive”, “released”).

Errors
-

Figure 2 shows the state model for the generic call interface from applications point of view. The state model is simplified because most of the state is held within the associated call legs. The call is created by an application (via the createCall() method on the CallManager interface) or implicitly by the Generic Call Control Service when a new call event notification arrived.

It shall be noted that this state diagrams relates to the OSA interface and not to the underlying mechanism used to perform the call control.

<Editor’s note: A mapping to CAMEL states might be needed in the stage 3>

[image: image3.wmf]IDL

E

RELEAS

ED

ACTI

VE

createC

all

routeCallToDestinati

onReq

[call

accepted]

getCallInfo

Req

routeCallToOriginiat

ionReq

[call

accepted]

superviseCall

Req

relea

se

ALL

STATES

deassign

Call

superviseCall

Req

After all

final

reports have

been

sen

t

relea

se

Figure 2 - State diagram for the Call interface from an application point of view

Sequence Diagrams

The following section will describe some scenario’s to illustrate the use of the above described methods

Enable Call notification

The first task to perform in order to allow users to use applications is to enable users to reach that application. This is done with the method enableCallNotification() to be sent for every user subscribing to an applaiction.

[image: image4.wmf]:

ICallControlManager

:

IAppCall

:

ICall

:

IAppCallControlManager

:

IAppLogic

1:

new()

2:

enableCallNotification

()

Figure 3 Enable call notification

Number translation

After the an user has subscribed to a service, it is possible to perform the needed actions. The example in Figure 4 shows a simple number translation application.

After the call is triggered (according to the criteria in a previous enableCallNotification()), the SCS notifies the application with an eventCallNotify() message. This allows the application to perform the needed actions and continue the call set-up via a routeCAllToDestination_Req() message. The SCS relays the result of the call set-up (both positive and negative) to the application, which ends after that.

[image: image5.wmf]3:

callEventNotify

()

:

ICallControlManager

:

IAppCall

:

ICall

:

IAppCallControlManager

:

IAppLogic

6: 'translate number'

8:

routeCallToDestination_

Req

()

9:

new()

10:

routeCallToDestination_

Res

()

3:

callEventNotify

()

4: 'forward event'

5:

new()

11: 'forward event'

7:

setCallback

()

Figure 4 Simple number translation

Call baring

The next example (Figure 5) shows how a call baring application can be implemented:

[image: image6.wmf]:

ICall

 :

IAppLogic

 :

IAppCallControlManager

 :

(

IAppCall)

 :

IUICall

 :

ICallControlManager

 :

IAppUICall

13:

routeCallToDestination_

Res

()

12:

routeCallToDestination_

Req

()

8:

setCallback

()

9:

sendInfoAndCollect

()

10:

sendInfoAndCollectCall_

Res

()

7:

getControlLeg

()

3:

callEventNotify

()

4: 'forward event'

5:

new()

14: 'forward event'

11: 'forward event'

6:

setCallback

()

Figure 5
Call baring application

[image: image7.wmf]Prepaid :

IparlayAppLogic

 :

IparlayAppCallControlManager

 :

IparlayCallControlManager

 :

IparlayCall

 :

IparlayUICall

 :

IparlayAppUICall

 :

IparlayAppCall

1:

new()

2:

enableCallNotification

()

3:

callEventNotify

()

4: "forward event"

6:

sendAOC

()

5:

new()

8:

routeCallToDestination_

Req

()

11:

superviseCallI_

Res

()

12: "forward event"

13:

superviseCallI_

Req

()

14:

superviseCallI_

Res

()

15: "forward event"

16:

sendAOC

()

17:

superviseCallI_

Req

()

18:

superviseCallI_

Res

()

19: "forward event"

7:

superviseCallI_

Req

()

22:

sendInfoCall_Req()

20: new()

23:

sendInfoCall_Res()

24: "forward event"

21:

getControlLeg()

25:

superviseCallI_Req()

26:

superviseCallI_Res()

27: "forward event:

28:

releaseCall()

9:

routeCallToDestination_Res()

10: 'forward event'

Figure 6 Pre-paid with AoC

7.1.3
Call Leg

The generic call leg interface represents the logical call leg associating a call with an address. The call leg tracks it own states and allows charging summaries to be accessed.

Method
routeCallLegToAddress()

This method initiates routing of the call leg to the given target address. The outcome of the call routing attempt can be requested and reported using callLegEventReport_Req and callLegEventReport_Res / callLegEventReport_Err.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalCalledAddress

Specifies the original address to which the call was initiated.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns
-

Errors
-

Method
callLegEventReport_Req()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Direction
Application to network

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

EventReportsRequested

Specifies the events that the call leg object will observe and report.

Returns
-

Errors
-

Method
callLegEventReport_Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

EventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Returns
-

Errors
-

Method
CallLegEventReport_Err()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
getCallLegState()

This method requests the current state of the call leg.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

Returns
state

Specifies the current state of the call leg.

Errors
-

Method
getAddresses()

This method requests the address details associated with the call leg.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

Returns
addressList

Specifies the addresses associated with the call leg.

Errors
-

Method
getCallLegInfo_Req()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested

Specifies the call leg information that is requested.

Returns
-

Errors
-

Method
GetCallLegInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

CallLegInfoReport

Specifies the call leg information requested.

Returns
-

Errors
-

Method
GetCallLegInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
getCallLegType()

This method requests whether the call leg is a controlling or passive call leg.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

Returns
callLegType

Specifies the call leg type.

Errors
-

Method
getCall()

This method requests the call associated with this call leg.

Direction
Application to network

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Returns
Call

Specifies the interface of the call associated with this call leg.

CallSessionID

Specifies the call session ID of the call associated with this call leg.

Errors
-

Figure 7 shows the state model for the generic call leg interface from an application point of view. This represents most of the call setup states. The call leg is created by an application (via the createCallLeg() method on the Call interface) or implicitly by the Generic Call Control Service.
It shall be noted that this state diagrams relates to the OSA interface and not to the underlying mechanism used to perform the call control.

<Editor’s note: A mapping to CAMEL states might be needed in the stage 3>

[image: image8.emf]IDLE

CALL_PROCEEDING

ALERTING CONNECTED

RELEASED

FAILED

ALL STATES

eventNotify

[answer]

eventNotify

[no answer]

releaseCallLeg

notificationTerminated

[switch fault]

eventNotify

[call leg ringing]

eventNotify

[busy or out of service]

eventNotify

[answer]

eventNotify

[call leg released]

releaseCallLeg

eventNotify

[call leg released]

createCallLeg

eventNotify

[new call]

routeCall/CallLegTo..._Req

[call proceeding]

routeCall/CallLegTo..._Req

[call accepted]

routeCall/CallLegTo..._Req

[call leg ringing]

releaseCallLeg

routeCall/CallLegTo..._Req

[busy or out of service]

deassignCall

releaseCall

Figure 7 - State diagram for the CallLeg interface from an application point of view

< It is proposed to delete this section, since security is ensured through the mechanisms provided by the Framework >

Ends here

6

_1010070820.doc

Call

Manager

Call

0..1

_1010073072.doc

:

ICallControlManager

:

IAppCall

:

ICall

:

IAppCallControlManager

:

IAppLogic

1:

new()

2:

enableCallNotification

()

_1010073117.doc

3: callEventNotify()

:ICallControlManager

:IAppCall

 :ICall

:IAppCallControlManager

:IAppLogic

6: 'translate number'

8: routeCallToDestination_Req()

9: new()

10: routeCallToDestination_Res()

3: callEventNotify()

4: 'forward event'

5: new()

11: 'forward event'

7: setCallback()

_1010073017.doc

IDLE

RELEASED

ACTIVE

createCall

routeCallToDestinationReq

[call accepted]

getCallInfoReq

routeCallToOriginiationReq

[call accepted]

superviseCallReq

release

ALL STATES

deassignCall

superviseCallReq

After all final

reports have been

sent

release

_1006672196.doc

:

ICall

 :

IAppLogic

 :

IAppCallControlManager

 :

(IAppCall)

 :

IUICall

 :

ICallControlManager

 :

IAppUICall

13: routeCallToDestination_Res()

12: routeCallToDestination_Req()

8: setCallback()

9: sendInfoAndCollect()

10: sendInfoAndCollectCall_Res()

7: getControlLeg()

3: callEventNotify()

4: 'forward event'

5: new()

14: 'forward event'

11: 'forward event'

6: setCallback()

_1006686001.doc

ACTIVE

INACTIVE

IDLE

RELEASED

attachCallLeg

[first call leg]

releaseCall

detachCallLeg

[last call leg]

[controlling call leg]

ALL STATES

deassignCall

createCall

releaseCall

routeCallLegToAddress

[call accepted]

routeCallToDestination_Req

[call accepted]

releaseCall

_1003653177.doc

Prepaid :

IparlayAppLogic

 :

IparlayAppCallControlManager

 :

IparlayCallControlManager

 : IparlayCall

 : IparlayUICall

 :

IparlayAppUICall

 :

IparlayAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

6: sendAOC()

5: new()

8: routeCallToDestination_Req()

11: superviseCallI_Res()

12: "forward event"

13: superviseCallI_Req()

14: superviseCallI_Res()

15: "forward event"

16: sendAOC()

17: superviseCallI_Req()

18: superviseCallI_Res()

19: "forward event"

7: superviseCallI_Req()

22: sendInfoCall_Req()

20: new()

23: sendInfoCall_Res()

24: "forward event"

21: getControlLeg()

25: superviseCallI_Req()

26: superviseCallI_Res()

27: "forward event:

28: releaseCall()

9: routeCallToDestination_Res()

10: 'forward event'

