SA WG2 Temporary Document

Page 6

SA WG2 Meeting #101
S2-140274
20 - 24 January 2014, Taipei, Taiwan
(revision of S2-14xxxx)
Source:
LG Electronics
Title:
Update of solution D13 to support model B
Document for:
Approval / Discussion

Agenda Item:
6.2.7
Work Item / Release:
ProSe / Release-12
Abstract of the contribution: This contribution provides a solution for ProSe direct discovery to support the model B based on the solution D13
1
Discussion

This contribution provides a ProSe direct discovery solution to support the discovery model B ("who is there"/"are you there"). At the SA2#100 meeting, we agreed on conclusions for ProSe direct discovery and our proposed solution tried to be aligned with the conclusions. Followings are relevant conclusions for supporting the discovery model B:
-
For operator controlled open discovery the allocation and processing mechanisms via PC3 for ProSe Application Identities is based in principle on solution D13;

-
Both discovery models "I am here" (model A) and "who is there"/"are you there" (model B) as described in clause 4.1.4 are relevant.

From the above conclusions, solution D13 is utilized for allocation and processing for ProSe Application Identities for open discovery. As a network-controlled mechanism, solution D13 includes authorization, evaluation and mapping of ProSe identities (e.g. ProSe UE ID, ProSe App ID, etc). Therefore, we propose to update solution D13 to support model B for ProSe direct discovery.

For this, the behaviours of discoverer UEs ("requesting UE") and discoveree UEs ("replying UE") should be defined, respectively. Discoverer UE broadcasts request message so that potential discoveree UEs can listen the message. For this, the discoverer UE is provided with a ProSe_Code which includes ProSe App ID, ProSe UE ID, etc. The ProSe_Code is sent to the discoveree UE by being capsulated in the request message. When discoveree UEs listens the request message and if the ProSe_Code is matched to its App_ID which is allowed for direct discovery, the discoveree UE replies to the request. The discoveree UEs send a replying message to the discoverer UE by broadcasting its Response message with ProSe_Code which was provided in the Start ProSe discovery procedure. The discoverer UE sends the ProSe_Code(s) so that the network provides the discovery reporting in the same way of monitoring procedure. Following figure shows the overall procedure.

[image: image1.emf]Service PlatformUE-1ProSe server4.ProSe Eval()UE-3UE-4UE-23. ProSe Discovery Reply(ProSe_code(s))5. Successful discovery reporting()1. request

Fig 1. Signalling flow for Request/Response model.
1.1 Proposed solution

A. Allocation of ProSe code to the discoverer UE and the discoveree UE
In solution D13, the serving ProSe server allocates and processes a ProSe_Code which includes ProSe UE ID and ProSe App ID. To support model B, both of the discoverer UE and the discoveree UE should be provided with their own ProSe codes. Based on the Start ProSe discovery procedure in solution D13, the command and their relevant ProSe_Codes are allocated to the UEs for the request and the response, respectively. Therefore, the list of the App_ID(s) that UE is allowed to reply and ProSe_Code are provided for the discoveree UE, and one or more ProSe_Code(s) are provided for the discoverer UE.
B. Overall procedure

After allocation of ProSe_Codes, following procedure can be performed for the direct discovery using model B.
· Discoverer UE broadcasts a request message with a ProSe_Code so that potential discoveree UEs listen the message.
· When a discoveree UE listens the ProSe code and if it is matched to its App_ID which is allowed for direct discovery, the discoveree UE replies to the request. The replying message to the discoverer UE is broadcasted with its ProSe code for response.
· The discoverer UE collects the responses from the discoveree UEs in proximity and sends the ProSe code(s) to the network.
· The network(Service platform) provides the discovery reporting in the same way of monitoring procedure.

C. Comparison to the Monitoring procedure in solution D13
Compared to the ProSe Monitoring procedure, requesting/replying steps are newly added. In the requesting/replying steps, there are signalling exchange between the discoverer UE and the discoveree UE by broadcasting mechanism such as request message from discoverer UE and response message from the discoveree UE. the step 1 in Monitoring Procedure was modified so that the discoverer UE collects the responses and sends the collected ProSe codes to the network in order to get discovery reporting from the service platform. The behaviour of the discoverer UE is similar with monitoring UE.
2
Proposal

It is proposed to agree the solution described above for inclusion in TR 23.703 and capture the relevant part of the content into the Annex for normative specification.
First change

6.1.13.6.1
Start ProSe discovery procedure

[image: image2.emf]application(s)MMEHSS

8. ProSe_Start_Discovery_Ack (command, list PLMNs)

11. ProSe_Start_Discovery_Ack (command, list PLMNs)

7. Allocates ProSe_Code(s)

and starts the associated

validity timer(s)

eNodeB

3. ProSe_Start_Discovery_Req (OSApp_ID(s))

Serving

ProSeServer

1. Activate ProSe

discovery service

EPS layer

ProSe-enabled UE

2. Request ProSe discovery service (OSApp_ID(s))

9. Provide radio resources to the UE / ProSe_Start_Discovery_Ack (command, list PLMNs)

service platform

4. ProSe Authorization Req

5. ProSe Authorization Ack

6. ProSe_Start_Discovery_Req (OSApp_ID(s), IMSI)

Start monitoring

and/or announcing

10. Radio resource allocation for ProSe discovery

12. ProSe discovery service started

EPSservice layer

Figure 6.1.13.6-1: Start ProSe discovery procedure
1.
When the user wants to discover one or more buddies for one or more services, he/she launches the corresponding application(s) on the UE and activates the ProSe discovery service within the application(s).

2.
Each application, identified by its OSApp_ID, send a request to the EPS layer in the UE to start using ProSe discovery.

3.
Upon receiving the request(s) from the application(s), the EPS layer in the UE sends a ProSe_Start_Discovery_Req NAS signalling to the MME, containing the OSApp_ID(s) of the application(s).

NOTE 1:
The UE may include in a single ProSe_Start_Discovery_Req message one or more OSApp_ID(s), depending on the number of the requesting applications.

4.
If the address of the Serving ProSe Server is not present in the UE MM context in the MME, then the MME queries the HSS to check whether the user is authorized to the ProSe discovery service. If the address of the Serving ProSe Server is present in the UE MM context in the MME, then step 5. is not executed.

NOTE 2:
Authorization criteria are defined by the mobile network operator.

5.
If the user has subscribed the ProSe discovery service and other authorization criteria are met, the HSS acknowledges the MME query sending back the address of the Serving ProSe Server where is stored the ProSe User Context of the user.

6.
The MME adds the IMSI of the user to the ProSe_Start_Discovery_Req and forwards it to the Serving ProSe Server.

7.
The Serving ProSe Server finds the correct ProSe User Context, using the IMSI as a keyword. If the UE is allowed to act as an "announcing UE", a “requesting UE” or a “replying UE” for some of the received OSApp_ID(s) (mapped in the corresponding 3gppApp_ID) and if there are not any operational reasons that prevent providing the ProSe discovery service (e.g., the number of ProSe_Codes in the ProSe User Context exceeds the maximum allowed by operator policies), the ProSe Server:

a.
allocates one or more ProSe_Code(s) for each received 3gppApp_ID according to the entries in the ProSe User Context, and

b.
starts a validity timer associated to each allocated ProSe_Code, and

c.
stores the allocated ProSe_Code(s) into the ProSe User Context, and

d.
keeps track of each App_ID to which a ProSe_Code has been allocated for accounting reasons.

NOTE 3:
If for any reason the allocation of a ProSe_Code is rejected an error message with a cause value is generated and delivered to the UE.

8.
The Serving ProSe Server stores the MME address and sends a ProSe_Start_Discovery_Ack message to the MME. The ProSe_Start_Discovery_Ack message contains:

a.
the command to start monitoring, if the UE is allowed to act as a "monitoring" UE, including the list of the App_ID(s) that UE is allowed to monitor (also the corresponding OSApp_ID(s) is(are) sent), or

b.
the command to start announcing one or more ProSe_Code(s), each of them associated with the indication of the discovery range class and the validity timer, if the UE is allowed to act as an "announcing UE", or

c.
both.
If the UE is configured for supporting Request/Response model, the ProSe_Start_Discovery_Ack message contains:
d.
the command to allow replying, if the UE is allowed to act as a "replying" UE, including the list of the App_ID(s) that UE is allowed to reply (also the corresponding OSApp_ID(s) is(are) sent) and ProSe_Code (including ProSe UE ID and ProSe App ID) for response message, or
e.
the command to allow requesting one or more ProSe_Code(s), each of them associated with the indication of the discovery range class and the validity timer, if the UE is allowed to act as a "requesting UE", or
f.
both

If the user is authorized to the Inter-PLMN ProSe discovery, then a list of PLMNs that can be monitored in the registered PLMN is also included.

NOTE 4:
The Serving ProSe Server is updated with the address of the current serving MME whenever the MME is relocated within the PLMN. When S1-based handover takes place within the PLMN, the source MME provides the target MME with the address of the ProSe Server: the information is included within the UE MM context in the MME that is included within the Forward Relocation Request message. When an Inter-PLMN handover occurs the procedure described in clause 6.1.13.7 applies and the UE shall issue a new ProSe_Start_Discovery_Req.

9.
Upon receiving the ProSe_Start_Discovery_Ack message, the MME stores the address of the Serving ProSe Server in the UE MM context. Based on the ProSe_Start_Discovery_Ack message the MME sends an indication to the eNB to provide the UE with the radio resources for ProSe; the ProSe_Start_Discovery_Ack NAS message to be forwarded to the UE is also included.

10.
The eNB sends the ProSe_Res message (with the indication of the radio resource to be used for ProSe).

Editor's note:
How to provide the UE with the radio resources for ProSe direct discovery will be defined in RAN WGs.

11.
The eNB forwards the ProSe_Start_Discovery_Ack NAS message to the EPS layer in the UE. The EPS layer in the UE stores locally the received App_ID(s) and the mapping between the OSApp_ID(s) and the App_ID(s). The EPS layer in the UE stores locally also the received ProSe_Code(s), if any. Based on the commands in the ProSe_Start_Discovery_Ack message, the EPS layer in the UE starts monitoring and/or announcing each received ProSe_Code, according to the corresponding discovery range class, until the associated validity timer expires.

12.
The EPS layer in the UE notifies the application(s) that has(have) requested the service that ProSe discovery has started.

NOTE 5:
The list of the App_ID(s) is stored and used by the EPS layer in the monitoring UE to filter out the listened ProSe_Code(s) not matching with the applications of interest the UE is allowed to monitor.

Next change

6.1.13.6.x
ProSe request/response procedure

[image: image3.emf]Depending on the analisys of the ProSe_Codeapplication(s)MMEServingProSe Server5. Analisys of the received ProSe_Code(s)1. ProSe_Discovery_Req (ProSe_Code(s))TargetProSe ServerEPS layerProSe-enabled UEservice platform2. ProSe_Discovery_Req (ProSe_Code(s))3. ProSe_Discovery_Req_Ack4. ProSe_Discovery_Req_AckTargetProSe ServerHPLMNPLMN2service layer5-a-ii. ProSe_Query(ProSe_Code)5-a-ii. ProSe_Answer(ProSe_Code, App_User_ID)5-b. ProSe_Answer(ProSe_Code, App_User_ID)5-b. ProSe_Query(ProSe_Code)8. Succesful discovery reporting (buddy_1, …, buddy_n)5-a-i. Check internal data base7. ProSe_Eval_Ack6. ProSe_Eval(discoverer: App_User_ID; discoveree(s): App_User_ID1, … , App_User_IDi)receives ProSe_Code(s) requested over the air by other UEs nearbyapplication(s)EPS layerProSe-enabled UEStart requesting0-B. ProSe_Discovery_Response (ProSe_Code(s))Discoverer UEDiscoveree UE0-A. ProSe_Discovery_Request (ProSe_Code(s))

Figure 6.1.13.6-x: ProSe Request/Response procedure

Assumption: The application is running on the UE as per step 1. in clause 6.1.13.6.1.
0.
(A) For a requesting UE, EPS layer in the UE start requesting the ProSe_Code which was provided in Start ProSe discovery procedure in 6.1.13.6.1. (B) When a replying UE receives the ProSe code and if it is matched to its allowed App_ID, the replying UE send ProSe Discovery Reply message to the corresponding requesting UE with its ProSe code which was provided for replying in Start ProSe discovery procedure in 6.1.13.6.1.
1.
When EPS layer in the requestingUE "listens" a ProSe_Code, it applies a filter to find a match between the App_ID part of the ProSe_Code and one of the App_ID(s) which it requested in the previous step: if the match is found the ProSe_Code is kept because potentially of interest, otherwise it is discarded. The EPS layer in the requesting UE sends the collected ProSe_Code(s), for which the match is found, in a single ProSe_Discovery_Req NAS message to the MME.

NOTE 1:
The ProSe_Discovery_Req NAS message may be sent out as soon one or more ProSe_Code(s) have been received or periodically in order to reduce the burden of NAS signalling.

Editor's note:
The optimum frequency for UE sending the ProSe_Discovery_Req NAS message can be determined in Stage 3 activity (or even left as a UE parameter configurable by the manufacturer or by the operator) as the best trade-off between the quickness in recognizing proximity events of interest and the corresponding signalling load.

2.
The MME forwards the ProSe_Discovery_Req message to the Serving ProSe Server (the address of the Serving ProSe Server is retrieved from the UE MM context in the MME), adding the IMSI of the user.
3.
The Serving ProSe Server sends a ProSe_Discovery_Req_Ack to the MME.

4.
The MME sends a ProSe_Discovery_Req_Ack to the UE.

5.
The Serving ProSe Server identifies the ProSe User Context of the user (discoverer) using the IMSI, and analyzes each ProSe_Code in the ProSe_Discovery_Req:

a.
if the PLMN specific part (MCC, MNC) of the ProSe_Code belongs to the same PLMN of the Serving ProSe Server, then the Serving ProSe Server looks at the ProSe_Server_ID to determine which ProSe Server has allocated that ProSe_Code:

i.
if the ProSe_Server_ID belongs to the Serving ProSe Server, then the Serving ProSe Server identifies the ProSe User Context of the corresponding discoveree using the ProSe_Code as a keyword, and retrieves the corresponding App_User_ID.
ii.
if the ProSe_Server_ID belongs to a different ProSe Server (hereafter called Target ProSe Server), then the Serving ProSe Server sends to the Target ProSe Server a ProSe_Query(ProSe_Code). The Target ProSe Server identifies the ProSe User Context of the corresponding discoveree using the ProSe_Code as a keyword, retrieves the corresponding App_User_ID and sends back to the Serving ProSe Server a ProSe_Answer(ProSe_Code, App_User_ID) message.

b.
if the PLMN specific part (MCC, MNC) of the ProSe_Code belongs to a PLMN different from that of the Serving ProSe Server, then the Serving ProSe Server sends to the Target ProSe Server a ProSe_Query(ProSe_Code). The Target ProSe Server identifies the ProSe User Context of the corresponding discoveree using the ProSe_Code as a keyword, retrieves the corresponding App_User_ID and sends back to the Serving ProSe Server a ProSe_Answer(ProSe_Code, App_User_ID) message.

6.
The Serving ProSe Server collects all the App_User_ID(s) corresponding to the ProSe_Code(s) received in the ProSe_Discovery_Req and sends a ProSe_Eval message to the service platform across the PC2 reference point, containing:

a.
the (App_User_ID) of the discoverer, and

b.
the (App_User_ID1, App_User_ID2 , … , App_User_IDi) of the potential discoveree(s).

7.
The service platform acknowledges the Serving ProSe Server with a ProSe_Eval_Ack message.

8.
The service platform checks possible matches according the discovery criteria configured by the users (e.g., who can discover me, who I want discover, etc.). If one or more matches are found the service platform reports the successful discovery results within the corresponding application running on the UE of the discoverer.

NOTE 2:
The notification of a successful discovery result may contain additional information, e.g. to facilitate the setup of a communication (e.g., voice call, SMS, chat, etc.) between discoverer and discoveree, advertisements, etc.

End of changes
3GPP

SA WG2 TD

Service Platform

UE-1
ProSe server

4.ProSe Eval()
UE-3
UE-4
UE-2
2. ProSe Discovery Reply(ProSe_code)
2. ProSe Discovery Reply(ProSe_code)
2. ProSe Discovery Reply(ProSe_code)
3. ProSe Discovery Reply(ProSe_code(s))
5. Successful discovery reporting()
1. request

Depending on the analisys of the ProSe_Code
application(s)
MME
Serving
ProSe Server
5. Analisys of the received ProSe_Code(s)
1. ProSe_Discovery_Req (ProSe_Code(s))
Target
ProSe Server
EPS layer
ProSe-enabled UE
service platform

2. ProSe_Discovery_Req (ProSe_Code(s))
3. ProSe_Discovery_Req_Ack
4. ProSe_Discovery_Req_Ack
Target
ProSe Server
HPLMN
PLMN2
service layer

5-a-ii. ProSe_Query(ProSe_Code)
5-a-ii. ProSe_Answer(ProSe_Code, App_User_ID)

5-b. ProSe_Answer(ProSe_Code, App_User_ID)
5-b. ProSe_Query(ProSe_Code)

8. Succesful discovery reporting (buddy_1, …, buddy_n)
5-a-i. Check internal data base
7. ProSe_Eval_Ack
6. ProSe_Eval(discoverer: App_User_ID; discoveree(s): App_User_ID1, … , App_User_IDi)
receives ProSe_Code(s) requested over the air by other UEs nearby
application(s)
EPS layer
ProSe-enabled UE
Start requesting
0-B. ProSe_Discovery_Response (ProSe_Code(s))
Discoverer UE
Discoveree UE
0-A. ProSe_Discovery_Request (ProSe_Code(s))

_1441689219.vsd
application(s)

MME

HSS

8. ProSe_Start_Discovery_Ack (command, list PLMNs)

11. ProSe_Start_Discovery_Ack (command, list PLMNs)

7. Allocates ProSe_Code(s) and starts the associated validity timer(s)

eNodeB

3. ProSe_Start_Discovery_Req (OSApp_ID(s))

Serving
ProSe Server

1. Activate ProSe discovery service

10. Radio resource allocation for ProSe discovery

EPS layer

ProSe-enabled UE

2. Request ProSe discovery service (OSApp_ID(s))

9. Provide radio resources to the UE / ProSe_Start_Discovery_Ack (command, list PLMNs)

service platform

4. ProSe Authorization Req

5. ProSe Authorization Ack

6. ProSe_Start_Discovery_Req (OSApp_ID(s), IMSI)

Start monitoring and/or announcing

12. ProSe discovery service started

EPS

service layer

