Technical Specification Group Services and System Aspects
TSGS2#9(99)B32

Meeting #9, London, UK, 25 - 29 October 1999

Source:
Ericsson

Title:
Proposed enhancements to TS23.127 V1.0.0

Document for:
Decision

Agenda Item:
VHE/OSA ad hoc

Summary

This contribution proposes enhancements toTS23.127 V100. It is proposed to include these changes in V1.1.0.

3G TS 23.127 1.1.0 (1999-10)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;
Virtual Home Environment / Open Service Architecture

(3G TS 23.127 version 1.1.0)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Reference

DTS/TSGS-0223xxxU

Keywords

VHE, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Contents

4Foreword

1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
7
4
Virtual Home Environment
7
5
Open Service Architecture
8
5.1
Overview of the Open Service Architecture
8
5.2
Basic mechanisms in the Open Service Architecture
11
5.3
Base interface classes
12
5.3.1
Base Interface Class
12
5.3.2
Base Service Interface class
12
6
Framework service capability features
12
6.1
Establishing a Service Agreement
13
6.2
Authentication
14
6.3
Authorisation
20
6.4
Event Notification
20
6.5
Registration
21
6.6
Discovery
21
7
Non-Framework service capability features
22
7.1
Call Control
22
7.1.1
Call Manager
22
7.1.2
Call
25
7.1.2.1.1
State Diagram
29
7.1.3
Call Leg
32
7.1.3.1.1
State Diagram
35
7.2
Security/privacy
37
7.3
Address Translation
37
7.4
User Location
37
7.5
User Status
39
7.6
Terminal Capabilities
41
7.7
Message Transfer
41
7.8
Data Download
41
7.9
User Profile Management
41
7.10
Charging
41
7.10.1
CAMEL Call Leg
41
8
Annex - Relation between OSA interface class methods and CAMEL operations (informative)
43
9
Annex - Example of use of OSA (informative)
45
10
History
47

Foreword

This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version 3.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
Indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the specification;

Scope

This document specifies the stage 2 of the Virtual Home Environment and Open Service Architecture.

Virtual Home Environment (VHE) is defined as a concept for personal service environment (PSE) portability across network boundaries and between terminals. The concept of the VHE is such that users are consistently presented with the same personalised features, User Interface customisation and services in whatever network and whatever terminal (within the capabilities of the terminal and the network), wherever the user may be located. For Release99, e.g. CAMEL, MExE and SAT are considered the mechanisms supporting the VHE concept.

The Open Service Architecture (OSA) defines an architecture that enables operator and third party applications to make use of network functionality through an open standardised interface (the OSA Interface). OSA provides the glue between applications and service capabilities provided by the network. In this way applications become independent from the underlying network technology. The applications constitute the top level of the Open Service Architecture (OSA). This level is connected to the Service Capability Servers (SCSs) via the OSA interface. The SCSs map the OSA interface onto the underlying telecom specific protocols (e.g. MAP, CAP, H.323, SIP etc.) and are therefore hiding the network complexity from the applications.

Applications can be network/server centric applications or terminal centric applications. Terminal centric applications reside in the Mobile Station (MS). Examples are MExE and SAT applications. Network/server centric applications are outside the core network and make use of service capability features offered through the OSA interface. (Note that applications may belong to the network operator domain although running outside the core network. Outside the core network means that the applications are executed in Application Servers that are physically separated from the core network entities).

1 References

References may be made to:

a)
Specific versions of publications (identified by date of publication, edition number, version number, etc.), in which case, subsequent revisions to the referenced document do not apply; or

b)
All versions up to and including the identified version (identified by "up to and including" before the version identity); or

c)
All versions subsequent to and including the identified version (identified by "onwards" following the version identity); or

d)
Publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

1.1 Normative references

 [1]
GSM 01.04 (ETR 350): ”Digital cellular telecommunication system (Phase 2+); Abbreviations and acronyms”

 [2]
GSM 02.57: ”Digital cellular telecommunication system (Phase 2+); Mobile Station Application Execution Environment (MExE); Service description”

[3]
UMTS TS 23.057: "Mobile Station Application Execution Environment (MExE); Functional description - Stage2”

[4]
UMTS TS 22.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL) (Phase3); Service description - Stage 1"
[5]
UMTS TS 23.078: ”Customised Applications for Mobile network Enhanced Logic (CAMEL) (Phase3); Functional description - Stage 2”

 [6]
GSM 11.14: ”Digital cellular telecommunication system (Phase 2+); Specification of the SIM Application Toolkit for the Subscriber Identity Module - Mobile Equipment; (SIM - ME) interface” < Editor's note: check whether reference to 22.038 has to be included >
 [7]
UMTS TS 22.101: ”Universal Mobile Telecommunications System (UMTS): Service Aspects; Service Principles”

 [8]
UMTS TS 22.105: ”Universal Mobile Telecommunications System (UMTS); Services and Service Capabilities”

 [9]
UMTS TS 22.121: ”Universal Mobile Telecommunications System (UMTS); Virtual Home Environment”

[10]
UMTS TR 22.905: “….
[11]
IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol [RFC 1994, August1996]
1.2 Informative references

[1]
UMTS TR 22.970: ”Universal Mobile Telecommunications System (UMTS); Virtual Home Environment”

[2]
World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side framework for content negotiation (www.w3.org)

2 Definitions and abbreviations

2.1 Definitions

For the purposes of this TS, the following definitions apply:

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home Environment to provide services.
Local Service: A service, which can be exclusively provided in the current serving network by a Value added Service Provider.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the standardised OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

Services: Services are made up of different service capability features.

Applications: Services, which are designed using service capability features.

OSA Interface: Standardised Interface used by applications to access service capability features.
Personal Service Environment: contains personalised information defining how subscribed services are provided and presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Home Environment: responsible for overall provision of services to users

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the terminal and serving network.

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

Value Added Service Provider: provides services other than basic telecommunications service for which additional charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and between terminals.

Further UMTS related definitions are given in 3G TS 22.101 and 3G TR 22.905.

2.2 Abbreviations

For the purposes of this TS the following abbreviations apply:

CAMEL
Customised Application For Mobile Network Enhanced Logic

CSE
Camel Service Environment

HE
Home Environment

HE-VASP
Home Environment Value Added Service Provider

HLR
Home Location Register

IDL
Interface Description Language

MAP
Mobile Application Part

ME
Mobile Equipment

MExE
Mobile Station (Application) Execution Environment

MS
Mobile Station

MSC
Mobile Switching Centre

OSA
Open Service Architecture

PLMN
Public Land Mobile Network

PSE
Personal Service Environment

SAT
SIM Application Tool-Kit

SCP
Service Control Point

SIM
Subscriber Identity Module
Short Message Service

USIM
User Service Identity Module

VASP
Value Added Service Provider

VHE
Virtual Home Environment

Further GSM related abbreviations are given in GSM 01.04. Further UMTS related abbreviations are given in 3G T 22.905.

3 Virtual Home Environment

The Virtual Home Environment (VHE) is an important portability concept of the 3G mobile systems. It enables end users to bring with them their personal service environment whilst roaming between networks, and also being independent of terminal used.

The Personal Service Environment (PSE) describes how the user wishes to manage and interact with her communication services. It is a combination of a list of subscribed to services, service preferences and terminal interface preferences. PSE also encompasses the user management of multiple subscriptions, e.g. business and private, multiple terminal types and location preferences. The PSE is defined in terms of one or more User Profiles.

The user profiles consist of two kinds of information:

· Interface related information (User Interface Profile) and,

· Service related information (User Services profile).

Please see TS22.121 [9] for more details.

4 Open Service Architecture

In order to implement not known end user services/applications today, a highly flexible Open Service Architecture (OSA) is required. The Open Service Architecture (OSA) is the architecture enabling applications to make use of network capabilities. The applications will access the network through the OSA interface that is specified in this Technical Specification.

The access to network functionality is offered by different Service Capability Servers (SCSs) and appear as service capability features in the OSA interface. These are the capabilities that the application developers have at their hands when designing new applications (or enhancements/variants of already existing ones). The different features of the different SCSs can be combined as appropriate. The exact addressing (parameters, type and error values) of these features is described in stage 3 descriptions. These interface descriptions (“IDLs”) are open and accessible to application developers, who can design services in any programming language. The service logic executes toward the OSA interfaces, while the underlying core network functions use their specific protocols.

The aim of OSA is to provide an extendible and scalable architecture that allows for inclusion of new service capability features and SCSs in future releases of UMTS with a minimum impact on the applications using the OSA interface.

To make it possible for application developers to rapidly design new and innovative applications, an architecture with open interfaces is imperative. By using object oriented techniques, like CORBA, it will be possible to use different operating systems and programming languages in application servers and service capability servers. The different servers interwork via the OSA interfaces. The service capability servers will serve as gateways between the network entities and the applications

4.1 Overview of the Open Service Architecture

The Open Service Architecture consists of three parts:

· Applications, e.g. VPN, conferencing, location based applications. These applications are implemented in one or more Application Servers;

· Framework, providing the applications with basic mechanisms that enable applications to make use of the service capabilities in the network. Examples of framework services are Authentication, Registration and Discovery. Before an application can use the network functionality made available through the Service Capability Servers, authentication between the application and framework is needed. After authentication, The discovery service then enables the application to find out from the framework what service capability features are provided by the Service Capability Servers. The service capability features are accessed by the methods defined in the OSA interface classes.

· Service Capability Servers, providing the applications with service capability features that are abstractions from underlying network functionality. Examples of service capability features offered by the Service Capability Servers are Call Control, Message Transfer and Location Information. Similar service capability features are possibly provided by more than one Service Capability Servers. For example, Call Control functionality might be provided by SCSs on top of CAMEL and MExE.

The OSA service capability features are specified in terms of a number of interface classes and their methods. The interface classes are divided into two groups:

· framework interface classes, describing the methods on the framework

· service interface classes, describing the methods on the service capability servers.

The interface classes are further divided into methods. For example, the Call Manager interface class might contain a method to create a call (which realises one of the Service capability features ‘Initiate and create session’ as specified in [9]).

For description purpose the interface classes belonging to the same subject are grouped together and called network services. For example, the interface classes Call Manager, Call and Leg constitute the Call Control network service.

Note that the “CSE” does not provide the service logic execution environment for applications using the OSA interface, since these applications are executed in Application Servers.

[image: image2.wmf]framework

Loc

. information

Call control

HLR

CSE

MExE

server

SAT

server

Servers

E.g. Location server

Service capability server(s)

Interface

class

OSA interface

Open

Service

Architecture

discovery

Application

Application

server

Figure 1
Overview of Open Service Architecture

This specification defines the OSA interface. OSA does not mandate any specific platform or programming language.

The Service Capability Servers that implement the OSA interface classes are functional entities that can be distributed across one or more physical node. For example, the Location interface classes and Call Control interface classes might be implemented on a single physical entity or distributed across different physical entities. Furthermore, a service capability server can be implemented on the same physical node as a network functional entity or in a separate physical node. For example, Call Control interface classes might be implemented on the same physical entity as the CAMEL protocol stack (i.e. in the SCP) or on a different physical entity.

Several options exist:

Option 1

The OSA interface classes are implemented in one or more physical entity, but separate from the physical network entities. Figure 2 shows the case where the OSA interface classes are implemented in one physical entity, called “gateway” in the figure. Figure 4 shows the case where the SCSs are distributed across several ‘gateways’.

[image: image3.wmf]SCS

‘Gateway’

OSA Interface

Non-

standardised

Interfaces

CSE

 ….

HLR

Physical entity

Functional entity

Figure 2
SCSs and network functional entities implemented in separate physical entities

[image: image4.wmf]SCS

‘Gateway’

OSA Interface

Non-

standardised

Interfaces

CSE

 ….

HLR

SCS

SCS

Figure 3
SCSs and network functional entities implemented in separate physical entities, SCSs distributed across several ‘gateways’.

Option 2

The OSA interface classes are implemented in the same physical entities as the traditional network entities (e.g. HLR, CSE), see Figure 6.

[image: image5.wmf]SCS

OSA Interface

CSE

 ….

HLR

SCS

SCS

Figure 4
SCSs and network functional entities implemented in same physical entities

Option 3

Option 3 is the combination of option 1 and option 2, i.e. a hybrid solution.

[image: image6.wmf]‘Gateway’

OSA Interface

Non-

standardised

Interfaces

CSE

 ….

HLR

SCS

SCS

Figure 5
Hybrid implementation (combination of option 1 and 2)

It shall be noted that in all cases there is only one framework.

From the application point of view, it shall make no difference which implementation is chosen, i.e. in all cases the same network functionality is perceived by the application. The applications shall always be provided with the same set of interface classes and a common access to framework and service interface. It is the framework that will provide the applications with an overview of available service capability features and how to make use of them.

4.2 Basic mechanisms in the Open Service Architecture

This section explains what basic mechanisms are executed in OSA prior to offering and activating applications.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others every time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once a off line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model. The application must authenticate the framework as well as be authenticated by the framework. The application must be authenticated before any other OSA interface is allowed to be used.

-
Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of determining what a previously authenticated application is allowed to do. Authentication must precede authorisation.

· Discovery of framework and service interfaces. After successful authentication, applications can obtain available framework interface classes and use the discovery interface to get the allowed service interface classes. The Discovery interface can be used at any time after successful authentication.

-
Establishment of service agreement. Before any application can interact with a network service capability a service agreement must be established. A service agreement consist of an off-line (e.g. by physically passing messages) and on-line part. The application has to sign an on-line service agreement before any other access to the network service interface is allowed.
Basic mechanism between Framework and Service Capability Server:

· Registering of service interfaces. Interface classes offered by a Service Capability Server can be registered at the Framework. In this way the Framework can inform the Application upon request about available service interface classes (Discovery). This mechanism is in general applied when installing or upgrading a Service Capability Server.

Basic mechanisms between Application Server and Service Capability Server:

· Request of event notifications. This mechanism is applied when a user has subscribed to an application and that application needs to be invoked upon receipt of events from the network related to the user. For example, when a user subscribes to screening application, the application needs to be invoked when the user makes a call. A call notification event is in this case requested on the Calling and/or Called Party Number of the user.

4.3 Base interface classes

The base interface classes described in this sub clause are provided for completeness of the documentation. With object oriented design all classes are based on a base class. This base class normally does very little and new methods (i.e. functionality) are added by each class further in the hierarchy.

4.3.1 Base Interface Class

This class is the foundation of the all interfaces and shall be inherited by all following interfaces. It contains no further methods.

Name
Base_Interface

Method

Parameters

Returns

Errors

4.3.2 Base Service Interface class

This class provides the base for ALL service and framework interfaces described in the following chapters. It allows an application to set a reference to the application, which is used by the OSA interface to respond to the application, which originally initiated the request. For example, when an application wants to be notified upon the receipt of the "called party busy" event, the Service Capability Server must know where to send the notification. This reference can be provided by the application with the setCallBack method across the OSA interface.

Name
Base_Service_Interface

Method
setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application.

Parameters
AppInterface

Specifies a reference to the application interface, which is used for callbacks.

Returns

Errors

5 Framework service capability features

< Note: It is proposed to start chapter 6 with “establishing a service agreement”, i.e. 6.1.1 becomes 6.1. “Authentication then becomes the second section in chapter 6, i.e. 6.2 >
5.1

5.2
Establishing a Service Agreement

Before any application can interact with the network a service agreement will have to be established or an existing agreement will need modification or indeed termination if it is being superseded. An appropriate procedure is required to cater for each of these cases. Off-line agreement may be done by physically passing messages in a secure manner using cryptographic or non-cryptographic techniques. On-line agreement, on the other hand, can only be done in practice using cryptographic techniques.

The procedure outlined below describes on-line establishment of service agreements using cryptographic techniques only, since this is considered to be an integral part of the Authentication framework. However, the procedures may also be a basis for an off-line establishment of service agreements using cryptographic techniques.

A procedure to establish a service agreement begins with the application and Authentication Framework authenticating each other. This uses an authentication mechanism chosen by the Authentication Framework.

After authentication the application and Authentication Framework negotiate a service agreement which will involve each party digitally signing the agreement.

· A application sends an initial message to the Authentication Framework - this will include the authentication capabilities of the application. The Authentication Framework will then choose an authentication mechanism based on information about the authentication capabilities of the framework, application and the service requested. If the application is capable of handling more than one mechanism then the Authentication Framework chooses one preferred authentication option.

· The Authentication Framework sends the identity of the prescribed authentication mechanism to the application. The Authentication Framework will instruct the application to perform the agreed mechanism.

· The application and Authentication Framework interact to authenticate each other. Depending on the mechanism prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. It is assumed that any cryptographic process for enciphering the link is handled at a lower layer (and is outside the scope of this specification).

· The application is now authorised and can access the Discovery Framework Interface using the obtainInterface method. The application uses functions of the Discovery framework interface to look for the services it needs. Using the selectService() and signServiceAgreement() methods it requests the use of a service.

The application and Authentication Framework can then negotiate a service agreement. Optionally, the Authentication Framework may request re-authorisation. Each party then digitally signs the agreement.

[image: image7.wmf] :

ICall

ControlManager

 : I

Discovery

 : I

Authentication

 :

IApp

Authentication

:

IApp

Logic

 :

IAppCall

ControlManager

1:

App_

InitiateAuthentication

()

2:

App_

AuthenticateFramework

()

3:

FW_

AuthenticateApplication

()

5:

App_

ObtainFrameworkInterface

()

9:

App_

DiscoverService

()

10:

App_

SelectService

()

13:

App_

SignServiceAgreement

()

11:

FW_SignServiceAgreement ()

16:

App_

SetCallback

()

4: 'forward event'

14:

new()

15:

new()

12: 'forward event'

 :

IIntegrity

Management

6:

new()

7:

App_

ObtainFrameworkInterface

()

8:

new()

Figure 6 Sequence diagram illustrating authentication, service selection and signing of service agreement

5.3 Authentication

The OSA authentication interface supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the network to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The authentication interface must be the first interface invoked by an application. Invocations of other interfaces will fail until authentication has been successfully completed. The address of the Authentication framework interface is administered in the application prior to the interface being used. This address is made available by the Home Environment, possibly also for a particular HE-VASP.
The OSA authentication interface is defined with the following interface classes and methods:

<Note: order of methods is changed compared to V100, to align more with sequence diagram shown in section 6.1. This however not shown with revision marks. Textual changes are highlighted with revision marks >
Method
InitiateClientAuthentication()

The application uses this method to initiate the authentication process. The mechanism returned by the framework is the mechanism preferred by the framework. This should be within the application capability. If a mechanism within the application’s capability cannot be found, the framework must return an error.

Direction
Application to framework

Parameters
ApplicationID

This is the ID for the application.. The application ID can be used by the framework to reference the correct application Public Key (the key management system is currently outside of the scope of the specification).

AppInterface

Specifies a reference to the application interface, which is used for callbacks.

ClientCapability

This is the authentication capability of the application. This is a list of capabilities separated by a comma.

Returns
PrescribedMechanism

This is the mechanism returned by the framework to indicate the mechanism preferred by the framework for the authentication process. If the value of the prescribedMechanism returned by the framework is not understood by the application, it is considered a catastrophic error and the application must abort.

Errors
INVALID_APPLICATIONID

Returned by the framework if the framework cannot find the applicationID parameter. The value of the parameter prescribedMechanism is NULL in this situation

INVALID_CLIENT_CAPABILITY

If the value of the clientCapability parameter is not valid. The value of the parameter prescribedMechanism is set to NULL.

Method
AuthenticateFramework()

This method is used by the application to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the application. The application ID received in the initiateClientAuthentication() can be used by the gateway to reference the correct application public key (the key management system is currently outside of the scope of this specification).

Direction
Application to framework

Parameters
Challenge

The challenge presented by the application to be responded to by the framework. The challenge mechanism used will be in accordance with [11]. The challenge will be encrypted with the mechanism prescribed by the InitiateClientAuthentication().

Returns
Response

This is the response of the framework to the challenge of the application in the current sequence. The response will be the challenge, decrypted with the mechanism prescribed by the initiateClientAuthentication().

Errors
-

Method
AuthenticateClient()

This method is used by the framework to authenticate the application. The application must respond with the correct responses to the challenges presented by the framework. The Gateway ID (The address of the gateway being used which will be pre-provisioned in the application environment) can be used by the application to reference the correct gateway Public Key. The key management system is currently outside of the scope of the specification.

Direction
Framework to application

Parameters
Challenge

The challenge presented by the framework to be responded to by the application. The challenge will be encrypted with the mechanism prescribed by the initiateClientAuthentication().

Returns
Response

This is the response of the application to the challenge of the framework in the current sequence. The response will be the challenge, decrypted with the mechanism prescribed by the initiateClientAuthentication().

Errors
-

Method
terminateClientAuthentication()

This method is used by the application to terminate authentication with the framework. The application ID received in the initiateClientAuthentication() can be used by the gateway to reference the correct application public key or another secret key (the key management system is currently outside of the scope of this specification).

Direction
Application to framework

Parameters
TerminationText

This is the termination text that is signed by the application using the private key of the application or another secret key.

DigitalSignature

This is the digital signature of the termination text. The framework uses this to check the decrypted terminationText. If a match is made, the authentication is terminated, otherwise an error is returned.

Returns
-

Errors
-

Method
TerminateAppClientAuthentication()

This method is used by the framework to terminate authentication with the application.

Direction
Framework to application

Parameters
TerminationText

This is the termination text that is signed by the framework using the private key of the framework or another secret key.

DigitalSignature

This is the digital signature of the termination text. The application uses this to check terminationText. If a match is made, the authentication is terminated, otherwise an error is returned.

Returns
-

Errors
-

Method
ObtainFrameworkInterface()

This method is used by the application to obtain other framework interfaces. Only by using this method can the application obtain the interface references to the other framework interfaces.

Direction
Application to framework

Parameters
FrameworkId

The name of the framework interface to which a reference to the interface is requested. The interfaces allowed include discovery, event notification and OA & M. This parameter uniquely defines the service of interest from the application.

AppInterface

Specifies a reference to the application interface, which is used for callbacks. If an application interface is not needed, then the value of this parameter should be NULL.

Returns
FrameworkInterface

This is the interface reference to the interface asked for by the application.

Errors
INVALID_INTERFACEID

Returned if the framework is given an invalid interface name

Method
SelectService()

This method is used by the application to identify the service that the application is interested in.

Direction
Application to framework

Parameters
ServiceID

This uniquely defines the service required.

ServiceProperties

The names and values of the trading data properties that the service should support.

Returns
ServiceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement for use of the API.

Errors
-

Method
signAppServiceAgreement()

This method is used by the framework to ask the application to sign an agreement on the service to continue the authentication process.

Direction
Framework to application

Parameters
ServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service requested by the application.

AgreementText

This is the agreement text that is to be encrypted by the application using the private key of the application.

SigningAlgorithm

This is the algorithm used to compute the digital signature.

Returns
DigitalSignature

This is the encrypted version of the agreement text given by the application.

Errors
-

Method
SignServiceAgreement()

This method is used by the application to ask the framework to sign an agreement on the service to continue the authentication process.

Direction
Application to framework

Parameters
ServiceToken

The token returned by the framework in a previous selectService() method call to identify the service requested by the application.

AgreementText

This is the agreement text that is to be encrypted by the framework using the private key of the framework.

SigningAlgorithm

This is the algorithm used to compute the digital signature. The signing algorithm must be known to the framework and mandated by the prescribed mechanism returned by the framework.

Returns
DigitalSignature

This is the encrypted version of the agreement text given by the framework.

ServiceManagerInterface

This identifies the address of the service manager interface for the requested service.

Errors
INVALID_SIGNING_ALGORITHM

Returned by the framework when the signing algorithm does not match with the prescribed mechanism.

Method
TerminateServiceAgreement()

This method is used by the application to ask the framework to terminate an agreement on the service.

Direction
Application to framework

Parameters
ServiceToken

The token returned by the framework in a previous selectService() method call to identify the service requested by the application.

TerminationText

This is the termination text that is to be digitally signed by the application. The signing algorithm used is the same as for the function signServiceAgreement().
DigitalSignature

This is the digital signature of the termination text. The framework uses this to check the terminationText. If a match is made, the service agreement is terminated, otherwise an error is returned.

Returns
-

Errors
-

Method
TerminateAppServiceAgreement()

This method is used by the framework to terminate an agreement with the application on the service.

Direction
Framework to application

Parameters
ServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service requested by the application.

TerminationText

This is the termination text that is digitally signed by the framework. The signing algorithm used is the same as for the function signServiceAgreement().

DigitalSignature

This is the digital signature of the termination text. The application uses this to check the terminationText. If a match is made, the service agreement is terminated, otherwise an error is returned.

Returns
-

Errors
-

5.4 Authorisation

< Editor’s note: to be completed in e-mail discussion >

5.5 Event Notification

Method
EnableNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Direction
Application to framework

Parameters
AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the obtainInterface() method (refer to Authentication interface).

EventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns
AssignmentID

Specifies the ID assigned by the framework for this newly enabled event notification.

Errors
-

Method
DisableNotification()

This method is used by the application to disable generic notifications from the framework.

Direction
Application to framework

Parameters
EventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

AssignmentID

Specifies the assignment ID given by the framework when the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
EventNotify()

This method notifies the application of the arrival of a generic event.

Direction
Framework to application

Parameters
EventInfo

Specifies specific data associated with this event.

AssignmentID

Specifies the assignment id which was returned by the framework during the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

Returns
-

Errors
-

Method
NotificationTerminated()

This method indicates to the application that all generic event notifications have been terminated (for example, due to faults detected).

Direction
Framework to application

Parameters
-

Returns
-

Errors
-

5.6 Registration

The Registration service is used to register the functionality of the service capability servers at the Framework. In this way, the Framework can inform the application about the network functionality available when the application issues a DiscoverService. Upon introduction of a new or update of an existing service capability server, the functionality provided by this service capability server can be registered at the Framework.
Initially the service capablity servers and Framework will be owned by the same commercial entity, the Home Environment operator; in the future we might see service brokers have an intermediate role between HE operator and HE VASPs and that operate the Framework. Registration of SCS functionality is a management activity. It is assumed that the manufacturer of a Framework provides a management interface on the Framework to enable HE operators to register the functionality of the SCSs. For 3GPP R99 the Framework management interface is considered a proprietary interface.
5.7 Discovery

Method
discoverService()

The discoverService operation is the means by which a user (client application) is able to obtain the reference (address) to the services that meet its requirements. The client specifies criteria about the service it is interested in and the framework returns the identifier for the service that meet the criterias.

Direction
Application to framework

Parameters
ServiceProperties

The names and values of the trading data properties that the service should support, includes Service Type name, Service constraints.

Returns
ServiceID

This is the unique identity of the service.

Errors
-

6 Non-Framework service capability features

The service capability features provided to the application by service capabilities servers to enable access to network resources. <Editor's note: information flows might be needed to express what information is exchanged (and in what order) between application and service capability servers; this needs then also be reflected in the document structure>

Note: when the direction of a method in an interface class is “application to network”, this means that the method is invoked from the application to an SCS residing on the network side of the OSA interface.

6.1 Call Control

The Call control network service consist of three interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

3. Leg, containing methods to control individual legs in a call

A call can be controlled by one Call Manager; A call can consist of up to n Legs, where n is determined by the Service Capability used.

[image: image8.wmf]Call

Manager

Leg

Call

0..1

0..n

Figure 7
Call control class hierarchy

The Call Control service capability features are described in terms of the methods in the Call Control interface classes. Table 1 gives an overview of the Call Control methods and to which interface classes these methods belong.
CallManager
Call
Leg

CreateCall
RouteCallToDestination_Req
RouteCallLegToAddress

EnableCallNotification
RouteCallToDestination_Res
GetCall

DisableCallNotification
RouteCallToDestination_Err
GetCallLegState

CallNotificationTerminated
RouteCallToOrigination_Req
GetCallLegType

CallEventNotify
RouteCallToOrigination_Res
GetCallLegInfo_Req

CallFaultDetected
RouteCallToOrigination_Err
GetCallLegInfo_Res

ReleaseCall
GetCallLegInfo_Err

DeassignCall
GetAddresses

GetCallInfo_Req
CallLegEventReport_Req

GetCallInfo_Res
CallLegEventReport_Res

GetCallInfo_Err
CallLegEventReport_Err

GetCallState

GetCallLegs

GetControlLeg

CreateCallLeg

AttachCallLeg

DetachCallLeg

Table 1
Overview of Call Control interface classes and their methods
<Editor’s note: it is proposed to put the Call Control methods in section 7.1 in a different order than in version 1.0.0, to group related methods together (to increase readibility of the spec). For example, place RoteCallToDestination-Req, -Res, -Err directly after each other >
6.1.1 Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability Features. The application programmer can use this interface, to create call objects and to enable or disable call-related event notifications.

Method
CreateCall()

This method is used to create a new call object.

Direction
Application to network

Parameters
AppCall

Specifies the application interface for callbacks from the call created.

Returns
Call

Specifies the interface reference of the call created.

CallSessionID

Specifies the call session ID of the call created.

Errors

Method
EnableCallNotification()

This method is used to enable call notifications to be sent to the application.

Direction
Application to network

Parameters
AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

EventCriteria

Specifies the event specific criteria used by the application to define the event required. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.

Returns
AssignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Errors
-

Method
DisableCallNotification()

This method is used by the application to disable call notifications.

Direction
Application to network

Parameters
EventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled. Examples of events are “incoming call attempt reported by network”, “answer”, “no answer”, “busy”.
AssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
CallFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction
Network to application

Parameters
Call

Specifies the call interface in which the fault has been detected.

CallSessionID

Specifies the call session ID of the call in which the fault has been detected.

Fault

Specifies the fault that has been detected.

Returns
-

Errors
-

Method
CallEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction
Network to application

Parameters
Call

Specifies the reference to the call interface to which the notification relates.

EventInfo

Specifies data associated with this event. These data include originatingAddress, originalDestinationAddress, redirectingAddress and AppInfo (see for more explanation on these data the RouteCallToDestination() method).
AssignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

AppInterface

Specifies a reference to the application interface which implements the callback interface for the new call.

Returns
-

Errors
-

Method
callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

6.1.2 Call

The generic call interface represents the interface to the generic call Service Capability Feature. It provides a structure to allow simple and complex call behaviour to be used.

Method
RouteCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the destination party (specified in the parameter TargetAddress). The destination party is attached to the call via a passive leg. This means that the call is not automatically released if the destination party disconnects from the call; only the leg with which the destination party was attached to the call is released in that case. RouteCallToDestination_Req implicitly creates the passive leg, i.e. the application does not have to issue a CreateCallLeg method..

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

ResponseRequested

Specifies the set of observed events that will result in a routeCallToDestination_Res() being generated.

TargetAddress

Specifies the destination party to which the call should be routed.

OriginatingAddress

Specifies the address of the originating (calling) party.

OriginalDestinationAddress

Specifies the original destination address of the call, i.e. the address as specified by the originating party. This parameter should be equal to the OriginalDestinationAddress as received by the application in the EventInfo parameter of the CallEventNotify method.

RedirectingAddress

Specifies the last address from which the call was redirected.
AppInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns
-

Errors
-

Method
RouteCallToOrigination_Req()

This asynchronous method requests routing of a call to the first call party, via a controlling call leg (which is implicitly created). When a user attached to the controlling leg disconnects from the call, the whole call is released (as opposed to a user attached via a passive leg that disconnects). The call object must already have been created. This method is typically used by an application to set up a call “out of the blue”, i.e. the call is not initiated by an originating party.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

ResponseRequested

Specifies the set of observed events that will result in a routeCallToOrigination_Res() will be generated.

TargetAddress

Specifies the origination party to which the call should be routed.

OriginatingAddress

Specifies the address of the originating (calling) party.

AppInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns
-

Errors
-

Method
ReleaseCall()

This method requests the release of the call and associated objects.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Cause

Specifies the cause of the release.

Returns
-

Errors
-

Method
DeassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so that the application has no further control of call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports requested, then these reports will be disabled and any related information discarded.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Returns
-

Errors
-

Method
GetCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. The call object will exist after the call is ended if information is required to be sent to the application at the end of the call. The call information will be sent after any call event reports.

Note: At the end of the call with respect to either a particular call leg or the entire call, the call information must be sent before the objects of concern are deleted.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

CallInfoRequested

Specifies the call information that is requested.

Returns
-

Errors
-

Method
SetCallChargePlan()

Allows an application to include charging information in network generated CDR.

Parameters
CallSessionID

Specifies the call session ID of the call.

CallChargePlan

Application specific charging information.

Returns
-

Errors
-

Method
getCallState()

This method requests the current state of the call.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Returns
State

Specifies the current state of the call (e.g. “idle”, “active”, “inactive”, “released”).

Errors
-

Method
getCallLegs()

This method requests the identification of the call leg objects associated with the call object.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Returns
CallLegList

Specifies the call legs associated with the call. The references passed in this list are in the same index order as the IDs passed in the call leg session ID list.

CallLegSessionIDList

Specifies the call leg session IDs associated with the call. The IDs passed in this list are in the same index order as the references passed in the call leg list.

Errors
-

Method
CreateCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the call, but not attached. The call leg can be attached to the call (using attachCallLeg) when the call leg is in the connected state (i.e. it has been answered).

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

CallLegType

Specifies the type of call leg created (e.g. generic or terminal, controlling or passive).

AppCallLeg

Specifies the application interface for callbacks from the call leg created.

Returns
CallLeg

Specifies the interface of the call leg created.

CallLegSessionID

Specifies the call leg session ID of the call leg created.

Errors
-

Method
attachCallLeg()

This method requests that the call leg be attached to the call object. This will allow transmission on all associated bearer connections to other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

CallLeg

Specifies the interface of the call leg to attach to the call.

CallLegSessionID

Specifies the call leg session ID to attach to the call.

Returns
-

Errors
-

Method
detachCallLeg()

This method requests that the call leg be detached from the call object. This will prevent transmission on any associated bearer connections to other parties in the call. The call leg must be in the connected state for this method to complete successfully.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

CallLeg

Specifies the interface of the call leg to detach from the call.

CallLegSessionID

Specifies the call leg session ID to detach from the call.

Returns
-

Errors
-

Method
getControlLeg()

This method requests the identification of the controlling call leg of this call.

Direction
Application to network

Parameters
CallSessionID

Specifies the call session ID of the call.

Returns
CallLeg

Specifies the interface of the controlling call leg of this call.

CallLegSessionID

Specifies the call leg session ID of the controlling leg of this call.

Errors
-

Figure 11 shows the state model for the generic call interface from applications point of view. The state model is simplified because most of the state is held within the associated call legs. The call is created by an application (via the createCall() method on the CallManager interface) or implicitly by the Generic Call Control Service when a new call event notification arrived.

It shall be noted that this state diagrams relates to the OSA interface and not to the underlying mechanism used to perform the call control.

<Editor’s note: A mapping to CAMEL states might be needed in the stage 3>

[image: image9.emf]ACTIVE

INACTIVE

IDLE

RELEASED

releaseCallLeg

[not controlling call leg]

attachCallLeg

[first call leg]

releaseCall

detachCallLeg

[last call leg]

releaseCallLeg

[controlling call leg]

ALL STATES

deassignCall

createCall

routeCallToOrigination_Req

[call accepted]

releaseCall

routeCallLegToAddress

[call accepted]

routeCallToDestination_Req

[call accepted]

releaseCall

Figure 9 - State diagram for the Call interface from an application point of view

Method
routeCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.). If the call is answered, then a (passive) call leg object will be created for that leg of the call.

Direction
Network to application

Parameters
CallSessionID

Specifies the call session ID of the call.

CallLeg

Specifies the interface of the call leg associated with the destination party.

CallLegSessionID

Specifies the call leg session ID of the call leg associated with the destination party.

EventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Returns
-

Errors
-

Method
routeCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call could not be routed to the destination party (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
routeCallToOrigination_Res()

This asynchronous method indicates that the request to route a call to the first call party was successful, and indicates the response of that party (for example, the call was answered, not answered, refused due to busy, etc.). If the call is answered, then a (controlling) call leg object will be created for that leg of the call.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg associated with the origination party.

callLegSessionID

Specifies the call leg session ID of the call leg associated with the origination party.

eventReport

Specifies the result of the request to route the call to the origination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Returns
-

Errors
-

Method
routeCallToOrigination_Err()

This asynchronous method indicates that the request to route the call to the originating party was unsuccessful (for example, the network was unable to route the call, the parameters were incorrect, the request was refused, etc.).

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
getCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns
-

Errors
-

Method
getCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

6.1.3 Call Leg

The generic call leg interface represents the logical call leg associating a call with an address. The call leg tracks it own states and allows charging summaries to be accessed.

Method
routeCallLegToAddress()

This method initiates routing of the call leg to the given target address. The outcome of the call routing attempt can be requested and reported using callLegEventReport_Req and callLegEventReport_Res / callLegEventReport_Err.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalCalledAddress

Specifies the original address to which the call was initiated.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service identities and interaction indicators).

Returns
-

Errors
-

Method
callLegEventReport_Req()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object will be set to observe.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

eventReportsRequested

Specifies the events that the call leg object will observe and report.

Returns
-

Errors
-

Method
getCallLegState()

This method requests the current state of the call leg.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

Returns
state

Specifies the current state of the call leg.

Errors
-

Method
getAddresses()

This method requests the address details associated with the call leg.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

Returns
addressList

Specifies the addresses associated with the call leg.

Errors
-

Method
getCallLegInfo_Req()

This asynchronous method requests information associated with the call leg to be provided at the appropriate time (for example, to calculate charging). Note: in the call leg information must be accessible before the objects of concern are deleted.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested

Specifies the call leg information that is requested.

Returns
-

Errors
-

Method
getCallLegType()

This method requests whether the call leg is a controlling or passive call leg.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

Returns
callLegType

Specifies the call leg type.

Errors
-

Method
getCall()

This method requests the call associated with this call leg.

Direction
Application to network

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Returns
Call

Specifies the interface of the call associated with this call leg.

CallSessionID

Specifies the call session ID of the call associated with this call leg.

Errors
-

Figure 13 shows the state model for the generic call leg interface from an application point of view. This represents most of the call setup states. The call leg is created by an application (via the createCallLeg() method on the Call interface) or implicitly by the Generic Call Control Service.
It shall be noted that this state diagrams relates to the OSA interface and not to the underlying mechanism used to perform the call control.

<Editor’s note: A mapping to CAMEL states might be needed in the stage 3>

[image: image10.emf]IDLE

CALL_PROCEEDING

ALERTING CONNECTED

RELEASED

FAILED

ALL STATES

eventNotify

[answer]

eventNotify

[no answer]

releaseCallLeg

notificationTerminated

[switch fault]

eventNotify

[call leg ringing]

eventNotify

[busy or out of service]

eventNotify

[answer]

eventNotify

[call leg released]

releaseCallLeg

eventNotify

[call leg released]

createCallLeg

eventNotify

[new call]

routeCall/CallLegTo..._Req

[call proceeding]

routeCall/CallLegTo..._Req

[call accepted]

routeCall/CallLegTo..._Req

[call leg ringing]

releaseCallLeg

routeCall/CallLegTo..._Req

[busy or out of service]

deassignCall

releaseCall

Figure 10 - State diagram for the CallLeg interface from an application point of view

Method
callLegEventReport_Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for example, a mid-call event, the party has requested to disconnect, etc.).

Direction
Network to application

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode that the call object is in, the call leg generating the report (if applicable) and other related information.

Returns
-

Errors
-

Method
CallLegEventReport_Err()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful, and the reason (for example, the parameters were incorrect, the request was refused, etc.).

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

Method
GetCallLegInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for example to calculate charging.

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

CallLegInfoReport

Specifies the call leg information requested.

Returns
-

Errors
-

Method
GetCallLegInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Direction
Network to application

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

< It is proposed to delete this section, since security is ensured through the mechanisms provided by the Framework >

6.2 Address Translation

6.3 User Location

Method
EnableLocationNotification()

This method is used to enable user status notifications so that events can be sent to the application.

Direction
Application to network

Parameters
AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns
assignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Errors
-

Method
disableLocationNotification()

This method is used by the application to disable call notifications.

Direction
Application to network

Parameters
eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
getUserLocation()

This method is used by an application to get the location of a user directly.

Direction
Application to network

Parameters
userIdentity

Identifies the user

Returns
locationInformation

Specifies the current location of the user. The following information elements may be returned:

· CellId or location area identifier

· VLR number

· Geographical information

· Location number

locationInformationAge

Indicates the time that the location information was updated.

Errors
-

Method
locationReport()

This method notifies the application of the arrival of a mobility-related event.

Direction
Network to application

Parameters
eventInfo

Specifies data associated with this event.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

Returns
-

Errors
-

Method
locationNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

6.4 User Status

Method
enableStatusNotification()

This method is used to enable user status notifications so that events can be sent to the application.

Direction
Application to network

Parameters
appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required:

· Check for subscriber being reachable

· Check for subscriber being not reachable

Returns
assignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Errors
-

Method
disableStatusNotification()

This method is used by the application to disable call notifications.

Direction
Application to network

Parameters
eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableNotification() was called.

Returns
-

Errors
INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method
GetUserStatus()

Direction
Application to network

Parameters
userIdentity

This parameter identifies the user for which the status has to be reported

Returns
status

Reports the status of the user. The following status can be reported:

· Assumed idle

· Busy

· NotReachable

· No information available

Errors
-

Method
statusEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction
Network to application

Parameters
status

Reports the status of the user.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.

Returns
-

Errors
-

Method
statusNotificationTerminated()

This method indicates to the application that all status event notifications have been terminated (for example, due to faults detected).

Direction
Network to application

Parameters
-

Returns
-

Errors
-

6.5 Terminal Capabilities

6.6 Message Transfer

6.7 Data Download

6.8 User Profile Management

<Editor's note: management of supplementary service data might be included here (or in a separate section it that appears to be more appropriate>

6.9 Charging

6.9.1 CAMEL Call Leg

This class inherits from the base Call Leg interface class and adds CAMEL specific methods.

Method
setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users handset.

Direction
Application to network

Parameters
callLegSessionID

Specifies the call leg session ID of the call leg.

adviceOfChargeInformation

Specifies two sets of Advice of Charge parameter according to GSM …..

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns
-

Errors
-

Method
superviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If an application calls this function before it calls a routeCallToDestination_Req() or a user interaction function the time measurement will start as soon as the call is answered by the B-party or the user interaction system.

Direction
Application to network

Parameters
CallLegSessionID

Specifies the call leg session ID of the call leg.

Duration

Specifies the granted duration of the call/session in:

· time in milliseconds for the connection, or;

· Total data transferred in …

TarrifSwitch

Specifies an optional tariff switch indicating a change in tariff.

treatment

Specifies how the network should react after the granted connection time expired.

Returns
-

Errors
-

Method
superviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

Returns
-

Errors
-

Method
superviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Direction
Network to application

Parameters
callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns
-

Errors
-

7 Annex - Relation between OSA interface class methods and CAMEL operations (informative)

The table below shows how OSA interface class methods can be mapped onto CAMEL CAP Phase3 operations. Note that the table below does not contain Framework interface classes. In some cases there is no mapping between OSA interface classes and CAP operations, but between OSA interface classes and messages generated by TCAP, the protocol layer below CAP.

<Editor’s note: the mapping might slighty change due to CAMEL phase3 scope changes>

<Editor’s note: mapping on parameter level might be done as part of stage3 >

OSA interface class method
CAP operation (phase3)

CreateCall
No CAP operation, since execution of this method only results in the creation of a Call object instance in the Service Capability Server

EnableCallNotification
AnyTimeModification

Note: AnyTimeModification only allows for activation of O/T-CSI, not for the creation

DisableCallNotification
AnyTimeModification

Note: AnyTimeModification only allows for de-activation of O/T-CSI, not for the deletion

CallAborted
TCAP U-ABORT or Disconnect event

CallFaultDetected
All “no connection” events that refer to an error rather than to a normal “no connection” situation (like e.g. “busy”, “no answer”)

CallEventNotify
InitialDP

CallNotificationTerminated
-

RouteCallToDestination_Req
(InitiateCallAttempt and Reconnect) or Connect or Continue

and RequestReport_BCSM (in case the application needs to be notified on certain events)

RouteCallToDestination_Res
EventReport_BCSM

RouteCallToDestination_Err
TCAP Return Error

RouteCallToOrigination_Req
InitiateCallAttempt

and RequestReport_BCSM (in case the application needs to be notified on certain events)

RouteCallToOrigination_Res
EventReport_BCSM

RouteCallToOrigination_Err
TCAP Return Error

ReleaseCall
ReleaseCall

DeassignCall
Cancel

GetCallInfo_Req
CallInformationRequest

GetCallInfo_Res
CallInformationReport

GetCallInfo_Err
TCAP Return Error

GetCallState
-

GetCallLegs
-

CreateCallLeg
-

AttachCallLeg
-

DetachCallLeg
-

GetControlLeg
-

RouteCallLegToAddress
(InitiateCallAttempt and Reconnect) or Connect or Continue

and RequestReport_BCSM (in case the application needs to be notified on certain events)

CallLegEventReport_Req
RequestReport_BCSM

CallLegEventReport_Res
EventReport_BCSM

CallLegEventReport_Err
TCAP Return Error

GetCallLegState
-

GetAddresses
-

GetCallLegInfo_Req
CallInformationRequest

GetCallLegInfo_Res
CallInformationReport

GetCallLegInfo_Err
TCAP Return Error

GetCallLegType
-

GetCall
-

EnableLocationNotification
AnyTimeModification

Note: AnyTimeModification only allows for activation of M-CSI, not for the creation

DisableLocationNotification
AnyTimeModification

Note: AnyTimeModification only allows for de-activation of M-CSI, not for the deletion

GetUserLocation
AnyTimeInterrogation

LocationReport
LocationUpdate [check latest version CAP phase3]

LocationNotificationTerminated
? [check latest version CAP phase3]

EnableStatusNotification
AnyTimeModification

Note: AnyTimeModification only allows for activation of M-CSI, not for the creation

DisableStatusNotification
AnyTimeModification

Note: AnyTimeModification only allows for de-activation of M-CSI, not for the deletion

StatusNotificationTerminated
? [check latest version CAP phase3]

SetChargeInfo
FurnishChargingInformation

SetAdviceOfCharge
SendChargingInformation

SuperviseCall_Req
ApplyCharging

SuperviseCall_Res
ApplyCharging_Response

SuperviseCall_Err
TCAP Return Error

8 Annex - Example of use of OSA (informative)

The following example shows how the OSA, described on a high level, could be used to execute an application. Note that OSA enables the use of various Service Capability Servers by an application.

 A user participates in a three-party conference discussing where to dine tonight (voice call). The Web is browsed to pick a suitable restaurant. The location of the restaurant in relation to the position of the user is displayed on the user’s terminal (location/positioning application). The restaurant choice is agreed amongst the conference participants and a voice call is set up to book a table at the restaurant.

In some more detail this example could look as follows:

1) Conference call set-up:

Ordered via a WAP communication to the Call Conference Application.

[image: image11.wmf]WAP-GW

 CAMEL

 SCS

Call Conference Application on

Application Server

Request conference set-up

Set up call to User A, User B and User C

User A

User B

User C

2) Web-browsing:

User A uses WAP to browse information on the Internet (or a specific Home Environment provided service) to find a restaurant guide.

User A (WAP-GW (Internet.

After having found two restaurant choices which all conference participants agree to, it is decided to choose the one that is closest to where User A is located. User A then contacts the “Locator Application” which helps him to decide which of the two restaurants that is closest to him, and how to get there.

3) Location/Positioning info:

User A (“Locator Application” (CAMEL SCS (positioning part).

The “Locator Application” determines which of the two restaurants that is the closest, translates the positioning information into a description how to get there, either in text for WAP or alternatively included as an attachment in an e-mail.
4) Table reservation:

Lastly, User A makes a table reservation by calling the restaurant. This can either be done via the WTAI interface between a WTA application or by requesting an application in the network to establish the call as described in 1. above.

User A (Voice call controlled via WTAI (Restaurant”

History

 Date
Version
Comment

July 1999
0.1.0
Initial Draft produced in Hazlet, New Jersey, USA

September 1999
0.2.0
 Version presented to S2 plenary in Bonn, Germany (not including all agreed changes yet from VHE/OSA adhoc session)

September 1999
0.2.1
Output of Bonn meeting
(Presented to SA for information, since V1.0.0 was not available due to 3GPP e-mail exploder problems).

October 1999
0.3.0
 Version sent to S2 e-mail list and proposed to send to SA plenary

October 1999
0.3.1
 Small editorial updates in Interface section (subclauses 6 and 7)

October 1999
1.0.0
 Version 0.3.1 raised to V1.0.0 by S2 e-mail approval and sent to SA e-mail list for information

October 1999
1.1.0
 Output of London meeting

Rapporteur: Rob Schmersel, Ericsson

Email: Rob Schmersel@era.ericsson.se

Telephone: + 46 8 75.71.302

_1000815737.doc

Call

Manager

Leg

Call

0..1

0..n

_1001503151.doc

 : ICall

ControlManager

 : I

Discovery

 : I

Authentication

 : IApp

Authentication

: IApp

Logic

 : IAppCall

ControlManager

1: App_InitiateAuthentication()

2: App_AuthenticateFramework()

3: FW_AuthenticateApplication()

5: App_ObtainFrameworkInterface()

9: App_DiscoverService()

10: App_SelectService()

13: App_SignServiceAgreement()

11: FW_SignServiceAgreement ()

16: App_SetCallback()

4: 'forward event'

14: new()

15: new()

12: 'forward event'

 : IIntegrity

Management

6: new()

7: App_ObtainFrameworkInterface()

8: new()

_997875869.doc

WAP-GW

 CAMEL

 SCS

Call Conference Application on

Application Server

Request conference set-up

Set up call to User A, User B and User C

User A

User B

User C

