
ITU - Telecommunication Standardization sector

Temporary Document 44
STUDY GROUP 16
Berlin, 2 – 6 August 1999

Question(s):
Q.14/16

SOURCE*:
Rapporteur for Q.14 (Glen FREUNDLICH)

TITLE:

Draft H.248

Summary: This document contains the draft text for Recommendation H.248, showing the changes against the determined text.

[image: image38.wmf]RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

DS0

Context C1

H.323

Signaling

FAS

Signaling

H.323

Signaling

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T
H.248

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services – Transmission multiplexing and synchronization

Gateway Control Protocol

ITU-T Proposed Recommendation H.248
(Previously CCITT Recommendation)
Summary

To achieve greater scalability, this recommendation decomposes the H.323 Gateway function defined in H.246 into functional sub-components and specifies protocols these components use to communicate. This allows implementations of H.323 gateways to be highly scalable and encourages leverage of widely deployed SCN network capabilities such as SS7 switches. This also enables H.323 gateways to be composed of components from multiple vendors distributed across multiple physical platforms. The purpose of the this recommendation is to add capabilities currently defined for H.323 systems and is intended to provide new ways of performing operations already supported in H.323.

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU‑T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU‑T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 1999

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Internet Engineering Task Force Fernando Cuervo

INTERNET DRAFT Nortel Networks

July 30, 1999 Christian Huitema

Expires January 30, 2000 Telcordia Technologies

<draft-ietf-megaco-protocol-03.txt> Keith Kelly

 NetSpeak

 Brian Rosen

 FORE Systems

 Paul Sijben

 Lucent Technologies

 Eric Zimmerer

 Level 3 Communications

Status of this document

This document is an Internet-Draft and is in full conformance

with all provisions of Section 10 of RFC2026

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

To view the entire list of current Internet-Drafts, please check

the "1id-abstracts.txt" listing contained in the Internet-Drafts

Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net

(Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au

(Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu

(US West Coast).

Table of Contents

151.
Scope

2.
REferences
15
2.1
Normative References
15
2.2
Informative References
16
3.
Definitions
16
4.
ABBREVIATIONS
17
5.
Conventions
18
6.
PROTOCOL
30
6.1
Overview
30
6.2
Connection Model
30
6.2.1
Basic Concepts
30
6.2.2
Contexts
33
General
33
6.2.2.2
Context Parameters
33
6.2.2.3
Context Dynamics
36
6.2.3
Terminations
36
6.2.3.1
Overview
36
6.2.3.2
Termination Dynamics
37
6.2.3.3
TerminationIDs
39
6.2.3.4
Packages
40
6.2.3.5
Termination Properties and Descriptors
40
6.2.3.6
Root Termination
41
6.2.3.7
Templates
41
6.2.3.8
Scripting
42
6.3
Commands
42
6.3.1
General Usage
42
6.3.2
Command Entity Names and Common Parameters
42
6.3.2.1
Overview of Commands
42
6.3.2.2
Wildcarding Parameter Values in Commands
43
6.3.2.3
Specifying Parameters
45
6.3.2.4
Modem Descriptor
45
6.3.2.5
Multiplex Descriptor
45
6.3.2.6
Media Descriptor
46
6.3.2.7
Termination State Descriptor
46
6.3.2.8
Stream Descriptor
46
6.3.2.9
Local Descriptor
46
6.3.2.10
Rx and Tx Descriptors
47
6.3.2.11
Events Descriptor
47
Signals Descriptor
48
6.3.2.13
RequestedInfo Descriptor
48
6.3.2.14
ServiceChange Descriptor
49
6.3.2.15
DigitMap Descriptor
49
6.3.2.16
Statistics Descriptor
50
6.3.3
Command Application Programming Interface
50
6.3.3.1
Add
50
6.3.3.2
Modify
52
6.3.3.3
Subtract
53
6.3.3.4
Move
53
6.3.3.5
AuditValue
54
6.3.3.6
AuditCapabilities
56
6.3.3.7
Notify
56
6.3.3.8
ServiceChange
57
6.3.4
Generic Command Syntax
58
6.3.5
Command Error Codes
58
6.4
Transactions
60
6.4.1
General Usage
60
6.4.2
Common Parameters
61
6.4.2.1
Transaction Identifiers
61
6.4.2.2
Context Identifiers
62
6.4.3
Transaction Application Programming Interface
62
6.4.3.1
TransactionRequest
62
6.4.3.2
TransactionAccept
63
6.4.3.3
TransactionReject
63
6.4.3.4
TransactionPending
64
6.5
Example Use Cases
64
6.5.1
Residential Gateway to Residential Gateway Call
64
6.5.1.1
Programming Residential GW Analog Line Terminations for Idle Behavior
65
6.5.1.2
Collecting Originator Digits and Initiating Termination
67
6.5.2
Multimedia Gateway Examples
75
1.1.1.1
H.320 Gateway
76
1.1.1.2
Multipoint Context Example
83
1.1.1.3
Single Media Call
83
1.1.1.4
Single Media Call using Templates
88
1.1.1.5
H.323 and FAS Signaling in MG
91
1.1.1.6
Transport Using UDP and Application Layer Framing
96
1.1.1.7
Transport Using TCP
102
1.6
Security Considerations
104
1.6.1
Protection of Media Connections
105
1.7
MG-MGC Control Interface
106
1.7.1
Multiple Virtual MGs
106
1.7.2
Cold Start
107
1.7.3
Failure of an MG
107
1.7.4
Failure of an MGC
107
7.
Package Definition
108
7.1
Guidelines for defining packages
108
7.2
IANA considerations
108
8.
Signaling Backhaul
109
9.
Specification language
110
10.
Syntax specification
110
11.
translation Mechanism
112
12.
ABNF specification
112
13.
translation mechanism
120
13.1
General Media Attributes
122
13.2
Multiplex properties
122
13.3
Properties for BearerDescriptor
123
13.4
For DS0
123
13.5
For ATM VC
123
13.6
Frame Relay
123
13.7
RTP Stream
123

Table of Figures
Error! Bookmark not defined.Figure 1 MEGACO/H.248 Functional Architecture

Figure 2 SS7 gateway Decomposition
Error! Bookmark not defined.
figure 3 FAS Gateway with H.323 Signaling in MG
Error! Bookmark not defined.
Figure 4 SS7 gateway with H.323 in MGC
Error! Bookmark not defined.
Figure 5 H.323 and FAS in MG
Error! Bookmark not defined.
Figure 6 SS7 Terminated in the Media Gateway
Error! Bookmark not defined.
Figure 7: Example MEGACO/H.248 Connection Model
28
Figure 8 Call Waiting Scenario / Alerting Applied to T1
29
Figure 9. Call Waiting Scenario / Answer by T1
30
Figure 10 Transactions, Actions and Commands
58
Figure 11 H.320 Gateway Context
74
Figure 12 Multimedia Context Example
80
Figure 13 Single Media Call Example
81

1. Scope

{Editor’s note: The proposal at the SG 16 Berlin meeting is to have separate scope sections for the IETF document and the ITU document. The text below is the scope for the ITU document.

}

Recommendation H.248 defines the protocols used between elements of a physically decomposed multimedia gateway, used in accordance with the architecture as specified in Recommendation H.323. There are no functional differences from a system view between a decomposed gateway, with distributed sub-components potentially on more than one physical device, and a monolithic gateway such as described in H.246.

This recommendation does not define how gateways, multipoint control units or integrated voice response units (IVRs) work. Instead it creates a general framework that is suitable for these applications.

Packet network interfaces may include IP, ATM or possibly others. The interfaces will support a variety of SCN signalling systems, including tone signalling, ISDN, ISUP, QSIG, and GSM. National variants of these signaling systems will be supported where applicable.

The protocol definition in this document is common text with RFCxxxx.

2. REferences

2.1 Normative References

ITU-T Recommendation H.225.0 (1998): "Call Signaling Protocols and Media Stream Packetization for Packet Based Multimedia Communications Systems ".

ITU-T Recommendation H.245 (1998): "Control Protocol for Multimedia Communication”

ITU-T Recommendation H.323 (1998): “Packet Based Multimedia Communication Systems”

ITU-T Recommendation Q.931 (1993): "Digital Subscriber Signalling System No. 1 (DSS 1) - ISDN User-Network Interface Layer 3 Specification for Basic Call Control"

ITU-T Draft Recommendation H.246 (1998), “Interworking of H-series multimedia terminals with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN”

2.2 Informative References

IETF RFC 1889 (1996), "RTP: A Transport Protocol for Real-Time Applications”

IETF RFC 1890 (1996), "RTP Profile for Audio and Video Conferences with Minimal Control”

IETF RFC 2327 (1998), "SDP: Session Description Protocol”

IETF RFC 2543 (1999), “Session Initiation Protocol (SIP)”

IETF RFC 2326 (1998), "Real Time Streaming Protocol (RTSP)"

IETF RFC 2401 (1998), "Security Architecture for the Internet Protocol"

IETF RFC 2402 (1998), "IP Authentication Header"

IETF RFC 2406 (1998), "IP Encapsulating Security Payload (ESP)"

IETF RFC 2234 (1997), "Augmented BNF for Syntax Specifications: ABNF"

3. Definitions

{ Editor’s note: Any term defined below that is not used in this Recommendation will be taken out. }

Access-Gateway: A type of gateway that provides a User to Network (UNI) network interface such as ISDN.
Back-haul: The transport of signaling information from a media termination gateway like a MG to a signaling gateway such as MGC. For example, a layer 3 protocol such as Q.931 might be transported between MG and MGC such that the MGC terminates layer 3, although the MG terminates layers 1 and 2.
Gatekeeper (GK): A functional entity serving a gateway providing services such as authentication, authorization, alias resolution and call routing.

H.323 Signaling: This function in the decomposed gateway supports normal H.323 signaling, such as H.225.0, H.245, or H.450.x as described in H.323.

Media Gateway (MG): The media gateway converts media provided in one type of network to the format required in another type of network. For example, a MG could terminate bearer channels from a switched circuit network (i.e., DSOs) and media streams from a packet network (e.g., RTP streams in an IP network). This gateway may be capable of processing audio, video and T.120 alone or in any combination, and will be capable of full duplex media translations. The MG may also play audio/video messages and perform other IVR functions, or may perform media conferencing.

Media Gateway Controller (MGC): Controls the parts of the call state that pertains to connection control for media channels in a MG.

Multipoint Control Unit (MCU): A gateway that controls the setup and coordination of a mulit-user conference that typically includes processing of audio, video and data.
Network Access Servers: A gateway function in a MG that converts modem signals from an SCN network and provides data access to the Internet.

Residential gateway: A gateway that interworks an analog line to the packet network.

SCN FAS Signaling Gateway: This function contains the SCN Signaling Interface that terminates SS7, ISDN and other signaling links where the call control channel and bearer channels are collocated in the same physical span.
SCN NFAS Signaling Gateway: This function contains the SCN Signaling Interface that terminates SS7, ISDN and other signaling links where the call control channels are separated from bearer channels. The may be a one to many relationship where many MGCs are deployed to leverage the capabilities of the powerful SS7 interface.

Stream: to be defined. Mr. Bilalis will provide text.
Trunk: A communication channel between two switching systems such as a DS0 on a T1 or E1 line.
Trunking Gateways: A gateway between SCN network and packet network that typically terminates a large number of digital circuits.

4. ABBREVIATIONS

This recommendation defines the following terms.

ATM
Asynchronous Transfer Mode

BRI
Basic Rate Interface

CAS
Channel Associated Signaling

DTMF
Dual Tone Multi Frequency

FAS
Facility Associated Signalling

GK
GateKeeper

GW
GateWay

IP
Internet Protocol

ISUP
ISDN User Part

MG
Media Gateway

MGC
Media Gateway Controller

NAS
Network Access Server

NFAS
Non Facility Associated Signalling

PRI
Primary Rate Interface

PSTN
Public Switched Telephone Network
QoS
Quality of Service

RTCP
Real-time Transport Control Protocol

RTP
Real-time Transport Protocol

SCN
Switched Circuit Network

SG
Signalling Gateway

SS7
Signalling System N°7

UNI
User to Network Interface

5. Conventions

In this Recommendation, "shall" refers to a mandatory requirement, while "should" refers to a suggested but optional feature or procedure. The term "may" refers to an optional course of action without expressing a preference.

6.
6.1

6.2

·
·
·

·
·
·
·

6.2.1

6.2.2

6.2.3

6.2.4

6.2.5

7.

7.1

1.
2.
3.
4.
5.
6.
7.
7.2

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.
3.
4.
5.
6.
7.
8.
7.2.1

1.
2.
3.
4.

1.
2.
3.
4.
5.
6.
7.
8.
7.2.2

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
7.2.3

1.
2.
3.
4.
7.2.4
1.
7.2.5
1.
2.
3.
4.
7.2.6
1.
2.
3.
4.
5.
7.2.7
1.
2.
3.
7.2.8

7.2.9

1.
2.
3.
4.
5.
7.2.10
1.
2.
3.
4.
5.
6.
7.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119.

8. PROTOCOL
8.1 Overview

The protocol used to control Media Gateways from Media Gateway Controllers will be described in this section. First to be introduced will be the connection model and terminology used to describe the controllable logical elements of the Media Gateway. Following that will be specification of the Commands provided to manipulate the logical elements of the connection model. The Commands will be described using an application programming interface and a generic Command syntax. Command encoding specifications will follow. The grouping and processing of Commands within Transactions will then be discussed. Examples will be given to illustrate the use of the protocol.

8.2 Connection Model

8.2.1 Basic Concepts

The connection model for the protocol describes the logical entities, or objects, within the Media Gateway that can be controlled by the Media Gateway Controller. The main abstractions used in the connection model are Terminations and Contexts.

A

{ITU/IETF editors will check the definitions for sanity against the definitions in ensuing sections.}

Termination sources and/or sinks one or more media streams. In a multimedia conference, a Termination can be multimedia, and sources or sinks multiple media streams. The media stream parameters, as well as modem, and bearer parameters are encapsulated within the Termination. A Context is an association between a collection of Terminations. There is a special type of Context, the null Context, which contains all Terminations that are not part of a conference. For instance, in a decomposed access gateway, all idle lines arerepresented by Terminations in the null Context.
Following is a graphical depiction of these concepts. The diagram gives several examples and is not meant to be an all-inclusive illustration. The empty box in each of the Contexts represents a logical association of Terminations implied by the Context.

[image: image3.wmf]Termination

SCN Bearer

Channel

Termination

RTP Stream

Termination

SCN Bearer

Channel

Media Gateway

Context

Termination

SCN Bearer

Channel

Termination

RTP Stream

Context

Termination

SCN Bearer

Channel

Context

Termination

SCN Bearer

Channel

Q

Q

Q

Figure 8: Example MEGACO/H.248 Connection Model

The example below shows a call waiting scenario in a decomposed access gateway, illustrating the relocation of a Termination between Contexts. Terminations T1 and T2 belong to Context C1 in a two-way audio call. A second audio call is waiting for T1 from Termination T3. T3 is alone in Context C2. T1 accepts the call from T3, placing T2 on hold. This action results in the moving of T1 into Context C2, as shown below.

[image: image4.wmf]Media Gateway

Termination T1

SCN Bearer

Channel

Termination T2

RTP Stream

Context C1

Termination T3

SCN Bearer

Channel

Context C2

Q

Q

Figure 9 Call Waiting Scenario / Alerting Applied to T1

[image: image5.wmf]Media Gateway

Termination T1

SCN Bearer

Channel

Termination T2

RTP Stream

Context C1

Termination T3

SCN Bearer

Channel

Context C2

Q

Q

Figure 1110
. Call Waiting Scenario / Answer by T1

8.2.2 Contexts

8.2.2.1

8.2.2.2 General

{ Editor’s note: This section needs work to separate the different concepts it mentions and to make sure that the concepts are defined before they are used. }

A Context is an association between a number of Terminations. The Context describes the topology (who hears/sees whom) and the media mixing and/or switching parameters if more than two Terminations are involved.

There is a special Context, the null Context. It contains Terminations that are not in any conference. Terminations in the null Context can have their parameters examined or modified, and may have events detected on them.

In general, an Add command is used to add Terminations to Contexts. If the MGC does not specify the Context to which the Termination is to be added, the MG creates a new Context. A Termination may be removed from a Context with a Subtract command, and a Termination may be moved from one Context to another with a Move command. A Termination may only exist in one Context at a time.

The maximum number of Terminations in a Context is a MG property. Media gateways that offer only point-to-point connectivity allow at most two Terminations per Context. Media gateways that support conference calls may allow three or more terminations per Context.

8.2.2.3 Context Parameters

The parameters of Contexts include

· ContextID, a 32 bit integer chosen by the MG. It may be specified as ALL “*” or NULL “-“ in some circumstances.
· the topology (who hears/sees whom),

It is proposed to describe the topology by means of the following additions.

{ Editor’s note: if this proposal is acceptable, the text will be moved to the appropriate sections of the recommendation. }

Proposed Parameters for topology

Under the Context:

ContextParameters
::= SEQUENCE

{

topology
SEQUENCE OF TopologyDescriptor OPTIONAL,

…

}

TopologyDescriptor

::= SEQUENCE

{

terminationA

TerminationID,

terminationB

TerminationID,

topologydirection

CHOICE

{

bothway

NULL,

isolate

NULL,

oneway

NULL,

},

…

}

Note: wildcarding the TerminationID is valid

The topology of a context describes the flow of media between the terminations within a context. The modes of a termination (send/receive/…) describe the flow of the media at the ingress/egress of the media gateway.

The topology description is only applicable to the context. It can be included in the “Add” and the “Modify” commands. When the topology is included in the “Add” command, then either “TerminationA” or “TerminationB” must be of value “*” to indicate the termination being added to the context.

When the context parameter is not specified in any “Add” command, nor in the “modify” command for that context, it is equivalent to the topology command included with “TerminationA=*”, “TerminationB=*”, and “connection=bothway”.

The connection has the values, “oneway”, “bothway” and “isolate” “Oneway” is used to indicate a media flow between “TerminationA” and “TerminationB”. “Bothway” is used to indicate a bothway media flow between “TerminationA” and “TerminationB”. “Isolate” is used to indicate that there is no media flow between “TerminationA” and “TerminationB”.

If TerminationA and TerminationB are wildcarded it shall not be possible set to the topology direction to ‘Oneway’.

If a terminationID is wildcarded and the other termination ID is specified this does not imply looping on the specified terminationID.

Example Topologies

[image: image22.wmf]T1

T3

T2

Context 1

1. No topology descriptors

T1

T3

T2

Context 1

2. T1, T2 Isolate

T1

T3

T2

Context 1

3. T3, T2 One way

T1

T3

T2

Context 1

4. T2, T3 One way

T1

T3

T2

Context 1

5. T2,T3

Bothway

T1

T3

T2

Context 1

6. T1,T2

Bothway

Note: the direction of the arrow indicates the direction of flow

Topology
Description

1
No topology descriptors

When no topology descriptors are included, all terminations have a both way connection to all other terminations.

2
T1, T2, Isolated

Removes the connection between T1 and T2.
T3 has a both way connection with both T1 and T2. T1 and T2 have bothway connection to T3.

3
T3, T2, oneway

A oneway connection from T3 to T2 (i.e. T2 receives media flow from T3). A bothway connection between T1 and T3.

4
T2, T3, oneway

A oneway connection between T2 to T3. T1 and T3 remain bothway connected

5
T2, T3 bothway

T2 is bothway connected to T3. This results in the same as 2.

6
T1, T2 bothway

All terminations are considered bothway connected to each other. This is the same as 1.

{End of proposed text regarding topology. }

· mixing/switching properties for each medium.

· a Scripting descriptor (to allow conference control operations).

{Editor’s note: more details needed here.}
8.2.2.4 Context Dynamics

The protocol can be used to (implicitly) create Contexts and modify the parameter values of existing Contexts. The protocol has commands to add Terminations to Contexts subtract them from Contexts, and to move Terminations between Contexts. Contexts are deleted implicitly when the last remaining Termination is subtracted from it.

8.2.3 Terminations

8.2.3.1 Overview

A Termination is a logical entity on a MG that sources and/or sinks media and/or control streams. A Termination is described by a number of characterizing Properties, which are grouped in a set of Descriptors that are included in commands. Terminations have unique identities (TerminationIDs), assigned by the MG at the time of their creation. Terminations representing physical the corresponding Subtract command. In contrast, when a physical Termination is Add'ed to or Subtract'ed from a Context, it is taken from or to the null Context, respectively.

8.2.3.2
Terminations may have signals applied to them. Signals are MG generated media streams such as tones and announcements as well as line signals such as hookswitch. Terminations may be programmed to detect Events, the occurrence of which can trigger Notify messages to the MGC, or action by the MG. Statistics may be accumulated on a Termination. Statistics are reported upon processing of the Subtract, or as a result of an AuditValue command.

{ Editor’s note: the paragraph below needs to be reworded

· “input Termination”

· “multimedia Context”

}

Multimedia gateways may make use of multiplexing. For example, Recommendation H.221 describes such a function. Multiplexes are represented in the protocol by a multimedia Context, a Termination with a multiplex descriptor and Terminations . The muxing Termination may have a descriptor that indicates the type of multiplex, and the order in which input/output streams are to be (de)multiplexed. All input streams to Mux Termination must be represented in the context by their corresponding input Terminations. Terminations are added and subtracted in the usual manner.
8.2.3.3 Termination Dynamics

The

8.2.3.4

1)
2)
3)
8.2.3.5

protocol can be used to create new Terminations and to modify property values of existing Terminations. These modifications include the possibility of adding or removing events and/or signals. The Termination properties, and events and signals are described in the ensuing sections.

For convenience, if a Multiplex Descriptor is present in an Add command and lists any Terminations that are not currently in the Context, such Terminations are added to the context as if individual Add commands listing the Terminations were invoked. The Media Type of such Terminations is initialised to a Multiplex-Type specific value. Also as a convenience, if a Multiplex Descriptor lists a Termination already in the Context, the Media Type of such a Termination is changed to that Multiplex-Type specific value.
8.2.3.6 TerminationIDs

Terminations are referred to by a TerminationID, which is an arbitrary schema chosen by the MG.

{ Editor’s note: replaced “string” by “schema” in order not to be bound to text names in a binary encoding of the protocol. }

TerminationIDs of physical Terminations are provisioned in the Media Gateway.

In a text encoding of the protocol, while TerminationIDs are arbitrary, by judicious choice of names, the wildcard character, “*” may be made more useful. When the wildcard character is encountered, it will “match” all TerminationIDs having the same previous and following characters (if appropriate). For example, if there were TerminationIDs of R13/3/1, R13/3/2 and R13/3/3, the TerminationID R13/3/* would match all of them. There are some circumstances where ALL Terminations must be referred to. The TerminationID “*” suffices, and is referred to as “ALL”. When a Termination ID is required, but the Termination does not yet exist, the “CHOOSE” TerminationID “$” may be used.

8.2.3.7 Packages

Different types of gateways may implement Terminations that have widely differing characteristics. Variations in Terminations are accommodated in the protocol by allowing Terminations to have optional Properties, Events, Signals and Statistics implemented by MGs.

In order to achieve MG/MGC interoperability, such options are grouped into Packages, and a Termination realizes a set of such Packages. More information on definition of packages can be found in Section 7. An MGC can audit a Termination to determine which Packages it realizes.

8.2.3.8 Termination Properties and Descriptors

The tables in this section define Properties used to describe Terminations. There are a number of common properties, and properties specific to media streams. Properties are grouped into Descriptors, which is represented as a list of property names and the values for each. In addition, some descriptors may contain other parameters, as described below.

For each media stream, there is a local Descriptor and Descriptors for the received and transmitted flows. There is also a TerminationState descriptor for properties that are not specific to a stream.

Properties not included in the base protocol are defined in Packages. Properties are referred to by name, which consists of the PackageName and a PropertyID. Most properties have default values described in the Package description. A Termination is created with the default value for a property; this does not have to be set explicitly. Property values can be changed, with the Modify command, in the null context. This defines the value of the property when it is not in a Context. Properties defined in a Package are found in the TerminationState descriptor if they are not specific to a media stream or in the Local Descriptor if they are.

When a Termination is Added to a Context, its property values can be set with parameters to the Add command. Properties not mentioned in the command retain their prior values. Similarly, a property of a Termination in a Context may have its value changed by the Modify command. Properties not mentioned in the Modify command retain their prior values.

When a Termination is Subtracted from a Context, properties are reset to the values they were just prior to the Add command.

The following table lists all of the possible Descriptors and their use. Not all descriptors are legal as input or output parameters to every command.

{Editor’s note: a number of tables from the determined document specifying properties have been deleted and will move into Packages. }

Descriptors

Descriptor Name
Description

Modem
Identifies modem type and properties when applicable

Mux
Describes multiplex type for multimedia terminations (e.g. H.221, H.223, H.225.0) and Terminations forming input mux

Media
A list of media stream specifications (see below)

Events
Describes events to be listened for by the MG and what to do when an event is detected

Signals
Describes signals and/or actions to be applied (e.g. ringback)

Requested Info
In Audit, identifies which information is desired

Packages
In Audit, returns a list of Packages realized by Termination

DigitMap
Instructions for handling DTMF tones at the MG

ServiceChange
In ServiceChange, what, why, etc.

ObservedEvents
In Notify, report of events observed

Statistics
In Subtract and Audit, Report of Statistics kept on a Termination

Extension
Allows inclusion of vendor-specific extensions

Within the Media descriptor, there is the Termination State descriptor and one or more Stream Descriptors. A stream is identified by a streamID. The streamID is used to link the streams in a Context that belong together. Within the Stream Descriptor, there are up to three subsidiary descriptors, Local, Rx and Tx. The relationship between these descriptors is thus:

Media Descriptor

TerminalStateDescriptor

Stream Descriptor

Local Descriptor

Rx Descriptor

Tx Descriptor

As a convenience for the audio-only case, a Local, Rx or Tx descriptor may be included in the Media Descriptor without an enclosing Stream descriptor. In this case, the StreamID is assumed to be 1, designating an audio stream.

NOTE: The terminology RxDescriptor/TxDescriptor is under discussion. There is a proposal to replace them by LocalDescriptor/RemoteDescriptor.

8.2.3.9 Root Termination

Occasionally, a command must refer to the entire gateway, rather than a termination within it. A special TerminationID, “ROOT” is reserved for this purpose. A package (MG) defines the properties of Root.

NOTE: There are objections to calling the entire gateway a termination. The use of the root identifier in commands is restricted to ServiceChange and AuditValue & AuditCapabilities. It is proposed to remove the concept of Root Termination, and add an extra parameter to these commands to indicate that the entire gateway is addressed instead of a set of Terminations.

8.2.3.10 Templates

A Template mechanism to allow a reduction in sizes of messages is for further study.

8.2.3.11 Scripting

A scripting mechanism that allows a MG to act on events without intervention of the MGC is for further study.

8.3 Commands

8.3.1 General Usage

The protocol provides Commands for manipulating the logical entities of the protocol connection model, Contexts and Terminations. Commands provide control at the finest level of granularity supported by the protocol. For example, Commands exist to add Terminations to a Context, modify Terminations, subtract Terminations from a Context, and audit properties of Contexts or Terminations. Commands provide for complete control of the properties of Contexts and Terminations. This includes things such as specifying which events a Termination is to report and which signals/actions are to be applied to a Termination.

Most Commands are for the specific use of the Media Gateway Controller as command initiator in controlling Media Gateways as command responders. However, there are several Commands for the Media Gateway to use as command initiator in reporting events that have occurred to the controller as command responder.
8.3.2 Command Entity Names and Common Parameters

Many Commands share common parameters. This subsection enumerates these common parameters. Parameters and parameter usage specific to a given Command type are described in the subsection that describes the Command.
8.3.2.1

8.3.2.2 Overview of Commands

The protocol has 88 commands. The commands are sent to the MG by the MGC, except Notify. Notify is sent to the MGC by the MG. ServiceChange may be sent by either entity to the other.

1. Add. The Add command adds a termination to a context. The Add command on the first Termination in a Context is used to create a Context.

2. Modify. The Modify command modifies the properties, events and signals of a termination.

3. Subtract. The Subtract command disconnects a Termination from its Context and returns statistics on the Termination’s participation in the Context. The Subtract command on the last Termination in a Context deletes the Context.

4. Move. The Move command atomically moves a Termination to another context.

5. AuditValue. The Audit command returns the current state of properties, events and signals of Terminations.

6. AuditCapabilities. The AuditCapabilities command returns all the possible values for Termination properties, events and signals allowed by the Media Gateway

7. Notify. The Notify command allows the Media Gateway to inform the Media Gateway Controller of the occurrence of events in the Media Gateway.

8. ServiceChange. The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. ServiceChange is also used by the MG to announce its availability to an MGC (registration), and to notify the MGC of impending or completed restart of the MG. The MGC may announce a handover to the MG by sending it a ServiceChange command.

These commands are detailed in Sections 6.3.3.1 through 6.3.3.8
8.3.2.3 Wildcarding Parameter Values in Commands
Some parameters may be wildcarded in commands. Two wildcard constructs are provided: “all” and “choose”. The “all” construct allows a Command to specify all possible values of a name component. For example, all Terminations can be subtracted from a Context by means of this construct. The “choose” construct allows a command initiator to specify that it would like the
8.3.2.4

1)
2)
3)
8.3.2.5

1)
a)
b)
c)
d)
e)
f)
g)
2)
3)
8.3.2.6

1)
2)

8.3.2.7

command responder to select and return a possible value for a parameter. This mechanism, for example, allows the MGC to have the MG select a DS0 within a DS1.

8.3.2.8 Specifying Parameters

Termination parameters are structured into a number of descriptors. In general, descriptors are of the form DescriptorName=<someID>{parm=value, parm=value….}.
In TerminationState and Local Descriptors, termination properties may be fully specified or under-specified.

4) Fully specified parameters - have a single, unambiguous value that the command initiator is instructing the command responder to use for the specified parameter.

5) Under-specified parameters - have a list of potential values. The list order specifies the command initiator’s order of preference of selection. The command responder chooses one value from the offered list and returns that value to the command initiator.

Unspecified parameters - (i.e.-mandatory parameters not specified in any descriptor) result in the command responder retaining the previous value for that property.

8.3.2.9 Modem Descriptor

The Modem descriptor specifies the modem type and parameters, if any.

By default, no modem descriptor is present in a Termination.

8.3.2.10 Multiplex Descriptor

In multimedia calls, a number of media streams are carried on a (possibly different) number of bearers. The multiplex descriptor associates the media and the bearers. The descriptor includes the multiplex type:

· H.221

· H.223,

· H.226,

· H.225.0,

· V.75.

And a set of TerminationIDs representing the multiplexed inputs, in order. For example:

Mux {H.225.0, MyT3/1/2, MyT3/2/13, MyT3/3/6, MyT3/21/22}

8.3.2.11 Media Descriptor

The Media Descriptor specifies the parameters for all the media streams. These parameters are structured into two descriptors, a Termination State Descriptor, which specifies the properties of a termination that are not stream dependent, and one or more Stream Descriptors each of which describes a single media stream.

8.3.2.12 Termination State Descriptor

The Termination State Descriptor contains the TerminationBuffered parameter and properties of a termination (defined in Packages) that are not stream specific.

The TerminationBuffered parameter describes actions taken by the MG when events are not immediately notified to the controller.

4) BufferedEventProcessingMode – specifies whether buffered events should be processed or discarded;

5) BufferedEventNotificationMode – specifies whether the Media Gateway is expected to generate at most one notification (step by step) or multiple notifications (loop) in response to the current Command’s request.

8.3.2.13 Stream Descriptor

A Stream descriptor specifies the parameters of a single bi-directional media stream. These parameters are structured into three descriptors, one that contains termination properties specific to a stream, and one each for the receive and transmit flows.

Stream Descriptor

Parameter
Description

StreamID
Identifies the context stream to be associated with this termination media flow (e.g., 1, 2, 3, …

Local Descriptor
Contains properties that are local to the termination

Rx Descriptor
Contains properties that specify the receive side of a media flow

Tx Descriptor
Contains properties that specify the transmit side of a media flow

8.3.2.14 Local Descriptor

The Local Descriptor contains the Mode parameter and properties of a termination (defined in Packages) that are stream specific.

The allowed values for the mode parameter are "send only" (sendonly), "receive only" (recvonly), "send/receive" (sendrecv), "inactive" (inactive), "outofservice" and "test" (test). “Send” and “Receive” are with respect to the Termination, so that, for example, a stream set to mode=sendonly can talk but it cannot listen.

8.3.2.15 Rx and Tx Descriptors

The Rx and Tx Descriptors contain the parameters describing the flows sent to and received from the Gateway. They are encoded as SDP strings as specified in RFC2327, or native tag-value pairs as defined in Annex D.

8.3.2.16 Events Descriptor
The EventsDescriptor parameter contains a RequestIdentifier and a list of events that the Media Gateway is requested to detect and report. The RequestIdentifier is used to correlate the request with the notifications that it may trigger. Requested events include, for example, fax tones, continuity tones, and on-hook and off-hook transitions.

1)
2)
3)
4)
Each event in the descriptor contains the Event name, an optional Action, and optional parameters. The Event name consists of a Package Name (where the event is defined) and an EventID. Events can have parameters. This allows a single event description to have some variation in meaning without creating large numbers of individual events. Parameters are defined in the package and are named. The Action parameter specifies one of several possible actions to take upon the occurrence of the event:

Event Actions

Notify
A Notify message is sent by the MG when the Event is detected

Accumulate
The Event is added to the Event Buffer

Accumulate by Digit Map
The Event is processed by the specified Digit Map

When Accumulate by Digit Map is specified in an Action, a Digit Map or the name of a pre-stored DigitMap is specified with the Action parameter. For example:

Event=1139 { Line/DTMF {ACTION=AccumulateByDigitMap{GenMap} } }
An Action can also include an Embedded Signals descriptor or an Embedded Events Descriptor which, if present, is used as a replacement for the current Signals/Events descriptor. It is possible, for example, to specify that the dial-tone Signal be generated when an off-hook Event is detected, or that the dial-tone Signal be stopped when a digit is detected. If no embedded Signals descriptor is specified, the production of Signals continues as specified in the command.
Note: It has to be possible for the MGC to find out how many levels of embedding are supported by the MG.

Implementations should be able to support at minimum one level of embedding of SignalsDescriptors and EventsDescriptors..

1)
2)
3)

8.3.2.17 Signals Descriptor

A SignalsDescriptor is a parameter that contains the set of signals that the Media Gateway is asked to apply to a Termination. Signals are named with a Package name (where the signal is defined) and a SignalID.

There are three types of signals:

· on/off – the signal lasts until it is turned off,

· timeout – the signal lasts until it is turned off or a specific period of time elapses,

· brief – the signal duration is so short that it will stop on its own unless a new signal is applied that causes it to stop; no timeout value is needed.

Signals can have parameters. This allows a single signal description to have some variation in meaning without creating large numbers of individual signals. A common use for this capability is to produce signals such as dialtone that have national variants.

Signal{ Line/Dialtone{US} }

A new SignalDescriptor replaces any existing SignalDescriptor. Any signals applied to the Termination not in the replacement descriptor are stopped, and new signals are applied.

8.3.2.18 RequestedInfo Descriptor

Audit commands (AuditValue and AuditCapabilities) may specify what information is to be audited. The RequestedInfo Descriptor contains the list of descriptors to be returned from the Audit command. Possible items in the RequestedInfo Descriptor are:

Descriptor Name

TerminationState

Modem

Mux

Stream

Events

Signals

ObservedEvents

DigitMap

Statistics

Extension (e.g. X-Special)

8.3.2.19 ServiceChange Descriptor

The ServiceChangeDescriptor contains the following parameters:

· ServiceChangeMethod

· ServiceChangeReason

· Port

· Delay

· Version

· MGCIdToTry

See Section 6.3.3.8
8.3.2.20 DigitMap Descriptor
A DigitMap is a dialing plan resident in the Media Gateway used for detecting and reporting digit events received on a Termination. The DigitMap Descriptor contains a DigitMap name and the DigitMap to be assigned.

NOTE: Add text for transient digit maps.

DigitMaps are assigned throught the standard Termination manipulation Commands of the protocol. The DigitMap can be used on all Terminations specified by the (possibly wildcarded) TerminationID.
1)
2)

· A new DigitMap is created by specifying a name that is not yet defined.. The value must be present.

· A DigitMap value is updated by supplying a new value for a name that is alreadydefined. .
· A DigitMap is deleted by supplying an empty value for a name that is already defined..
The collection of digits according to a DigitMap may be protected by three timers, viz. a start timer, short timer, and long timer.
1. The start timer is used prior to any digits having been dialed.

1) If the Media Gateway can determine that at least one more digit is needed for a digit string to match any of the allowed patterns in the digit map, then the interdigit timer value should be set to a long duration (e.g.-16 seconds).

2) If the DigitMap specifies that a variable number of additional digits may be needed then the short timer is used.

The timers are configurable parameters to a DigitMap.

8.3.2.21 Statistics Descriptor
The Statistics parameter provides information describing the status and usage of a Termination during its existence within a specific Context. There are a set of standard statistics kept for each termination where appropriate (number of octets sent and received for example). The particular statistical properties that are reported for a given Termination are determined by the Packages realized by the Termination. Statistics are reported when the Termination is Subtracted from the Context. Statistics may also be returned from the AuditValue command
8.3.3 Command Application Programming Interface

Following is an Application Programming Interface (API) describing the Commands of the protocol. This API is shown to illustrate the Commands and their parameters and is not intended to specify implementation (e.g.-via use of blocking function calls). It will describe the input parameters in parentheses after the command name and the return values in front of the Command. This is only for descriptive purposes; the actual Command syntax and encoding are specified in later subsections. All parameters enclosed by square brackets ([. . .]) are considered optional.

8.3.3.1 Add

The Add Command adds a Termination to a Context.

[TerminationID]

[,MediaDescriptor]

Add(TerminationID

[, MediaDescriptor]

[, ModemDescriptor]

[, MuxDescriptor]

[, EventsDescriptor]

[, SignalsDescriptor]

[, DigitMapDescriptor]

)

The TerminationID specifies the termination to be added to the context. For an existing termination, the TerminationID would be specific. For a Termination which does not yet exist, the TerminationID is specified as Choose (“$”) in the command. The new TerminationID will be returned. Wildcards may be used in an Add, but such usage would be unusual.

The optional MediaDescriptor describes all media streams.

The optional ModemDescriptor and MuxDescriptor specify a modem and multiplexer if applicable.
The EventsDescriptor parameter is optional. If present, it provides the list of events that should be detected on the Termination.

The SignalsDescriptor parameter is optional. If present, it provides the list of signals that should be applied to the Termination.

The DigitMapDescriptor parameter is optional. If present, defines a DigitMap definition that may be used in an EventsDescriptor.
8.3.3.2 Modify

The Modify Command modifies the properties of a Termination.

[TerminationID]

[,MediaDescriptor]

Modify(TerminationID

[, MediaDescriptor]

[, ModemDescriptor]

[, MuxDescriptor]

[, EventsDescriptor]

[, SignalsDescriptor]

[, DigitMapDescriptor]

)

The TerminationID may be specific if a single Termination in the Context is to be modified. Use of wildcards in the TerminationID may be appropriate for some operations. The “choose” option is an error, as modify may only be used on existing Terminations.

The remaining parameters to Modify are the same as those to Add. The Media Descriptor is optional for Modify.
8.3.3.3 Subtract

The Subtract Command disconnects a Termination from its Context and returns statistics on the Termination’s participation in the Context.

[TerminationID]

[,StatisticsDescriptor]

Subtract(TerminationID)
TerminationID in the input parameters represents the Termination that is being subtracted. The TerminationID may be specific or may be a wildcard value indicating that all (or a set of related) Terminations in the Context of the Subtract Command are to be subtracted. . The “choose” option is an error, as subtract may only be used on existingTerminations.

The Statistics parameter is returned to report information collected on the Termination or Terminations specified in the Command. The information reported applies to the Termination’s or Terminations’ existence in the Context from which it or they are being subtracted.

8.3.3.4 Move

The Move Command moves a Termination to another Context from its current Context in one atomic operation.

[TerminationID]

[,MediaDescriptor]

Move(TerminationID

[, MediaDescriptor]

[, ModemDescriptor]

[, MuxDescriptor]

[, EventsDescriptor]

[, SignalsDescriptor]

[, DigitMapDescriptor]

)
The TerminationID specifies the Termination to be moved. It may be wildcarded. By convention, the Termination is subtracted from its previous Context.

The remaining descriptors are processed as in the Modify Command.

8.3.3.5 AuditValue
The AuditValue Command returns the current values of properties, events, signals and statistics associated with Terminations.

[TerminationID]

1)
2)
3)
4)
5)
6)
7)
[,MediaDescriptor]

[,ModemDescriptor]

[,MuxDescriptor]

[,EventsDescriptor]

[,SignalsDescriptor]

[,DigitMapDescriptor]

[,ObservedEventsDescriptor]

[,StatisticsDescriptor]

[,PackagesDescriptor]

AuditValue(TerminationID,

 RequestedInfoDescriptor)

TerminationID may be specific or wildcarded. Use of “choose” is an error.

The appropriate descriptors, with the current values for the Termination, are returned from AuditValue. ObservedEvents returns a list of events in the EventBuffer (BufferedEventDescriptor returns BufferMode and ProcessingMode). PackagesDescriptor returns a list of packages realized by the Termination.

AuditValue results depend on the Context viz. Specific, null, or unspecified. The TerminationID may be specific, or wildcarded.
The following illustrates other information that can be obtained with the Audit Command:

ContextID
TerminationID

Information Obtained

Specific
all

List of Terminations in a Context

Specific
wildcard

List of matching Terminations in a Context

Specific
specific

Audit of a single Termination in a Context

Null

Root

Audit of Media Gateway state and events

Null

all

List of all Terminations in the Media Gateway

Null

wildcard

List of all matching Terminations

Null

specific

Audit of a single Termination in outside of any Context

Unspecified
Root

Audit of Media Gateway state and events
Unspecified
all

List of all Terminations in the Media Gateway and

the Context(s) to which they are associated

Unspecified
wildcard

List of all matching Terminations and the Context

to which they are associated

8.3.3.6 AuditCapabilities

The AuditCapabilities Command returns the possible values of properties, events, signals and statistics associated with Terminations.

{Editor’s note: The description below seems to be inconsistent with the text following it. It will be updated. }
[TerminationID]

[,MediaDescriptor]

[,ModemDescriptor]

[,MuxDescriptor]

[,EventsDescriptor]

[,SignalsDescriptor]

[,DigitMapDescriptor]

[,ObservedEventsDescriptor]

[,StatisticsDescriptor]

[,PackagesDescriptor]

AuditCapabilities(TerminationID,

 RequestedInfo)

The appropriate descriptors, with the possible values for the Termination are returned from AuditCapabilities. Descriptors may be repeated where there are multiple possible values.

Interpretation of what capabilities are requested for various values of ContextID and TerminationID is the same as in AuditValue.
8.3.3.7 Notify

The Notify Command allows the Media Gateway to notify the Media Gateway Controller of events occurring within the Media Gateway.

Notify(TerminationID,

 ObservedEventsDescriptor)
The TerminationID parameter specifies the Termination issuing the Notify Command. The TerminationID must be a fully qualified name.

The ObservedEventsDescriptor contains the RequestID and a list of events that the Media Gateway detected in the order that they were detected. The RequestID returns the RequestID parameter of the EventsDescriptor that triggered the Notify Command. It is used to correlate the notification with the request that triggered it. The events in the list must have been requested via the RequestedEvents parameter of the triggering EventsDescriptor. The list must contain the events that were either accumulated (but not notified) or treated according to digit map (but no match found yet) and well as the final event that triggered the detection or provided a final match in the digit map. Each event in the list is accompanied by properties associated with the event and an indication of the time that the event was detected. Unsolicited Notify Commands are not possible.

8.3.3.8 ServiceChange

The ServiceChange Command allows the Media Gateway to notify the Media Gateway Controller that a Termination or group of Terminations is about to be taken out of service or has just been returned to service. It also allows a MGC to hand over control of an MG to another MGC.
[ServiceChangeDescriptor]
ServiceChange(TerminationID,

ServiceChangeDescriptor)
The TerminationID parameter specifies the Termination(s) that are taken out of or returned to service. Wildcarding of Termination names is quite useful here, with the exception that the “choose” mechanism shall not be used. Use of the “Root” TerminationID indicates a ServiceChange affecting the entire Media Gateway.

The ServiceChangeDescriptor contains the following parameters:

· ServiceChangeMethod

· ServiceChangeReason

· ServiceChangeDelay

· Port

· Version

· MGCIdToTry

The ServiceChangeMethod parameter specifies the type of ServiceChange that will or has occurred:

1) Graceful – indicates that the specified Terminations will be taken out of service after the specified ServiceChangeDelay; established connections are not yet affected, but the Media Gateway Controller should refrain from establishing new connections and should attempt to gracefully tear down existing connections

2) Forced – indicates that the specified Terminations were taken abruptly out of service and any established connections associated with them were lost

3) Restart – indicates that service will be restored on the specified Terminations after expiration of the ServiceChangeDelay; the Terminations are assumed to now not be associated with any Context

4) Disconnected - always applied with the Root TerminationID, indicates that the MG lost communication with the MGC, but it was subsequently restored. Since MG state may have changed, the MGC may wish to use the Audit command to resynchronize its state with the MG's.

5) Handoff – sent from the MGC to the MG, this reason indicates that the MGC is going out of service and a new MGC association must be established.

The ServiceChangeReason parameter specifies the reason why the ServiceChange has or will occur. It consists of an alphanumeric token (IANA registered) and an explanatory string.
The optional Port parameter specifies the port number to be used for subsequent communications. It can be specified in the input parameter descriptor or the returned result descriptor.

The optional ServiceChangeDelay parameter is expressed in seconds. If the delay is absent or set to zero the delay value should be considered to be null. In the case of a “graceful” ServiceChangeMethod, a null delay indicates that the Media Gateway Controller should wait for the natural removal of existing connections and should not establish new connections. The ServiceChangeDelay is always considered null in the case of the “forced” method.

The Version parameter specifies the version of the protocol supported.
A ServiceChange Command specifying the “Root” for the TerminationID is a registration command by which a Media Gateway announces its existence to the Media Gateway Controller. The Media Gateway is expected to be provisioned with the name of one primary and some number of alternate Media Gateway Controllers. The ServiceChangeMethod shall be “forced” for this usage. Acknowledgement of the ServiceChange Command completes the registration
process. Normally, the MG will specify the transport port number to be used by the MGC for sending messages in the Port parameter in the input ServiceChangeDescriptor. The MGC specifies the port number for the MG to use in the returned result ServiceChangeDescriptor. The Version parameter MUST be specified on the registration message and its reply.

The Media Gateway Controller may return a MGCIdToTry parameter that describes the Media Gateway Controller that should preferably be contacted for further service by the Media Gateway. In this case the Media Gateway must reissue the ServiceChange command to the new Media Gateway Controller. The Gateway specified in a MGCIdToTry, if provided, must be contacted before any further alternate MGCs. On a HandOff message from MGC to MG, the MGCIdToTry is the new MGC that will take over from the current MGC.

8.3.4 Generic Command Syntax

 The protocol can be encoded in a binary format or in a text format. MGCs should support both encoding formats. MGs may support both formats.

The protocol syntax is defined in Annex A.

A complete ABNF of the text encoding of the protocol per RFC2234 is given in Annex B.

The mechanism for binary encoding is specified in Annex C.

8.3.5 Command Error Codes

8.3.6

1)

2)

3)

4)

8.3.7

1)

2)

3)
Errors consist of an IANA registered alphanumeric token and an explanatory string.

The identified error codes are:

Note: we need to renumber the error codes.

400 - Bad Request

401 - Unauthorized

411 - Length Required

415 - Incorrect identifier

416 - The transaction refers to an unknown ContextId

418 - Unsupported or unknown Package

422 - No such Event or signal

423 - Unknown action or illegal combination

of actions

425 - Unknown TerminationID

427 - Missing RemoteTerminationDescriptor

484 - Action Incomplete

485 - Action Ambiguous

500 - Internal Gateway Error

501 - Not Implemented

502 - Not ready.

503 - Service Unavailable

510 - Insufficient resources

512 - Gateway unequipped to detect requested Event

513 - Gateway unequipped to generate requested

 Signals

514 - Gateway cannot send the specified announcement

515 - Unsupported Media Type

517 - Unsupported or invalid mode

519 - Gateway does not have a digit map

520 - Termination is "ServiceChangeing"

526 - Insufficient bandwidth

529 - Internal hardware failure"

581 - Does Not Exist

8.4 Transactions

8.4.1 General Usage

Commands between the Media Gateway Controller and the Media Gateway are grouped into Transactions, each of which is identified by a TransactionID. Transactions consist of one or more Actions. An Action consists of a series of Commands that are limited to operating within a single Context. Consequently each Action typically must specify a ContextID. However, there are two circumstances where a specific ContextID is not provided with an Action. One is the case of modification of a Termination outside of a Context. The other is where the controller requests the gateway to create a new Context. Following is a graphic representation of the Transaction, Action and Command relationships.

[image: image6.wmf]TRANSACTIONx

CTXTID1

CTXTID2

COMMAND1

COMMAND2

COMMAND3

COMMAND4

COMMAND1

CTXTID3

COMMAND1

COMMAND2

COMMAND3

Figure 12 Transactions, Actions and Commands

Transactions are presented as TransactionRequests. Corresponding responses to a TransactionRequest are received in a single reply. There are three types of replies, a TransactionAccept, a TransactionReject and a TransactionPending.

Transactions guarantee ordered Command processing. That is, Commands within a Transaction are executed sequentially. A Transaction succeeds when the execution of all Commands in it succeeds. A Transaction fails when one of the Commands
in it fails. At the first failing Command in a Transaction, processing of the remaining Commands in that Transaction stops.

A TransactionAccept includes the return values for all of the Commands in the corresponding TransactionRequest. A TransactionReject is sent when the Transaction fails. The TransactionReject includes the return values for the Commands that were executed successfully, and the Command and error code for the Command that failed. TransactionPending is used to periodically notify the receiver that a Transaction has not completed yet, but is actively being processed.

8.4.2 Common Parameters

8.4.2.1 Transaction Identifiers

Transactions are identified by a TransactionID, which is assigned by sender and is unique within the scope of the sender.
8.4.2.2 Context Identifiers

Contexts are identified by a ContextID, which is assigned by the Media Gateway and is unique within the scope of the Media Gateway. The Media Gateway Controller must use the ContextID supplied by the Media Gateway in all subsequent Transactions relating to that Context. The protocol makes reference to two distinguished values that may be used by the Media Gateway Controller when it has no ContextID to use in a Transaction:

1) The “null” Context, which is used to refer to a Termination that is currently not associated with a Context.

2) The “unspecified” Context, which is used to request that the Media Gateway create a new Context.

8.4.3 Transaction Application Programming Interface

Following is an Application Programming Interface (API) describing the Transactions of the protocol. This API is shown to illustrate the Transactions and their parameters and is not intended to specify implementation (e.g.-via use of blocking function calls). It will describe the input parameters and return values expected to be used by the various Transactions of the protocol from a very high level. Transaction syntax and encodings are specified in later subsections.

8.4.3.1 TransactionRequest

The TransactionRequest is invoked by the sender. There is one Transaction per request invocation. A request contains one or more Actions, each of which must specify its target Context and one or more Commands per Context.

TransactionRequest(TransactionId {

 ContextID {Command … Command},

. . .

 ContextID {Command … Command } })
The TransactionID parameter must specify a value for later correlation with the TransactionAccept or TransactionReject response from the receiver.
The ContextID parameter must specify a value to pertain to all Commands that follow up to either the next specification of a ContextID parameter or the end of the TransactionRequest, whichever comes first. The ContextID may be specific, unspecified, or null.

The Command parameter represents one of the Commands mentioned in the “Command Details” subsection titled “Application Programming Interface”.

8.4.3.2 TransactionAccept

The TransactionAccept is invoked by the receiver. There is one accept invocation per successful Transaction. An accept contains one or more Actions, each of which must specify its target Context and one or more Responses per Context. The invocation of a TransactionAccept implies successful execution of all Actions and Commands from the corresponding TransactionRequest.

TransactionAccept(TransactionID {

 ContextID { Response … Response },

. . .

 ContextID { Response … Response } })
The TransactionID parameter must specify a keyword value for correlation with the corresponding TransactionRequest from the sender.
The ContextID parameter must specify a value to pertain to all Responses for the action. The ContextID may be specific or null.

Each of the Response parameters represents a return value as mentioned in Section 6.3.3
8.4.3.3 TransactionReject

The TransactionReject is invoked by the receiver. There is one reject invocation per failed Transaction. A reject contains one or more Actions, each of which must specify its target Context and one or more Responses per Context. Responses for the Commands in a TransactionReject are issued as follows:

1) All Commands before the point of failure in the Command have no parameters.
2) The failed Command has an error message as its sole parameter.
Commands after the point of failure are not processed and, therefore, Responses are not issued for them.

TransactionReject(TransactionID {

 ContextID { Response … Response },

. . .

 ContextID { Response … Response Command{Error} } })
The TransactionID parameter must specify a value for correlation with the corresponding TransactionRequest from the sender.
The ContextID parameter must specify a value to pertain to all Responses in the Action. The ContextID may be specific, unspecified, or null.

8.4.4

8.4.5

8.4.5.1 TransactionPending

The TransactionPending is invoked by the receiver. A TransactionPending indicates that the Transaction is actively being processed, but has not been completed. It is used to prevent the sender from assuming the TransactionRequest was lost where the Transaction will take some time to complete.

TransactionPending(TransactionID { })

The TransactionID parameter must specify a keyword value for correlation with the corresponding TransactionRequest from the sender.
8.5 Example Use Cases

Notes: - Add use case for text telephony as in APC-1562.

 - Review these use cases for consistency with the changes to the main text and move them to an (informative) appendix.

8.5.1 Residential Gateway to Residential Gateway Call

{editor’s note: this section is a candidate for an informative appendix}

This example scenario illustrates the use of the elements of the protocol to setup a Residential Gateway to Residential Gateway call over an IP-based network. For simplicity, this example will assume that both Residential Gateways involved in the call are controlled by the same Media Gateway Controller.

{editor’s note: notes of possible changes needed to the BNF, and shortfalls of the examples below:

· I put Medium and Transport as Rx and Tx parameters instead of Localparameters – this is because they are SDP parameters

· Rx and Tx in the examples below should be pure SDP, but they are not….

· Package names, and event and signal names within packages are of course just examples - when a Megaco packages I-D comes out with proposed packages, these can be used

// is the above syntax right? Check ObservedEvents – need an eventname for digits?

· MuxDescriptor type could be optional (see step 6 in the H.320 example below) - also how do you subtract terminations from a mux?

}

8.5.1.1 Programming Residential GW Analog Line Terminations for Idle Behavior

The following illustrates the API invocations from the Media Gateway Controller and Media Gateways to get the Terminations in this scenario programmed for idle behavior. Both the originating and terminating Media Gateways have idle AnalogLine Terminations programmed to look for call initiation events (i.e.-offhook) by using the Modify Command with the appropriate parameters. The null Context is used to indicate that the Terminations are not yet involved in a Context.

1. The MGC programs a Termination in the NULL context. The terminationId is A4444, the streamId is 1111, the requestId in the Events descriptor is 2222.

MEGACO [124.124.124.121]:55555

Transaction = 9999 {

 Context = - {

 Modify = A4444 {

 Media { TerminationState

 {BufferedEventHandling={Step,Process}},

 Stream = 1111 { Local {

 Mode = SendReceive,

 Package1/GainControl=2dB,

 Package1/Encryption=x.xx,

 Package1/EchoCancellation=G.165,

 Package1/VoiceActDet=yes},

 Rx = SDP {<Medium=audio, Mode=sendrecv,

 Packetization=10ms,

 Encoding=G.711m-law>}

 }

 },

 Events = 2222 {Package1/offhook}

 }

 }

}

The dialplan script could have been loaded into the MG previously. Its function would be to wait for the OffHook, turn on dialtone and start collecting DTMF digits. However in this example, we use the digit map, which is put into place after the offhook is detected (step 5 below).

2. The MG1 accepts the Modify:

MEGACO [124.124.124.222]:55555

Accept = 9999 {

 Context = - {Modify}

}

3. A similar exchange happens between MG2 and the MGC resulting in an idle Termination called A5555.
8.5.1.2 Collecting Originator Digits and Initiating Termination

The following builds upon the previously shown conditions. It illustrates the API invocations from the Media Gateway Controller and originating Media Gateway (MG1) to get the originating Termination (TID1) through the stages of digit collection required to initiate a connection to the terminating Media Gateway (MG2).

8.5.1.3

8.5.1.4

MG1 detects an offhook event from User 1 and reports it to the Media Gateway Controller via the Notify Command.

MEGACO [124.124.124.222]:55555

Transaction = 10000 {

 Context = - {

 Notify = A4444 {ObservedEvents =2222 {

 19990729220000:Package1/offhook}}

 }

}

4. The MGC Modifies the termination to look for digits now.

MEGACO [124.124.124.121]:55555

Transaction = 10001 {

 Context = - {

 Modify = A4444 {

 Events = 2223 {Package1/onhook {

 Action { AccumulateByDigitMap {Dialplan0}}}

 }

 }

 }

}

5. And the Modify is acknowledged

MEGACO [124.124.124.222]:55555

Accept = 10001 {

 Context = - {Modify}

}

6. Next, digits are accumulated by MG1 as they are dialed by User 1. When an appropriate match is made of collected digits against the currently programmed Dialplan for TID1, another Notify is sent to the Media Gateway Controller.

MEGACO [124.124.124.222]:55555

Transaction = 10002 {

 Context = - {

 Notify = A4444 {ObservedEvents =2223 {

 19990729220101:Package1/digits{digits=16135551212}}}

 }

}

7. The controller then analyzes the digits and determines that a connection needs to be made from MG1 to MG2. Both the TDM termination A4444, and an RTP termination are added to a new context in MG1.
MEGACO [124.124.124.121]:55555

Transaction = 10003 {

 Context = $ {

 Add = A4444,

 Add = $ {

 Media { TerminationState {

 BufferedEventHandling={Step,Process}},

 Stream = 1111 { Local {

 MaxJitterBuffer=40ms,

 Mode = SendReceive },

 Rx = SDP {Medium=audio,

 Transport=RTP,Mode=sendrecv,

 IPaddr=ANY,UDPport=ANY,

 Packetization=20ms,

 Encoding=G.723, Gain=0dB>},

 Tx = SDP {<Medium=audio,

 Transport=RTP, Mode=recv,

 IPaddr=ANY, UDPport=ANY>}

 }

 },

 Events = 2224 {Package1/offhook}

 }

 }

}

8. MG1 acknowledges the new Termination and fills in the IP address and the UDP port.

MEGACO [124.124.124.222]:55555

Accept = 10003 {

 Context = 2000 {

 Add= {A4444},

 Add= {A4445}{

 Media {

 Stream = 1111 {

 Rx = SDP {<IPaddr=[45.123.1.1],UDPport=5555>}

 }

 }

 }

 }

}

9. The MGC will now associate A5555 with a new Context, and establish an RTP Stream (i.e, A5556 will be assigned) receiveOnly connection through to the originating user, User 1.
MEGACO [124.124.124.121]:55555

Transaction = 50003 {

 Context = $ {

 Add = A5555 {

 Signals { Package1/Ring {variant=NorthAmerica}}

 },

 Add = $ {

 Media { TerminationState {

 BufferedEventHandling={Step,Process}},

 Stream = 1212 { Local {

 MaxJitterBuffer=40ms,

 Mode = SendReceive},

 Rx=SDP{<Medium=audio,Transport=RTP,

 Mode=sendrecv,

 IPaddr=ANY,UDPport=ANY,Packetization=20ms,

 Encoding=G.723, Gain=0dB>},

 Tx=SDP{<Medium=audio,Transport=RTP,Mode=recv,

 IPaddr=[45.123.1.1], UDPport=5555>}

 }

 },

 Signals { Package1/RingTone {variant=NorthAmerica}}

 }

 }

}
10. This is acknowledged.

MEGACO [124.124.124.222]:55555

Accept = 50003 {

 Context = 5000 {Add = {A5555},

 Add = {A5556}{

 Media {

 Stream = 1212 {

 Rx = SDP {

 <IPaddr=[111.1.1.1],UDPport=1111>}

 }

 }}

 }

 }

}
The above IPAddr and UDPport need to be given to MG1 now. In this example, it is done below, i.e. in parallel with the OffHook.

11. The two gateways are now connected and User 1 hears the RingBack. The MG2 now waits until User2 picks up the receiver and then the two-way call is established.

From MG2 to MGC:

MEGACO [124.124.124.222]:55555

Transaction = 50004 {

 Context = 5000 {

 Notify = A5555 {ObservedEvents =1234 {

 19990729220202:Package1/offhook}}

 }

}

From MGC to MG2:

MEGACO [124.124.124.121]:55555

Transaction = 50005 {

 Context = 5000 {

 Modify = A5555 {

 Events = 1235 {Package1/onhook}

 },

 Modify = A5556 {

 Signals {Package1/Clear}

 }

 }

}

From MGC to MG1:

MEGACO [124.124.124.121]:55555

Transaction = 10004 {

 Context = 2000 {

 Modify = A4445 {

 Media {

 Stream = 1111 {

 Tx = SDP {<IPaddr=[111.1.1.1],UDPport=1111>}

 }

 }

 }

 }

}

From MG2 to MGC:

MEGACO [124.124.124.222]:55555

Accept = 50005 {

 Context = 5000 {Modify= {A5555,A5556}

 }

}

From MG1 to MGC:

MEGACO [124.124.124.222]:55555

Accept = 10004 {

 Context = 2000 {Modify= {A4445}

 }

}

8.5.2 Multimedia Gateway Examples

Multimedia sessions using this protocol will use multimedia Terminations and Contexts for example for H.320 ISDN connections and for IP based multimedia connections. The MGC determines the need for multimedia Contexts from the SCN or IP Side call signaling. Once multimedia is detected the MGC will create the Context and appropriate Terminations.

In general, a Termination will associate all media of an individual user and handles network jitter Streams sourced/sinked by a Termination are identified by a StreamId to instruct the MG how to connect them. Media from terminations with identical streamIDs are connected. The MGC can instruct the MG to synchronize streams by setting Context properties. One of the properties of a Context is the mixing properties. In the figure below these are represented by the black dots in the context.

The concept of connecting streams makes for a straight forward implementation of functionality such as speech-to-text transmediation. If an MG supports this type of operation, a MGC can assign identical StreamIDs to a speech stream and a text stream to indicate that incoming speech should be transformed into text.

8.5.2.1

·
·
·
·
·

·
·

8.5.2.2 H.320 Gateway

The Context for a point-to-point multimedia call in an H.320-H.323 gateway contains two muxing Terminations. It contains a muxing Termination that sources and sinks the H.221 frames on DS0s. This Termination references a number of DS0s, six in the example for a call with a total bandwidth of 384 kbit/s. Each of these DS0s are also terminations in their own right. The mux/demux descriptor of the muxing Termination describes how the audio, video and data streams are transported over the six 64 kbit/s bearer channels.

The second muxing Termination sources and sinks the media flows on the packet network Side. Assuming that there are audio, video and data streams, the Termination contains a muxDescriptor with a list of three bearer descriptors. No multiplexing is involved in this muxing Termination: every media flow maps to one stream on the network.

[image: image15.wmf]RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

DS0

Context C1

Figure 21 H.320 Gateway Context

The following is a call flow for a point-to-point H.320 to H.323 call initiated from the WAN Side.

The call flow shows that either the H.323 or H.320 Side can initiate opening (or closing) an audio or video channel through the gateway. In H.320, there is the requirement that such mode changes take at most 20 milliseconds. In the call flow we see that messages are exchanged between MG and MGC to inform the MGC of a request for a mode change from the H.320 Side. The MGC will then send an OLC to the H.323 terminal.
1. MGC gets an incoming call with (Q.931) call type of data and sends an Add command to MG, to create a Context with one muxing termination and one DS0 termination, indicating in the parameters for the muxing termination that Bonding will be used and that the multiplex type is H.221.

MEGACO [124.124.124.121]:55555

Transaction = 9999 {

 Context = $ {

 Add = $ {

 Mux = H221 {DS0_A},

 Media { TerminationState {

 BufferedEventHandling={Step,Process}},

 Stream = 1111 { Local {Mode = SendReceive },

 Tx = SDP {<Medium=audio, Mode=sendrecv>}

 }

 },

 Events = 2222 {Bonding/CallID {Action {NotifyAction}},

 Bonding/TransferRate {Action {NotifyAction}}

 }

 }

 }

}
[Editor's Note: the base grammar does not have a script descriptor - this would need to be added if a script is needed for this case]
The MuxDescr contains the mux type, and an ordered list of terminationIds used in the call (here the length is one). If the terminationIds are not yet added to the context, the MG takes care of adding them.

At this stage in the session there is only an audio channel, using 56 kbit/s G.711 coder (corresponding to H.221 mode
0F). A script (Script1) is used to monitor the line for Bonding and H.221 in-band H.221 framing.

2. The MG acknowledges the Context creation, informing the MGC of the ContextID 2000 and TerminationID A4444 (for the muxing termination) it assigned.

3.
MEGACO [124.124.124.222]:55555

Accept = 9999 {

 Context = 2000 {Add= {A4444}}

}
4. When the termination finds Bonding, it assigns a Bonding call ID x and accepts the proposed call transfer rate requested by the calling H.320 endpoint. The MG then sends a Notify message to the MGC informing it of the Bonding call identifier ‘x’ and the transfer rate:

MEGACO [124.124.124.222]:55555

Transaction = 10000 {

 Context = 2000 {

 Notify = A4444 {ObservedEvents =2222 {

 199907290404:Bonding/CallID{CallID=x},

 Bonding/TransferRate {TransferRate=384}

 }

 }

 }

}
5. The MGC allocates additional phone numbers for the call and requests the MG to send these back to the calling side by changing the signals descriptor:

MEGACO [124.124.124.121]:55555

Transaction = 10001 {

 Context = 2000 {

 Modify = A4444 {Signals {

 Bonding/AddPhoneNrs{Phone=N1,Phone=N2,Phone=N3,

 Phone=N4,Phone=N5}

 }

 }

 }

}
6. The MG accepts the MGC’s message and sends the additional phone numbers back to the calling Side via Bonding.

7. When the SGW notifies the MGC of incoming calls for the phone numbers associated with Bonding call x, the MGC sends Modify commands to the MG to add the appropriate DS0 bearer channels to the Termination created previously; the MG acknowledges these commands. For instance, for the first two additional DS0s added:

MEGACO [124.124.124.121]:55555

Transaction = 10002 {

 Context = 2000 {

 Modify = A4444 {

 Mux = H221 {DS0_1,DS0_2,DS0_3,DS0_4,DS0_5}

 }

 }

}
8. With the final Modify in which bearer channels (DS0s) are added to the muxing termination, the MGC request the MG to notify it when H.221 frames are detected.

MEGACO [124.124.124.121]:55555

Transaction = 10003 {

 Context = 2000 {

 Modify = A4444 {

 Events = 2223 {Bonding/H221Frames}

 }

 }

}
9. Once H.221 framing is found, a Notify is sent to the MGC.

MEGACO [124.124.124.222]:55555

Transaction = 10004 {

 Context = 2000 {

 Notify = A4444 {ObservedEvents =2223 {

 19990729220505:Bonding/H221Frames{H221Frame=x}}}

 }

}

10. The MGC instructs the Termination to listen for DTMF tones in the audio stream, and possibly to play an announcement to the calling user.

11. The audio announcement will be played and then the Termination will listen for DTMF tones in the audio portion of the mux and it commences a TCS4/IIS signaling exchange in the BAS channel. The information received is conSidered the destination alias z for this call.

12. The MG Notifies the MGC of at least three pieces of information: 1) frame alignment found, 2) H.320 capabilities, and 3) destination alias z. The MGC sends ARQ to resolve IP address for alias z

13. Once the address is resolved, the MGC does H.225 call setup. . . gets caps from H.323 etc.

Note that we assume that the MGC sets up the H.245 connection with the called party.

14. The MGC sends a Modify to the H.320 termination causing a new capability set to be sent from the MG to the H.320 terminal, based on the received capabilities the MGC got from the H.323 endpoint.

15. MGC may get an OLC from H.323 Side for audio, the MGC will then Add a packet Termination to the Context. In this example, the MGC sets the transmitting IP address and UDP port.

MEGACO [124.124.124.121]:55555

Transaction = 10013 {

 Context = 2000 {

 Add = $ {

 Mux = H225-0 {$},

 Media { Stream = 1212 {

 Local { MaxJitterBuffer=40ms, Mode = SendReceive},

 Rx = SDP {<Medium=audio, Transport=RTP/UDP/IP,

 Mode=sendrecv, Encoding=G.729, IPaddr=ANY, UDPport=ANY>},

 Tx = SDP {<Medium=audio, Transport=RTP/UDP/IP, Mode=recv,

 Encoding=G.723.1, IPaddr=[45.123.1.1], UDPport=5555>}

 }

 }

 }

 }

}

MEGACO [124.124.124.222]:55555

Accept = 10013 {

 Context = 2000 {

 Add= {A4445} {

 Media {

 Stream = 1212 {

 Rx = SDP {<IPaddr = [111.1.1.1], UDPport = 6666>}

 }

 }

 }

 }

}

The MGC assigns a StreamID to the media stream to allow the MG to identify the streams that have to be connected within the Context. The MG acknowledges the command and reports the assigned TerminationId to the MGC, as well as the IP address and UDP port it selected for the RxDescr.

16. The MGC sends a Modify to the H.320 termination sending a StreamDescriptor to the MG:

MEGACO [124.124.124.121]:55555

Transaction = 10013 {

 Context = 2000 {

 Modify= A4445 {

 Media {

 Stream = 1212 {

 Local {Mode = SendReceive},

 Tx = SDP {<Mode=sendrecv>}

 }

 }

 }

 }
}
Of course the MG acknowledges the Modify command. At this point the MG knows that the audio streams from the packet and circuit sides have to be connected because they have the same StreamID.

17. The H.320 side may do a mode switch to H.263 video for example. The H.320 termination will then send an event to the MGC requesting H.263 video:

MEGACO [124.124.124.222]:55555

Transaction = 10004 {

 Context = 2000 {

 Notify = A4444 {

 ObservedEvents =2224 {

 19990729220230:H242Pkg/ModeChange{Mode=AddH263}

 }

 }

 }

}
18. The MGC must send an OLC to the H.323 side.

19. The MGC modifies the packet termination, by adding another RTP flow and changing the stream descriptor to include the video. In the same Transaction, the H.320 termination is modified to include the video:

MEGACO [124.124.124.121]:55555

Transaction = 10013 {

 Context = 2000 {

 Modify= A4445 {

 Media { Stream = 1213 {

 Local {Mode = SendReceive},

 Rx = SDP {<Medium=video, Transport=RTP/UDP/UP,

 Mode=sendrecv, Encoding=H.263, IPaddr=ANY, UDPport=ANY>},

 Tx = SDP {<Medium=video, Transport=RTP/UDP/UP,

 Mode=sendrecv, Encoding=H.263, IPaddr=[45.123.1.2],

 UDPport=5556>}

 }

 }

 },

 Modify= A4444 {

 Media { Stream = 1213 {

 Local {Mode = SendReceive},

 Rx = SDP {<Medium=video, Mode=sendrecv>}

 }

 }

 }

 }
}
The MG already knows the parameters of the video stream on the H.320 side. The only thing that the controller has to do is to set the StreamID of the video stream.
8.5.2.3 Multipoint Context Example

This example shows how a multimedia context can be used to bridge an H.320 user and three H.323 users into a single multipoint conference. In the picture the types of media flowing over the links between the terminations are shown for clarity. The bridging functionality is a context property, there is no separate bridge entity in the connection model.

[image: image24.wmf]MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

higher layer

signaling

termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

lower layer

signaling

termination

B

A

C

Figure 22 Multimedia Context Example
8.5.2.4 Single Media Call
The single media the call flow example describes a call that originates in the SCN and is terminated in the packet network. The packet network signaling in this example is H.323 but other signaling protocols such as SIP can be used, the purpose of the example is to describe MG/MGC interactions.

[image: image16.wmf]DS0

Audio

Termination

RTP

Audio

Termination

Context C1

Figure 23 Single Media Call Example

The assumption is made that the signalling between the signalling gateway (SGW) and MGC is based on Q.931. This does not indicate that no other signalling can be used on this interface.

1. The SGW sends a Setup message to the MGC after receiving an IAM from a SCN switch.

2. From the IAM message, the MGC may infer which circuit on which MG is involved and where to terminate the call. How the MGC does this, is outside the scope of this document.

The MGC creates a Context for the call. The Context contains two terminations: one for the SCN side and one for the packet side. In this example, the MGC has selected a particular physical termination; DS0/13/2.

3. :

MEGACO [124.124.124.121]:55555

Transaction = 9999 {

 Context = $ {

 Add = DS0_13_2 {

 Media { TerminationState {

 BufferedEventHandling={Step,Process}},

 Stream = 1111 { Local {

 Package1/Mode = SendReceive,

 Package1/Encoding=G.711m-law,

 Package1/Gain = 0dB,

 Package1/EchoCancelation=G.165,

 Package1/VoiceActDet=yes },

 Rx = SDP {<Medium=audio, Mode=recv,

 Encoding=G.711m-law>}

 }

 }

 },

 Add = $ {

 Mux = H225-0 {$},

 Media { Stream = 1111 { Local {

 Package1/MaxJitterBuffer=40ms,

 Package1/Encoding=G.711m-law,

 Package1/Packetization=20ms},

 Rx = SDP {<Medium=audio, Mode=sendrecv,

 Transport=RTP/IP/UDP,

 Encoding=[G.711m-law, G.723.1],

 Packetization=20ms>},

 Tx = SDP {<Medium=audio, Mode=recv, IPaddr=ANY,

 UDPport=ANY>}

 }

 }

 }

 }

}

In general the Stream descriptor is a list. The different media flows are identified by a StreamID. In the case that there is only one medium, this StreamID can be omitted.

We see in the command syntax how the MGC leaves the assignment of names for both the Context itself and the Terminations in it, to the MG.

4. The MG accepts the Context creation:

MEGACO [124.124.124.222]:55555

Accept = 9999 {

 Context = 2000 {

 Add= {DS0_13_2},

 Add= {A4445}{

 Media {

 Stream = 1111 {

 Rx = SDP {<IPaddr=[45.123.1.1],UDPport=5555>}

 }

 }

 }

 }

}

This step shows how the MG reports to the MGC what parameters it filled in for the IP address and UDP port to which media should be addressed.

5. The MGC sends a Setup message to the destination endpoint, here assumed to be a H.323 endpoint (terminal, GW, …). It indicates in the fastStart element that either G.711 or G.723 may be used for the voice stream.

6. The H.323 endpoint sends an Alerting message back to the MGC, informing it of the codec to be used (assume G.723 for both directions) and the transport address.

7. The MGC sends a Modify command to the MG to set the Mode and Bearer information for the packet side TxDescriptor:

MEGACO [124.124.124.121]:55555

Transaction = 10000 {

 Context = 2000 {

 Modify = A4445 {

 Media {

 Stream = 1111 {

 Tx = SDP {<IPaddr=[111.1.1.1],UDPport=1111,

 Encoding=G.723>}

 }

 }

 }

 }

}

8. The MG accepts the Modify command:

MEGACO [124.124.124.222]:55555

Accept = 10000 {

 Context = 2000 {Modify= {A4445}

 }

}

9. The MGC sends an Alerting message to the SGW.

10. The called endpoint at some instance sends a Connect message to the MGC.

11. In response to the Connect, the MGC sends a Modify command to the MG to change the Activity of the ReceiveMediaDescr on the SCN Side:

MEGACO [124.124.124.121]:55555

Transaction = 10001 {

 Context = 2000 {

 Modify = A4445 {

 Media {

 Stream = 1111 {

 Rx = SDP {<mode=sendrecv>}

 }

 }

 }

 }

}

12. The MGC sends a Connect message to the SGW

13. The MG accepts the Modify command:

MEGACO [124.124.124.222]:55555

Accept = 10000 {

 Context = 2000 {Modify= {A4445}

 }

}

8.5.2.5 Single Media Call using Templates
The single media call flow example describes a call that originates in the SCN and is terminated in the packet network. The packet network signalling in this example is H.323 but other signalling protocols such as SIP can be used, the purpose of the example is to describe MG/MGC interactions.

The assumption is made that the signalling between the signalling gateway (SGW) and MGC is based on Q.931. This does not indicate that no other signalling can be used on this interface.

[Editor's Note: the syntax in this example needs to be updated, also it still needs to be decided whether templates will be part of the protocol]

1. After the registration phase, the MGC loads Templates to the MG for voice on DS0 and voice on IP:

<MGCID> Trans <TRID0>

Ctxt ALL

Put {<TemplID1>, type=Templ, data = {

TemplateID = ANY

TerminationState {

TerminationMode=sendrecv,

EventBufferDescr {ProcessingMode=Process, NotificationMode=StepByStep}

}

// ModemDescr (None) /* May be omitted */

// MuxDescr (None) /* May be omitted */

StreamDescr {<StreamID1>

RxDescr {Medium=audio, Mode=recv, Transport=CKT, Type=DS0, Circuit=ANY, Facility=ANY, packetization=10ms, Encoding=G.711(-law, Gain=2dB, VoiceActDet=yes, EchoCancelation=G.165}

TxDescr {Mode=sendrecv}

}

// SignalsDescr {none}

EventsDescr (<list of packages supported including scripts>)

}

}

Put {<TemplID2>, type=Templ, data = {

TerminationState {

TerminationMode=sendrecv,

EventBufferDescr {ProcessingMode=Process, NotificationMode=StepByStep}

}

MuxDescr {H.225}

StreamDescr { <StreamID1>

LocalDescr {MaxJitterBuffer=40ms,

RxDescr { Medium=audio, Transport=RTP/UDP/IP,

Mode=sendrecv, IPaddr=ANY, UDPport=ANY, Packetization=20ms, Encoding=G.723, Gain=0dB}

TxDescr {Medium=audio, Transport=RTP/UDP/IP, Mode=recv, IPaddr=ANY, UDPport=ANY}

// SignalsDescr (none)

EventsDescr (<list of supported including scripts>)

}

}
2. The SGW sends a Setup message to the MGC after receiving an IAM from a SCN switch.

3. From the IAM message, the MGC may infer which circuit on which MG is involved and where to terminate the call.

4. The MGC creates a Context for the call. The Context contains two terminations: one for the SCN Side and one for the packet Side. It uses the Templates it loaded at registration time:

<MGCID> Trans <TRID1> {

Ctxt ANY {

Add ANY {

TemplateID=<TemplID1>

StreamDescr {

RxDescr {Type=DS0, Circuit=13, Facility=2}

}

Add ANY {

TemplateID=<TemplID2>

StreamDescr {<StreamID1>,

RxDescr {IPAddr=<IP1>, UDPport=ANY}

 }

 }

}

We see here how the use of Templates leads to smaller messages for setting up calls.

5. The MG accepts the Context creation:

<MGCID> TransAccept <TRID1> {
Ctxt <CID1> {

Term <TID1>

Term <TID2> {

StreamDescr {<StreamID1>

RxDescr (BearerDescr (IPAddr=<IP1>, UDPPort=<P1>}

}

}

}

 }
This shows how the MG reports to the MGC what parameters it filled in, in this case the ContextID, TerminationIDs and the local UDP port selected to receive the packet media.

6. The MGC sends a Setup message to the destination endpoint, here assumed to be a H.323 endpoint (terminal, GW, …). It indicates in the fastStart element that either G.711 or G.723 may be used for the voice stream.

7. The H.323 endpoint sends an Alerting message back to the MGC, informing it of the codec to be used (assume G.723 for both directions) and the transport address.

8. The MGC sends a Modify command to the MG to set the Activity and Bearer information for the packet side TxDescriptor:

<MGCID> Trans <TRID2> {

Ctxt <CID1> {

 Modify <TID2> {

StreamDescr {<StreamID1>

TxDescr {Mode=sendrecv, IPAddr=<IP2>, UDPPort=<P2>} }

 }

 }

 }

If the called endpoint had indicated it could only do G.711 audio, the Modify command would also have had to override the default codec of the Template.

9. The MG accepts the Modify commands:

<MGCID> TransAccept <TRID2> {

Ctxt <CID1>

Term <TID2>

 }

10. The MGC sends an Alerting message to the SGW.

11. The called endpoint at some instance sends a Connect message to the MGC.

12. In response to the Connect, the MGC sends a Modify command to the MG to change the activity of the SendMediaDescriptor on the SCN Side to SendRecv:

<MGCID> Trans <TRID3> {

Ctxt <CID1> {

Modify <TID1> {

StreamDescr {<StreamID1>, RxDescr {Mode=sendrecv} }

 }

 }

 }

13. The MGC sends a Connect message to the SGW

14. The MG accepts the Modify command:

<MGCID> TransAccept <TRID3> {

Ctxt <CID1>

Term <TID1>

 }

After this call is terminated, no new Templates have to be loaded to the MG to set up new calls. In other words, the Put messages in step 1 do not have to be repeated.
8.5.2.6 H.323 and FAS Signaling in MG

{Editor’s note: This section needs reviewing to make sure it reflects the changes of the Santiago meeting. }

The following flow describes an H.320 to H.323 gateway call where the signaling and media terminations for the SCN and packet network both reside on the MG. In this case the MG terminates an ISDN PRI interface and the packet interface is H.323 IP and also resides on the MG. The signaling capabilities are represented as physical H.323 and FAS terminations that exchange events with the MGC to indicate changes in call state. This gateway session uses Bonding channel aggregation making the example a super-set of gateway call that uses H.221 channel aggregation.

[image: image27.wmf]MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

higher layer

signaling

termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

lower layer

signaling

termination

A

C

[image: image28.wmf]RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

DS0

Context C1

1. The MG creates a FAS termination and an H.323 termination on power-on and reports these events to the MGC in a Notify.

2. MGs FAS termination gets an incoming call with (Q.931) call type of data, the MG sends a Notify to the MGC.

3. The MGC creates a context and Adds a FAS termination to it, containing H.320 and Bonding packages, to connect the B channel.

4. When the termination finds Bonding, it assigns a Bonding call ID x and then allocates additional phone numbers for the call and sends these back to the calling side via Bonding.

5. The MG sends a Notify to the MGC.

6. The MGC sends an Add to the MG to create a multimedia context and sends a Modify to move/add the DS0 termination to the new multimedia context .

7. The FAS termination detects signaling for 5 additional B channels, sends a Notify to MGC, and the MGC adds these B channels to the mux termination in the MG

8. The MG detect Bonding and sends a Notify to the MGC

9. The MGC sends a modify to move the termination into the multimedia context

10. The remaining B channels connect in the same manner

11. After all five additional DS0s have been added the H.320 termination can complete Bonding and start looking for H.221 framing.

12. Once H.221 framing is found a Notify is sent to the MGC.

13. The H.221 Termination will play the audio announcement and listen for DTMF tones in the audio portion of the mux and it commences a TCS4/IIS signaling exchange in the BAS channel. The information received is considered the destination z alias for this call.

14. The MG Notifies the MGC of the destination alias z.

15. The MGC sends ARQ to resolve IP address for alias z

16. Once the address is resolved, the MGC Adds an H.323 signaling to the multimedia context

17. The H.323 termination in the context starts H.225/h.245 call setup and media negotiation sequence.

18. The MG sends a Notify to the MGC announcing the completion of call signaling.

19. In the MG capabilities received from the H.323 terminations are forward to the H.320 termination and vice versa. The GW sends a Notify to the MGC whenever an H.242 or H.245 media capability exchange occurs.

20. MG may get an OLC from H.323 Side for audio, the MG will send a Notify to the MGC

21. The MGC will Add an Audio/RTP termination to the context.

22. The MGC will send a Modify to the H.221 termination causing the H.221 mux to change and the selected audio channel (G.711, G.723 etc.) to be opened. The H.320 side may do a mode switch to H.263 video for example. The H.221 termination will then send a Notify to the MGC requesting H.263 video.

23. The MGC will send an Add Video/RTP termination to the context and a Modify H.320/video to the context.
8.6 Transport
8.6.1 Overview

The transport mechanism for
8.6.2
 H.248 should allow the reliable transport of H.248 transactions between an MC and MG. The transport shall remain independent of what particular commands are being sent and shall be applicable to all application states.

This implies that the H.248 Application layer shall remain separate from transport layer requirements.

This is to facilitate the transport of the H.248 protocol over non IP transport technologies.

[image: image17.wmf]H.248 Application Layer

H.248 Generic Transport

Layer

 Transport Layer

Eg

.

ALF

IP

UDP

TCP

Eg

.

TPkt

PSHbit

Non-IP Transport

Non-IP Generic

Transport Layer

Primitive

Interface

Figure 25: Concept of layering of H.248 and its transport.
The H.248 application layer is responsible for maintaining the states and reliability at a transaction level between the MC and MG.

The H.248 General transport sublayer is viewed as a logical layer which implements the functionality to provide reliability (retransmission, timers etc) for the transport of packets between the MC and MG. The general transport layer is coupled with the transport layer to provide the actual transport.

H.248 describes the H.248 Application Layer. Section 8.6 specific to the Generic Transport Layer and the transport layer.

The information flows between the H.248 application layer are described through the use of a primitive interface.

The Generic Transport Layer and the Transport Layer used is network dependent.

8.6.3 Primitives between H.248 signalling entities and the generic transport sublayer

The services are provided through the transfer of primitives which are summarised in Table 1/H.248, and are defined after the table.

Table 1/H.248
Primitives and parameters of the Generic Signalling Transport Sublayer
Primitive
Type

Generic Name
Request
Indication
Response
Confirm

IN-SERVICE
Not defined
‑
Not defined
Not defined

OUT-OF-SERVICE
Not defined
‑
Not defined
Not defined

CONGESTION (Note 1)
Not defined
Level
Not defined
Not defined

TRANSFER
Message
Message
Not defined
Not defined

‑ :
This primitive has no parameters
NOTE 1
This primitive is optional

IN-SERVICE.indication:

A primitive indicating that the signalling transport is able to exchange signalling messages with the peer entity H.248. This indication shall be provided without the H.248 signalling entity requesting any service across the SB-SAP.

OUT-OF-SERVICE.indication:

A primitive indicating that the signalling transport is unable to exchange signalling messages with the peer entity H.248. This indication shall be provided without the H.248 signalling entity requesting any service across the SB-SAP.

TRANSFER.request:

A primitive used by a H.248 signalling entity to convey a signalling message to its peer entity. This primitive has a single parameter, the Message.

TRANSFER.indication:

A primitive indicating the reception of a signalling message from the peer entity at a H.248 signalling entity. This primitive has a single parameter.

NOTE ‑ The length of the message parameter is implicitely known when the parameter is conveyed in a primitive.

CONGESTION.indication:

A primitive used to convey information concerning signalling congestion and has a single parameter that indicates the level of the congestion. This parameter shall have a value between 0 and 10, where 0 indicates no congestion and 10 indicates the maximum congestion.

NOTE ‑ Some Signalling transport services may not be able to provide the congestion indication service.

NOTE – The signalling message can be a transaction, or an event, or any information elements which need to be transferred between the H.248 peer entities.
8.6.4 Use of H.248 in non-IP based transport networks.

The use of non-IP transports is facilitated through the use of a primitive interface. A specific Generic Transport Sublayer would need to be developed for a particular transport technology to ensure reliable delivery of H.248 transaction messages. The development of these layers is not in the scope of this recommendation and is considered for further study.

8.6.5 Use of H.248 in IP based transport networks.

This recommendation specifies two mechanisms for IP-based transport, viz. TCP and application level framing (ALF). In the future other IP based transport mechanism may be added.

Media Gateway Controllers must implement both transport mechanisms. MGs may implement either mechanism, or both. Since the relationship between a MG and a MGC is established by the MG sending a ServiceChange command to an MGC, the MGC can always determine the transport mechanism employed by the MG. The MGC must use the same transport mechanism for outgoing messages it transmits to the MG. A MG that implements both transport mechanisms should be provisioned to determine which mechanism to use.

The sending of a message is equivalent to a transfer.request. The receipt of a message is equivalent to a transfer.indication.

Note: for example modified text of TD-8 Section 7.8 could be included taking in the following considerations and the philosophy as described in the sections above. Section 7.8 needs re-writing as much of the text is educational.

The following headings are suggested in the transport section for each instance of the generic transport.

· Services used from the underlying transport
-(i.e. API, primitive interface description, or refence to other RFC/recommendation)
– This section includes the use of security etc.

· Procedures for sending a message
– Describes the actions to be performed by the generic transport sublayer at the receipt of a transfer.indication primitive
– This section contains necessary timers etc to ensure the reliability required.

· Procedures when receiving a message
– Describes the actions to be performed by the generic transport sublayer at the receipt of a message from the peer generic transport sublayer, including providing the transfer.indication primitive to the H.248 application

· Generic transport becoming unavailability.
– This section describes the procedures/conditions for the detection of the peer generic transport entity becoming unavailable/available.
- Describes that the Out-Of-Service.indication and In-service.indication primitive to the H.248 application.

Congestion handling
– This section describes the procedures for detection of congestion in the signalling transport network.
Note: Not all signalling transport networks support congestion procedures, and it is not necessary for the generic transport layer to provide procedures for this. In such a case, then Congestion.indication primitve will not be provided to the H.248 application.

The MG is provisioned with a DNS name or IP address of a primary and zero or more secondary MGCs (see section 6.3.3.8) which is the address the MG uses to send messages to the MGC. The MGC receives the ServiceChange message from the MG and can determine the MGs IP address. Responses to commands are sent back to the source address of the commands. The initial ServiceChange message should be sent to port ???? if using TCP and port ???? if using UDP. The ServiceChange command contains a ServiceChangePort parameter. The MG specifies the TCP/UDP port number it wishes the MGC to use for communication. The MGC replies with the Port set to the TCP/UDP port number it wishes the MG to use for further communications.

8.6.5.1 Transport Using UDP and Application Layer Framing

8.6.5.1.1 Overview

MECACO/Recommendation H.248 messages may be transmitted over UDP. When no port is specified for by the other side (see section 6.3.3.8), the commands should be sent to the default MEGACO port, ????.

8.6.5.1.2 Providing the At-Most-Once functionality

Messages, being carried over UDP, may be subject to losses. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times. The transmission procedures must thus provide an "At-Most-Once" functionality.

MECACO/Recommendation H.248 entities are expected to keep in memory a list of the responses that they sent to recent transactions and a list of the transactions that are currently outstanding. The transaction identifiers of incoming messages are compared to the transaction identifiers of the recent responses. If a match is found, the entity does not execute the transaction, but simply repeats the response. The remaining messages will be compared to the list of current transactions. If a match is found, indicating a duplicate transaction, the entity does not execute the transaction, which is simply ignored.

The procedure use a long timer value, noted LONG-TIMER in the following. The timer should be set larger than the maximum duration of a transaction, which should take into account the maximum number of repetitions, the maximum value of the repetition timer and the maximum propagation delay of a packet in the network. A suggested value is 30 seconds.

The copy of the responses can be destroyed either LONG-TIMER seconds after the response is issued, or when the MG (or the MGC) receives a confirmation that the response has been received, through the "Response Acknowledgement parameter". For transactions that are acknowledged through this parameter, the MG shall keep a copy of the transaction-id for LONG-TIMER seconds after the response is issued, in order to detect and ignore duplicate copies of the transaction response that could be produced by the network.

8.6.5.1.3 Transaction identifiers and three way handshake

Transaction identifiers are 32 bit integer numbers. An Media Gateway Controller may decide to use a specific number space for each of the MGs that they manage, or to use the same number space for all MGs that belong to some arbitrary group. MGCs may decide to share the load of managing a large MG between several independent processes. These processes will share the same transaction number space. There are multiple possible implementations of this sharing, such as having a centralized allocation of transaction identifiers, or pre-allocating non-overlapping ranges of identifiers to different processes. The implementations must guarantee that unique transaction identifiers are allocated to all transactions that originate from a logical MGCs. MGs can simply detect duplicate transactions by looking at the transaction identifier only.

The Response Acknowledgement parameter can be found in any message. It carries a set of "confirmed transaction-id ranges." Entities may choose to delete the copies of the responses to transactions whose id is included in "confirmed transaction-id ranges" received in the transaction response messages. They should silently discard further commands when the transaction-id falls within these ranges.

The "confirmed transaction-id ranges" values shall not be used if more than LONG-TIMER seconds have elapsed since the MG issued its last response to that MGC, or when a MG resumes operation. In this situation, transactions should be accepted and processed, without any test on the transaction-id.

Messages that carry the "Response Acknowledgement" parameter may be transmitted in any order. The entity shall retain the union of the "confirmed transaction-id ranges" received in recent messages.

8.6.5.1.4 Computing retransmission timers

It is the responsibility of the requesting entity to provide suitable time outs for all outstanding transactions, and to retry transactions when time outs have been exceeded. Furthermore, when repeated transactions fail to be acknowledged, it is the responsibility of the requesting entity to seek redundant services and/or clear existing or pending connections.

The specification purposely avoids specifying any value for the retransmission timers. These values are typically network dependent. The retransmission timers should normally estimate the timer value by measuring the time spent between the sending of a command and the return of a response. One possibility is to use the algorithm implemented in TCP-IP, which uses two variables:

· the average acknowledgement delay, AAD, estimated through an exponentially smoothed average of the observed delays,

· the average deviation, ADEV, estimated through an exponentially smoothed average of the absolute value of the difference between the observed delay and the current average. The retransmission timer, in TCP, is set to the sum of the average delay plus N times the average deviation. In MEGACO/Recommendation H.248, the maximum value of the timer should however be bounded, in order to guarantee that no repeated packet would be received by the gateways after LONG-TIMER seconds. A suggested maximum value is 4 seconds.

After any retransmission, the entity should do the following:

· It should double the estimated value of the average delay, AAD

· It should compute a random value, uniformly distributed between 0.5 AAD and AAD

· It should set the retransmission timer to the sum of that random value and N times the average deviation.

This procedure has two effects. Because it includes an exponentially increasing component, it will automatically slow down the stream of messages in case of congestion. Because it includes a random component, it will break the potential synchronization between notifications triggered by the same external event.

8.6.5.1.5 Provisional responses

Executing some transactions may require a long time. Long execution times may interact with the timer based retransmission procedure. This may result either in an inordinate number of retransmissions, or in timer values that become too long to be efficient. Entities that can predict that a transaction will require a long execution time may send a provisional response, “Transaction Pending”. They should send this response if they receive a repetition of a transaction that is still being executed.

Entities that receive a Transaction Pending shall switch to a longer repetition timer for that transaction.

The protocol is organized as a set of transactions, each of which is composed request and a response, commonly referred to as an acknowledgement. The protocol messages, being carried over UDP, may be subject to losses. In the absence of a timely response, transactions are repeated. Entities are expected to keep in memory a list of the responses that they sent to recent transactions, i.e. a list of all the responses they sent over the last LONG-TIMER seconds, and a list of the transactions that are currently being executed.

The transaction identifiers of incoming transactions are compared to the transaction identifiers of the recent responses. If a match is found, the entity does not execute the transaction, but simply repeats the response. The remaining transactionIds will be compared to the list of current transactions. If a match is found, the entity does not execute the transaction, which is simply ignored - a response will be provided when the execution of the transaction is complete.

The repetition mechanism is used to guard against four types of possible errors:

· transmission errors, when for example a packet is lost due to noise on a line or congestion in a queue,

· component failure, when for example an interface to a entity becomes unavailable,

· Entity failure, when for example an entire entity become unavailable,

The entities should be able to derive from the past history an estimate of the packet loss rate due to transmission errors. In a properly configured system, this loss rate should be kept very low, typically less than 1%. If a Media Gateway Controller or a Media Gateway has to repeat a message more than a few times, it is very legitimate to assume that something else than a transmission error is occurring. For example, given a loss rate of 1%, the probability that 5 consecutive transmission attempts fail is 1 in 100 billion, an event that should occur less than once every 10 days for a Media Gateway Controller that processes 1,000 transactions per second. (Indeed, the number of repetition that is considered excessive should be a function of the prevailing packet loss rate.) We should note that the "suspicion threshold", which we will call "Max1", is normally lower than the "disconnection threshold", which should be set to a larger value.

{Editor’s note, the following is all intertwined with MGCP failover mechanism, it must be edited to deal with whatever we decide to use in MEGACO/H.248}

 Transaction issued: N=0

 |

 transmission: N++

 | +------------ retransmission: N++ -----------+

 | | |

 | | transmission |

 | | +---to new address -+<--------------------|--+

 | | | N=0 | | |

 V V V | | |

 +-----------+ | | |

 | awaiting |--- new entity --> + +------------+ | |

 | response |--- timer elapsed --->| N > Max1 ? |-(no)+ |

 +-----------+ <----------+ +------------+ ^ |

 | | | | | |

 | +- wrong key? -+ (yes) | |

 | | | |

 response received (if N=Max1, | |

 | or N=Max2 | |

 | check DNS) | |

 v | | |

 (end) +---------------+ | |

 |more addresses?|(yes)|--+

 +---------------+ |

 | |

 (no) |

 | |

 +------------+ |

 | N > Max2 ? |(no)-+

 +------------+

 |

 (yes)

 |

 v

 (disconnected)

A classic retransmission algorithm would simply count the number of successive repetitions, and conclude that the association is broken after re-transmitting the packet an excessive number of times (typically between 7 and 11 times.) In order to account for the possibility of an undetected or in-progress "failover", we modify the classic algorithm as follows:

· We request that the Media Gateway always checks for the presence of a new Media Gateway Controller. It can be noticed either by

· receiving a valid multicast message announcing a failover, or

· receiving a command where the NotifiedEntity points to the new Media Gateway Controller, or

· receiving a redirection response pointing to a new Media Gateway Controller.

If a new Media Gateway Controller is detected, the Media Gateway starts transmitting outstanding commands to that new agent. Responses to commands are still transmitted to the source address of the command.

· we request that if the number of repetitions for this Media Gateway Controller is larger than "Max1", that the Media Gateway actively queries the name server in order to detect the possible change of the MGC interfaces.

· The Media Gateway may have learned several IP addresses for the Media Gateway Controller. If the number of repetitions is larger than "Max1" and lower than "Max2", and there are more interfaces that have not been tried, then the Media Gateway should direct the retransmissions to alternate addresses.

· If there are no more interfaces to try, and the number of repetitions is Max2, then the Media Gateway contacts the DNS one more time to see if any other interface should have become available. If not, the Media Gateway is now disconnected.

The procedure will maximize the chances of detecting an ongoing failover. It poses indeed two very specific problems; the potentially long delays of a timer based procedure and the risk of confusion caused by the use of cryptographic protections.

In order to automatically adapt to network load, MEGACO/Recommendation H.248 specifies exponentially increasing timers. If the initial timer is set to 200 milliseconds, the loss of a fifth retransmission will be detected after about 6 seconds. This is probably an acceptable waiting delay to detect a failover. The repetitions should continue after that delay not only in order to perhaps overcome a transient connectivity problem, but also in order to allow some more time for the execution of a failover - waiting a total delay of 30 seconds is probably acceptable.

It is however important that the maximum delay of retransmissions be bounded. Prior to any retransmission, it is checked that the time elapsed since the sending of the initial datagram is no greater than T-MAX. If more than T-MAX time has elapsed, the endpoint becomes disconnected. The value T-MAX is related to the LONG-TIMER value: the LONG-TIMER value is obtained by adding to T-MAX the maximum propagation delay in the network.

Another potential cause of connection failure would be the reception of a "wrong key" message, sent by a Media Gateway Controller that could not authenticate the command, presumably because it had lost the security parameters of the association. Such messages are actually not authorized in IPSEC, and they should in fact not be taken at face value: an attacker could easily forge "wrong key" messages in order to precipitate the loss of a control connection. The current algorithm ignores these messages, which translates into a strict reliance on timers. The algorithm could in fact be improved, maybe by executing a check with the key server of the Media Gateway Controller after "Max1" repetitions.

8.6.5.1.6 Ordering of commands

The MEGACO/Recommendation H.248 does not mandate that the underlying transport protocol guarantees the sequencing of transactions sent to entity. This property tends to maximize the timeliness of actions, but it has a few drawbacks. For example:

· Notify commands may be delayed and arrive at the MGC after the transmission of a new command changing the EventsDescriptor

· If a new command is transmitted before a previous one is acknowledged, there is no guarantee that the previous one will not be received in second position.

Media Gateway Controllers that want to guarantee consistent operation of the Media Gateway can use the following rules:

1) When a Media Gateway handles several Terminations, commands pertaining to the different Terminations can be sent in parallel, for example following a model where each Termination (or group of Terminations) is controlled by its own process or its own thread.

2) In a given Context, there should normally be only one outstanding command (Add or Modify). However, a Subtract command can be issued at any time. In consequence, a Media Gateway may sometimes receive a Modify command that applies to a previously subtracted Termination. Such commands should be ignored, and an error code should be returned.

3) On a given Termination, there should normally be only one outstanding Notify command at any time. The RequestId parameter should be used to correlate Notify commands with the triggering notification request.

4) In some cases, an implicitly or explicitly wildcarded Subtract command that applies to a group of Terminations can step in front of a pending Add command. The Media Gateway Controller should individually delete all connections whose completion was pending at the time of the global Subtract command. Also, new Add commands for Terminations named by the wild-carding cannot be sent until the wild-carded Subtract command is acknowledged.

5) AuditValue and AuditCapability is not subject to any sequencing.

6) ServiceChange must always be the first command sent by a MG as defined by the restart procedure. Any other command or response must be delivered after this ServiceChange command (piggy-backing allowed).

7) When multiple messages are piggy-backed in a single packet, the messages are always processed in order.

These rules do not affect the Media Gateway, which should always respond to commands.

8.6.5.1.7 Fighting the restart avalanche

Let's suppose that a large number of Media Gateways are powered on simultaneously. If they were to all initiate a ServiceChange transaction, the Media Gateway Controller would very likely be swamped, leading to message losses and network congestion during the critical period of service restoration. In order to prevent such avalanches, the following behavior is suggested:

1) When a Media Gateway is powered on, it should initiate a restart timer to a random value, uniformly distributed between 0 and a maximum waiting delay (MWD). Care should be taken to avoid synchronicity of the random number generation between multiple Media Gateways that would use the same algorithm.

2) The Media Gateway should then wait for either the end of this timer or the detection of a local user activity, such as for example an off-hook transition on a residential Media Gateway.

3) When the timer elapses, or when an activity is detected, the Media Gateway should initiate the restart procedure.

The restart procedure simply requires the Termination to guarantee that the first message (command or response) that the Media Gateway Controller sees from this Termination is a RestartInProgress message informing the Media Gateway Controller about the restart. The Termination is free to take full advantage of piggy-backing to achieve this.

The value of MWD is a configuration parameter that depends on the type of the Media Gateway. The following reasoning can be used to determine the value of this delay on residential gateways.

Media Gateway Controllers are typically dimensioned to handle the peak hour traffic load, during which, in average, 10% of the lines will be busy, placing calls whose average duration is typically 3 minutes. The processing of a call typically involves 5 to 6 Media Gateway Controller transactions between each Media Gateway and the Media Gateway Controller. This simple calculation shows that the Media Gateway Controller is expected to handle 5 to 6 transactions for each Termination, every 30 minutes on average, or, to put it otherwise, about one transaction per Termination every 5 to 6 minutes on average. This suggests that a reasonable value of MWD for a residential gateway would be 10 to 12 minutes. In the absence of explicit configuration, residential gateways should adopt a value of 600 seconds for MWD.

The same reasoning suggests that the value of MWD should be much shorter for trunking gateways or for business gateways, because they handle a large number of Terminations, and also because the usage rate of these Terminations is much higher than 10% during the peak busy hour, a typical value being 60%. These Terminations, during the peak hour, are this expected to contribute about one transaction per minute to the Media Gateway Controller load. A reasonable algorithm is to make the value of MWD per "trunk" Termination six times shorter than the MWD per residential gateway, and also inversely proportional to the number of Terminations that are being restarted. for example MWD should be set to 2.5 seconds for a gateway that handles a T1 line, or to 60 milliseconds for a gateway that handles a T3 line.

8.6.5.2 Transport Using TCP

8.6.5.2.1 Overview

MECACO/Recommendation H.248 messages may be transmitted over TCP. When no port is specified for by the other side (see section ????), the commands should be sent to the default MEGACO port, ????.

In a transaction-oriented protocol like MEGACO/H.248, there are still ways for transaction requests or responses to be lost. As such, it is recommended that entities using TCP transport implement application level timers for each request and each response, similar to those specified for application level framing over UDP.
8.6.5.2.2 Providing the At-Most-Once functionality

Messages, being carried over TCP, are not subject to transport losses, but loss of a transaction request or its reply may none-the-less be noted in real implementations. In the absence of a timely response, commands are repeated. Most commands are not idempotent. The state of the MG would become unpredictable if, for example, Add commands were executed several times.

To guard against such losses, it is recommended that entities follow the procedures in Section 6.6.4.1.2
8.6.5.2.3 Transaction identifiers and three way handshake

For the same reasons, it is possible that transaction replies may be lost even with a reliable delivery protocol such as TCP. It is recommended that entities follow the procedures in Section 6.6.4.1.3
8.6.5.2.4 Computing retransmission timers

With reliable delivery, the incidence of loss of a transaction request or reply is expected to be very low. Therefore, only simple timer mechanisms are required. Exponential back-off algorithms should not be necessary, although they could be employed where, as in an MGC, the code to do so is already required, since MGCs must implement ALF/UDP as well as TCP.

8.6.5.2.5 Provisional responses

As with UDP, executing some transactions may require a long time. Entities that can predict that a transaction will require a long execution time may send a provisional response, “Transaction Pending”. They should send this response if they receive a repetition of a transaction that is still being executed.

Entities that receive a Transaction Pending shall switch to a longer repetition timer for that transaction.

Entities must retain Transactions and replies until they are confirmed. The basic procedure of section 6.6.4.1.5 should be followed, but simple timer values should be sufficient.

8.6.5.2.6 Ordering of commands

TCP provided ordered delivery of transactions. No special procedures are required. It should be noted that ALF/UDP allows sending entity to modify its behavior under congestion, and in particular, could reorder transactions when congestion is encountered. TCP could not achieve the same results.

8.6.5.2.7 Fighting the restart avalanche

The procedures of section 6.6.4.1.7 must be followed when using TCP as the transport mechanism.

8.7 Security Considerations
If unauthorized entities use the protocol, they would be able to set-up unauthorized calls, or to interfere with authorized calls. The primary security mechanism employed by the protocol is IPSEC [RFC2401]. Support of the AH header [RFC2402] affords authentication and integrity protection on messages passed between the MG and the MGC. Support of the ESP header [RFC2406] can provide confidentiality of messages if desired.

Implementation of IPSEC requires that the AH and ESP headers be inserted between the IP and UDP headers. This presents an implementation problem for MEGACO/H.248 protocol implementations where the underlying operating system does not support IPSEC. As an interim solution, the MEGACO/H.248 protocol defines an optional AH header within the protocol header. The header fields are exactly those of the SPI, SEQUENCE NUMBER and DATA fields as defined in [RFC2402]. The semantics of the header fields are the same as the "transport mode" of [RFC2402], except for the calculation of the Integrity Check Value (ICV). In IPSEC, the ICV is calculated over the entire IP packet including the IP header. This prevents spoofing of the IP addresses. To retain the same functionality, the ICV calculation should be performed across the entire transaction prepended by a synthesized IP header consisting of a 32 bit source IP address, a 32 bit destination address and an 16 bit UDP port in the MSBs of a 32 bit word. The Authentication Data is assumed to be zero as in [RFC2402].

When the AH-within-MEGACO/H.248 mechanism is employed when TCP is the transport Layer, the UDP Port above becomes the TCP port, and all other operations are the same.

Implementations of this protocol using IPv4 MUST support the interim AH-within-MEGACO/H.248 scheme. Implementations MUST implement IPSEC AH header if the underlying operating systems supports it; if the operating systems support IPSEC AH-headers, the AH-within-MEGACO/H.248 MUST NOT be used.Implementations may support the ESP header. IPSEC and AH-within-MEGACO/H.248 must not be used at the same time. IPv6 Implementations are assumed to have IPSEC implementations and MUST NOT use the AH-within-MEGACO/H.248 scheme.

When employing the AH header, either in IPSEC or AH-within-MEGACO/H.248, all implementations of the protocol MUST implement section 5 of [RFC2402] which defines a minimum set of algorithms for integrity checking using manual keys. MEGACO/H.248 implementations SHOULD implement IKE [RFC2409] to permit more robust keying options. MEGACO/H.248 implementations employing IKE SHOULD implement RSA signatures and authentication with RSA public key encryption.

MEGACO/H.248 implementations employing the ESP header [RFC2406] MUST implement section 6 of [RFC2406], which defines a minimum set of algorithms for integrity checking and encryption.

NOTE: The AH-within-MEGACO/H.248 scheme is defined as interim.

Adequate protection of the connections must be achieved if the MG and the MGC only accept messages for which authentication services of the AH header have been configured. Employing the ESP header for encryption service must provide additional protection against eavesdropping; thus forbidding third parties from monitoring the connections set up by a given termination

The encryption service should also be requested if the session descriptions are used to carry session keys, as defined in SDP.

These procedures do not necessarily protect against denial of service attacks by misbehaving MGs or misbehaving MGCs. However, they will provide an identification of these misbehaving entities, which should then be deprived of their authorization through maintenance procedures.

8.7.1 Protection of Media Connections

The protocol allows the MGC to provide MGs with "session keys" that can be used to encrypt the audio messages, protecting against eavesdropping.

A specific problem of packet networks is "uncontrolled barge-in." This attack can be performed by directing media packets to the IP address and UDP port used by a connection. If no protection is implemented, the packets must be decompressed and the signals must be played on the "line side".

A basic protection against this attack is to only accept packets from known sources, checking for example that the IP source address and UDP source port match the values announced in the RemoteTerminationDescriptor. This has two inconveniences: it slows down connection establishment and it can be fooled by source spoofing:

· To enable the address-based protection, the MGC must obtain the remote session description of the egress MG and pass it to the ingress MG. This requires at least one network roundtrip, and leaves us with a dilemma: either allow the call to proceed without waiting for the round trip to complete, and risk for example, "clipping" a remote announcement, or wait for the full roundtrip and settle for slower call-set-up procedures.

· Source spoofing is only effective if the attacker can obtain valid pairs of source destination addresses and ports, for example by listening to a fraction of the traffic. To fight source spoofing, one could try to control all access points to the network. But this is in practice very hard to achieve.

An alternative to checking the source address is to encrypt and authenticate the packets, using a secret key that is conveyed during the call set-up procedure. This will not slow down the call set-up, and provides strong protection against address spoofing.

8.8 MG-MGC Control Interface

The control association between MG and MGC is initiated at MG cold start, and announced by a ServiceChange message, but can be changed by subsequent events, such as failures or manual service events. While the protocol does not have an explicit mechanism to support multiple MGCs controlling a physical MG, it has been designed to support the multiple logical MG (within a single physical MG) that can be associated with different MGCs.

8.8.1 Multiple Virtual MGs

A virtual MG consists of a set of statically partitioned Terminations. The model does not require that other resources be statically allocated, just Terminations. The mechanism for allocating Terminations to virtual MGs is a management method outside the scope of the protocol. Each of the virtual MGs appears to the MGC as a complete MG client.

In many cases, a physical MG may have only one network interface, which must be shared across virtual MGs. In such a case, the packet/cell side Termination is shared. It should be noted however, that in use, such interfaces require an ephemeral instance of the Termination to be created per flow, and thus sharing the Termination is straightforward. This mechanism does lead to a complication, namely that the MG must always know which of its controlling MGCs should be notified if an event occurs on the interface.

In normal operation, the MG will be instructed by the MGC to create network flows (if it is the originating side), or to expect flow requests (if it is the terminating side), and no confusion will arise. However, if an unexpected event occurs, the MG must know what to do.

If recovering from the event requires manipulation of the interface state, there can be only one MGC who can do so. These issues are resolved by allowing any of the MGCs to create EventDescriptors to be notified of such events, but only one MGC can have read/write access to

the physical interface properties; all other MGCs have read-only access. The management mechanism is used to designate which MGC has read/write capability, and is designated the Master MGC.

Each virtual MG has its own Root Termination. In most cases the values for the properties of the Root Termination are independently settable by each MGC. Where there can only be one value, the parameter is read-only to all but the Master MGC.

8.8.2 Cold Start

A MG is pre-provisioned by a management mechanism outside the scope of this protocol with a Primary and (optionally) an ordered list of Secondary MGCs. Upon a cold start of the MG, it will issue a ServiceChange command with a "Restart" method, on the Root Termination to its primary MGC. If the MGC accepts the MG, it will send a Transaction Accept, with the MGCIdToTry set to itself. If the MG receives a MGCIdToTry not equal to the MGC it contacted, it sends a ServiceChange to the MGC specified in the MGCIdToTry. It continues this process until it gets a controlling MGC to accept its registration, or it fails to get a reply. Upon failure to obtain a reply, either from the Primary MGC, or a designated successor, the MG tries it's pre-provisioned Secondary MGCs, in order.

8.8.3 Failure of an MG

If a MG fails, but is capable of sending a message to the MGC, it sends a ServiceChange with an appropriate method (graceful or forced) and specifies the Root TerminationID. When it returns to service, it sends a ServiceChange with a "Restart" method.

Pairs of MGs that are capable of redundant failover of one of the MGs are accommodated by allowing the MGC to send duplicate messages to both MGs. Only the Working MG must accept or reject transactions. Upon failover, the Primary MG sends a ServiceChange command with a "Failover" method and a "Failed MG" reason. The MGC then uses the primary MG as the active MG. When the error condition is repaired, the Working MG can send a "ServiceChange" with a "Restart" method.

8.8.4 Failure of an MGC

If the MG detects a failure of it's controlling MGC, it attempts to contact the next MGC on its pre-provisioned list. It starts it's attempts at the beginning (Primary MGC), unless that was the MGC that failed, in which case it starts at it's first Secondary MGC. It sends a ServiceChange message with a "Failover" method and a "Failed MGC" reason.
In partial failure, or manual maintenance reasons, an MGC may wish to direct its controlled MGs to use a different MGC. To do so, it sends a ServiceChange method to the MG with a “HandOff” method, and it’s designated replacement in MGCIdToTry. The MG should send a ServiceChange message with a "Forced" method and a "MGC directed change" reason to the designated MGC. If it fails to get a reply, or fails to see an Audit command subsequently, it should behave as if it's MGC failed, and start contacting secondary MGCs.

When the MGC initiates a HandOff, the handover should be transparent to Operations on the Media Gateway. Commands in progress continue, transaction replies are sent to the new MGC, and the MG should expect outstanding transaction replies from the new MGC. All connections should stay up.

It is possible that the MGC could be implemented in such a way that a failed MGC is replaced by a working MGC where the identity of the new MGC is the same as the failed one. In such a case, MGCIdToTry would be specified with the previous value. In such a case, the MG shall behave as if the value was changed, and send a ServiceChange message, as above.

Pairs of MGCs that are capable of redundant failover can notify the controlled MGs of the failover by the above mechanism.

9. Package Definition

The primary mechanism for extension is by means of Packages. Packages define additional Properties, Events, Signals and Statistics that may occur on Terminations.

Packages relevant to H.323 systems are listed in an Annex to Recommendation H.323.

Packages defined by ITU-T will be described in Annexes to H.248.

9.1 Guidelines for defining packages

There is proposed text in TD-16; this has yet to be reviewed.

9.2 IANA considerations

Note: this is a first proposal. It needs to be updated. One concern is that it should express that only ITU-T should be able to register packages prefaced by “ITU.” The final text needs to consider registration of error codes.

Package names will be registered with IANA.

When registering a new package, the following information MUST be provided:

 o Name and description of package. The name MAY be of any length,

 but SHOULD be no more than twenty characters long. The name

 MUST consist of alphanum (See Figure 3) characters only;

 o Indication of who has change control over the package (for

 example, IETF, ISO, ITU-T, other international standardization

 bodies, a consortium or a particular company or group of

 companies);

 o A reference to a further description for

 example (in order of preference) an RFC, a published paper, a

 patent filing, a technical report, documented source code or a

 computer manual;

 o Contact information (postal and email address);

10. Signaling Backhaul

Signaling backhaul refers to transparent transportation of signaling for the B, C or D interface from the MG to the MGC. This function is For Further Study.
Annex a

Protocol Syntax
{Editor’s note: have to redo the section numbering in the Annexes. }
11. Specification language

The baseline text for this section will be taken from APC-1608.

12. Syntax specification

This section will contain the protocol syntax specification using the language described in the previous section.

Annex B

Text encoding of the protocol

13. translation Mechanism

This section will specify how the syntax as specified in Annex A can be transformed into ABNF that specifies the text encoding. It will also contain a compiler that performs this transformation.

This compiler is a living tool that will likely be enhanced over time. To start, this tool should be tested to verify that syntax can be compiled to the ABNF defined below.
14. ABNF specification

This section will contain the ABNF generated by the compiler of the previous section. It currently contains handcoded ABNF.

The protocol syntax is presented in ABNF according to RFC2234

megacoMessage = authenticatedMessage / message

authenticatedMessage = AuthToken EQUAL SecurityParmIndex

 COLON SequenceNum COLON AuthData LWSP message

SecurityParmIndex = 8(HEXDIG)

SequenceNum = 8(HEXDIG)

AuthData = 16(HEXDIG)

message = MegacopToken LWSP mId LWSP

 1*(transactionRequest / transactionAccept /

 transactionReject / errorMessage)

transactionRequest = TransToken EQUAL TransactionID

 LBRKT actionRequest *(COMMA actionRequest) RBRKT

transactionAccept = AcceptToken EQUAL TransactionID

 LBRKT actionAccept *(COMMA actionAccept) RBRKT

transactionReject = RejectToken EQUAL TransactionID

 LBRKT *(actionAccept COMMA) actionReject RBRKT

actionRequest = CtxToken EQUAL ContextID

 LBRKT commandRequest *(COMMA commandRequest)RBRKT

actionAccept = CtxToken EQUAL ContextID

 LBRKT commandAccept *(COMMA commandAccept) RBRKT

actionReject = CtxToken EQUAL ContextID

 LBRKT *(commandAccept COMMA) commandReject RBRKT

commandRequest = (ammRequest / subtractRequest / auditRequest /

 notifyRequest / serviceChangeRequest)

commandAccept = (ammAccept / serviceChangeAccept / subtractAccept /

 auditAccept / notifyAccept)

commandReject = commandName [EQUAL TerminationID] [LBRKT errorMessage RBRKT]

;Add Move and Modify have the same request parameters

ammRequest = (AddToken / MoveToken / ModifyToken) EQUAL TerminationID

 [LBRKT ammParameter *(COMMA ammParameter) RBRKT]

;at-most-once

ammParameter = (mediaDescriptor / modemDescriptor / muxDescriptor /

 eventsDescriptor / signalsDescriptor / digitMapDescriptor)

ammAccept = (AddToken / MoveToken / ModifyToken)

 [EQUAL terminationIDList] [LBRKT mediaDescriptor RBRKT]

subtractRequest = subtractToken EQUAL TerminationID ; LBRKT RBRKT

subtractAccept = subtractToken [EQUAL terminationIDList]

 [LBRKT statisticsDescriptor RBRKT]

auditRequest = (AuditValueToken / AuditCapToken) EQUAL TerminationID

 LBRKT requestedInfoDescriptor RBRKT

auditAccept = (AuditValueToken / AuditCapToken) [EQUAL TerminationID]

 LBRKT auditReturnParameter *(COMMA auditReturnParameter) RBRKT

{ Editor’s note: The current ABNF does not seem sufficient to return capabilities (in particuluar mutually exclusive capabilities).

}

;at-most-once

auditReturnParameter = (ammParameter / observedEventsDescriptor /

 statisticsDescriptor / packagesDescriptor)

notifyAccept = NotifyToken [EQUAL TerminationID] ; LBRKT RBRKT

notifyRequest = NotifyToken EQUAL TerminationID

 LBRKT observedEventsDescriptor RBRKT

serviceChangeAccept = serviceChangeToken [EQUAL TerminationID]

 LBRKT serviceChangeDescriptor RBRKT

serviceChangeRequest = serviceChangeToken EQUAL TerminationID

 LBRKT serviceChangeDescriptor RBRKT

errorMessage = ErrorCode COLON errorText

ErrorCode = 1*3(DIGIT) ; could be extended

errorText = quotedString

TransactionID = UINT32

mId = (domainAddress / dNAME) [":" portNumber]

dNAME = (ALPHA / DIGIT)

 [0*62(ALPHA / DIGIT / "-" / ".") (ALPHA / DIGIT)]

ContextID = (UINT32 / "-" / "$")

commandName = (ServiceChangeToken / SubtractToken / AuditCapToken /

 AuditValueToken / AddToken / MoveToken / ModifyToken /

 NotifyToken)

domainAddress = "[" (v4address / v6address) "]"

v4address = V4segment DOT V4segment DOT V4segment DOT V4segment

V4segment = 1*3(DIGIT) ; values can only be 0-255

;v6address is not correct. It needs more work.

v6address = v6segmentStart 1*6(v6segmentMid) v6segmentEnd

v6segmentStart = [1*4(HEXDIG)]

v6segmentEnd = COLON [v4address / 1*4(HEXDIG)]

v6segmentMid = COLON [1*4(HEXDIG)]

portNumber = UINT16

terminationIDList = LBRKT TerminationID *(COMMA TerminationID) RBRKT

TerminationID = "$" / "*" / "ROOT" / NAME

mediaDescriptor = mediaToken LBRKT mediaParm *(COMMA mediaParm) RBRKT

mediaParm = (terminationStateDescriptor / streamDescriptor / streamParm)

terminationStateDescriptor = TerminationStateToken LBRKT

 terminationStateParm *(COMMA terminationStateParm) RBRKT

terminationStateParm = (terminationBuffered / propertyParm)

streamDescriptor = StreamToken EQUAL StreamID LBRKT streamParm

 *(COMMA StreamParm) RBRKT

streamParm = (localDescriptor
/ rxDescriptor / txDescriptor)

localDescriptor = LocalToken LBRKT localParm *(COMMA localParm) RBRKT

localParm = terminationMode / propertyParm

rxDescriptor = RxToken EQUAL encodingToken

 LBRKT escapedOctetString RBRKT

txDescriptor = TxToken EQUAL encodingToken

 LBRKT escapedOctetString RBRKT

encodingToken = SdpToken / nativeToken / extensionParameter

; The escapedOctetString following an SdpToken in rxDescriptor and

; txDescriptor shall conform to the production for announcement in

; Appendix A of RFC2327.

; The escapedOctetString following the nativeToken shall conform to

; Annex D.

propertyParm = pkgdName (EQUAL / greaterThan / lessThan / quantityOf / range) UNDERSPECIFIED

{ Editor’s note: Need to create productions for greaterThan, lessThan, quantityOf and range.

}

terminationMode = ModeToken EQUAL terminationModes

terminationBuffered = BufferedEventHandlingToken EQUAL

 bufferedEventHandling

terminationModes = (SendonlyToken / RecvonlyToken / SendrecvToken /

 InactiveToken / LoopbackToken / ConttestToken /

 OutOfSvcToken / ExtensionParameter)

bufferedEventHandling = ((loopControl [COMMA processControl]) /

 processControl)

loopControl = (StepToken / LoopToken)

processControl = (ProcessToken / DiscardToken)

muxDescriptor = MuxToken EQUAL MuxType LBRKT TerminationID

 *(COMMA TerminationID) RBRKT

MuxType = (H221Token / H223Token / H226Token / H225-0Token /

 extensionParameter)

StreamID = UINT16

pkgdName = [LWSP (NAME / "*") LWSP SLASH] LWSP (ItemID / "*")

PackageName = NAME

ItemId = NAME

eventsDescriptor = EventsDescriptorToken EQUAL RequestID

 LBRKT requestedEvent *(COMMA requestedEvent) RBRKT

requestedEvent = pkgdName [LBRKT eventParameter

 *(COMMA eventParameter) RBRKT]

eventParameter = ((ActionToken LBRKT requestedActions RBRKT) /

 (eventParameterName EQUAL VALUE))

eventParameterName = NAME

requestedActions = requestedAction [COLON embeddedSignalEvents]

requestedAction = (AccumulateDescriptor / NotifyActionToken /

 AccumulateToken / extensionParameter)

AccumulateDescriptor = AccumByDMToken LBRKT (digitMapName /

 digitMapValue) RBRKT

embeddedSignalEvents = embeddedSignalEvent *(COMMA embeddedSignalEvent)

;at-most-once

embeddedSignalEvent = EventsDescriptor / SignalsDescriptor

signalsDescriptor = SignalsDescriptorToken ; EQUAL RequestID

 LBRKT signalRequest *(COMMA signalRequest) RBRKT

signalRequest = signalName [LBRKT sigParameter

 *(COMMA sigParameter) RBRKT]

signalName = pkgdName

sigParameter = sigParameterName EQUAL VALUE

sigParameterName = NAME

observedEventsDescriptor = ObservedEventsToken EQUAL RequestID

 LBRKT observedEvent *(COMMA observedEvent) RBRKT

;time per event, because it might be buffered

observedEvent = [TimeNotation LWSP COLON] LWSP signalRequest

RequestID = UINT32

;Have to fill in, help needed!!

modemDescriptor = ModemToken LBRKT NAME *(COMMA NAME) RBRKT

digitMapDescriptor = DigitMapToken EQUAL digitMapName LBRKT digitMapValue RBRKT

digitMapName = NAME

digitMapValue = ["L" COLON Timer COMMA] ["M" COLON Timer COMMA] digitMap

Timer = 1*2DIGIT

digitMap = (digitString / LWSP "(" LWSP digitStringList LWSP ")" LWSP)

digitStringList = digitString *(LWSP "/" LWSP digitStringList)

digitString = 1*(digitStringElement)

digitStringElement = digitPosition [DOT]

digitPosition = digitMapLetter / digitMapRange

digitMapRange = ("x" / LWSP "[" LWSP digitLetter LWSP "]" LWSP)

digitLetter = *((DIGIT "-" DIGIT) / digitMapLetter)

digitMapLetter = DIGIT / "#" / "*" / "A" / "B" / "C" / "D" / MFSig / "T"

MFSig = "K0" / "K1" / "K2" / "S0" / "S1" / "S2" / "S3"

requestedInfoDescriptor = requestedInfoItem *(COMMA requestedInfoItem)

;at-most-once

requestedInfoItem = (TerminationStateToken / LocalToken /

 RemoteToken / EventsDescriptorToken /

 SignalsDescriptorToken / DigitMapToken /

 StatsToken / ObservedEventsToken / PackagesToken)

serviceChangeDescriptor = ServiceChangeToken LBRKT

 serviceChangeParm *(COMMA serviceChangeParm) RBRKT

;at-most-once. Version is REQUIRED on first ServiceChange

;request&response

serviceChangeParm = (serviceChangeMethod / serviceChangeReason /

 serviceChangeDelay / serviceChangePort /

 serviceChangeVersion / extensionParameter /

 serviceChangeMgcId)

serviceChangeMethod = (FailoverToken / ForcedToken / GracefulToken /

 RestartToken / DisconnectedToken / HandOffToken /

 extensionParameter)

;need some reasons!!!, or should it be a string?

serviceChangeReason = ReasonToken EQUAL VALUE

serviceChangeDelay = DelayToken EQUAL UINT32

serviceChangePort = PortToken EQUAL portNumber

serviceChangeVersion = VersionToken EQUAL 1*2(DIGIT) DOT 1*2(DIGIT)

serviceChangeMgcId = MgcIdToken EQUAL mId

PackagesDescriptor = PackagesToken LBRKT packagesItem

 *(COMMA packagesItem) RBRKT

PackagesItem = NAME

TimeNotation = 8(Digit) "T" 8(DIGIT) ; per ISO 8601:1988

statisticsDescriptor = StatsToken LBRKT statisticsParameter

 *(COMMA statisticsParameter) RBRKT

;at-most-once

statisticsParameter = (PktsSentToken EQUAL UINT64) /

 (OctetsSentToken EQUAL UINT64) /

 (PktsRecvdToken EQUAL UINT64) /

 (OctetsRecvdToken EQUAL UINT64) /

 (PktsLostToken EQUAL UINT32) /

 (JitterToken EQUAL UINT32) /

 (AvgLatencyToken EQUAL UINT32) /

 (pkgdName EQUAL VALUE) /

 (extensionParameter EQUAL VALUE)

extensionParameter = "X" ("-" / "+") 1*6(ALPHA / DIGIT)

escapedOctetString = *(nonEscapeChar / quoteEscape)

quoteEscape = "}}"

quotedString = DQUOTE 1*64(SuitChar) DQUOTE

;% designates that the digits following designate a character in [US-ASCII]

;encoded in the indicated base. For example, %xOD is the hexadecimal

;representation of [US-ASCII] for carriage return.

;Range of nonEscapeChar may not be correct.

nonEscapeChar = (%x00-7D / %x7E-FF) ; 7D = "}"

UINT16
= 1*5(DIGIT) ; %x0-FFFF or 0-65535

UINT32
= 1*10(DIGIT) ; %x0-FFFFFFFF or 0-4294967295

UINT64
= 1*20(DIGIT) ; %x0-FFFFFFFFFFFFFFFF or 0-18446744073709551615

NAME
= ALPHA 0*63(ALPHA / DIGIT / "_")

VALUE
= 1*64(SafeChar) / quotedString

UNDERSPECIFIED = VALUE / LBRKT VALUE *(COMMA VALUE) RBRKT

SafeChar = DIGIT / ALPHA / "+" / "-" / "_" / "&" / "!" /

 "'" / "/" / "=" / "#" / "?" / "." / ";" /

 "@" / "^" / "`" / "~"

SuitChar = SafeChar / "/" / "$" / "*" / "[" / "]" / "{" / "}"

EQUAL
= LWSP %x3D LWSP ; "="

COLON
= %x3A ; ":"

LBRKT
= LWSP %x7B LWSP ; "{"

RBRKT
= LWSP %x7D LWSP ; "}"

COMMA
= LWSP %x2C LWSP ; ","

DOT
= %x2E ; "."

SLASH
= %x2F ; "/"

ALPHA
= %x41-5A / %x61-7A ; A-Z / a-z

DIGIT
= %x30-39
; 0-9

DQUOTE
= %x22

; " (Double Quote)

HEXDIG
= (DIGIT / "A" / "a" / "B" / "b"/ "C" /

 "c" / "D" / "d" / "E" / "e" / "F" / "f")

SP
= %x20 ; space

HTAB
= %x09 ; horizontal tab

CR
= %x0D ; Carriage return

LF
= %x0A ; linefeed

LWSP
= *(WSP / CR / LF)

WSP
= SP / HTAB ; white space

EOL
= *(WSP) (CR [LF] / LF)

;NULL

 = ("NULL")

ActionToken = ("Action"

/ "AN")

AcceptToken

 = ("Accept"

/ "P")

AccumByDMToken

 = ("AccumulateByDigitMap"
/ "AD")

AccumulateToken
 = ("Accumulate"

/ "AM")

AddToken

 = ("Add"

/ "A")

AuditCapToken

 = ("AuditCapability"
/ "AC")

AuditValueToken
 = ("AuditValue"

/ "AV")

AuthToken

 = ("Authentication"

/ "AU")

AvgLatencyToken
 = ("AverageLatency"

/ "AL")

BufferedEventHandlingToken = ("BufferedEventHandling" / "BE")

ConttestToken

 = ("ContinuityTest"

/ "CO")

CtxToken

 = ("Context"

 / "C")

DigitMapToken

 = ("DigitMap"

 / "DM")

DiscardToken

 = ("Discard" / "DS")

DisconnectedToken
 = ("Disconnected"

/ "DC")

DelayToken = ("Delay" / "DL")

EventsDescriptorToken
 = ("Events"

/ "E")

EventBufferToken
 = ("EventBuffer"

/ "EB")

FailoverToken

 = ("Failover" / "FL")

ForcedToken

 = ("Forced"

/ "FO")

GracefulToken
 = ("Graceful"

 / "GR")

H221Token

 = ("H221")

H223Token

 = ("H223")

H226Token

 = ("H226")

H225-0Token

 = ("H225-0")

H245Token

 = ("H245"

/ "H")

HandoffToken

 = ("HandOff"

/ "HO")

InactiveToken

 = ("Inactive" / "IN")

InterceptToken

 = ("Intercept"

/ "IC")

JitterToken

 = ("Jitter"

/ "JI")

LocalToken

 = ("Local"

/ "L")

LoopbackToken

 = ("Loopback" / "LB")

LoopToken

 = ("Loop"

/ "LP")

MediaToken

 = ("Media"

/ "M")

MegacopToken

 = ("MEGACO"

/ "!")

MgcIdToken = ("MgcIdToTry" / "MG")

ModeToken = ("Mode"

/ "MO")

ModifyToken

 = ("Modify" / "MF")

ModemToken = ("Modem"

/ "MD")

MoveToken = ("Move"

/ "MV")

MuxToken = ("Mux"

/ "MX")

NotifyActionToken
 = ("NotifyAction"

/ "NA")

NotifyToken

 = ("Notify"

/ "N")

ObservedEventsToken
 = ("ObservedEvents"

/ "OE")

OctetsRecvdToken = ("OctetsReceived"

/ "OR")

OctetsSentToken = ("OctetsSent"

/ "OT")

OutOfSvcToken

 = ("OutOfService"

/ "OS")

PackagesToken

 = ("Packages” / "PG")

PendingToken

 = ("Pending" / "PN")

PktsLostToken

 = ("PacketsLost"

/ "PL")

PktsRecvdToken

 = ("PacketsRecived"

/ "PR")

PktsSentToken

 = ("PacketsSent"

/ "PS")

PortToken = ("Port"

/ "PT")

ProcessToken

 = ("Process" / "PC")

ReasonToken

 = ("Reason"

/ "RE")

RecvonlyToken

 = ("ReceiveOnly"

/ "RC")

RejectToken

 = ("Reject"

/ "RJ")

RestartToken

 = ("Restart" / "RS")

RemoteToken

 = ("Remote"

/ "R")

RxToken

 = ("Rx")

SdpToken = ("SDP" / "D")

SignalsDescriptorToken
 = ("Signals"

/ "SG")

SendonlyToken = ("SendOnly" / "SO")

SendrecvToken

 = ("SendReceive"

/ "SR")

ServiceChangeToken
 = ("ServiceChange"

/ "SC")

StatsToken = ("Statistics"

/ "SA")

StepToken = ("Step"

/ "SP")

StreamToken

 = ("Stream"

/ "ST")

SubtractToken

 = ("Subtract" / "S")

TerminationStateToken = ("TerminationState"
/ "TS")

TransToken = ("Transaction"

/ "T")

TxToken

 = ("Tx")

VersionToken

 = ("Version"

/ "V")

Annex c

Binary encoding of the protocol

15. translation mechanism

This section will specify the mechanism for obtaining a binary encoding from the syntax specification given in Annex A. It will also contain a compiler to generate binary encoded protocol messages according to this mechanism.

ANNex D

Tags for media stream properties

{ Editor’s note: The lists of media parameters currently in this Annex were copied from APC-1612. The list needs to be checked for completeness and conistency.

}

15.1 General Media Attributes

Note that these attributes are not necessarily applicable to all codecs or required for fully describe a particular codec's mode of operation.

Tag
Type
Values

Media type
Enumeration
Audio, Video,Data,

Transmission mode
Set
(Send, Receive)

Number of Channels
Unsigned Integer
0-255

Sampling rate
Unsigned Integer
0-2^32

Bit rate mode
Enumeration
e.g. for GSM: { "full", "enhanced_full", "half"} DEFAULT "full"

Codec
Enumeration
"PCM", "G711u", “G711A", "G722", "GSM", "G7231, "G729", "G729A", "G729B", "G729AB", "G723C", ...

Note: The values should match the IANA-assigned values to describe mapping in SDP specifications (rtpmap).

Samples per packet
Unsigned Integer
0-65535

Silence suppression
BOOLEAN
True/false

Encryption type
Enumeration
Off,

Encryption key
Unsigned Integer
0-2^1024

Echo canceller
Enumeration
Off, G.165, G168, ...

Gain
Unsigned Integer
0-65535

Jitterbuffer size (bytes)
Unsigned Integer
0-65535

15.2 Multiplex properties

The multiplexer would describe how media and transport would be linked.

Property
Value

H.221

H223

V76

H2250
Null

....

15.3 Properties for BearerDescriptor

Generic properties:

Media transport type
Enumeration
DS0, ATMaal5, ATMaal2, FR, RTP ...

15.4 For DS0

Name
Type (value range)

OPC
0-2^14-1

DPC
0-2^14-1

CIC
0-2^12-1

15.5 For ATM VC

Note: this needs more work
Name
Type (value range)
Meaning

Address
ATMaddress

VCC

use this one,

VCI/VPI

or this one

QoS mode

As defined in H.245 (or RSVP)

15.6 Frame Relay
Name
Type (value range)
Meaning

DLCI
Number
Data link connection id

CID
Number
sub-channel id.

15.7 RTP Stream

An RTP stream requires two addressing parts for this the local and remote side. Both will have the form of:

Properties

Name
Type (value range)
Meaning

IP address
Ipv4Address or Ipv6 address

RTP port
0-65535

� EMBED Word.Picture.8 ���

� EMBED Visio.Drawing.5 ���

� EMBED Word.Picture.8 ���

� EMBED Visio.Drawing.5 ���

� EMBED PowerPoint.Show.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

Figure � SEQ Figure * ARABIC �242425� H.323 and FAS Signaling in MG example

[image: image29.wmf]DS0

Audio

Termination

RTP

Audio

Termination

Context C1

*Contact
Glen Freundlich
Tel: +1 303 538 2899
Brian Rosen
Tel
+1 724 742 6826

Lucent Technologies
Fax: +1 303 538 3907
FORE Systems, Inc.
Fax
+1 724 742 6744

E-mail
ggf@lucent.com
E-mail
brosen@fore.com

R

152
Recommendation H.225.0 (02/98)

ii PAGE
ii

[image: image30.wmf]RAS Signaling

Termination

H.245

Signaling

Termination

H.225

Signaling

Termination

high layer

resource

control

gateway control

logic

SCN Signaling

Termination

SCN Signaling

Transport

Termination

low layer

resource

control

low layer

resource

control

B1

B2

C

D

X

X

X

Y

Z

Z

[image: image31.wmf]SS7 Gateway

MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

SCN

Signaling

Termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

SCN

Signaling

Transport

termination

D

A

[image: image32.wmf]MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

higher layer

signaling

termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

lower layer

signaling

termination

A

C

[image: image33.wmf]T1

T3

T2

Context 1

1. No topology descriptors

T1

T3

T2

Context 1

2. T1, T2 Isolate

T1

T3

T2

Context 1

3. T3, T2 One way

T1

T3

T2

Context 1

4. T2, T3 One way

T1

T3

T2

Context 1

5. T2,T3

Bothway

T1

T3

T2

Context 1

6. T1,T2

Bothway

Note: the direction of the arrow indicates the direction of flow

[image: image34.wmf]SS7 GW

MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

SCN

Signaling

Termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource

control

SCN

Signaling

Transport

termination

A

D

B

[image: image35.wmf]MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

higher layer

signaling

termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

lower layer

signaling

termination

B

A

C

[image: image36.wmf]MG

MGC

RAS Signaling

Termination

H.245

Signaling

Termination

H.225

Signaling

Termination

hugh layer

resource

control

gateway control

logic

higher layer

signaling

termination

lower layer

signaling

termiantion

low layer

resource

control

packet/ circuit

termination

A

s

D

[image: image37.wmf]RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

Context C1

RTP

Audio

H.323

RTP

Data

RTP

Video

RTP

Audio

H.323

RTP

Data

RTP

Video

_989045634.doc

RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

DS0

Context C1

_993902318.ppt

Termination

SCN Bearer

Channel

Termination

RTP Stream

Termination

SCN Bearer

Channel

Media Gateway

Context

Termination

SCN Bearer

Channel

Termination

RTP Stream

Context

Termination

SCN Bearer

Channel

Context

Termination

SCN Bearer

Channel

_993902381.ppt

Media Gateway

Termination T1

SCN Bearer

Channel

Termination T2

RTP Stream

Context C1

Termination T3

SCN Bearer

Channel

Context C2

Q

_995417303.doc

H.248 Application Layer

H.248 Generic Transport

Layer

 Transport Layer

Eg

.

ALF

IP

UDP

TCP

Eg

.

TPkt

PSHbit

Non-IP Transport

Non-IP Generic

Transport Layer

Primitive

Interface

_995437241.ppt

TRANSACTIONx

CTXTID1

CTXTID2

COMMAND1

COMMAND2

COMMAND3

COMMAND4

COMMAND1

CTXTID3

COMMAND1

COMMAND2

COMMAND3

_995368491.ppt

Note: the direction of the arrow indicates the direction of flow

T1

T3

T2

Context 1

1. No topology descriptors

T1

T3

T2

Context 1

2. T1, T2 Isolate

T1

T3

T2

Context 1

3. T3, T2 One way

T1

T3

T2

Context 1

4. T2, T3 One way

T1

T3

T2

Context 1

5. T2,T3 Bothway

T1

T3

T2

Context 1

6. T1,T2 Bothway

_993902338.ppt

Media Gateway

Termination T1

SCN Bearer

Channel

Termination T2

RTP Stream

Context C1

Termination T3

SCN Bearer

Channel

Context C2

Q

_989208976.vsd
RAS Signaling Termination�

H.245 Signaling Termination�

H.225 Signaling Termination�

high layer resource control

gateway control logic�

SCN Signaling Termination�

SCN Signaling
Transport Termination�

low layer resource control�

low layer resource control�

B1�

B2�

C�

D�

X�

X�

X�

Y�

Z�

Z�

_993692952.doc

RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

DS0

Context C1

_989210429.vsd
RAS Signaling Termination�

H.245 Signaling Termination�

H.225 Signaling Termination�

hugh layer resource control

gateway control logic�

higher layer signaling termination�

lower layer signaling termiantion�

D�

low layer resource control�

packet/ circuit termination �

MG�

A�

 �

MGC�

s�

_989163049.doc

SS7 GW

MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

SCN

Signaling

Termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource

control

SCN

Signaling

Transport

termination

A

D

B

_989164415.doc

MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

higher layer

signaling

termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

lower layer

signaling

termination

A

C

_989157631.doc

MGC

MG

H.245

Signaling

Termination

H.225

Signaling

Termination

higher layer

signaling

termination

RAS

Signaling

Termination

low layer

resource

control

packet/

circuit

media

termination

Higher layer

resource control

gateway control

logic

lower layer

signaling

termination

B

A

C

_985418179.ppt

Media Gateway MGx

Termination T1x

AnalogLine

Context C1x

Media Gateway MGy

Termination T1y

AnalogLine

Context C1y

_987948688.ppt

Media Gateway MGx

Termination T1x

AnalogLine

Context C1x

Media Gateway MGy

Termination T1y

AnalogLine

Context C1y

Termination T2x

RTP Stream

Termination T2y

RTP Stream

_989045547.doc

RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

Context C1

RTP

Audio

H.323

RTP

Data

RTP

Video

RTP

Audio

H.323

RTP

Data

RTP

Video

_989045579.doc

RTP

Audio

H.323

RTP

Data

RTP

Video

H.320

DS0

DS0

DS0

Context C1

H.323

Signaling

FAS

Signaling

H.323

Signaling

_985418199.ppt

User x

User y

MG x

MG y

MGC

Idle

Idle

TransReq(TransID=12345

 CtxID=null Modify(T1x…))

TransReq(TransID=12346

 CtxID=null Modify(T1y…))

TransAcc(TransID=12345

 CtxID=null Resp(OK))

TransAcc(TransID=12346

 CtxID=null Resp(OK))

_985181243.ppt

Media Gateway MGx

Termination T1x

AnalogLine

Context C1x

Media Gateway MGy

Termination T1y

AnalogLine

Context C1y

Termination T2x

RTP Stream

_985187991.ppt

User x

User y

MG x

MG y

MGC

Ringback

Ringing

TransReq(TransID=12352

 CtxID=C1x Modify(T1x, SignalDescriptor

 Modify(T2x, TermState=SendAndReceive…))

TransAcc(TransID=12352

 CtxID=C1x Resp(OK))

Response(OK)

Notify(TermID=T1y

 ObservedEvents=offhook)

Offhook

Stop ringback tone

Offhook

_985253457.ppt

User x

User y

MG x

MG y

MGC

Offhook

Idle

TransReq(TransID=12349

 CtxID=uns Add(T1y…)

 Add(RTP/*, LocalTermDesc, RemoteTermDesc…))

TransAcc(TransID=12349

 CtxID=C1y Resp(OK)

 Resp(RTP/T2y..))

TransReq(TransID=12350

 CtxID=C1y Modify(T1y, SignalDesc=ring…))

TransAcc(TransID=12350

 CtxID=C1y Resp(OK))

TransReq(TransID=12351

 CtxID=C1x Modify(T1x, SignalDesc=ringback…)

 Modify(RTP/T2x, LocalTermDesc, RemoteTermDesc...))

TransAcc(TransID=12351

 CtxID=C1x Resp(OK)

 Resp(RTP/ID..))

Ringback tone

Ringing

Ringback

Ringing

_985184469.ppt

User x

User y

MG x

MG y

MGC

Offhook

Idle

Response(OK)

Notify(TermID=T1x

 ObservedEvents=offhook)

Notify(TermID=T1x

 ObservedEvents=digits)

Response(OK)

TransReq(TransID=12347

 CtxID=null Modify(T1x…))

TransAcc(TransID=12347

 CtxID=null Resp(OK))

Digit

Digit

TransReq(TransID=12348

 CtxID=uns Add(T1x…)

 Add(RTP/*, LocalTermDesc…))

TransAcc(TransID=12348

 CtxID=C1x Resp(OK)

 Resp(RTP/T2x, LocalTermDesc, RemoteTermDesc))

_977147706.doc

SCN

Packet

1

2

3

4

_985162291.ppt

Media Gateway MGx

Termination T1x

AnalogLine

Context C1x

Media Gateway MGy

Termination T1y

AnalogLine

Context C1y

Termination T2x

RTP Stream

Termination T2y

RTP Stream

