

Premeeting on Ambient power-enabled IoT

OPPO Weijie Xu

Outline

□ Definition of ambient IoT

During the discussion on the scope in SA1#98, there has been proposal but not approved:

Ambient power-enabled Internet of Things (Ambient power-enabled IoT) device is an IoT device powered by energy harvesting, being either battery-less or with limited energy storage capability (i.e., using a capacitor). Ambient IoT device is with low complexity, small size, maintenance free and long life span.

Editor's note: The maximum instantaneous power consumption of Ambient power-enabled IoT device is FFS.

- ☐ The following can be taken into account for the definition
 - Energy harvesting, battery-less or not using conventional battery
 - Low complexity, small size
 - Maintenance free
 - (ultra-) low power consumption or constraint in power consumption
 - Be able to adapt to non-stable and small amount of harvested power
 - Meet the unmet service requirement with existing 3GPP IoT devices (e.g.,)
 - Lower capability than existing 3GPP IoT devices, e.g., NB-IoT
 - USIM-free

oppo

Examples of definitions

IoT device: a type of UE which is dedicated for a set of specific use cases or services and which is allowed to make use of certain features restricted to this type of UEs.

NOTE 5: An IoT device may be optimized for the specific needs of services and application being executed (e.g. smart home/city, smart utilities, e-Health and smart wearables). Some IoT devices are not intended for human type communications.

oppo

Slide 5

□ Which KPIs are needed?

The following KPIs can be considered:

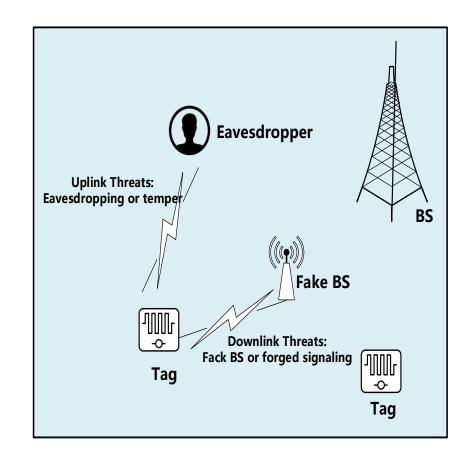
- Communication Service Availability/Ambient IoT service availability
- Max. allowed end-to-end latency/Ambient IoT service latency
- Ambient IoT positioning availability
- Max. instantaneous device power consumption
- Service bit rate: user-experienced data rate
- Message Size
- Communication range
- Device density
- Devices per base station
- Service area dimension
- Horizontal Positioning Accuracy
- Inventory rate
- Moving speed/Velocity

oppo

□ Example KPI table

Scenario	Max. allowed end-to-end latency	Max. instantaneous device power consumption	Service bit rate: user- experienced data rate	Message Size	Device density	Communication Range (meters)	Service area dimension
Remote monitoring of transmission and distribution networks in smart grids		[500] μW (note 4)	[< 1kbit/s]	Typically [< 100 bytes] (note 1)	[< 10,000 /km ²] (note 3)	Outdoor: [> 50]	[several km² up to 100 000 km²] (note 2)

NOTE 4: The power consumption takes into account of the power needed for communication and sensor functions.


NOTE 1: Electronic Product Code standard [5], this size is the payload size.

NOTE 2: The service are refers to the overall size of transmission and distribution networks. Typically, the size of the individual substations varies from 100m x 200m to 500m x 600m.

NOTE 3: The device density is calculated based on an individual substation, where typically several hundreds of Ambient IoT devices are required to monitor the environmental parameters.

Security

- How to specify the security aspects, e.g., authentication, authorization, integrity protection? The impacts from different stakeholder models?
- In order to resolve the potential uplink and downlink threat, the following may be needed.
 - Authentication: e.g., The 5G system shall support the security mechanism to enable the Ambient IoT device to authenticate the information collection request sent by network/UE and enable the network to authenticate Ambient IoT devices
 - **Authorization**: e.g., The 5G system shall support requesting an information collection from a specific Ambient IoT device while avoiding other irrelevant Ambient IoT devices to be exposed.
 - Trust mode: 3rd party credential?
- Will the device have legacy USIM?
 - Light weight security: where to store the credential and how to perform key deviation?

Register

- Whether and How the device do register to the network? The harvested power is unstable, the reachability can't be guaranteed. It is hardly to perform location updating.
 - Purpose of the register---aware of the existence/activation/deactivation of the device