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* * * First Change * * * *
[bookmark: _Toc45387620][bookmark: _Toc52638513][bookmark: _Toc59116543][bookmark: _Toc75520153]4	Overview
Unlike previous 3GPP systems that attempted to provide a 'one size fits all' system, the 5G system is expected to be able to provide optimized support for a variety of different services, different traffic loads, and different end user communities. Various industry white papers, most notably, the NGMN 5G White Paper [2], describe a multi-faceted 5G system capable of simultaneously supporting multiple combinations of reliability, latency, throughput, positioning, and availability. This technology revolution is achievable with the introduction of new technologies, both in access and the core, such as flexible, scalable assignment of network resources. In addition to increased flexibility and optimization, a 5G system needs to support stringent KPIs for latency, reliability, throughput, etc. Enhancements in the air radio interface contribute to meeting these KPIs as do enhancements in the core network, such as network slicing, in-network caching and hosting services closer to the end points.
A 5G system also supports new business models such as those for IoT and enterprise managed networks. Drivers for the 5G KPIs include services such as Unmanned Aerial Vehicle (UAV) control, Augmented Reality (AR), and factory automation. Network flexibility enhancements support self-contained enterprise networks, installed and maintained by network operators while being managed by the enterprise. Enhanced connection modes and evolved security facilitate support of massive IoT, expected to include tens of millions of UEs sending and receiving data over the 5G network.
Flexible network operations are the mainstay of the 5G system. The capabilities to provide this flexibility include network slicing, network capability exposure, scalability, and diverse mobility. Other network operations requirements address the necessary control and data plane resource efficiencies, as well as network configurations that optimize service delivery by minimizing routing between end users and application servers. Enhanced charging and security mechanisms handle new types of UEs connecting to the network in different ways.
Mobile Broadband (MBB) enhancements aim to meet a number of new KPIs. These pertain to high data rates, high user density, high user mobility, highly variable data rates, deployment, and coverage. High data rates are driven by the increasing use of data for services such as streaming (e.g. video, music, and user generated content), interactive services (e.g. AR), and IoT. These services come with stringent requirements for user experienced data rates as well as associated requirements for latency to meet service requirements. Additionally, increased coverage in densely populated areas such as sports arenas, urban areas, and transportation hubs has become essential for pedestrians and users in urban vehicles. New KPIs on traffic and connection density enable both the transport of high volumes of data traffic per area (traffic density) and transport of data for a high number of connections (e.g. UE density or connection density). Many UEs are expected to support a variety of services which exchange either a very large (e.g. streaming video) or very small (e.g. data burst) amount of data. The 5G system will handle this variability in a resource efficient manner. All of these cases introduce new deployment requirements for indoor and outdoor, local area connectivity, high user density, wide area connectivity, and UEs travelling at high speeds.
Another aspect of 5G KPIs includes requirements for various combinations of latency and reliability, as well as higher accuracy for positioning. These KPIs are driven by support for both commercial and public safety services. On the commercial side, industrial control, industrial automation, UAV control, and AR are examples of those services. Services such as UAV control will require more precise positioning information that includes altitude, speed, and direction, in addition to horizontal coordinates.
Support for Massive Internet of Things (MIoT) brings many new requirements in addition to those for the enhanced KPIs. The expansion of connected things introduces a need for significant improvements in resource efficiency in all system components (e.g. UEs, IoT devices, radio, access network, core network).
The 5G system also aims to enhance its capability to meet KPIs that emerging V2X applications require. For these advanced applications, the requirements, such as data rate, reliability, latency, communication range and speed, are made more stringent.
* * * Next change * * * *
[bookmark: _Toc45387793][bookmark: _Toc52638686][bookmark: _Toc59116716][bookmark: _Toc75520329]D.1 	Discrete automation – motion control
Industrial factory automation requires communications for closed-loop control applications. Examples for such applications are motion control of robots, machine tools, as well as packaging and printing machines. All other discrete-automation applications are addressed in Annex D.2.
The corresponding industrial communication solutions are referred to as fieldbuses. The pertinent standard suite is IEC 61158. Note that clock synchronization is an integral part of fieldbuses used for motion control.
In motion control applications, a controller interacts with a large number of sensors and actuators (e.g. up to 100), which are integrated in a manufacturing unit. The resulting sensor/actuator density is often very high (up to 1 m-3). Many such manufacturing units may have to be supported within close proximity within a factory (e.g. up to 100 in automobile assembly line production).
In a closed-loop control application, the controller periodically submits instructions to a set of sensor/actuator devices, which return a response within a cycle time. The messages, referred to as telegrams, are typically small (≤ 56 bytes). The cycle time can be as low as 2 ms, setting stringent end-to-end latency constraints on telegram forwarding (1 ms). Additional constraints on isochronous telegram delivery add tight constraints on jitter (1 s), and the communication service has also to be highly available (99,9999%). 
Multi-robot cooperation is a case in closed-loop control where a group of robots collaborate to conduct an action, for example, symmetrical welding of a car body to minimize deformation. This requires isochronous operation between all robots. For multi-robot cooperation, the jitter (1µs) is among the command messages of a control event to the group robots.
To meet the stringent requirements of closed-loop factory automation, the following considerations may have to be taken:
-	Limitation to short-range communications.
-	Use of direct device connection between the controller and actuators.
-	Allocation of licensed spectrum for closed-loop control operations. Licensed spectrum may further be used as a complement to unlicensed spectrum, e.g. to enhance reliability.
-	Reservation of dedicated air-radio interface resources for each link.
-	Combination of multiple diversity techniques to approach the high reliability target within stringent end-to-end latency constraints such as frequency, antenna, and various forms of spatial diversity, e.g. via relaying
-	Utilizing OTA time synchronization to satisfy jitter constraints for isochronous operation.
A typical industrial closed-loop motion control application is based on individual control events. Each closed-loop control event consists of a downlink transaction followed by a synchronous uplink transaction, both of which are executed within a cycle time. Control events within a manufacturing unit may have to occur isochronously. Factory automation considers application-layer transaction cycles between controller devices and sensor/actuator devices. Each transaction cycle consists of (1) a command sent by the controller to the sensor/actuator (downlink), (2) application-layer processing on the sensor/actuator device, and (3) a subsequent response by the sensor/actuator to the controller (uplink). Cycle time includes the entire transaction from the transmission of a command by the controller to the reception of a response by the controller. It includes all lower layer processes and latencies on the air radio interface as well the application-layer processing time on the sensor/actuator.
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Figure D.1-1: Communication path for isochronous control cycles within factory units. Step 1 (red): controller requests sensor data (or an actuator to conduct actuation) from the sensor/actuator (S/A). Step 2 (blue): sensor sends measurement information (or acknowledges actuation) to controller.
Figure D.1-1 depicts how communication may occur in factory automation. In this use case, communication is confined to local controller-to-sensor/actuator interaction within each manufacturing unit. Repeaters may provide spatial diversity to enhance reliability.
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