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Decription
This PCR proposes updates to the use case in clause 6.6 Shared AI/ML model monitoring for clarifications.
Proposal
It is proposed to include the below modifications and new requirements in 3GPP TR 22.874 version 1.0.0.
* * * *   First Change   * * * *
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* * * *   Next Change   * * * *
6.6	Shared AI/ML model monitoring
6.6.1	Description
AI/ML models are trained on a training data set to accomplish an established task. The tasks may vary from image or speech recognition to forecasting to optimize, as example, handover performance (see 3GPP TR 28.809 [xx]) or tuning Core Network assisted parameters (see clause 5.4.6.2, 3GPP TS 23.501 [48]).
In each of these tasks, the provider of the shared AI/ML model may benefit from sharing a trained AI/ML model with the user(s) of the shared AI/ML model or to split distribute AI/ ML model training over the 5G system. Furthermore, AI/ML model monitoring is a requirement to enable online learning in the network (e.g. via Reinforcement Learning), a set of techniques more suited to promptly react to service degradation. 
NOTE:	The following terms are used in this use case:
Shared AI/ML model: AI/ML model that is shared among different entities, i.e., the AI/ML model is pre-trained and provisioned to different consumersusers, or the AI/ML model is trained using a split model or distributed/federated learning approach or splitting the training phase to offload the more expensive part to the network.
Shared AI/ML model provider: entity that is providing a “shared AI/ML model”.
NOTE:      It is assumed that the shared AI/ML model provider is application running on EHE (edge hosting environment) or in the data network.
Editor's Note:	The wording of the NOTE needs to be rephrased.
Shared AI/ML model user: entity that is using/consuming a “shared AI/ML model”, e.g. application running on the UE.
Due to changes in the scenario (i.e., in the context from which training data are collected), an AI/ML model may provide poor performances compared with the performance of the AI/ML model measured during the model testing phase. This can happen when over time the distribution of the input data utilized for inference differs from the distribution of the training data set, or if the AI/ML model is utilized in a different context. In this case, the shared AI/ML model provider should be able to promptly detect the performance degradation and react in order to avoid service degradation or disruptions.
Therefore, the shared AI/ML model provider, once sharing an AI/ML model over 5G System with a shared AI/ML model user, needs to keep track of the model performances to detect possible performance degradation of the shared AI/ML model (e.g. based on inference feedback from AI/ML model user such as a lower confidence score).
Alternatively, the shared AI/ ML model provider can splitdistribute the AI/ ML model training with an shared AI/ML model user to constantly improve the performance of the shared AI/ ML model based on a local training and/or inference feedback from the shared AI/ML model user.  The local shared AI/ML model will be trained/fine-tuned and controlled by the model provider under shared AI/ML model provider guidance (e.g. how to set the hyper-parameters such as batchsize, learning rate, loss function for fine-tuning the model and how to pre-process the input data before training). The input to this training will be data available at the shared AI/ML model user. The output of local model training or an inference at the shared AI/ML model user can be provided to the shared AI/ML model provider and be used by the shared AI/ML model provider to provide further information for the 5G System to improve its operations.
6.6.2	Pre-conditions
The shared AI/ML model provider stores multiple AI/ML models along with their performances measured during the test phase.
The shared AI/ML model provider is capable of sharing AI/ML models with shared AI/ML model users leveraging on 5GS.
The AI/ ML model provider is capable of splitting distributing AI/ML model training with an shared AI/ ML model user leveraging on 5GS.
The shared AI/ML model user may run applications requiring the usage of AI/ML models and download them from the AI/ML model provider via the 5GS. 
6.6.3	Service Flows
1. The shared AI/ML model provider wants to optimize performance of some process by means of shared AI/ML model performance. 
2. The shared AI/ML model provider sends the trained shared AI/ML model to the shared AI/ML model user at the UE leveraging on the 5GS.
3. The UE receives the model and employs the model to perform local training and inference using data available on the UE.
4. The shared AI/ML model provider monitors the context scenario (e.g. the UE data which is available to the application) in which the UE is running the shared AI/ML model and the model performance (e.g. inference confidence score).
5. If a change in the context scenario or model performance is detected, e.g. based on an inference feedback from the shared AI/ML model user, the shared AI/ML model provider, in order to avoid model performance degradation, shares with the AI/ML model user an updated version of the shared AI/ML model retrained to capture the new context with better performances, or provide guidance information to the UE to perform distributed training or fine tuning of the shared AI/ML model.
6. The UE continues to run the updated model without experiencing performance degradation.
* * * *   End of Changes   * * * *
