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Abstract: This contribution proposes a new use case of power distribution grid power control service.
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Discussion
-
Proposal
It is proposed to agree to add the following change to TR 22.867.
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5.x	Use Case of ensuring uninterrupted MTC service availability during emergencies 
5.x.1	Description
During emergencies, public mobile land networks (PLMNs) may restrict network access, which may lead to a lack of service reliability for machine-type communication (MTC) in critical applications, such as power systems and in particular in microgrids. Microgrids are separate parts of a power grid, which can be controlled and operated individually in a so-called island mode or together as a whole. Existing features can be used to differentiate MTC of devices in a microgrid from other MTC or human-to-human (H2H) communication and ensure that these microgrid devices have service during emergencies, which enables use of mobile communication to co-ordinate the use of Distributed Energy Resources (DER) in microgrids, so that they can autarkically perform blackout recovery of an islanded microgrid. The idea is to ensure reliable communications for selected MTC devices during emergency conditions, without giving these devices additional priority over other network users during normal conditions or adversely affecting the service to prioritised users during emergencies. It was shown that this method allows the blackout recovery 100 times faster than with a conventional black start [X6]. 
5.x.1.1		Introduction
Figure X1 shows an example of power grid restoration after a large-scale blackout using conventional and autarkic microgrid blackout recovery methods.
[image: ]
Figure X1: (a) Conventional grid restoration (hierarchical top-down blackout recovery) and (b) autarkic microgrid restoration (each islanded microgrid autonomously recovers from blackout). Figure taken from [X6].
Grid restoration after a large-scale blackout is conventionally done by first starting power stations with black start capability, then expanding the re-energised grid to include more large synchronous power stations and expanding the re-energised grid. In this way, medium voltage and low voltage levels are re-energised hierarchically and top-down, i.e., from the transmission level. 
The autarkic microgrid blackout recovery method presented in [X1] assumes that the MV/LV grid is divided into a set of microgrids (Figure X1 (b)), which can be operated in island mode and are assumed to be autarkic, meaning that they have sufficient local energy generation and storage to be self-sufficient, and autonomous, meaning that they can manage themselves, although in normal operation they may be managed by distribution grid (DG) management systems external to the microgrid. Microgrid management is performed by means of a multi-agent system (MAS), the individual agents being located at the DER sites. Microgrid management is supported by communication between the agents. 
If communications from the microgrid to external management systems are working, the microgrid can perform autarkic blackout recovery under their direction. If, however, there is a loss of communication from the microgrid to external management systems, the microgrid can autonomously perform the autarkic blackout recovery. In any case, the autarkic blackout recovery relies on having communications which continue to function locally in the microgrid during blackout to allow the agents to act together to perform a black start using local DERs. 
In the autarkic microgrid blackout recovery method, the medium/low voltage grid is assumed to be divided into a set of autarkic microgrids, as shown in Figure X1(b), which are islanded in case of blackout. The DERs remain connected to the grid and continue to use their Multi-Agent System (MAS) MTC devices to communicate with each other and with the distribution grid control centre during the blackout [X1]. In this scenario, each microgrid has its own eNodeB equipped with an emergency power supply. In case the emergency power supply for an eNodeB is not available, only this specific microgrid covered by the affected eNodeB cannot perform autarkic blackout recovery. However, other microgrids which are not affected by the misfunctioning eNodeB can still perform blackout recovery.
5.x.2	Pre-conditions
The MAS’s within one microgrid must be covered by a large-scale, wide-area communications network, and the communications network must continue to operate during blackouts.
The network must support MTC and the MAS’s can communicate within the microgrid using MTC.
5.x.3	Service Flows
Blackout recovery using autarkic microgrids: 
· Identify which nodes in the MAS are working
· Identify the current microgrid topology and DER capacity
· Re-energise the microgrid and the loads.

5.x.4	Post-conditions
The microgrids have recovered from the blackout and operate normally again.
5.x.5	Existing features partly or fully covering the use case functionality
	Latency
	Data rate

	100 ms
	< 1 Kbps per DER



5.x.6	Potential New Requirements needed to support the use case 
	Communication service availability: target value
	Communication service reliability: mean time between failure

	99.99 % (communications downtime per month of 4 minutes).  A particular requirement in relation to availability, communications shall continue to function locally in the region covered by the microgrid assets during blackouts of the public power supply.
	> 10 years
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