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Abstract
AI-driven robots are more and more commonly used in factories to accomplish fast, complex and repetitive tasks. In a near future, mobile factory robots will operate in open environments with human operators and other robots. This will require the acquisition and treatment in real-time of a huge amount of sensing data. Those robots will not always be connected to the 5G network with as consequences to handle locally the data and to interact with other robots via proximity communication means. This perspective brings new challenges in terms of AI/ML model split for robots.
Proposal
It is proposed to include the below new use case on local AI/ML model split on factory robots in 3GPP TR 22.874 version 0.1.0.
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5.x	Local AI/ML model split on factory robots
[bookmark: _Toc355779204][bookmark: _Toc354586742][bookmark: _Toc354590101]5.x.1	Description
In a modern factory, a team on a workstation comprises two human operators, two mobile robots and a fixed robot. Everyone has his own pre-defined task. Robots assist the human operators by accomplishing painful tasks in a fluid and precise manner; they also monitor that the workstation environment remains safe for the human operators. The mobile robots shall not interfere with humans and between them.
The robot control is not executed on a distant server in the cloud because reliability and confidentiality were not ensured at a sufficient level. Furthermore, the overall end-to-end latency is not always guaranteed which can cause production loss. Communications between robots rely on private wireless networks in the factory that enable expected QoS (reliability, throughput, and latency) as well as confidentiality.
The new robots are autonomous robots that can react to human voices or learn in real-time what operators do. They can perceive their environment and transmit information to other robots. They can communicate, learn from each other, assist each other and do self-monitoring.
The robot’s skills rely on several AI/ML models running on the robot itself which has inconvenience for mobile robot to drain their battery quicker. To overcome this issue, when the battery level reaches a certain value, a part of AI/ML model is transferred to another robot by splitting the AI/ML model as defined in [13]. The split model approach of [13] is applicable to a UE-to-UE (or robot-to-robot) architecture. Thus, the AI/ML model M is split and shared between (e.g.) 2 robots, say an assisted robot and an assistant robot. Intermediate data generated by the assisted robot are transferred to the assisting robot which finalizes the inference and transmits the results back to the assisted robot. This intermediate data transfer shall be extremely efficient in terms of latency and throughput. When many models are at stake, the split model method is an additional challenge for the 5GS in terms of throughput and latency.
Table 5.x.6-1 shows expected data rates for some typical AI/ML models depending on the amount of intermediate data to be transferred and the transfer time. For each model, many split points are envisioned. The amount of intermediate data vary from one split point to the other.
We consider two situations:
a) Intermediate data size below 1 MB with a transfer time of 5 ms. This gives a 1.6 Gb/s data rate. This configuration will cover most of the split cases.
b) Intermediate data above 1 MB with a less stringent transfer time of 50 ms. This configuration covers the rest of the split cases.
Table 5.x.1-1: Data rate for intermediate AI/ML data
	Model Name
	Model type
	Intermediate data size (MB)
	Transfer time (ms)
	Data rate (Mb/s)

	AlexNet [7]
	Image recognition
	[0.02 – 0.27]
	5 
	[32 – 432]

	VGG-16 [8]
	Image recognition
	[0.1 – 0.8]
	5 
	[16 – 1280]

	
	
	[1.5 – 3]
	50
	[240 – 480]

	ResNet50 [18]
	Image recognition
	[0.1 – 0.8]
	5 
	[16 – 1280]

	
	
	[1.6 – 3.2]
	50
	[256 – 512]

	SoundNet [47]
	Sound recognition
	[0,0017 – 0,88]
	5
	[2.72 – 1408]



As previously said latency is a critical requirement. Figure 5.x.1-1 summarizes the latency cost in three cases:
(A) The inference of model M is done locally. Latency is denoted LLI.
(B) The inference process is fully offloaded on a second device (Robot/UE). Latency is denoted LFO.
(C) The inference process is partially offloaded on a second device (Robot/UE). Latency is denoted LPO.
[image: ]
[bookmark: _Ref53764004]Figure 5.x.11 Latency summary
The current Use Case promotes the (C) scenario where a model M is split in two sub-models Ma and Mb. If both robots (UEs) have a similar computing power, the assumption is that the latency due to the inference of model M is almost equal to the latency of model Ma plus the latency of model Mb. 
Hence, once the split model is deployed on the two robots (UEs), the aim is to minimize the E2E latency and to be as close as possible to the non-split case. This is done with a transfer delay of both the intermediate data and the inference results as small as possible. We may note that if the computing power on the assistant robot is more important, then (C) would be the preferred scenario.
In scenario (B), the inference process is fully offloaded on the assistant robot (UE). The major inconvenience is the strong and negative impact on latency of the raw data transfer towards the assistant robot.
[bookmark: _Toc355779205][bookmark: _Toc354586743][bookmark: _Toc354590102]5.x.2	Pre-conditions
Two human operators are working.
Two mobile AI-driven robots (Arobot and Brobot) and one static AI-driven robot (Crobot) assist them.
The three robots (Arobot , Brobot and Crobot ) belong to the same service area, embed the same two powerful AI/ML models M1 and M2, sensors (e.g. LIDAR, microphone) and cameras (e.g. 8K videos stream).
Arobot and Brobot are powered with a battery and Crobot with fixed ground power. 
The three robots (Arobot , Brobot and Crobot) are locally connected.
The workstation is equipped with camera and sensors.
The service area is 30 m x 30 m and the robot speed is at maximum 10 km/h.
The service area is covered by a small cell.
[bookmark: _Toc355779206][bookmark: _Toc354586744][bookmark: _Toc354590103]5.x.3	Service Flows
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Figure 5.x.31 Factory service flow
a) Brobot battery is rather low but it can still work for a while if a part of its machine learning process is offloaded.
b) Brobot broadcasts a request message to get assistance. Crobot responses positively.
c) Brobot negotiates with Crobot what parts of M1 and M2 for the inference process it may have the charge of, knowing that the quality of the prediction shall not be under a certain level and that the end-to-end latency shall not be above a certain value.
d) Brobot and Crobot agree on a split point and Brobot starts sending the intermediate data to Crobot.
e) Crobot infers and transmits in unicast the predictions back to Brobot in a very short delay.
f) In the meanwhile, Arobot is carrying a load to the opera tor Aoperator.
g) Aoperator bends down to pick up a screw that has fallen on the floor. At the same time Boperator is passing between Aoperator and Arobot. Arobot can’t see Aoperator anymore.
h) Brobot is busy with another task but it can see the scene.  It reports the scene as intermediate data to Crobot.
i) Crobot infers.  In addition to transmit in unicast the prediction back to Brobot, Crobot broadcasts an alert message telling that the operator Aoperator is endangered.
[bookmark: _Toc355779207][bookmark: _Toc354586745][bookmark: _Toc354590104]5.x.4	Post-conditions
Intermediate data can be exchanged between two robots (UEs) and robot with a low battery level can continue working for a while.
All the robots in the group receive the alert message and react:
a) They all stop working; or
b) Arobot changes its trajectory.
Aoperator and Boperator can work safely.
The huge amount of data that is required for inferring is kept locally.
[bookmark: _Toc355779209][bookmark: _Toc354586747][bookmark: _Toc354590106]5.x.5	Existing features partly or fully covering the use case functionality
The Use Case can rely on the Proximity Service (ProSe) services as defined in 3GPP TS 23.303 [46].
3GPP TS 23.303 [46] defines ProSe Group communication. Arobot, Brobot and Crobot belong to that group. When Brobot battery level is low, Brobot broadcasts a message asking for a support.
5.x.6	Potential New Requirements needed to support the use case
[P.R.5.x-001] The 5G system shall support the transfer of AI/ML model intermediate data from UE to UE via the D2D/sidelink communication path or the 5GC path.
[P.R.5.x-002] The 5G system shall support a 1.6 Gb/s data rate from UE to UE via the D2D/sidelink communication path or via the 5GC path (UL and DL).
[P.R.5.x-003] The 5G system may support a 10 Gb/s data rate from UE to UE via the D2D/sidelink communication path or the 5GC path (UL and DL).
[P.R.5.x-004] The 5G system shall guarantee a latency of [5ms-50ms] from UE to UE via the D2D/sidelink communication path or the 5GC path.
[P.R.5.x-005] The 5G system shall guarantee a communication service availability higher than 99.9999 % for the communication path (D2D/sidelink or 5GC) within a service area of 30m x 30m when robots are moving with a 10 km/h speed.
[P.R.5.x-006] The 5G system shall guarantee a QoS (latency, reliability, data rate as defined above) of the communication path (D2D/sidelink or 5GC).
[P.R.5.x-007] The 5G system shall be able to adjust the QoS of the communication path (D2D/sidelink or 5GC).[P.R.5.x-008] The 5G system shall support a mechanism to broadcast an alert message via the D2D/sidelink communication path or the 5GC path.
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