3GPP TSG-SA WG1 Meeting #54
S1-111143
Xi’An, China 9th – 13th May 2011

Title:

Identifying change in behaviour of mobile data applications
Ag. Item:
8.6
Source:

Huawei
Contact:
amar.deol@huawei.com
1. Introduction

This contribution proposes some text to be added to the use case in clause 5.2 for identifying change in behaviour of mobile data application & proposes potential requirement for this to be added in clause 7.
2. Discussion
The impacts of “always on” mobile data applications are discussed in TR 22.801 e.g. small data transmission and the signalling payload and reduced battery life of UE. But, it's also possible to “switch on/off” the mobile data application on a UE. For example, the user switches off the mobile data function / application in order to reduce the mobile data traffic or to save battery life, and switches on the mobile data function / application when the user wants to browse the web or access email, etc.
The network should be able to detect the different behaviour (change) of mobile data applications (e.g. significant signalling load vs. normal signalling load per UE), and use this knowledge to perform some network optimization (e.g. switch off corresponding applications to reduce the traffic load).
3. Recommendation

This contribution proposes that network should provide mechanisms to identify the change of behaviour of mobile data application on a UE in order to reduce impacts to network / UE performance (e.g. to save battery life and reduce background traffic). Hence, the following changes are proposed to clauses 5.2 & 7 of TR 22.801.
First Change
5.2
Use case for Status updates and keep-alive messages due to always on mobile data applications

Some existing “always on” mobile data applications [5] [6], such as IM, Social networking apps etc are currently bringing some challenges to operator networks. In general, these mobile data applications need interactive communications, through operator network, with their application servers in the internet. The server and the application on the UE periodically exchange “heartbeat” messages (aka keep-alives) to keep the application session alive and also to avoid the expiry of NAT mapping which causes IP session disconnection.
In addition to periodic keep-alive messages, the applications also generate frequent status update messages to notify the users of status updates relating to the application. Some examples include presence information of buddies in an IM buddy list, update of user location upon user “check in”, update of “Facebook likes” to a user’s friends etc.

· Frequency of Keep-alive messages:

· VoIP apps such as Skype and Fring generate keep-alive messages from once every 30 seconds to every 8 minutes [4] [7]
· Frequency of Status update messages:
· Social networking applications such as FindMe generate status update messages upon geographic position changes. The frequency of such messages ranges from sporadic over a day (e.g. changing from home to work to gym then back to home) to periodic up to every 60 seconds [8]

· Social networking servers push content and presence update messages of the subscriber’s friends to the applications on the UE (e.g. Facebook posts the activities when your friend “likes” a particular article or “becomes a fan” of a particular group). The frequency of such content and presence update messages is estimated in the order of every few minutes [see Annex]

Two more aspects that can aggravate the impacts of status update and keep-alive messages are:

· These messages can be mobile-originated (MO) or mobile-terminated (MT), e.g. periodic FindMe messages can come from change of location of your friends or can come from the updates of your own location.

· It is not uncommon that a UE will install multiple applications, where each application generates these update/keep-alive messages autonomously.

Issues:
When the transmission of keep alive or status update messages are completed, and upon detection of user inactivity, the UE may be moved to a low power state (e.g. from connected to idle) in order to save the UE battery power.

As a result, when the average frequency of status update and/or keep-alive messages is greater than the inactivity timer, the UE will have to cycle among idle, wake up, re-establish the connection, send or receive the update message(s), go back to idle and so on.
Figure 2 further illustrates the timing when the UE experiences such frequent idle-active mode transition problem. From the left-most of the figure, after the phone finishes some data traffic, it stays on active mode for a while and switches to idle state to save power. Soon after the phone enters idle, application #1 generates an update message and the phone wakes up, transmits some signaling messages to establish the connection. We note that, the phone might consume more energy in sending signaling messages than it’s in active mode but sending no message. After establishing the connection, it sends the update message and again stays in active state for a while before going to idle state. This cycle repeats as other applications also send/receive update messages (e.g. some MT update messages pushed by the server of app #2 and MO update messages generated by app #3).

[image: image1.emf]Idle

Active

time

Active

Idle Idle

Active

App #1 generate

update message

App #2 server pushes

update message

Active

App #3 generate

update message

Data traffic

Signalling traffic

Idle

Active

time

Active

Idle Idle

Active

App #1 generate

update message

App #2 server pushes

update message

Active

App #3 generate

update message

Data traffic

Signalling traffic

Figure 2: Timing when the UE experiences such frequent idle-active mode changing problem

We can see that, when the UE constantly flips between active and idle state, there are two problems observed.

· Increased control plane signalling:
There are excessive signaling overhead (both in RAN and in CN) to just send these occasional, very small update messages. To send just one update message, it may take one round of idle-active transition which may incur significant signaling overhead, including multiple RRC messages in RAN (e.g. Service Request, Radio Bear Establishment/Release, and Paging when message is MT) and EPC signaling messages (e.g. Service Request, Connection Setup/Release).

· Reduced battery life of UE:

In the worst case scenario, when multiple applications generate update messages soon after the phone enters idle state, the energy consumption of the phone increases due to constantly flipping between active and idle state, may be higher than if the phone just remained in active mode.

Table 1 summarizes the problem scenarios, the sources of problems, and the affected elements of the frequent idle-active state transition scenarios.

	Problem scenario
	Apps that cause the problem
	Effect to EPC
	Effect to RAN
	Effect to UE

	MO status update
	* Social ntwk: UE owner’s status update.
* Geo service app: geo-tags, geo-cast etc.
	 signaling overhead (set-up & tear-down)

	 RRC signaling overhead

	 Reduced battery life

	MO periodic keep-alive
	* VPN

* Skype when not in a call
	
	
	

	MT status update
	* Social ntwk: friends’ content/status update.
* Geo service app: location-targeted event/ads.
	* signaling overhead (set-up & tear-down)

	* RRC signaling overhead

* paging signaling overhead to tracking area

	 Reduced battery life

	MT periodic keep-alive
	Skype when not in a call
	
	
	

Table 1: Signalling inefficiency and reduced battery life caused by mobile data application status updates and keep-alive messages
Also, in order to save battery life and reduce background traffic from the application, the mobile applications can be switched off on a UE, and this will be observed by the network as different behaviors e.g. significant signaling load vs. normal signaling load per UE.
Second Change
7
Potential Requirements

The network shall be able to identify the change of signaling traffic from a UE depending on whether an application is running (being used) or not (e.g. according to the frequency of the transition of the UE from idle to activate), and provide mechanism to handle this more efficiently (switch off applications).
End of Changes

