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Abstract: In the current version of TR22.840, availability scenarios, ambient power and energy storage methods, harvesting source selection considerations have been discussed firmly in Annex. However, due to the stringent requirements for complexity and power consumption, the communication modes of Ambient IoT devices might be quite different with previously defined 3GPP IoT devices (e.g., NB-IoT/eMTC devices), thus, this contribution proposes an introduction of communication modes of low power consumption, aiming to give a reference for Ambient IoT communication.
1. Introduction
Generally, there are two mainly communication modes of wireless communication equipment, which are active communication modes and passive communication modes. At present, 3GPP IoT devices such as NB IoT devices, use active communication modes to communicate with a network, which means the devices can transmit data over self-generated carrier waves. However, taking the advantage of no internal RF signal is need to generate, passive communication mode e. g., backscatter communication is a promising energy efficient communication technology for the IoT devices which has been studied in many papers [x1-4] and maybe it is a candidate technique of Ambient IoT system for reducing power consumption. Because of this reason, a discussion of low power consumption communication modes is given.
2. Reason for Change
An introduction of low power consumption communication modes would help to propose the following technical specifications of Ambient IoT.
3. Conclusions
<Conclusion part (optional)>
4. Proposal
[bookmark: _GoBack]It is proposed to agree the following changes to 3GPP TR 22.840-1.0.0.
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* * * Start of Second Change * * * *
Annex X (Informative): Communication Modes of Low Power Consumption
There are two types of communication modes for wireless low power consumption communication devices, which are active communication mode and passive communication mode.
X.1 Active communication mode
In the active communication mode, the device uses internal power source to transmit data to the transceiver/receiver. Since an active communication device need to generate RF signals, it has many active RF components such as frequency synthesizer, RF modulator, and PA (Power Amplifier), and thus, cause high power consumption.
Many 3GPP defined IoT techniques like NB-IoT, eMTC, etc., support PSM (Power Saving Mode) and eDRX (extended Discontinuous Reception) to reduce power consumption and to extend battery life, but the average power consumption for active communication is still higher than 100 mW. Some examples of power consumption of different active communication devices are listed in Table x-1-1.
Table x-1-1 Power Consumption of Different Active Communication Techniques/Devices
	Ref.
	Technique/Device
	Center Freq.
	Data Rate
	Power Consumption for Comm.
	Note

	[x5]
	NB-IoT
(Release 13 standard)
	800MHz
/900MHz
	DL: <26kbps
UL: <62kbps
	for transmit
 for receive
 for idle
	Typical assumption
(Table 7.2.4.5-1 in TR 45.820 V13.1.0)

	[x6]
	NB-IoT 
(a commercially available device)
	800MHz
	N.A.
	for transmit
 for receive
 for idle
	UL Max. TBS: 1000 bits
DL Max. TBS :680 bits

	[x7]
	eMTC 

	1.08MHz
	1Mbps
	for transmit
 for receive
 for idle
	Typical IoT smart city use cases

	[x8]
	LoRa (only transmit 32bits sensor data)
	868MHZ
	0.08kbps-1.33kbps
	for transmit

	

	[x9]
	Wi-Fi (802.11b)
	2.4GHz
	1-11Mbps
	for transmit
 for receive
 for idle
	

	[x10]
	Bluetooth
(802.15.1)
	2.4GHz
	1Mbps
	for transmit
 for receive
 for idle
	



X.2 Passive communication mode
In the passive communication mode, the device is powered by the electromagnetic energy transmitted from the transceiver and therefore, need no internal power source. 
Generally, there are two techniques that can achieve passive communication, which are inductive coupling and backscatter. However, inductive coupling relies on the magnetic field of the transceiver, which means that this coupling only occurs in the near-field, thus, the operating range of this technique is usually shorter than 1m. Inductive coupling technology can barely satisfy the potential requirements and KPIs (such as the communication range) have been proposed in Ambient IoT study. Because of the reason above, in this text, we will focus on the other passive communication technology – Backscatter.
A backscatter device modulates and reflects received RF signals to transmit data instead of generating RF signals by itself. The operating range of backscatter is typically from 5m-10m and could be further extend if advance techniques are employed. As a result, backscatter has found many useful applications in practice such as RFID (Radio Frequency Identification) to achieve ultra-low power communication. 
Since a backscatter device only transmit data using the incident signal when inquired by backscatter transceivers. It has no active RF components and as a result can be made to have miniature hardware with extremely low power consumption, i.e., not larger than tens of μW. Some examples of power consumption of different passive communication devices are listed in Table x-2-1. 
Table x-2-1 Power Consumption of Different Passive Communication Devices
	Ref.
	Device Type
	Center Freq.
	UL Data Rate
	Power Consumption for Comm.

	[X11]
	RIFD Tag (CMOS 0.18 μm process)
	UHF
	




40-640kbps
	

	[x12]
	RIFD Tag (CMOS 0.13 μm process)
	900MHz
	
	

	[x13]
	RFID Tag (CMOS 0.13 μm process with sensor interface)
	900MHz
	
	

	[x14]
	RFID Tag (CMOS 0.5 μm, Schottky diodes)
	900MHz
	
	

	[x15]
	RIFD Tag (CMOS 0.18 μm process)
	915MHz
	
	

	[x16]
	RFID Tag (CMOS 0.35 μm process)
	UHF
	
	

	[x17]
	RFID Tag (CMOS 0.18 μm process with pressure sensor)
	UHF
	
	[bookmark: OLE_LINK1]

	[x18]
	LoRa Backscatter Device
	900MHz
	18bps-37.5kbps
	

	[x19]
	Passive Wi-Fi (802.11b)
	2.4GHz
	1-11Mbps
	

	[x20]
	Bluetooth Backscatter Tag (CMOS 65 nm process)
	2.4GHz
	1Mbps
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