3G TS xx.xxx V1.0.1 (2000-05-26)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Cellular Text Telephone Modem;
Description of the fixed point C-Code

(3G TS xx.xxx version 1.0.1)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Reference

Keywords

3GPP, SA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Contents

51
Scope

2
Normative references
5
3
Definitions and Abbreviations
6
4
C code structure
6
4.1
Contents of the C source code
6
4.2
Program execution
7
4.3
Code hierarchy
9
4.3.1
Initialization routines
9
4.3.2
Signal Processing Functions
10
4.4
Description of constants used in the C-code
11
4.5
Type Definitions
11
4.6
Functions of the C Code
12
5
Annex A: Change history
20
6
History
20

Foreword

This Technical Description has been produced by Ericsson Inc., for the T1P1.5 Working Group.

The present document provides C-code for the Enhanced Modem Tone solution for reliable transmission of TTY text messages via the speech channel of cellular or PSTN networks
The contents of the present document are subject to continuing work within the T1P1 WG and may change following formal T1P1 approval. Should the T1P1 WG modify the contents of this TD, it will be re-released by the T1P1 WG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to 3GPP for information;

2
presented to 3GPP for approval;

3
Indicates 3GPP approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the specification;

Scope

This Technical Standard (TS) contains an electronic copy of the ANSI‑C code for the Cellular Text Telephone Modem (CTM) for reliable transmission of TTY text messages via the speech channel of cellular or PSTN networks.

1 Normative references

This TS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

[1] 3G TS xx.xxx, Cellular Text Telephone Modem; General Description

Definitions and Abbreviations

For the purposes of this TS, the following abbreviations apply:

CTM
Cellular Text Telephone Modem

FEC
Forward Error Correction

FSK
Frequency Shift Key

HCO
Hearing Carry Over, (individual may be able to hear, but cannot speak) Alternating of sending speech and text.

PCM
Pulse Code Modulation

RX
Receive

TX
Transmit

TDD
Telecommunication Device for the Deaf (hearing Impaired and speech impaired individuals)

TTY
Text Teletype Device

VAD
Voice Activity Detection

VCO
Voice Carry Over, (individual may be able to speak, but cannot hear) Alternating sending of speech and text

2
C code structure

This clause gives an overview of the structure of the bit‑exact C code and provides an overview of the contents and organization of the C code attached to this document.

The C code has been verified on the following systems:

· Sun Microsystems workstations using the Gnu C Compiler (gcc version 2.7.2.3) and GNU Make 3.77;

· IBM PC/AT compatible computers with Windows NT 4.0 operating system and Microsoft Visual C++ 6.0 compiler;

2.1 Contents of the C source code

The C code distribution has all files in the root level.

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files.

Makefiles are provided for the platforms in which the C code has been verified (listed above). They are called “Makefile” for GNU Make and “Makefile.vc” for Microsoft Visual C++.

For the Sun Microsystems platform, an example shell script for a transmission via two signal adaptation modules is given in "test_adaptation_switch". For the Microsoft Windows platform, no shell script of batch program is provided.

The software can be compiled using the commands

make all or gmake all in case of Gnu Make

nmake /f Makefile.vc in case of Microsoft Visual C++.

The executables are compiled into the directory ./solaris (in case of Gnu Make) or into the actual directory in case of Microsoft Visual C++.

2.2 Program execution

The CTM signal adaptation module is implemented in the execuable adaptation_switch (in case of Sun Solaris platform) or adaptation_switch.exe (in case of the Micorsoft Windows platform).

The program should be called like:

adaptation_switch -ctmin <file> -ctmout <file>
 -baudotin <file> -baudotout <file>

using the following parameters:

 -ctmin <input_file> input file with CTM signal

 -ctmout <output_file> output file for CTM signal

 -baudotin <input_file> input file with Baudot Tones

 -baudotout <output_file> output file for Baudot Tones

All files contain 16-bit linear encoded PCM audio samples, which are swapped according to the platform’s endian type (Sun Microsystems platforms use big endian, Intel platforms use little endian). An example file containing a Baudot Code modem signal (big endian) is provided in baudot.pcm.

Due to the fact that the signal adaptation module expects a successful negotiation before Baudot Code signals can be converted to CTM signals, the signal adaptation module has to be executed several times in two instances in order to execute a successful negotiation. For the Sun Microsystems platform, a shell script test_adaptation_switch is provided for executing the following structure:

 ----------- ctm_forward -----------

 baudot.pcm --->| | ---------------->| |---> baudot_out.pcm

 | adapt#1 | | adapt#2 |

 /dev/null <---| | <----------------| |<--- /dev/zero

 ----------- ctm_backward -----------

First, the adaptation module #1 is executed. At this first run, the signal ctm_backward is not known. Therefore, the negotiation does not get a positive acknowledge, so that the transmission falls back to Baudot Tones.

Then signal adaptation module #2 is executed for the first time.

After that, adaptation module #1 is executed for the second time. With this second run, the signal ctm_backward is valid. Therefore, the negotiation receives a valid acknowledge, so that CTM signals are transmitted.

At last, adaptation module #2 is executed for the second time. With this run, adaptation module #2 receives a valid CTM signal so that the baudot_out signal can be generated.

Using the Baudot Code signal that is privided in the file baudot.pcm, the test script should generate a valid file baudot_out.pcm, which should be de understood by any Baudot Code TTY terminal. In the second pass (i.e. in the fouth executaion of adaptation_switch), the adaptation module adapt#2 should generate the following text output:

**

 Adaptation between Baudot Signals and Cellular Text Telephone Modem (CTM)

 signals with automatic switching between voice and data transmission

 supporting Voice Carry Over / Hearing Carry Over (VCO/HCO)

 Copyright (c) Ericsson Eurolab Deutschland GmbH, 1999, 2000

 (use option -h for help)

**

>>> CTM from far-end detected! <<<

>>> Request From Far-End Detected! <<<

>>> Acknowledge Burst generated! <<<

SUPPORT FOR DEAF OR HEARING IMPAIRED PERSONS VIA THE

MOBILE COMMUNICATION NETWORKS RECEIVED RECENTLY HIGH

ATTENTION IN THE US. ERICSSON WELCOMES ALL ATTEMPTS TO

IMPROVE THE SITUATION FOR THESE PERSONS.

Code hierarchy

This section gives an overview of the hierachy how the functions are used in the signal adaptation module. All standard C functions: printf(), fwrite(), etc. have been omitted. Also, all functions related to the asynchonous transfer between the signal processing functions by means of FIFO buffers (Shortint_fifo_push, Shortint_fifo_pop, etc,) appear in the lists.

2.2.1 Initialization routines

The following functions are called for the initialization of the signal adaptation module.

· init_baudot_tonedemod()

· init_baudot_tonemod()

· init_ctm_transmitter()

· init_interleaver()

· m_sequence()

· init_ctm_receiver()

· init_tonedemod()

· sin_fip()

· init_interleaver()

· m_sequence()

· init_deinterleaver()

· init_wait_for_sync()

· m_sequence()

Signal Processing Functions

The following functions are called during the main signal processing loop.

· baudot_tonedemod()

· iir_filt()

· ctm_receiver

· calc_mute_positions()

· tonedemod()

· rotate_right()

· rotate_left()

· wait_for_sync()

· reinit_deinterleaver()

· diag_deinterleaver()

· shift_deinterleaver()

· mutingRequired()

· fec_dec()

· reinit_wait_for_sync()

· reinit_deinterleaver()

· baudot_tonemod()

· ctm_transmitter()

· calc_mute_positions()

· fec_enc()

· reinit_interleaver()

· mutingRequired()

· diag_interelaver()

· generate_resync_sequence()

· m_sequence()

· diag_interleaver()

· diag_interleaver_flush()

· tonemod()

Description of global constants used in the C-code

The following constants are defined in the file ctm_defines.h
Constant
Value
Description

CTM_AMP
32000
Amplitude of the CTM signals
MAX_DUMMY_CHAR
3
Number of Dummy Characters at End of Burst
CHC_RATE
7
Rate of the Error Protection
SYMB_LEN
40
Length of one CTM symbol
THRESHOLD_RELIABILITY_FOR_SUPPRESSING_OUTPUT
100
Characters with lower reliability are suppressed
THRESHOLD_RELIABILITY_FOR_XCORR
200
Bits with lower reliability don’t contribute to xcorr
THRESHOLD_RELIABILITY_FOR_GOING_OFFLINE
100
Threshold for regarding a bit as unreliable
MAX_NUM_UNRELIABLE_GROSS_BITS
1000
Receiver goes offline afer 1000 unreliable bits
NUM_BITS_GUARD_INTERVAL
48
Number of muted bits between two bursts
WAIT_SYNC_REL_THRESHOLD_1
14745
(=0.45) rel. threshold for preamble
WAIT_SYNC_REL_THRESHOLD_2
21300
(=0.65) dto. in case that RX is already online
BITS_PER_CHAR
6
bits per character for CTM
GUARD_BIT_SYMBOL
10
magic number indicating that a bit shall be muted
LENGTH_TONE_VEC
160
frame size
intlvB
8
Interleaver block length (number of rows)
intlvD
3
Interleaver block distance (interlace factor)
demodSyncLns
1
Number of demodulator sync lines
deintSyncLns
0
Number of deinterleaver sync lines
ttyCodeShiftLtrs
31
Baudot Shift symbol
ttyCodeShiftFigs
27
Baudot Shift Symbol
NUM_MUTE_ROWS
4
Number of Intl. rows that shall be muted
RESYNC_SEQ_LENGTH
32
length of the resynchronization sequence,

must be a multiple of 8
NUM_BITS_BETWEEN_RESYNC
368
Distance between two resync sequences, the value

NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH

must be a multiple of CHC_RATE, intlvB, and

BITS_PER_CHAR, and must be greater than

intlvB*((intlvB-1)*intlvD+NUM_MUTE_ROWS
RESYNC_REL_THRESHOLD
27197
Threshold for Resynchronization (=0.83)
CTM_TIMEOUT
40
Number of 20ms-frames for negotiation

BAUDOT_NUM_INFO_BITS
5
number of information bits per Baudot character
BAUDOT_SHIFT_FIGURES
27
code of shift to figures symbol
BAUDOT_SHIFT_LETTERS
31
code of shift to letters symbol
BAUDOT_BIT_DURATION
176
must be 176 (for 45.45 baud) or 160 (50 baud)
BAUDOT_LP_FILTERORDER
1
Order of the low-pass filters in function

baudot_tonedemod()
BAUDOT_BP_FILTERORDER
2
Order of the according band-pass filters, must

be equal to 2*BAUDOT_BP_FILTERORDER

The software has also been tested with the following variations of the parameters:

· intlvD=2 or intlvD=4 instead of intlvD=3
· SYMB_LEN=32 instead of SYMB_LEN=40
· CHC_RATE=5 instead of CHC_RATE=7
Note that if CHC_RATE is modified, the constant NUM_BITS_BETWEEN_RESYNC has to be adjusted in order to fulfill the constraint that NUM_BITS_BETWEEN_RESYNC must be a multiple of CHC_RATE, intlvB, and BITS_PER_CHAR. The software has been tested with the combination CHC_RATE=5 and NUM_BITS_BETWEEN_RESYNC=392
2.3 Type Definitions

In order to make the C code platform‑independent, the following type definitions have been used, which are defined in typedefs.h:

defined type meaning corresponding constants

--

Char character (none)

Bool boolean true, false

Shortint 16-bit signed minShortint, maxShortint

Longint 32-bit signed minLongint, maxLongint

2.4 Functions of the C Code

void baudot_tonedemod(Shortint* toneVec, Shortint numSamples,

 fifo_state_t* ptrOutFifoState,

 baudot_tonedemod_state_t* state);

Purpose:
Demodulator for Baudot Tones

Defined in:
baudot_functions.c

Input Variables:

toneVec
Vector containing the input audio signal

numSamples
Length of toneVec

Input/Output Variables:

ptrOutFifoState
Pointer to the state of the output shift register containing the demodulated TTY codes

state
Pointer to the state variable of baudot_tonedemod()

void baudot_tonemod(Shortint inputTTYcode,

 Shortint *outputToneVec,

 Shortint lengthToneVec,

 Shortint *ptrNumBitsStillToModulate,

 baudot_tonemod_state_t* state);

Purpose:
Modulator for Baudot Tones

Defined in:
baudot_functions.c

Input Variables:

inputTTYcode
TTY code of the character that has to be modulated. inputTTYcode must be in the range 0...63, otherwise it is assumed that there is no character to modulate.

lengthToneVec
Indicates how many samples have to be generated.

Output Variables:

outputToneVec
Vector where the output samples are written to.

ptrNumBitsStillToModulate
Indicates how many bits are still in the fifo buffer.

Input/Output Variables:

state
Pointer to the state variable of baudot_tonedemod()

void calc_mute_positions(Shortint *mute_positions,

 Shortint num_rows_to_mute,

 Shortint start_position,

 Shortint B,

 Shortint D);

Purpose:
Calculation of the indices of the bits that have to be muted within one burst. The indices are returned in the vector mute_positions.

Defined in:
init_interleaver.c

Shortint convertChar2ttyCode(char inChar);

Purpose:
Conversion from character into TTY code

Defined in:
baudot_functions.c

Input Variables:

inChar
charcater that shall be converted

Return Value:
baudot code of the input or -1 in case that inChar is not valid (e.g. inChar=='\0')

char convertTTYcode2char(Shortint ttyCode);

Purpose:
Conversion from TTY code into Character

Defined in:
baudot_functions.c

Input Variables:

ttyCode
Baudot code (must be within the range 0...63) or -1 if there is nothing to convert

inChar
charcater that shall be converted

Return Value:

character (or '\0' if ttyCode is not valid)

void diag_deinterleaver(Shortint *out,

 Shortint *in,

 Shortint num_valid_bits,

 interleaver_state_t *intl_state);

Purpose:
Corresponding deinterleaver to diag_interleaver. An arbitrary number of bits can be interleaved, depending of the length of the vector "in". The vector "out", which must have the same length than "in", contains the interleaved samples. All states (memory etc.) of the interleaver are stored in the variable *intl_state. Therefore, a pointer to this variable must be handled to this function. This variable initially has to be initialized by the function init_interleaver, which offers also the possibility to specify the dimensions of the deinterleaver matrix.

Defined in:
diag_deinterleaver.c

void diag_interleaver(Shortint *out,

 Shortint *in,

 Shortint num_bits,

 interleaver_state_t *intl_state);

Purpose:
Diagonal (chain) interleaver, based on block-by-block processing. An arbitrary number of bits can be interleaved, depending of the value num_bits. The vector "out", which must have the same length than "in", contains the interleaved samples.
All states (memory etc.) of the interleaver are stored in the variable *intl_state. Therefore, a pointer to this variable must be handled to this function. This variable initially has to be initialized by the function init_interleaver(), which offers also the possibility to specify the dimensions of the interleaver matrix.

Defined in:
diag_interleaver.c

void diag_interleaver_flush(Shortint *out,

 Shortint *num_bits,

 interleaver_state_t *intl_state);

Purpose:
Execution of the diagonal (chain) interleaver without writing in new samples. The number of calculated output samples is returned via the value *num_bits.

Defined in:
diag_interleaver.c

void ctm_receiver(fifo_state_t* ptr_signal_fifo_state,

 fifo_state_t* ptr_output_char_fifo_state,

 rx_state_t* rx_state);

Purpose:
Runs the CTM Receiver for a block of (nominally) 160 samples. Due to the internal synchronization, the number of processed samples might vary between 156 and 164 samples. The input of the samples and the output of the decoded characters is handled via fifo buffers, which have to be initialized externally before using this function (see fifo.h for details).

Defined in:
ctm_receiver.c

input/output variables

ptr_signal_fifo_state
pointer to the fifo state for the input samples

ptr_output_char_fifo_state
pointer to the fifo state for the output characters

rx_state
pointer to the variable containing the receiver states

void ctm_transmitter(Shortint ttyCharCode,

 Shortint* txToneVec,

 tx_state_t* tx_state,

 Shortint *ptrNumBitsStillToModulate,

 Bool sineOutput);

Purpose:
Runs the CTM Transmitter for a block of 160 output samples, representing 8 gross bits.
The bits, which are modulated into tones, are taken from an internal fifo buffer. If the fifo buffer is empty, zero-valued samples are generated. The fifo buffer is filled with channel-encoded and interlaeved bits, which are generated internally by coding the actual input character. With each call of this function one or less input characters can be coded (if there is no character to code, set inputChar='\0'). In order to avoid an overflow of the internal fifo buffer, the variable *ptrNumBitsStillToModulate should be checked before calling this function.

Defined in:
ctm_transmitter.c

input variables:

ttyCharCode
TTY code of the character or -1 if there is no character to transmit

sineOutput
must be false in regular mode; if true, a pure sine output signal is generated

output variables:

txToneVec
output signal (vector of 160 samples)

input/output variables:

tx_state
pointer to the variable containing the transmitter states

void fec_dec(const Shortint *in,

 const Shortint numOutBits,

 const Shortint chcRate,

 Shortint *out);

Purpose:
Forward Error Correction Decoder

Defined in:
fec_dec.c

input variables:

in
Vector with gross bits

numOutBits
number of net bits that have to be decoded

chcRate
Rate 1/r of the error correction (e.g. 7 for r=1/7)

output variables:

out
output vector with net bits

void fec_enc(const Shortint *inBits,

 const Shortint numInBits,

 const Shortint chcRate,

 Shortint *outBits);

Purpose:
Forward Error Protection Encoder

Defined in:
fec_enc.c

input variables:

inBits
Vector with net bits

numOutBits
number of net bits that have to be encoded

chcRate
Rate 1/r of the error correction (e.g. 7 for r=1/7)

output variables:

out
output vector with gross bits

void generate_resync_sequence(Shortint *sequence);

Purpose:
Generation of the sequence for resynchronization. The length of the sequence is defined by the global constant RESYNC_SEQ_LENGTH. The vector sequence must be allocated accordingly before calling this function.

Defined in:
wait_for_sync.c

void init_baudot_tonedemod(baudot_tonedemod_state_t* state);

Purpose:
Initialization of the demodulator for Baudot Tones

Defined in:
baudot_functions.c

Input/Output Variables:

state
Pointer to the initialized state variable (must be allocated before calling init_baudot_tonedemod()

void init_baudot_tonemod(baudot_tonemod_state_t* state);

Purpose:
Initialization of the modulator for Baudot Tones

Defined in:
baudot_functions.c

Input/Output Variables:

state
Pointer to the initialized state variable (must be allocated before calling init_baudot_tonemod()

void init_deinterleaver(interleaver_state_t *intl_state,
 Shortint B, Shortint D);

Purpose:
Initialization of the deinterleaver.

Defined in:
init_interleaver.c

void init_ctm_receiver(rx_state_t* rx_state);

Purpose:
Initialization of the CTM Receiver.

Defined in:
ctm_receiver.c

output vaiables:

rx_state
pointer to a variable of rx_state_t containing the initialized states of the receiver

void init_ctm_transmitter(tx_state_t* tx_state);

Purpose:
Initialization of the CTM Transmitter

Defined in:
ctm_transmitter.c

input/output variables

tx_state
pointer to a variable of tx_state_t containing initialized states of the transmitter

void init_interleaver(interleaver_state_t *intl_state,

 Shortint B, Shortint D,

 Shortint num_sync_lines1, Shortint num_sync_lines2);

Purpose:
Function for initialization of diag_interleaver and diag_deinterleaver, respectively. The dimensions of the interleaver must be specified:
B = (horizontal) blocklength, D = (vertical distance)
According to this specifications, this function initializes a variable of type interleaver_state_t.
Additionally, this function adds two types of sync information to the bitstream. The first sync info is for the demodulator and consists of a sequence of alternating bits so that the tones produced by the modulator are not the same all the time. This is essential for the demodulator to find the transitions between adjacent bits. The bits for this demodulator synchronization simply precede the bitsteam.
The second sync info is for synchronizing the deinterleaver and of a m-sequence with excellent autocorrelation properties. These bits are positioned at the locations of the dummy bits, which are not used by the interleaver. In addition, even more bits for this can be spent by inserting additional sync bits, which preceed the interleaver's bitstrem. This is indicated by chosing num_sync_lines2>0.

Defined in:
init_interleaver.c

void init_tonedemod(demod_state_t *demod_state);

Purpose:
Initialization of one instance of the Tone Demodulator. The argument must contain a pointer to a variable of type demod_state_t, which contains all the memory of the tone demodulator. Each instance of tonedemod must have its own variable.

Defined In:
tonedemod.c

void init_wait_for_sync(wait_for_sync_state_t *ptr_wait_state,

 interleaver_state_t intl_state);

Purpose:
Initialization of the synchronization detector. Most properties are taken from intl_state, which is the state variable of the corresponding interleaver. Make sure that the interleaver is initialized before you initialize the sync detector.

Defined In:
wait_for_sync.c

Input Variables:

intl_state
state variable of the corresponding interleaver

Output Variables:

ptr_wait_state
pointer to the state variable of the sync detector

int main(int argc, const char** argv)

Purpose:
main function of the signal adaptation Module

Defined in:
adaptation_switch.c

Bool mutingRequired(Shortint actualIndex,

 Shortint *mute_positions,

 Shortint length_mute_positions);

Purpose:
Determines whether the actual bit has to be muted, i.e. whether it is contained in the vector mute_positions.

Defined in:
init_interleaver.c

void m_sequence(Shortint *sequence, Shortint length);

Purpose:
Calculates one period of an m-sequence (binary pseudo noise). The sequence is stored in the vector sequence, which must have a of (2^r)-1, where r is an integer number between 2 and 10. Therefore, with this release of m_sequence, sequences of length 3, 7, 15, 31, 63, 127, 255, 511, or 1023 can be generated. The resulting sequence is bipolar, i.e. it has values -1 and +1.

Defined in:
m_sequence.c

void reinit_deinterleaver(interleaver_state_t *intl_state);

Purpose:
Re-Initialization of the deinterleaver.

Defined in:
init_interleaver.c

void reinit_interleaver(interleaver_state_t *intl_state);

Purpose:
Re-initialization of the deinterleaver

Defined in:
init_interleaver.c

void reinit_wait_for_sync(wait_for_sync_state_t *ptr_wait_state);

Purpose:
Reinitialization of synchronization detector. This function is used in case that a burst has been finished and the transmitter has switched into idle mode. After calling reinit_wait_for_sync(), the function wait_for_sync() inhibits the transmission of the demodulated bits to the deinterleaver, until the next synchronization sequence can be detected.

Defined In:
wait_for_sync.c

void shift_deinterleaver(Shortint shift,

 Shortint *insert_bits,

 interleaver_state_t *ptr_state);

Purpose:
Shift of the deinterleaver buffer by <shift> samples.
shift>0 -> shift to the right
shift<0 -> shift to the left
The elements from <insert_bits> are inserted into the resulting space. The vector <insert_bits> must have at least abs(shift) elements.

Defined in:
diag_deinterleaver.c

Shortint sin_fip(Shortint phase_value);

Purpose:
Fixed Point sine function, returns the following value:
sin_fip(phase_value)
 = round(32767*sin(2*pi*50/8000*phase_value))
phase_value must be within the range [0...159]. This function can be used for calculating sine waveforms of frequencies that are integer-multiples of 50 Hz

Defined in:
sin_fip.c

void tonedemod(Shortint *bits_out,

 Shortint *rx_tone_vec,

 Shortint num_in_samples,

 Shortint *ptr_sampling_correction,

 demod_state_t *demod_state);

Purpose:
Tone Demodulator for the CTM using one out of four tones for coding two bits in parallel within a frame of 40 samples (5 ms).
The function has to be called for every frame of 40 samples of the received tone sequence. However, in order to track a non-ideal of the transmitter's and the receiver's clock frequencies, one frame mit be shorter (only 39 samples) or longer (41 samples). The of the following frame is indicated by the variable *sampling_correction, which is calculated and returned by this function.

Defined in:
tonedemod.c

input vaiables:

bits_out
contains the 39, 40 or 41 actual samples of the received tones; the bits are soft bits, i.e. they are in the range between -1.0 and 1.0, where the magnitude serves as reliability information

num_in_samples
number of valid samples in bits_out

output vaiables:

bits_out
contains the two actual decoded soft bits

sampling_correction
is either -1, 0, or 1 and indicates whether the next frame shall contain 39, 40, or 41 samples.

demod_state
contains all the memory of tonedemod. Must be initialized using the function init_tonedemod()

void tonemod(Shortint *tones_out,

 Shortint *bits_in,

 Shortint num_samples_tones_out,

 Shortint num_bits_in);

Purpose:
Modulator for the CTM. The input vector bits_in must contain the bits that have to be transmitted. The length of bits_in must be even because always two bits are coded in parallel. Bits are either unpipolar (i.e. {0, 1}) or biploar (i.e. {-1, +1)}. The length of the output vector tones_out must be 20 times longer than the length of bits_in, since each pair of two bits is coded within a frame of 40 audio samples.

Defined In:
tonemod.c

Bool wait_for_sync(Shortint *out_bits,

 Shortint *in_bits,

 Shortint num_in_bits,

 Shortint *ptr_num_valid_out_bits,

 Shortint *ptr_wait_interval,

 Shortint *ptr_resync_detected,

 wait_for_sync_state_t *ptr_wait_state);

Purpose:
This function shall be inserted between the demodulator and the deinterleaver. The function searches the synchronization bitstream and cuts all received heading bits. As long as no sync is found, this function returns *ptr_num_valid_out_bits=0 so that the main program is able to skip the deinterleaver as long as no valid bits are available. If the sync info is found, the complete internal shift register is copied to out_bits so that wait_for_sync can be transparent and causes no delay for future calls. *ptr_wait_interval returns a value of 0 after such a synchronization indicating that this was a regular synchronization.

Regularly, the initial preamble of each burst is used as sync info. In addition, the resynchronization sequences, which occur periodically during a running burst, are used as "back-up" synchronization in order to avoid loosing all characters of a burst, if the preamble was not detected.

If the receiver is already synchronized on a running burst and the resynchronization sequence is detected, *ptr_resync_detected returns a non-negative value in the range 0...num_in_bits-1 indicating at which bit the resynchronization sequence has been detected. If no resynchronization has been detected, *ptr_resync_detected is -1. If the receiver is NOT synchronized and the resynchronization sequence is detected, the resynchronization sequence is used as initial synchronization. *ptr_wait_interval returns a value of 32 in this case due to the different alignments of the synchronizations based on the preamble or the resynchronization sequence, respectively.

In order to carry all bits, the minimum length of out_bits must be
in_bits.size()-1 + ptr_wait_state->shift_reg_length

Defined In:
wait_for_sync.c

InputVariables:

in_bits
Vector with bits from the demodulator. The vector's length can be arbitrarily chosen, i.e. according to the block length of the signal processing of the main program.

num_in_bits
length of vector in_bits

Output Variables:

out_bits
Vector with bits for the deinterleaver. The number of the valid bits is indicated by *ptr_num_valid_out_bits.

*ptr_num_valid_out_bits
returns the number of valid output bits

*ptr_wait_interval
returns either 0 or 32

*ptr_resync_detected
returns a value –1, 0,...num_in_bits

Input/Output Variables:

ptr_wait_state state information. This variable must be initialized with init_wait_for_sync().

Annex A:
Change history

Document history

V. 1.0.0
April 17, 2000
First Draft

V. 1.0.1
May 26, 2000
improved resynchronitazion; supports symbol lengths of 40 or 32

3 History

Document history

3G TS xx.xxx V1.0.1 (2000-05-26)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Cellular Text Telephone Modem;
Description of the fixed point C-Code

(3G TS xx.xxx version 1.0.1)

[image: image2.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Reference

Keywords

3GPP, SA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Contents

51
Scope

2
Normative references
5
3
Definitions and Abbreviations
6
4
C code structure
6
4.1
Contents of the C source code
6
4.2
Program execution
7
4.3
Code hierarchy
9
4.3.1
Initialization routines
9
4.3.2
Signal Processing Functions
10
4.4
Description of constants used in the C-code
11
4.5
Type Definitions
11
4.6
Functions of the C Code
12
5
Annex A: Change history
20
6
History
20

Foreword

This Technical Description has been produced by Ericsson Inc., for the T1P1.5 Working Group.

The present document provides C-code for the Enhanced Modem Tone solution for reliable transmission of TTY text messages via the speech channel of cellular or PSTN networks
The contents of the present document are subject to continuing work within the T1P1 WG and may change following formal T1P1 approval. Should the T1P1 WG modify the contents of this TD, it will be re-released by the T1P1 WG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to 3GPP for information;

2
presented to 3GPP for approval;

3
Indicates 3GPP approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the specification;

4 Scope

This Technical Standard (TS) contains an electronic copy of the ANSI‑C code for the Cellular Text Telephone Modem (CTM) for reliable transmission of TTY text messages via the speech channel of cellular or PSTN networks.

5 Normative references

This TS incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this TS only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

[2] 3G TS xx.xxx, Cellular Text Telephone Modem; General Description

6 Definitions and Abbreviations

For the purposes of this TS, the following abbreviations apply:

CTM
Cellular Text Telephone Modem
FEC
Forward Error Correction

FSK
Frequency Shift Key

HCO
Hearing Carry Over, (individual may be able to hear, but cannot speak) Alternating of sending speech and text.

PCM
Pulse Code Modulation

RX
Receive

TX
Transmit

TDD
Telecommunication Device for the Deaf (hearing Impaired and speech impaired individuals)

TTY
Text Teletype Device

VAD
Voice Activity Detection

VCO
Voice Carry Over, (individual may be able to speak, but cannot hear) Alternating sending of speech and text

7
C code structure

This clause gives an overview of the structure of the bit‑exact C code and provides an overview of the contents and organization of the C code attached to this document.

The C code has been verified on the following systems:

· Sun Microsystems workstations using the Gnu C Compiler (gcc version 2.7.2.3) and GNU Make 3.77;

· IBM PC/AT compatible computers with Windows NT 4.0 operating system and Microsoft Visual C++ 6.0 compiler;

7.1 Contents of the C source code

The C code distribution has all files in the root level.

The distributed files with suffix "c" contain the source code and the files with suffix "h" are the header files.

Makefiles are provided for the platforms in which the C code has been verified (listed above). They are called “Makefile” for GNU Make and “Makefile.vc” for Microsoft Visual C++.

For the Sun Microsystems platform, an example shell script for a transmission via two signal adaptation modules is given in "test_adaptation_switch". For the Microsoft Windows platform, no shell script of batch program is provided.

The software can be compiled using the commands

make all or gmake all in case of Gnu Make

nmake /f Makefile.vc in case of Microsoft Visual C++.

The executables are compiled into the directory ./solaris (in case of Gnu Make) or into the actual directory in case of Microsoft Visual C++.

7.2 Program execution

The CTM signal adaptation module is implemented in the execuable adaptation_switch (in case of Sun Solaris platform) or adaptation_switch.exe (in case of the Micorsoft Windows platform).

The program should be called like:

adaptation_switch -ctmin <file> -ctmout <file>
 -baudotin <file> -baudotout <file>

using the following parameters:

 -ctmin <input_file> input file with CTM signal

 -ctmout <output_file> output file for CTM signal

 -baudotin <input_file> input file with Baudot Tones

 -baudotout <output_file> output file for Baudot Tones

All files contain 16-bit linear encoded PCM audio samples, which are swapped according to the platform’s endian type (Sun Microsystems platforms use big endian, Intel platforms use little endian). An example file containing a Baudot Code modem signal (big endian) is provided in baudot.pcm.

Due to the fact that the signal adaptation module expects a successful negotiation before Baudot Code signals can be converted to CTM signals, the signal adaptation module has to be executed several times in two instances in order to execute a successful negotiation. For the Sun Microsystems platform, a shell script test_adaptation_switch is provided for executing the following structure:

 ----------- ctm_forward -----------

 baudot.pcm --->| | ---------------->| |---> baudot_out.pcm

 | adapt#1 | | adapt#2 |

 /dev/null <---| | <----------------| |<--- /dev/zero

 ----------- ctm_backward -----------

First, the adaptation module #1 is executed. At this first run, the signal ctm_backward is not known. Therefore, the negotiation does not get a positive acknowledge, so that the transmission falls back to Baudot Tones.

Then signal adaptation module #2 is executed for the first time.

After that, adaptation module #1 is executed for the second time. With this second run, the signal ctm_backward is valid. Therefore, the negotiation receives a valid acknowledge, so that CTM signals are transmitted.

At last, adaptation module #2 is executed for the second time. With this run, adaptation module #2 receives a valid CTM signal so that the baudot_out signal can be generated.

Using the Baudot Code signal that is privided in the file baudot.pcm, the test script should generate a valid file baudot_out.pcm, which should be de understood by any Baudot Code TTY terminal. In the second pass (i.e. in the fouth executaion of adaptation_switch), the adaptation module adapt#2 should generate the following text output:

**

 Adaptation between Baudot Signals and Cellular Text Telephone Modem (CTM)
 signals with automatic switching between voice and data transmission
 supporting Voice Carry Over / Hearing Carry Over (VCO/HCO)

 Copyright (c) Ericsson Eurolab Deutschland GmbH, 1999, 2000

 (use option -h for help)

**

>>> CTM from far-end detected! <<<
>>> Request From Far-End Detected! <<<

>>> Acknowledge Burst generated! <<<

SUPPORT FOR DEAF OR HEARING IMPAIRED PERSONS VIA THE

MOBILE COMMUNICATION NETWORKS RECEIVED RECENTLY HIGH

ATTENTION IN THE US. ERICSSON WELCOMES ALL ATTEMPTS TO

IMPROVE THE SITUATION FOR THESE PERSONS.

7.3 Code hierarchy

This section gives an overview of the hierachy how the functions are used in the signal adaptation module. All standard C functions: printf(), fwrite(), etc. have been omitted. Also, all functions related to the asynchonous transfer between the signal processing functions by means of FIFO buffers (Shortint_fifo_push, Shortint_fifo_pop, etc,) appear in the lists.

7.3.1 Initialization routines

The following functions are called for the initialization of the signal adaptation module.

· init_baudot_tonedemod()

· init_baudot_tonemod()

· init_ctm_transmitter()

· init_interleaver()

· m_sequence()

· init_ctm_receiver()

· init_tonedemod()

· sin_fip()

· init_interleaver()

· m_sequence()

· init_deinterleaver()

· init_wait_for_sync()

· m_sequence()

·
·
7.3.2 Signal Processing Functions

The following functions are called during the main signal processing loop.

· baudot_tonedemod()

· iir_filt()

· ctm_receiver
· calc_mute_positions()

· tonedemod()

· rotate_right()

· rotate_left()

· wait_for_sync()

· reinit_deinterleaver()

·
· diag_deinterleaver()

· shift_deinterleaver()

· mutingRequired()

· fec_dec()

· reinit_wait_for_sync()

· reinit_deinterleaver()

· baudot_tonemod()

· ctm_transmitter()

· calc_mute_positions()

· fec_enc()

· reinit_interleaver()

· mutingRequired()

· diag_interelaver()

· generate_resync_sequence()

· m_sequence()

· diag_interleaver()

· diag_interleaver_flush()

· tonemod()

7.4 Description of global constants used in the C-code

The following constants are defined in the file ctm_defines.h
Constant
Value
Description

CTM_AMP
32000
Amplitude of the CTM signals
MAX_DUMMY_CHAR
3
Number of Dummy Characters at End of Burst
CHC_RATE
7
Rate of the Error Protection
SYMB_LEN
40
Length of one CTM symbol
THRESHOLD_RELIABILITY_FOR_SUPPRESSING_OUTPUT
100
Characters with lower reliability are suppressed
THRESHOLD_RELIABILITY_FOR_XCORR
200
Bits with lower reliability don’t contribute to xcorr
THRESHOLD_RELIABILITY_FOR_GOING_OFFLINE
100
Threshold for regarding a bit as unreliable
MAX_NUM_UNRELIABLE_GROSS_BITS
1000
Receiver goes offline afer 1000 unreliable bits
NUM_BITS_GUARD_INTERVAL
48
Number of muted bits between two bursts
WAIT_SYNC_REL_THRESHOLD_1
14745
(=0.45) rel. threshold for preamble
WAIT_SYNC_REL_THRESHOLD_2
21300
(=0.65) dto. in case that RX is already online
BITS_PER_CHAR
6
bits per character for CTM
GUARD_BIT_SYMBOL
10
magic number indicating that a bit shall be muted
LENGTH_TONE_VEC
160
frame size
intlvB
8
Interleaver block length (number of rows)
intlvD
3
Interleaver block distance (interlace factor)
demodSyncLns
1
Number of demodulator sync lines
deintSyncLns
0
Number of deinterleaver sync lines
ttyCodeShiftLtrs
31
Baudot Shift symbol
ttyCodeShiftFigs
27
Baudot Shift Symbol
NUM_MUTE_ROWS
4
Number of Intl. rows that shall be muted
RESYNC_SEQ_LENGTH
32
length of the resynchronization sequence,

must be a multiple of 8
NUM_BITS_BETWEEN_RESYNC
368
Distance between two resync sequences, the value

NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH

must be a multiple of CHC_RATE, intlvB, and

BITS_PER_CHAR, and must be greater than

intlvB*((intlvB-1)*intlvD+NUM_MUTE_ROWS
RESYNC_REL_THRESHOLD
27197
Threshold for Resynchronization (=0.83)
CTM_TIMEOUT
40
Number of 20ms-frames for negotiation

BAUDOT_NUM_INFO_BITS
5
number of information bits per Baudot character
BAUDOT_SHIFT_FIGURES
27
code of shift to figures symbol
BAUDOT_SHIFT_LETTERS
31
code of shift to letters symbol
BAUDOT_BIT_DURATION
176
must be 176 (for 45.45 baud) or 160 (50 baud)
BAUDOT_LP_FILTERORDER
1
Order of the low-pass filters in function

baudot_tonedemod()
BAUDOT_BP_FILTERORDER
2
Order of the according band-pass filters, must

be equal to 2*BAUDOT_BP_FILTERORDER

The software has also been tested with the following variations of the parameters:
· intlvD=2 or intlvD=4 instead of intlvD=3
· SYMB_LEN=32 instead of SYMB_LEN=40
· CHC_RATE=5 instead of CHC_RATE=7
Note that if CHC_RATE is modified, the constant NUM_BITS_BETWEEN_RESYNC has to be adjusted in order to fulfill the constraint that NUM_BITS_BETWEEN_RESYNC must be a multiple of CHC_RATE, intlvB, and BITS_PER_CHAR. The software has been tested with the combination CHC_RATE=5 and NUM_BITS_BETWEEN_RESYNC=392
7.5 Type Definitions

In order to make the C code platform‑independent, the following type definitions have been used, which are defined in typedefs.h:

defined type meaning corresponding constants

--

Char character (none)

Bool boolean true, false

Shortint 16-bit signed minShortint, maxShortint

Longint 32-bit signed minLongint, maxLongint

7.6 Functions of the C Code

void baudot_tonedemod(Shortint* toneVec, Shortint numSamples,

 fifo_state_t* ptrOutFifoState,

 baudot_tonedemod_state_t* state);

Purpose:
Demodulator for Baudot Tones

Defined in:
baudot_functions.c

Input Variables:

toneVec
Vector containing the input audio signal

numSamples
Length of toneVec

Input/Output Variables:

ptrOutFifoState
Pointer to the state of the output shift register containing the demodulated TTY codes

state
Pointer to the state variable of baudot_tonedemod()

void baudot_tonemod(Shortint inputTTYcode,

 Shortint *outputToneVec,

 Shortint lengthToneVec,

 Shortint *ptrNumBitsStillToModulate,

 baudot_tonemod_state_t* state);

Purpose:
Modulator for Baudot Tones

Defined in:
baudot_functions.c

Input Variables:

inputTTYcode
TTY code of the character that has to be modulated. inputTTYcode must be in the range 0...63, otherwise it is assumed that there is no character to modulate.

lengthToneVec
Indicates how many samples have to be generated.

Output Variables:

outputToneVec
Vector where the output samples are written to.

ptrNumBitsStillToModulate
Indicates how many bits are still in the fifo buffer.

Input/Output Variables:

state
Pointer to the state variable of baudot_tonedemod()

void calc_mute_positions(Shortint *mute_positions,

 Shortint num_rows_to_mute,

 Shortint start_position,

 Shortint B,

 Shortint D);

Purpose:
Calculation of the indices of the bits that have to be muted within one burst. The indices are returned in the vector mute_positions.

Defined in:
init_interleaver.c

Shortint convertChar2ttyCode(char inChar);

Purpose:
Conversion from character into TTY code

Defined in:
baudot_functions.c

Input Variables:

inChar
charcater that shall be converted

Return Value:
baudot code of the input or -1 in case that inChar is not valid (e.g. inChar=='\0')

char convertTTYcode2char(Shortint ttyCode);

Purpose:
Conversion from TTY code into Character

Defined in:
baudot_functions.c

Input Variables:

ttyCode
Baudot code (must be within the range 0...63) or -1 if there is nothing to convert

inChar
charcater that shall be converted

Return Value:

character (or '\0' if ttyCode is not valid)

void diag_deinterleaver(Shortint *out,

 Shortint *in,

 Shortint num_valid_bits,

 interleaver_state_t *intl_state);

Purpose:
Corresponding deinterleaver to diag_interleaver. An arbitrary number of bits can be interleaved, depending of the length of the vector "in". The vector "out", which must have the same length than "in", contains the interleaved samples. All states (memory etc.) of the interleaver are stored in the variable *intl_state. Therefore, a pointer to this variable must be handled to this function. This variable initially has to be initialized by the function init_interleaver, which offers also the possibility to specify the dimensions of the deinterleaver matrix.

Defined in:
diag_deinterleaver.c

void diag_interleaver(Shortint *out,

 Shortint *in,

 Shortint num_bits,

 interleaver_state_t *intl_state);

Purpose:
Diagonal (chain) interleaver, based on block-by-block processing. An arbitrary number of bits can be interleaved, depending of the value num_bits. The vector "out", which must have the same length than "in", contains the interleaved samples.
All states (memory etc.) of the interleaver are stored in the variable *intl_state. Therefore, a pointer to this variable must be handled to this function. This variable initially has to be initialized by the function init_interleaver(), which offers also the possibility to specify the dimensions of the interleaver matrix.

Defined in:
diag_interleaver.c

void diag_interleaver_flush(Shortint *out,

 Shortint *num_bits,

 interleaver_state_t *intl_state);

Purpose:
Execution of the diagonal (chain) interleaver without writing in new samples. The number of calculated output samples is returned via the value *num_bits.

Defined in:
diag_interleaver.c

void ctm_receiver(fifo_state_t* ptr_signal_fifo_state,

 fifo_state_t* ptr_output_char_fifo_state,

 rx_state_t* rx_state);

Purpose:
Runs the CTM Receiver for a block of (nominally) 160 samples. Due to the internal synchronization, the number of processed samples might vary between 156 and 164 samples. The input of the samples and the output of the decoded characters is handled via fifo buffers, which have to be initialized externally before using this function (see fifo.h for details).

Defined in:
ctm_receiver.c

input/output variables

ptr_signal_fifo_state
pointer to the fifo state for the input samples

ptr_output_char_fifo_state
pointer to the fifo state for the output characters

rx_state
pointer to the variable containing the receiver states

void ctm_transmitter(Shortint ttyCharCode,

 Shortint* txToneVec,

 tx_state_t* tx_state,

 Shortint *ptrNumBitsStillToModulate,
 Bool sineOutput);
Purpose:
Runs the CTM Transmitter for a block of 160 output samples, representing 8 gross bits.
The bits, which are modulated into tones, are taken from an internal fifo buffer. If the fifo buffer is empty, zero-valued samples are generated. The fifo buffer is filled with channel-encoded and interlaeved bits, which are generated internally by coding the actual input character. With each call of this function one or less input characters can be coded (if there is no character to code, set inputChar='\0'). In order to avoid an overflow of the internal fifo buffer, the variable *ptrNumBitsStillToModulate should be checked before calling this function.

Defined in:
ctm_transmitter.c

input variables:

ttyCharCode
TTY code of the character or -1 if there is no character to transmit

sineOutput
must be false in regular mode; if true, a pure sine output signal is generated

output variables:

txToneVec
output signal (vector of 160 samples)

input/output variables:

tx_state
pointer to the variable containing the transmitter states

void fec_dec(const Shortint *in,

 const Shortint numOutBits,

 const Shortint chcRate,

 Shortint *out);

Purpose:
Forward Error Correction Decoder

Defined in:
fec_dec.c

input variables:

in
Vector with gross bits

numOutBits
number of net bits that have to be decoded

chcRate
Rate 1/r of the error correction (e.g. 7 for r=1/7)

output variables:

out
output vector with net bits

void fec_enc(const Shortint *inBits,

 const Shortint numInBits,

 const Shortint chcRate,

 Shortint *outBits);

Purpose:
Forward Error Protection Encoder

Defined in:
fec_enc.c

input variables:

inBits
Vector with net bits

numOutBits
number of net bits that have to be encoded

chcRate
Rate 1/r of the error correction (e.g. 7 for r=1/7)

output variables:

out
output vector with gross bits

void generate_resync_sequence(Shortint *sequence

);

Purpose:
Generation of the sequence for resynchronization. The length of the sequence is defined by the global constant RESYNC_SEQ_LENGTH. The vector sequence must be allocated accordingly before calling this function.
Defined in:
wait_for_sync.c

void init_baudot_tonedemod(baudot_tonedemod_state_t* state);

Purpose:
Initialization of the demodulator for Baudot Tones

Defined in:
baudot_functions.c

Input/Output Variables:

state
Pointer to the initialized state variable (must be allocated before calling init_baudot_tonedemod()

void init_baudot_tonemod(baudot_tonemod_state_t* state);

Purpose:
Initialization of the modulator for Baudot Tones

Defined in:
baudot_functions.c

Input/Output Variables:

state
Pointer to the initialized state variable (must be allocated before calling init_baudot_tonemod()

void init_deinterleaver(interleaver_state_t *intl_state,
 Shortint B, Shortint D);

Purpose:
Initialization of the deinterleaver.

Defined in:
init_interleaver.c

void init_ctm_receiver(rx_state_t* rx_state);

Purpose:
Initialization of the CTM Receiver.

Defined in:
ctm_receiver.c

output vaiables:

rx_state
pointer to a variable of rx_state_t containing the initialized states of the receiver

void init_ctm_transmitter(tx_state_t* tx_state);

Purpose:
Initialization of the CTM Transmitter

Defined in:
ctm_transmitter.c

input/output variables

tx_state
pointer to a variable of tx_state_t containing initialized states of the transmitter

void init_interleaver(interleaver_state_t *intl_state,

 Shortint B, Shortint D,

 Shortint num_sync_lines1, Shortint num_sync_lines2);

Purpose:
Function for initialization of diag_interleaver and diag_deinterleaver, respectively. The dimensions of the interleaver must be specified:
B = (horizontal) blocklength, D = (vertical distance)
According to this specifications, this function initializes a variable of type interleaver_state_t.
Additionally, this function adds two types of sync information to the bitstream. The first sync info is for the demodulator and consists of a sequence of alternating bits so that the tones produced by the modulator are not the same all the time. This is essential for the demodulator to find the transitions between adjacent bits. The bits for this demodulator synchronization simply precede the bitsteam.
The second sync info is for synchronizing the deinterleaver and of a m-sequence with excellent autocorrelation properties. These bits are positioned at the locations of the dummy bits, which are not used by the interleaver. In addition, even more bits for this can be spent by inserting additional sync bits, which preceed the interleaver's bitstrem. This is indicated by chosing num_sync_lines2>0.

Defined in:
init_interleaver.c

void init_tonedemod(demod_state_t *demod_state);

Purpose:
Initialization of one instance of the Tone Demodulator. The argument must contain a pointer to a variable of type demod_state_t, which contains all the memory of the tone demodulator. Each instance of tonedemod must have its own variable.

Defined In:
tonedemod.c

void init_wait_for_sync(wait_for_sync_state_t *ptr_wait_state,

 interleaver_state_t intl_state);

Purpose:
Initialization of the synchronization detector. Most properties are taken from intl_state, which is the state variable of the corresponding interleaver. Make sure that the interleaver is initialized before you initialize the sync detector.

Defined In:
wait_for_sync.c

Input Variables:

intl_state
state variable of the corresponding interleaver

Output Variables:

ptr_wait_state
pointer to the state variable of the sync detector

int main(int argc, const char** argv)

Purpose:
main function of the signal adaptation Module

Defined in:
adaptation_switch.c

Bool mutingRequired(Shortint actualIndex,

 Shortint *mute_positions,

 Shortint length_mute_positions);

Purpose:
Determines whether the actual bit has to be muted, i.e. whether it is contained in the vector mute_positions.

Defined in:
init_interleaver.c

void m_sequence(Shortint *sequence, Shortint length);

Purpose:
Calculates one period of an m-sequence (binary pseudo noise). The sequence is stored in the vector sequence, which must have a of (2^r)-1, where r is an integer number between 2 and 10. Therefore, with this release of m_sequence, sequences of length 3, 7, 15, 31, 63, 127, 255, 511, or 1023 can be generated. The resulting sequence is bipolar, i.e. it has values -1 and +1.

Defined in:
m_sequence.c

void reinit_deinterleaver(interleaver_state_t *intl_state);

Purpose:
Re-Initialization of the deinterleaver.

Defined in:
init_interleaver.c

void reinit_interleaver(interleaver_state_t *intl_state);

Purpose:
Re-initialization of the deinterleaver

Defined in:
init_interleaver.c

void reinit_wait_for_sync(wait_for_sync_state_t *ptr_wait_state);

Purpose:
Reinitialization of synchronization detector. This function is used in case that a burst has been finished and the transmitter has switched into idle mode. After calling reinit_wait_for_sync(), the function wait_for_sync() inhibits the transmission of the demodulated bits to the deinterleaver, until the next synchronization sequence can be detected.

Defined In:
wait_for_sync.c

void shift_deinterleaver(Shortint shift,

 Shortint *insert_bits,

 interleaver_state_t *ptr_state);

Purpose:
Shift of the deinterleaver buffer by <shift> samples.
shift>0 -> shift to the right
shift<0 -> shift to the left
The elements from <insert_bits> are inserted into the resulting space. The vector <insert_bits> must have at least abs(shift) elements.

Defined in:
diag_deinterleaver.c

Shortint sin_fip(Shortint phase_value);

Purpose:
Fixed Point sine function, returns the following value:
sin_fip(phase_value)
 = round(32767*sin(2*pi*50/8000*phase_value))
phase_value must be within the range [0...159]. This function can be used for calculating sine waveforms of frequencies that are integer-multiples of 50 Hz
Defined in:
sin_fip.c

void tonedemod(Shortint *bits_out,

 Shortint *rx_tone_vec,

 Shortint num_in_samples,

 Shortint *ptr_sampling_correction,

 demod_state_t *demod_state);

Purpose:
Tone Demodulator for the CTM using one out of four tones for coding two bits in parallel within a frame of 40 samples (5 ms).
The function has to be called for every frame of 40 samples of the received tone sequence. However, in order to track a non-ideal of the transmitter's and the receiver's clock frequencies, one frame mit be shorter (only 39 samples) or longer (41 samples). The of the following frame is indicated by the variable *sampling_correction, which is calculated and returned by this function.

Defined in:
tonedemod.c

input vaiables:

bits_out
contains the 39, 40 or 41 actual samples of the received tones; the bits are soft bits, i.e. they are in the range between -1.0 and 1.0, where the magnitude serves as reliability information

num_in_samples
number of valid samples in bits_out

output vaiables:

bits_out
contains the two actual decoded soft bits

sampling_correction
is either -1, 0, or 1 and indicates whether the next frame shall contain 39, 40, or 41 samples.

demod_state
contains all the memory of tonedemod. Must be initialized using the function init_tonedemod()

void tonemod(Shortint *tones_out,

 Shortint *bits_in,

 Shortint num_samples_tones_out,

 Shortint num_bits_in);

Purpose:
Modulator for the CTM. The input vector bits_in must contain the bits that have to be transmitted. The length of bits_in must be even because always two bits are coded in parallel. Bits are either unpipolar (i.e. {0, 1}) or biploar (i.e. {-1, +1)}. The length of the output vector tones_out must be 20 times longer than the length of bits_in, since each pair of two bits is coded within a frame of 40 audio samples.

Defined In:
tonemod.c

Bool wait_for_sync(Shortint *out_bits,

 Shortint *in_bits,

 Shortint num_in_bits,

 Shortint *ptr_num_valid_out_bits,
 Shortint *ptr_wait_interval,

 Shortint *ptr_resync_detected,
 wait_for_sync_state_t *ptr_wait_state);

Purpose:
This function shall be inserted between the demodulator and the deinterleaver. The function searches the synchronization bitstream and cuts all received heading bits. As long as no sync is found, this function returns *ptr_num_valid_out_bits=0 so that the main program is able to skip the deinterleaver as long as no valid bits are available. If the sync info is found, the complete internal shift register is copied to out_bits so that wait_for_sync can be transparent and causes no delay for future calls. *ptr_wait_interval returns a value of 0 after such a synchronization indicating that this was a regular synchronization.

Regularly, the initial preamble of each burst is used as sync info. In addition, the resynchronization sequences, which occur periodically during a running burst, are used as "back-up" synchronization in order to avoid loosing all characters of a burst, if the preamble was not detected.
If the receiver is already synchronized on a running burst and the resynchronization sequence is detected, *ptr_resync_detected returns a non-negative value in the range 0...num_in_bits-1 indicating at which bit the resynchronization sequence has been detected. If no resynchronization has been detected, *ptr_resync_detected is -1. If the receiver is NOT synchronized and the resynchronization sequence is detected, the resynchronization sequence is used as initial synchronization. *ptr_wait_interval returns a value of 32 in this case due to the different alignments of the synchronizations based on the preamble or the resynchronization sequence, respectively.

In order to carry all bits, the minimum length of out_bits must be
in_bits.size()-1 + ptr_wait_state->shift_reg_length

Defined In:
wait_for_sync.c

InputVariables:

in_bits
Vector with bits from the demodulator. The vector's length can be arbitrarily chosen, i.e. according to the block length of the signal processing of the main program.

num_in_bits
length of vector in_bits

Output Variables:

out_bits
Vector with bits for the deinterleaver. The number of the valid bits is indicated by *ptr_num_valid_out_bits.

*ptr_num_valid_out_bits
returns the number of valid output bits
*ptr_wait_interval
returns either 0 or 32
*ptr_resync_detected
returns a value –1, 0,...num_in_bits
Input/Output Variables:

ptr_wait_state state information. This variable must be initialized with init_wait_for_sync().
Annex A:
Change history

Document history

V. 1.0.0
April 17, 2000
First Draft

V. 1.0.1
May 26, 2000
improved resynchronitazion; supports symbol lengths of 40 or 32

8 History

Document history

