- 2 -
3GPP TSG-SA5 Meeting #141-e 	S5-221459
e-meeting, 17 -26 January 2022

Source:	TM Forum
Title:	Liaison
Multi-SDO Autonomous Networks Liaison:
Intent Management documents for information and feedback
Document for:	Information, Discussion
Agenda Item:	5.3

[image:]

	[bookmark: dbluepink][bookmark: dtableau]Source:
	TM Forum
	Meeting, date:
	1st Dec 2021 AN TA

	[bookmark: dsource]Teams:
	TM Forum Autonomous Networks Project

	[bookmark: dtitle1]Title:
	Liaison
Multi-SDO Autonomous Networks Liaison:
Intent Management documents for information and feedback

	Date sent:
	Dec. 6, 2021

	LIAISON STATEMENT

	To:
	Multi-SDO AN formal Distribution:
Distribution to:
ETSI, GSMA, ONAP, NGNM, 3GPP, CCSA, IEEE, IETF, ITU-T
See Annex A for details.
Copied to TM Forum representatives:
See Annex A for details.

	
	Multi-SDO Autonomous Networks (AN) Formal Liaison
Intent Management documents for information and feedback

	Deadline:
	Meeting 28th January 2022

	Contacts:
	
	

	
	Cecilia Ortega Lagos,
TM Forum, Liaison Manager,
 Product & Portfolio Management

	Tel: 	+1 973 944 5100
Email: 	liaisons@tmforum.org
cortegalagos@tmforum.org

	

	

The TM Forum Autonomous Networks project has developed a comprehensive set of guides on Intent Management and Intent-driven Operations within its Technical Architecture workstream.

The attached documents have been team-approved for sharing with selected SDOs. They have been submitted into our formal approval and publishing process and will be publicly available in about 8 -10 weeks.

Purpose of Liaising documents
The TM Forum wishes to share these guides now with selected SDOs as we would like to:
1. Provide visibility of this substantial piece of work.
2. Solicit comments and feedback from SDOs that we can consider for future revisions of these guides and the supporting Intent API work, which we expect to finalize early next year.
The TM Forum thinks the main benefits of the proposed approach are:
· First, these guides describe an intent ontology that can form the basis of a common Intent approach. This is formal modeling leveraging RDF to define the intent vocabulary and semantics.
· The approach is explicitly designed to permit SDO-specific extensions that allow SDO to evolve these neutral specifications to meet their needs. TM Forum proposes a federated intent model that allows domain-specific intent models (i.e., vocabularies) to link together to form an overall expressive intent ontology.
· The federated approach is also distributed across SDOs for evolving intent specification without requiring central governance of intent definitions. RDF provides mechanisms based on its global IRI referencing for simple definition and management of federated models.
A recent webinar in our Global Architecture Forum series provides an overview of the business and technical approach. It gives details of the Intent Management concepts, models, interfaces, and extension mechanisms. GAF Intent Management Webinar
We are currently finalizing a concrete Intent Management REST API TMF921 in our Open API program based on a catalyst Proof of Concept in our Digital Transformation World Series.

Request
We would appreciate feedback and comment on these documents by:
28th January 2022
We are interested in your comments on using core models with extension mechanisms, but all comments will be welcome. We would also like to understand if there are barriers to adoption by other SDOs and what we could do to ameliorate them. Note our APIs are published under Apache 2.0 license. We would also be prepared to set up calls with SDOs either through the MSDO mechanism or individually with SDOs.

Comments should be sent to:
Liaisons@tmforum.org
dmilham@tmforum.org
kevin.mcdonnell@huawei.com
joerg.niemoeller@ericsson.com

Regards,

Cecilia Ortega Lagos
TM Forum

Enc:
IG1253 document zip file

….

Annex A: Formal M-SDO Distribution List
Also at Formal SDO Liaison Contacts List
ETSI (for distribution with ETSI)
Anthony.Brand@etsi.org;
ISGsupport@etsi.org;
GSMA
HCalvert@gsma.com;
hliu@gsma.com;
ONAP
magnus.buhrgard@ericsson.com
NGNM
klaus.moschner@ngmn.org;
feifei.lou@ngmn.org;
3GPP
3GPPLiaison@etsi.org
thomas.tovinger@ericsson.com;
zoulan@huawei.com;
maryse.gardella@nokia.com;
Mirko.Cano@etsi.org;
CCSA
lmmeng@bupt.edu.cn;
wjli@bupt.edu.cn;
zhangdehua@caict.ac.cn;
liuyang@ccsa.org.cn;
IEEE
m.borst@ieee.org;
ran4chap@yahoo.com;
IETF
tte@cs.fau.de;
ITU-T
leon.wong@rakuten.com
tsbfgan@itu.int
TM Forum
aboasman@tmforum.org
dong.sun@futurewei.com
kevin.mcdonnell@huawei.com
joerg.niemoeller@ericsson.com
Yuval.Stein@teoco.com
luigi.licciardi@huawei.com
dmilham@tmforum.org
nakamura.takayuki@nttcom.co.jp
denglingli@chinamobile.com

Annex B: List of Liaison materials
IG1253 Intent in Autonomous Networks v1.1.0
IG1253A Intent Common Model v1.1.0
IG1253B Intent Extension Models v1.0.0
IG1253C Intent Life Cycle Management and Interface v1.1.0
IG1253D Intent Manager Capability Profiles v1.0.0

These are enclosed in a zip File.

[End of Liaison Letter]

image2.emf
IG1253_Intent_Mana gement_Suite_v1.1.0.zip

IG1253_Intent_Management_Suite_v1.1.0.zip

IG1253_Intent_in_Autonomous_Networks_v1.1.0.pdf

TM Forum 2021. All Rights Reserved.

TM Forum Introductory Guide

Intent in Autonomous Networks

IG1253
Team Approved Date: 26-Nov-2021

Release Status: Pre-production Approval Status: Team Approved
Version 1.1.0 IPR Mode: RAND

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 2 of 106

Notice
Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to TM FORUM, except as needed for the
purpose of developing any document or deliverable produced by a TM FORUM Collaboration
Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

181 New Road, Suite 304
Parsippany, NJ 07054, USA
Tel No. +1 862 227 1648
TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 3 of 106

Table of Contents

Notice .. 2

Table of Contents .. 3

List of Figures .. 7

List of Tables .. 8

1. Executive Summary ... 9

Introduction .. 11

1. Document overview ... 12

1.1. Scope and purpose ... 12

1.2. Overview ... 12

2. Motivation for intent ... 13

2.1. Fully manual operation ... 13

2.2. Operation with automated execution .. 13

2.3. Adaptive automation towards autonomy .. 15

2.4. The purpose of intent ... 16

3. Definition of Intent .. 17

3.1. History of intent definition ... 17

3.2. Definition of intent ... 17

4. Properties of intent.. 20

4.1. Declarative goals and utility: the wanted state .. 20

4.2. Composible and additive .. 21

4.3. Persistent and lifecycle managed ... 21

4.4. Infrastructure agnostic and portable .. 21

4.5. Measurable and grounded in data ... 21

5. Expressiveness of intent .. 23

5.1. SLA negotiations and agreement .. 23

5.2. Delivery of user services ... 24

5.3. Behavior of resource services ... 24

5.4. Regulatory and legislative requirements .. 25

5.5. Solution Bias ... 25

5.6. Limit Risk Taking ... 26

5.7. Common sense ... 27

5.8. Communicate and escalate to humans .. 27

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 4 of 106

5.9. Customer and resource value ... 28

5.10. Default or minimum requirements ... 28

6. Categorization of intent ... 30

7. Principles of Intent-driven operation .. 32

7.1. Intent Management function ... 32

7.2. Intent reporting .. 33

7.3. Intent in the autonomous network framework (ANF) 34

8. Intent life-cycle .. 36

9. RACI of intent and intent handling .. 39

9.1. RACI for intent lifecycle management tasks ... 42

9.1.1. RACI of intent handling capability management 46

10. Intent interface ... 47

11. Intent management scope ... 50

12. Intent manager capability management .. 51

12.1. Intent manager profile .. 51

12.2. Intent handler registration and discovery .. 53

13. Modeling of intent objects and reports ... 55

13.1. The nature and use of intent models ... 55

13.2. Expressiveness of intent ... 55

13.3. Requirements and concerns for intent modeling ... 57

13.3.1. Intent is knowledge ... 57

13.3.2. Ambiguity free semantics .. 57

13.3.3. Domain awareness and domain independence 58

13.3.4. Semantics for automated inference.. 58

13.3.5. Knowledge base and efficient query ... 58

13.3.6. Efficient serialization and notation ... 59

13.3.7. Convenient human oversight and monitoring .. 59

13.3.8. Competence .. 59

13.3.9. Open standards ... 59

13.4. Discussion of modeling standards .. 59

13.4.1. Syntax .. 60

13.4.2. Semantics .. 61

13.4.3. Conclusions and proposals .. 62

14. Model federation ... 64

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 5 of 106

14.1. Models within an intent model federation .. 65

14.2. Governance and management of model federation 67

14.3. Guidelines for intent extension models.. 67

14.4. Model federation examples .. 68

14.4.1. Mutual agreement on models between intent managers 68

14.4.2. Practical expression of model federation within an intent notation 70

14.5. Linking to and from other modeling standards .. 71

14.5.1. Referencing with constructed IRI/URI ... 72

14.6. Model federation as cross industry use case enabler 73

15. Overview of specified models .. 74

16. Intent related closed loops ... 76

16.1. Interaction with real-time control loops .. 78

17. Intent from natural and domain specific languages .. 81

17.1. Modeling intent originating from domain specific languages 83

18. Implementation aspects of intent management ... 86

18.1. Concerns addressed through intent versus implementation 86

18.2. Conflict detection and resolution ... 87

18.3. Intent expressing the wanted ideal system state ... 88

19. Appendix A: Intent Management Ontology ... 89

19.1. Motivation and background ... 89

19.2. Notation and namespaces .. 89

19.3. Principles and vocabulary overview ... 89

19.3.1. Intent management function and its roles ... 89

19.3.2. Intent model classification .. 90

19.4. Vocabulary specification ... 90

19.4.1. Classes ... 90

19.4.2. Instances.. 91

19.4.3. Properties .. 92

19.5. Model usage and examples .. 92

20. Appendix B: Understanding RDF/RDFS/OWL modeling and reading TURTLE

notation ... 93

20.1. The RDF modeling stack .. 93

20.2. Triples as basic building blocks ... 93

20.3. Referencing by IRI/URI .. 95

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 6 of 106

20.4. TURTLE makes RDF models readable ... 95

20.5. Nature of objects .. 96

20.6. Predicate lists .. 98

20.7. Object Lists .. 98

20.8. Domain and Range in model definitions .. 99

21. Appendix C: Terminology ... 100

22. Appendix D: Abbreviations and acronyms ... 101

23. Appendix E: References .. 102

24. Appendix E: Future work .. 104

25. Administrative Appendix .. 105

25.1. Document History ... 105

25.1.1. Version History .. 105

25.1.2. Release History .. 105

25.2. Acknowledgments .. 105

25.2.1. Guide Lead & Author ... 105

25.2.2. Main Contributors ... 105

25.2.3. Additional Inputs ... 106

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 7 of 106

List of Figures

Figure 7.1: Intent management function .. 32

Figure 7.2: Example Intent-driven operation within the autonomous network's framework ... 34

Figure 8.1: Intent lifecycle phases ... 36

Figure 9.1: Parties involved in management of internal and external intent. 43

Figure 10.1: The intent handling management service and interface .. 47

Figure 12.1: Example profile of an intent manager. ... 52

Figure 12.2: Intent manager registration and discovery ... 53

Figure 13.1: Four layer metamodel architecture of UML ... 60

Figure 13.2: Four layer modeling framework of RDF/OWL ... 60

Figure 14.1: Example of different domain specific model federations 69

Figure 15.1: Models specified in IG1253x and their dependencies .. 74

Figure 16.1: Control loops related to intent managers ... 77

Figure 16.2: Control loops within and around an intent manager ... 78

Figure 16.3: Interaction with other functions that themselves participate in control loops 79

Figure 17.1: Intent interpretation on the periphery of autonomous networks 83

Figure 17.2: Introduction of intent interpretation ... 84

Figure 17.3: Various sources of intent .. 85

Figure 19.1: Roles of intent management functions ... 90

Figure 19.2: Categorization of models used in intent expression. .. 90

Figure 20.1: Overview of RDF modeling stack and notation formats ... 93

Figure 20.2: Graph representation of triples as knowledge graph .. 94

Figure 20.3: Knowledge graphs using multiple predicates ... 94

Figure 20.4: Examples graph, where all nodes are labeled by IRI/URI. 97

Figure 20.5: Example graph with blank node .. 97

Figure 20.6: Illustration of domain and range of a predicate ... 99

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 8 of 106

List of Tables

Table 1: RACI assessment of intent-driven operation .. 43

Table 2: RACI assessment of intent handling capability management 46

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 9 of 106

1. Executive Summary
This document provides the proposal of the TM Forum Autonomous Network project about
Intent-driven operation.

The role of intent in autonomous network is to communicate requirements, goals, constraints,
and preferences to an autonomous system. This knowledge allows the system to evaluate the
state of the controlled infrastructure and the utility of actions. It enables a level of autonomy,
where the system can adapt its behavior and generate new solutions rather than just following
human-defined recipes and policies.

We introduce the Intent Management Function as architectural building block for Intent-driven
operation. There will be multiple instances of intent management functions within an
autonomous network with distinct sets of responsibilities. Intent management functions
receive intent, make decisions about suitable actions to improve the intent fulfillment, control
the execution of these actions and report on the intent progress.

Intents are knowledge objects with a life cycle that is actively managed by intent management
functions. An intent management function in the role of intent owner creates intent to define
and communicate requirements to other sub-systems and autonomous domains. An Intent
Management Function in the role of intent handler receives intents and operates the domain
that it is responsible for accordingly.

Intent Owners and Intent Handlers participate in intent life cycle management through the
intent interface. It is introduced as intent handling management service produced by the
intent handler and consumed by the intent owner. The intent interface is solely concerned
with life cycle management tasks of intent objects. It does not contain use case or domain-
specific aspects directly. However, those domain-specific aspects would be described within
the intent objects.

This document proposes the modeling of intent objects as knowledge graphs. An intent
common model specifies domain independent generic modeling artifacts such as the intent
class and expectation class. Intent objects contain a set of expectations, which are distinct and
diverse types of requirements allowing to address all relevant concerns.

This intent modeling proposal recommends using intents from a federation of models. While
the intent common model contains general and domain independent aspects any number of
intent expansion and intent information models can be used. They are specific to a domain of
intent handling and therefore define what the intent handler of that domain needs to
understand and what the intent objects addressing this domain can express.

The proposed model federation is an invitation to other work groups and standards developing
organizations (SDOs) to collaborate and work towards a consistent set of intent standards. The
idea is that intent extension and information models can be defined independently of TM
Forum by any organization and work group. They would define the additional expressiveness
needed in their chosen scope and domain, producing what are termed 'vocabularies'. Adding
these intent extensions into the federation of models keeps domain specific intent objects
compatible with each other in the sense that common and domain independent interfaces and
life cycles can be re-used. We try to avoid incompatible intent standards enforcing diverse and
therefore costly implementations of management processes and interfaces.

This document is the main overview covering all proposed aspects of intent-driven operation.
Detailed proposals and examples of major sub-topics is provided through supplementary
documents. The intent modeling is covered by IG253A, and the intent life cycle and interface is
covered by IG1253C. Further supplementary documents will come in future releases.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 10 of 106

This document also introduces the intent management ontology. It defines and categorizes
intent management and provides respective vocabulary to further modeling tasks such as the
expression of intent, intent report, or intent manager capability profiles.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 11 of 106

Introduction
This document proposes a technical framework for realizing intent-driven operations within an
autonomous network. The document covers the following main topics:

1. Definition of intent,

2. Discussion of the paradigm of intent based-operation,

3. Introduction of a generic architecture and principles of intent based operation,

4. How to model and express intent,

5. Discussion of modeling alternatives,

6. Life cycle management of intent objects,

7. The interface to communicate and manage intent,

8. Intent management capability management

9. Control loops with intent and intent reports,

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 12 of 106

1. Document overview

1.1. Scope and purpose

The purpose of IG253 is to document and define intent-driven operation according to the work
in the Autonomous Networks project. This includes a definition of intent as well as the role of
intent in of autonomous operation and the operational principles it implies. Furthermore, this
set of documents will define the interface and API for communicating intent, the life-cycle
management of intent objects, and the modeling principles of intent.

1.2. Overview

IG1253 is a set of documents in which each individual document defines a separate aspect of
intent-driven operation:

IG1253 - Intent in Autonomous Networks

This is the main overview document. It contains a description of general definitions and
operation principles. The sub-documents A-E contain deeper views into some key topics.

IG1253A - Intent Common Model

This document defines the modeling of intent and intent report objects as ontology graphs in
RDF/RDFS. The document specifically defines the intent common model, which is providing the
generic base vocabulary of intent expression.

IG1253B - Intent Extension Models

This document defines several intent extension models. They can be used within a model
federation for intent expression. Intent extension models provide the vocabulary and define
the respective semantics for domain specific, advanced and optional expression features.

IG1253C - Intent life cycle management and Interface

This document defines the life cycle of intent including the roles and responsibilities within the
life-cycle. It then defines the interface and API used to execute the life-cycle management
operations. This includes procedures for communicating, modifying, and removing intent
objects, as well as negotiating intent content.

IG1253D - Intent Manager Responsibility Scope and Capability

This document defines a registration and discovery mechanism about capabilities and scope of
responsibility associated with an intent manager.

IG1253E - Use cases and examples (future release)

This document will contain a collection of use cases with detailed examples that demonstrate
how to apply the principles and use the models and interfaces defined in the IG1253 set of
documents.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 13 of 106

2. Motivation for intent
In recent years intent has become a widely discussed topic that is now considered to be
essential for introducing automation and zero-touch autonomous operation. But why is intent
given such a prominent place? What is its role and what does it add to the infrastructure and
interfaces that was missing before? In order to analyze this, it helps to look back into the
processes and tasks of manually operated infrastructure. IG1252 defines levels of autonomy,
and it proposes a methodology for assessing a systems' capability with respect to autonomous
operation. It shows that the use of intent as base for autonomous operation correlates with an
increase of autonomy level.

2.1. Fully manual operation

Manual operation refers to a team of human technicians, who have the task of operating
system, networks, or infrastructure. They are involved in two essential tasks: intelligent
decision and execution of actions. Intelligent decision refers to the process of collecting
relevant information, analyzing the situation, and planning suitable operational actions
expected to improve the state of the operated system or network. Technicians, who are doing
this, typically have a broad range of knowledge and information available to base their
decisions on. They have access to extensive technical information such as the state of the
systems and networks they operate as expressed by measured KPI and metrics. Furthermore,
they also know what customers have ordered and therefore what level of service needs to be
delivered to users.

The operations team of technicians has also quite a lot of contextual information that
potentially impacts their decision. For example, they know the strategy and goals of the
company they work for and the related business policies. This allows them, for example, to
prioritize based on customer importance. They also know the budget situation of their unit
which translates in allowed resource usage. Also, the goals and targets of their unit and
priorities set by management will influence their decisions substantially. This will then result in
prioritizing one action over another one as it is expected to better meet the business strategy
and its related goals and targets.

Execution would be the implementation of these tasks in the infrastructure. Typically, this
refers to tasks such as changing configuration data, replacing hardware or upgrading the
network. These actions can mean an immediate reaction to solve an acute issue. They might
also constitute a consolidated action plan targeting mid and long term improvements.

2.2. Operation with automated execution

The first approach towards autonomous operation is the introduction of automation. This
refers to a system that is able to automatically execute a process without human involvement
in every step and ideally without human involvement at all. Policies have a key role in realizing
this level of automation. A policy is in this respect a rule or decision tree. It is initiated when a
defined pre-condition or event applies, and it delivers an action or action plan that is then
executed. The input to a policy-based decision is typically the technical the state of the system
including the specifications of what customers have ordered. In general, all data and
information systems are available to be used in policies, including inventories, analytics
insights and measured KPI.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 14 of 106

It is important to understand that a policy determining an action plan after being initiated
from observation is not equivalent to the intelligent decision in manual operation. It is rather
the automated execution of a pre-determined recipe. The developers, who have written the
policies made all decisions at design time. They analyze the situations the system might be in
and what a suitable action plan for each situation would be.

The policy developers need to define the conditions for invoking a policy. These are based on
observable indicators, such as measured KPI or analytics insights. The invocation conditions
allow the automated system to identify the situation and context the policy was made for.
Furthermore, policy developers define the policy as an automated analysis and decision
process. Typically, this is expressed through executable workflows including decision trees or
sets of rules. When writing a policy, the policy developers has the same information and
knowledge available like the technician in manual operation.

In operation, the automated system would invoke the execution of the right policy according
to the situation conditions. This arrives eventually at an action to be executed. Policy-driven
systems therefore automate the execution at run-time while the intelligent decision is still
mostly human driven. The point of decision was moved to design time, while in life operation
the automated system would apply the policies as behavior recipes.

This level of automation has already clear advantages with respect to lead time of fulfillment
after a service order and 24/7 attention of the system with immediate reaction. This has
already the potential to significantly increase the service quality and decrease the cost of
operation. On the other hand, this automation also has limitations. The most significant
limitation comes from the capability to adapt to changes and situations that were not explicitly
considered at design time. In these situations, the automated system does not know what to
do and must escalate for human support.

New situations can come from two direction. First, external environmental factors such as
changing user behavior can constitute new system states. But also factors the operator directly
controls can become new situations for the underlying automated infrastructure. Typical
examples are the introduction of new products or new customizations of existing ones.
Whenever a new situation occurs that was not explicitly foreseen at design time of the policies
that control the automated processes, the automated system would fallback to at least partial
human support. Keeping the system capable of staying fully automated in the new situation,
would imply an adaptation of policies. The policy developer would introduce a future
automated response to this new and similar situation.

In future networks, we expect diverse and customized service offerings based on technologies
such as virtualization and slicing. In such environments a manual process for making all
decisions and adaptations might not be capable enough to meet business demands. Especially
lead-time in fulfillment as well as assurance might require further automation targeting
automated adaptation.

Machine learning is often positioned as a technique to automate the way a technical system
adapts its behavior. A typical machine-learned model is either used to implement analytics and
therefore deliver insights to be consumed by policy logic, or it implements the policy by
directly making decisions and determining suitable actions. This means the model can be a
direct replacement of a manually designed policy. In any case, these types of machine-learned
models are the result of statistics driven optimization processes and therefore follow evidence
from data and observation. However, using machine learned policies in automated processes
does not necessarily lead to a higher degree of autonomy.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 15 of 106

Machine learning can be an excellent way to implement policies based on evidence seen in
data, but the outcome of machine learning is still fully determined by human input and human
intelligent decisions. Humans define cost and utility that makes the models converge as
wanted. Humans also label training samples and therefore explicitly tell the wanted outcome
the model is supposed to learn. In this respect, observed human behavior can also be direct
input and then the preference is implied. In any case it is still human intelligence that
ultimately determines what decisions and actions machine learning-based policies produce.

2.3. Adaptive automation towards autonomy

A key goal of autonomous networks is to lessen the need for human involvement. Policy-
driven operation as discussed in Chapter 2.2 allows leaving most standard and repetitive
execution tasks to the automated system. Human supervision is always required to capture
those exceptional cases where the automated system requires their direct involvement. Other
than that, the human workforce would be able to shift their focus on tasks that still require
their intelligence. They can, for example, do business planning, develop strategies, engage
with customers, and define products and product customizations. The automated operation
needs to follow these human decisions. This means that all artifacts that enable and control
the automation must be kept up to date to ensure that the automation follows the revised
strategies and is able to operate the new products. This might involve the modification of
workflows, adaptation of policies and potentially re-training ML models with new data or
revised utility definitions.

Utility is an important concept for autonomous systems. It refers to knowledge about what
makes an outcome or situation preferential. This refers to preference in a global context. An
action might be preferable because it helps to reach a goal, but a utility definition addresses
the question if the action and therefore also the goal are addressing the right overall concerns
and needs. Understanding utility allows the system to judge potential results and all goals
defined and actions proposed to reach it. It enables the system to adapt its internal
instrumental goals if needed. It allows to not only determine preferential actions that fulfill a
goal, but it allows to reason about which goals are the most advantageous to pursue.

Transitioning the system from automation towards increasing degrees of autonomy would
mean that more tasks become automated. This includes the tasks needed to keep the
automated system aligned with business utility and strategies. The system would gradually
take over the intelligent decision-making and therefore determine and adapt its operational
solutions on its own and without human involvement. It would not just follow human-
designed recipes but make new recipes itself if needed. A system like this would be able to
determine if an action or plan is preferential or not and if it would improve or degrade the
operational state with respect to a broad range of concerns. A system like this can then
evaluate if a recipe for action is suitable even if the situation is new. It would have the
knowledge to determine what actions would be preferential in the new situation. This requires
that system has access to all relevant goals, requirements, and targets as well as constraints.
The system would use knowledge about utility in its automated processes and adapt its
behavior accordingly. Goals, requirements, constraints, and utility need to be presented to the
system in a way that an automated logic can use them to arrive at potentially different, but
suitable decisions and actions. These are automated reasoning processes that adapt the
system behavior automatically and to follow human determined and continuously changing
requirements, goals and constraints.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 16 of 106

2.4. The purpose of intent

The discussion in the previous sections has identified an essential enabler needed for
autonomous operation: the automated system must know its requirements, goals, and
constraints. The system can only adapt and follow business needs if it knows them. The
autonomous system needs to know what it is expected to achieve by the service provider, who
employs the autonomous system and the service provider's customers, who are served by it.
This includes knowledge about expectations including hard requirements, but also about
preferences and priorities.

Knowledge about these topics can change dynamically because it ultimately originates from
dynamic concerns such as service provider strategy and customer need. The autonomous
system always needs to be kept up to date about their expectations. Only by knowing
the expectations the autonomous system has a chance to meet them.

Furthermore, this knowledge must be presented to the system in a way that enables
automated reasoning processes to translate them into adapted system behavior. This means,
knowledge about the expectations towards the system need to be formally expressed,
communicated, and managed.

The purpose if intent is to define and communicate knowledge about expectations to a system
in a way that allows automated processes to reason about it and derive suitable decisions and
actions.

Intent is, in this respect, the knowledge element for communicating expectation. It allows the
autonomous system to know requirements, goals and constraints that are the foundation for
all action. It is the reason for a policy to prefer one possible action over other options. Intent is
the foundation for prioritizing decisions and optimization actions. Intent determines a
customer's needs and the service provider's contractual obligations. It enables exploration of
potential solution options and evaluation of actuation strategies in order to find one that
delivers the best available business result. Intent-driven operation refers to models, interfaces
and architectures for managing this knowledge and operate a system accordingly.

The knowledge of intent enables automation of intelligent decisions that were still entirely
human driven in systems with automated execution. It allows evaluating situations the system
is in and prioritize actions that transition the system's operation strategy into a preferable
direction. Intent allows to communicate what is preferable and what needs to be avoided. It
allows the receiving system to understand what it is expected to achieve. It introduces a
notion of utility. It allows the source of intent to communicate its utility model. This enables
intelligent judgment about the situations the autonomous system observes and actions it
plans to do. The system is effectively able to determine the utility of its solution options. It can
judge if its’ polices produce preferential outcomes and modify them if not. An intent-driven
system is therefore able to not just blindly follow human-determined solution recipes. It can
modify them and make its own.

While using, intent is a necessary prerequisite for implementing advanced levels of
autonomous operation through self-adaptation capabilities, intent is also already useful in
automated execution and policy-driven operation. The use of intent does not preclude the use
of policy based systems. Here, intent can be used to determine policy triggers and its detailed
expectations can be consumed in decision trees that lead to actions. This means a developer
can diversify policies by considering changing requirements and goals.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 17 of 106

3. Definition of Intent

3.1. History of intent definition

Intent was first introduced around 2015 in the context of SDN controllers. At that time IETF
defined intent as

“… an abstract, high-level policy used to operate the network” [rfc7575].

This definition implies a strong relationship between intent and policy. The guiding idea is that
intent directly translates into choosing the right policy that then operates the system
accordingly. The chosen policy is, in this respect, a pre-defined recipe for the set of
requirements chosen by the given intent. This automation strategy means that every
selectable variant of requirements must be matched with a policy available in the system.
Intent is therefore an expression of chosen requirements that are tightly coupled with a
matching policy for controlling its fulfillment within the automated operational processes and
therefore its implementation with the controlled resources.

In the meantime, the understanding of intent has evolved, and this is reflected in a more
recent definition of intent by IETF from 2020. Intent is now defined as

“… a set of operational goals that a network should meet and outcomes that a network is
supposed to deliver, defined in a declarative manner without specifying how to achieve or
implement them” [ibn].

As policies determine the actions taken by the system, they are considered part of the
implementation. By excluding explicitly any specification of how to achieve or implement an
operational goal, the newer definitions of intent explicitly excludes mandating policies. It also
excludes mandating hard-coded logic or artifacts such as rules and workflows that define
decision trees and decision-making processes. Intent is therefore purely the specification of
requirements and goals separated from all implementation artifacts.

In the Autonomous Networks Project at TM Forum, we propose to move forward with a
conceptual understanding of intent following the definition from IETF in 2020 [ibn]. This
proposal enforces a strict separation between intents being purely an expression of
requirements and other implementation artifacts of any kind.

3.2. Definition of intent

The definition of intent proposed by the Autonomous Networks Project follows the analysis
and findings presented in Chapters 2 and 3.1:

“Intent is the formal specification of all expectations including requirements, goals, and
constraints given to a technical system”

This definition is inspired by and compatible with the definition IETF has published in
2020 [ibn]. The definition associate's intent with goals, requirements and constraints provided
in a declarative way. Intent constitutes and expresses knowledge about these concerns and
enables sharing this knowledge between the originator and receiver of the intent.

Furthermore, this definition excludes all imperative implementation and solution aspects form
the intent itself. Intent is therefore purely an expression of what needs to be achieved or
avoided or what outcome is more or less preferred, rather than indicating how and by which

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 18 of 106

strategies and actions this can be realized. In this respect, artifacts such as policies, workflows,
rules, decision trees and other ways to express and implement a solution strategy, make
decisions and execute actions are still very much-needed to realize intent-driven autonomous
systems. They are however strictly separated from the intent expression. This understanding
of intent implies implementation of intent-driven operation that strengthens important
system design concepts such as a strong separation of concerns between sub-systems with full
encapsulation of solution implementations.

The notion that intent is a specification of expectation reflects the viewpoint of humans as
external supervisors of the autonomous system. They expect the system to fulfill their needs.
The system has to meet their expectations and intent is the expression of their needs. Intent
can in this respect originate directly from humans. These humans are, for example, customers
or operator personnel using intent to directly communicate with the autonomous system
through intent, and they expect the system to meet these intents utilizing the underlying
infrastructure and its resources in a suitable way.

Furthermore, intent is also generated internally within the autonomous system. It is used
between the sub-systems and system layers to influence details of their specific wanted
behavior and thus contribute to the overall fulfillment of human expectation. Intent coming
from external sources into the autonomous system constitute the terminal goals of the system
as a whole. The autonomous system would then derive instrumental goals reflecting a solution
strategy and the detailed needs and concerns involved implementing this strategy and
ultimately achieving its terminal goals. Internally used intent is an expression of these
instrumental goals and a mechanism to distribute them to the responsible sub-systems. The
goal breakdown is typically applied in multiple steps transforming global terminal goals into its
localized and detailed consequences. Intent is the way to express these goals on every detail
level and with every granularity needed. This also means that internal intents are always used
in the context of and can be traced back to those intent, which directly express human needs.
Therefore, also internal intents express expectation. The communication and management of
intent is a central topic of IG1253. It is covering multiple aspects such as a generic system
architecture of intent-driven operation, life-cycle of intent as knowledge objects and the
establishment of control loops steered by intent. IG1253C introduces the interface to
communicate and manage intent as part of lifecycle management processes.

While intent might originate from human input or being created by automated processes
within the autonomous system, it is typically received by a technical system. Intent is usually
not meant to be consumed or acted upon by a human receiver. Nevertheless, Intent might
also be used by the system to delegate tasks to humans for execution. The details of using
intent this way or if alternatives, such as the use of a dedicated domain specific language
would be preferential for these use cases will be explored in future work. Also, in cases when
the autonomous system breaks and a human team need to take over, humans would need to
act on the intents. But this would be considered an exceptional situation rather than usual
operation.

Humans might have formulated intent, and they might monitor the automated operation
including intents being used between sub-systems. In this respect it is preferential that the
methods and techniques chosen to express intent are reasonably intuitive for a human to read
and understand. On the other hand, it is a system receiving the intent and automatically
operate based in it. This is a challenging task, and it is therefore highly important that the
chosen techniques and models for intent expression facilitate a practical implementation of a
technical system with automated processes able to translate intent into solution strategies and
operational actions.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 19 of 106

This points at one of the most important aspects of intent definition: the use of formally
defined models. This means intent would be expressed with formally defined and complete
semantics and vocabulary. There must not be ambiguity in the meaning of intent. The sender
and receiver of intent must be in perfect agreement about its interpretation. And it must be
possible to derive this agreement entirely from formally specified and complete semantics in
the underlying common and information models. If interpretation of an intent cannot be
derived from the formal modeling, the consequence would be that human consultation is
needed to clarify ambiguities. This would violate autonomy. In the worst case ambiguity might
lead to diverging interpretations of the same intent by multiple involved systems causing
unwanted and incorrect system behavior. It is therefore essential that intent follows formal
models that comprehensively and unambiguously cover all needed expressiveness. The
proposed intent modeling approach is described in Chapter 13 and specified in detail in
IG1253A.

In this respect, intent-driven on natural language and other domain specific languages is not in
scope of IG1253. Especially natural language is inherently ambiguous and needs interpretation
considering context and shared assumptions. We acknowledge however that there are use
cases and good reasons for formulating intent by using natural and domain specific languages.
Their usage in relation to intent operation and modeling defined in IG1253 is discussed in
Chapter 15.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 20 of 106

4. Properties of intent

4.1. Declarative goals and utility: the wanted state

Following the definition of intent presented in Chapter 3.2, an intent object is a collection of
distinct expectations. They express a variety of requirements, goals and constraints. An
individual intent may contain a variety of different expectations. For example, the expectation
to deliver a service to users would contain functional and non-functional aspects of the service
itself and the targeted usage scenario. It can include minimum performance levels as well as
usage limitations such as geographical availability. All these aspects are considered in intent
modeling to be distinct expectations.

Intent is solely declarative in the sense that it only specifies wanted outcomes versus
outcomes that need to be avoided. This can include quantitative specifications. For example, a
goal can be set by defining target values or value ranges using KPI and metrics. Depending on
the targeted scope and subject of the intent, the definition can be high-level and abstract, or it
can be technical and detailed. For example, a business level intent can specify the need to
make a financial gain from autonomously managed SLAs. In this context a detailed target can
be set, such as a required margin of 10%. An example of a lower level technical intent would
be to guarantee a minimum latency on a particular network link.

Both examples specify a wanted outcome or state without specifying how to reach it. It is
entirely up to the intent receiving system to find a strategy and plan actions that would
achieve what the intent is asking for. This implies a level of encapsulation in which the system
implementing the needed operation processes does not expose these processes through its
interface. This means an intent-driven order does would only specify what is needed and not
also triggered the process that implements how this is achieved. It is purely a decision of the
system that receives the intent to decide how to act and which processes need to be invoked
to fulfill the requirements. This is a significant difference between intent-driven operation and
other typical interfaces in telecommunication. Telecommunication interfaces often explicitly
invoke processes, which are exposed and implemented by distinct functions and services.

Intent does not imply the start of a process, because this is considered imperative prescription
of what to do. All imperative specifications are explicitly excluded from being part of an intent
object. Imperative specifications would include actions that need to be taken or avoided. Also,
implying to invoke specific processes or workflows are imperative specifications. This includes
mechanism such as policy triggers. All these specifications are not part of an intent expression.
They are conceptually excluded and consequently not covered by intent modeling. Intent
rather only communicates knowledge about requirements and leave the decision what
processes to invoke to the intent receiving system.

As intent leaves the actions to be taken entirely open, the receiving autonomous operation
system has in principle a great amount of freedom to apply already known strategies to
develop and explore new solutions. Enabling this is a key property of the intent-driven
operations mechanism. It is therefore ideal if intent expresses utility. Utility refers to
knowledge about what properties of an outcome are preferential and which are not. This is
not just setting a goal that the autonomous system shall reach. It allows evaluating if reaching
these particular goals is actually the best solution of if another goal would lead to a better
overall result. Utility knowledge therefore enables self-reflective operation with the capability
to adapt system behavior autonomously.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 21 of 106

4.2. Composible and additive

An autonomous system that operates a complex and shared domain would need to fulfill
multiple requirements. This includes to reach a potentially large number of goals, obey a
complex set of constraints and consider preferences. This constitutes a pool of requirements
the autonomous system is operating against.

Intent are knowledge objects that define a set of these requirements. Setting an intent
therefore means to add to the pool of requirements. Deleting an intent means to remove
requirements from the pool. The intent mechanism therefore manages the global
requirements of an autonomous system as changing its requirements implicitly alters the
system behavior.

Intent and the additional requirements expressed by it can originate from many sources. This
means that they might overlap or even contradict. This cannot be avoided on the level of
intent, because even contradicting requirements and goals are still valid and express an
important concern of another system or a human user. This means the autonomous system
operating based on intent would need to be able to prioritize based on utility. It might also not
be able to fulfill all its requirements at once in all situations.

4.3. Persistent and lifecycle managed

Intents are knowledge objects that communicate requirements, goals and constraints as well
as preferences. This means using intent establishes a requirement the receiving system has to
fulfill. This requirement stays valid until it is removed by deleting the intent. Intent objects
therefore have a lifecycle that is actively managed. The intent interface defines the procedures
for executing this lifecycle management. The intent lifecycle is explained in detail in Chapter 8,
and it is the base of the intent interface defined in IG1253C.

This also means that the use of intent includes assurance aspects. Intent defines not only what
to deliver, but also what to assure. In this respect and intent is not done, for example when it
is first fulfilled by meeting its requirements. Intent implies that the requirements stay fulfilled
until the intent is removed.

4.4. Infrastructure agnostic and portable

Intent as defined in this document is a key mechanism used in the communication between
the layers in the autonomous networks framework (ANF). Furthermore, it is used in the
interaction between autonomous domains. This means, intent will need to cross the borders
of major sub-systems and platforms, where often solutions from different system vendors are
used and required to interact flawlessly. This need is addressed by defining a common
interface for intent lifecycle management as well as a common modeling approach of intent
objects. Modeling of intent is described in Chapter 13 and specified in detail in IG1253A and a
future IG1253B once it is released.

4.5. Measurable and grounded in data

An intent is only useful if all aspects it specifies can be observed. A system can only control
what it is able to measure. This means that a system that operated based on intent would

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 22 of 106

require to be connected to data and knowledge sources. This includes, for example, metrics
and KPIs being measured, aggregated and calculated or analytics functions providing insights
to the system.

As intent can change dynamically, the receiving system might need to adapt and measure
whatever the intent is expressing. This is mainly imposing a limitation on the allowed range of
intent expression. Intent can only be handled successfully if the receiving system has the
means to observe whatever the intent is stating. The implementation of autonomous systems
might differ considerably with respect to the range of intent expressions it can operate based
on its capability to measure and observe. This is addressed through intent handler capability
management as discussed in Chapter 12.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 23 of 106

5. Expressiveness of intent
Every concern relevant to an operator or their customers or other involved parties, such as
government regulators, can directly or indirectly constitute intent. From the point of view of
the autonomous system, intent is all it needs to know about the concerns of relevant external
parties so that it operate and serve them as expected or as close to their expectations as
possible. This chapter discusses use cases for using intent. This includes the concerns of
involved parties and what knowledge intent would need to express in order to provide
sufficient input to the autonomous network. It also includes the needed expressiveness for
intent used internally within the autonomous network to coordinate the contributions of its
sub-systems in meeting the original expectations.

This chapter provides examples for needed intents mainly in the context of telecommunication
services, network operation and business concerns of network operators and their customers.
In this chapter we mainly present typical examples from this range of use cases. They are used
as inspiration and guidance for technical proposals of IG1253, but they do not constitute an
exclusive or complete list of use cases and concerns intent is used for. Extension and use in
further domains is explicitly encouraged and also considered in the proposals and the resulting
technical solution.

We expect that higher degrees of autonomy and the implied reduced involvement of humans
in the operation will cause a gradual shift of concerns from human to machine operation. This
will consequently imply that further expressiveness is required by intent to communicate the
specific goals and requirements related to that concern. Also, extension of autonomous
operation into new domains will lead to further concerns to be addressed by intent.

5.1. SLA negotiations and agreement

Network operators are in the business of selling services to their customers. This typically
involves a contract in the form of an SLA stating all agreed functional and nonfunctional
properties of the service as well as the terms of compensation including penalties in case of
contract breach. An autonomous system for customer engagement might include partly or
fully automated negotiation and acceptance of contracts.

A possible scenario would be that both, the operator and its customer have fully automated
systems for SLA contracting. These systems automatically create offers, determine if the offer
would fulfill the needs and negotiate compensation. Humans are not directly involved in the
process of contract negotiation, but they can use intent to steer the process by setting goals
and constraints. In an alternative scenario only the operator's system is automated, and it
communicated with the customer's personnel through self-service frontend.

The operators would use intent to steer the contracting on their side of the negotiation. These
are intent given to the autonomous contract management and customer engagement system
to steer its behavior. The operator's concern expressed by intent could, for example, be to
make a financial gain. The intent used for this can formulate a goal for automated contracting
about the expectation that it generate a financial margin with the contracts it accepts. A
financial margin across all contracts would be the measurable metric used for setting this goal.
This intent would then be input for generating service offers and in the logic for accepting
proposals by the customer.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 24 of 106

5.2. Delivery of user services

After the operator and its customer have agreed on the details of a service, an autonomous
network would utilize the resources of the operator's infrastructure to deliver these services.
In order to do this, the autonomous network needs to know what shall be delivered to which
group of users and if there are special limitations and concerns to consider. Intent would for
example be used between the operator's contract management system and the autonomous
operation system. This is the interface between business operation and service operation in
the Autonomous Networks Framework. Intent would typically need to express the following:

Functional requirements:
Specify, for example, which services need to be delivered and what function do they need to
provide to the user.

Non-functional requirements:
These are typically targeted regarding performance, availability and user experience. KPI and
metrics would be used to express them.

Constraints and inter-dependencies:
Are there any special concerns or requirements that a solution would need to obey. For
example, privacy and security concerns of the customer might need to be addressed
considering through multi tenancy and security levels. Another example would be that for
legal reasons all data and service instances need to stay in a particular geographical location.

5.3. Behavior of resource services

An essential task of operational process within a service provider would be to break down
higher level requirements expressing business needs into deployments and configurations of
technical assets such as resources and services. For example, software instances need to be
deployed following a target topology, network functions need to be connected to each other
with sufficiently configured channels and the entire setup need to be assured involving
measurement of KPI, analytics and detection of issues.

Intent can be used to steer this level of operation with increasing levels of technical details.
These intents are on a lower level in the operation software stack. But they are very similar to
the intents used to describe requirements for user services. They would express what needs to
be delivered. This would be an expectation towards a sub-system, rather than the service
provider and its autonomous network as a whole. These intents can also express non-
functional requirements and constraints and inter-dependencies. The difference is that
artifacts and metrics used in lower level operation are not directly accessible to the customer
or its users. They represent the means by which the autonomous network satisfies customer
needs, but these details are not exposed to the layers above and the customer. In other words,
customers would only see the services they have ordered and the properties they have directly
agreed to, but not the lower layer details of how their services are realized.

This indicates that intent is typically used in a hierarchical way where the intent of user
services is broken down into intent about resource services and the behavior of the underlying
infrastructure. The autonomous networks framework models this by distinguishing business
intent, service intent and resource intent. Please note that there can be more than three
layers of intent being used in a practical autonomous system.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 25 of 106

A user might have ordered a communication service with agreed throughput and latency.
These are the KPI about the direct user experience and these are stated in the intent about the
service. In the autonomous operation this service might be realized by selecting and deploying
network function in a datacenter and by setting up network slices to interconnect the network
functions. An intent about resource services would describe the deployment requirements of
the network function instances as well as the required latency and throughput of the involved
network slices. These are the KPI targets needed from the involved resources the system
needs to deliver the experience KPIs agreed with the user.

5.4. Regulatory and legislative requirements

It is the mission of regulators to set and enforce rules in the market they oversee. Service
providers must follow these rules to avoid penalties and keep licenses. Intent can be the
mechanism to directly distribute and communicate the rules from the regulator to all service
providers. In this scenario the regulator actively participates in intent-driven operation. The
respective reports on intent fulfillment from the service provider to the regulator can then be
interpreted as compliance statements. The regulator becomes an intent using third party next
to the operator and the customer. As regulatory requirements are legally binding and globally
applicable they imply utility with a broad scope and high importance.

The direct participation of the regulator in intent-driven operation introduces the ability to
react quickly and change market rules dynamically. A possible use case would be exceptional
cases of reaction to disasters in which the service providers might need to temporarily change
service prioritization. Using automatically distributed intent considerably reduces the reaction
lead time.

In another scenario the regulator is not directly encoding intent but, intent can still be used to
configure and steer the autonomous operation within a service provider domain. It would be
the service provider itself creating the intent-driven on the regulatory rules. As the service
provider is accountable to meet the rules it is therefore its responsibility to follow up on
changes and modify intent accordingly. This is typically a manual process that introduces
delays. But usually rule changes are announced in advance with a clear deadline for
implementing new rules. So, the service provider would have sufficient time to review and
adapt.

Nevertheless, intent being used would allow the autonomous network to directly access
regulatory rules. The rules would be formulated in a way a machine can read and reason about
them. Thus, the autonomous network can consider regulatory aspects in all its solution
decisions and actuation. Regulatory rules become yet another set of requirements to follow.
Like other intent regulatory rules would therefore be considered within all autonomous
operational processes. This mechanism would keep the autonomous network compliant to
legal requirements and regulatory rules.

5.5. Solution Bias

Prioritization and optimization within operations processes follows a bias introduced through
requirements and goals as well as the available actions and solution strategies. This means,
what a system prioritizes and chooses to do and the outcomes it produces is ideally only going
into a wanted direction. However, this cannot be guaranteed. Models and policies might
contain errors or reflect the opinion of the human developer and data scientist, who has

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 26 of 106

produced them. And this opinion might not be a full match with the service providers goals
and values. In machine learning there might also be bias in training samples, which then
constitute bias in the resulting models.

Depending on the market and business environment of the service provider, certain bias might
not be significant, but it can also bear a huge risk. For example, if a service provider is
exhibiting social, racial or religious bias in the way their autonomous network decides and
behaves, this service provider might not be perceived favorably with significant impact on
business results. Detecting unwanted bias in the behavior of the autonomous network and
eliminating this bias is therefore a critical business capability of a service provider. This
typically requires putting policies and models in place, which are able to detect bias in
operation including techniques to measure it.

Intent can play the role of steering operational decision-making by introducing requirements
on bias. Techniques and metrics introduced to measure bias are the tools available to
formulate a respective goal expression. Using this intent as additional requirement in intent
handling would make bias awareness part of all operational processes. It would imply that all
decisions and actions and their respective consequences would be checked against all intent
and thus also the bias avoidance requirements.

This mechanism also allows introduction of special attention to types of bias with raised
sensitivity in the local market.

5.6. Limit Risk Taking

Every operational action being done or not bears a certain risk to disrupt operation and failure
to deliver agreed services. In manual operation the assessment of risk associated with an
action is one of the most important tasks. It not only refers to the risk of action failing or not
delivering the promised impact, but also to the consequences this single action might have on
the network and operator business as a whole. Humans are usually good at considering a
broad spectrum of consequences and therefore avoid too risky action strategies while finding
a balance between risk versus potential gain and utility of the action.

An autonomous system needs to perform similar risk assessments and consider them in their
decisions and actions. At least this would be recommended for systems with broader scopes
and authority to perform nontrivial tasks with potentially huge impacts.

One way of limiting risky actions would be to explicitly limit the options available to the
autonomous system through rules or policies. This requires however that it is possible to
formulate comprehensive rules considering all situations. Explicit limits might also inhibit
potentially very preferential actions. Especially in systems with higher degrees of AI, a tight
frame of limitations counteracts the AI ability to find new solutions.

If a system is able to determine and manage risk, the service provider might still want to
determine the allowed level of autonomous risk taking. Practically higher risk might be allowed
if at the same time the potential gain is similarly huge. Thus, the system needs indication for
how to do a trade-off between expected gain and imposed risk. Intent can be the mechanism
the service provider is using to formulate respective requirements and constraints. For
example, metrics for risk assessment can be used to formulate respective expectations.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 27 of 106

5.7. Common sense

Humans have common sense and machines do not. This refers to a common understanding
and agreement about what are right and wrong action and preferences. This common
understanding means that requirements and best practices are followed, even if they are not
explicitly communicated. For example, to a human it is common sense to operate a network
and delivering services to customers while reducing the number of resources needed. Humans
understand the overall need for the operator to make financial gain, they understand that
resources are a cost factor and that therefore keeping resources usage optimized has a
positive effect on the overall goals.

An autonomous system does not have common sense. It can only consider explicitly stated
dependencies and goals. If a goal, such as saving of resources is important, and usually it is,
then the system needs to be told explicitly to make the right choices in its solution strategies
and actions. There are typically two ways to reach the right behavior. These requirements are
built into the code or policies of the autonomous system. This way a developer has considered
all relevant common sense and therefore also all resulting actions of the system consider it.
This corresponds to operation with automated execution as discussed in Chapter 2.2.

Alternatively, the concerns that typically constitute common sense can be expressed as intent
and become explicit goals. For example, intent can set a goal on resource saving. A good
metric for expressing this goal would be needed to avoid misinterpretation. It is for example
not a good idea to set a goal on delivering services with the least resources. Not delivering the
service at all would then become an attractive option. A better metric would be to maximize
resource utilization. This refers to resources being reserved and actually used. The rationale is
that it is a good idea to use resources as long as they are productive and contribute to
satisfying customer needs and generate income.

This discussion shows that common sense can be introduced using intent. It also shows that
requirements and goals need to be introduced with full awareness of their interpretation by
the system and if they imply also unwanted outcomes or make them look more preferential.

5.8. Communicate and escalate to humans

Service providers need to be kept informed about the performance of their autonomous
operation. This would allow them to identify shortcomings and take actions. They might for
example invest into the infrastructure to counteract frequent resource shortages, or they
might order improvement of AI models and policies to be developed. Ultimately, the human
personnel needs to know when the autonomous system is failing, and they need to step in and
take over the operation at least partly.

Intent reports are a basic mechanism to achieve that. They allow establishing continuous
reporting about each intent and its operational status and success. The exact conditions for
reporting are in this respect additional expectations required within the intent itself. It allows
specification of what and when to report. This reporting mechanism can be combined with
frontends for intuitive presentation and therefore allow already continuous and detailed
information.

Another way the system can interact with the human workforce would be for escalations. This
refers to situations where the autonomous system detects that it needs human input to
operate. This can for example be the case if the system is missing essential information and it
wants to request clarification. Another example would be that the system did not find a
suitable action to mitigate a problem automatically. It would escalate this situation to the

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 28 of 106

attention of a human technician. An escalation might also be chosen if all available actions are
considered too risky and human approval is needed.

Setting conditions for escalating or for asking human approval can be subject to intent. The
service provider can therefore use intent to steer the wanted interaction. Setting these
conditions for example based on metrics for risk and gain assessment allows to precisely limit
autonomous risk taking and only bring significant topics and situations to the attention of the
human workforce.

This mechanism based on intent for setting the escalation and approval conditions would also
allow the gradual assignment of more authority to fully automated operation. Starting with
strict rules that bring a lot of decisions to human approval the system might prove itself by
consistently proposing good solutions. Based on this the service provider can choose to offload
more situations to fully autonomous operation.

5.9. Customer and resource value

Service providers usually differentiate their customers. Not all customers and not all users are
equal. Some might have premium contracts promising better experience and priority, while
others have chosen a more budget friendly option that comes with lower guaranteed levels of
experience. This differentiation is important for the decisions and actions of an autonomous
system.

Intent can be used to convey priority. This can be done implicitly by distinguishing services for
the respective user groups and assigning different requirements and goals in the intents for
the services. It is also possible to introduce explicit categorization of user service levels, for
example by distinguishing silver, gold and platinum services or customers.

Typically, the categorization of customers and users follows the business value of their
contracts. This would be handled primarily on business operation level, where all financial
aspects of the service contracts and SLA are managed. Service and resource operation are not
involved although they need to make decisions accordingly. Adding indications of relative
customer value or service value into the intents would be an expression of utility. It can help in
operational decisions and especially if prioritization is needed to optimally use limited
resources.

Similarly, resources have a business value, and they should be assigned so that the income
they generate exceeds the total costs of use and ownership. Also, here intent can help to
convey business considerations and priorities to the decision-making in lower layers or the
operations stack.

Customer value as well as resource value are examples of metrics that can be used in intents
to provide hints about the optimal operational state.

5.10. Default or minimum requirements

The service provider might want to set minimum requirements for operation. These are meant
to be globally applied to all services provided. These can be functional or non-functional
requirements. For example, the service provider might choose a marketing strategy to
distinguish itself through security. A concrete action to back up this claim would be that all
network links are encrypted.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 29 of 106

Intent can be used to introduce this requirement into the autonomous network operation. It is
a global default. This means that it applies to all delivered services irrespective if their service
specific intent requires it or not. This global requirement forces to autonomous network to
only consider solutions that include encryption.

An example of a global non-functional intent would be the setting of a minimum availability
requirement for services. This would force fulfilling service intent by choosing more reliable
deployment options even if they are more expensive.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 30 of 106

6. Categorization of intent
Categorization of intent helps humans to understand the meaning of intent content and the
context in which the intent is used. It indicates who as created the intent and for what reason
it is sent to a particular sub-system, system layer or autonomous domain. Intent types and
categories are labels to summarize the intent use and content. A business operations type of
intent is a business operations intent, because it uses business level terminology and metrics
to formulate the expectation details and because it is given to an intent management
functions with a responsibility scope of business operations.

The system, which receives an intent, operates based on the detailed requirements and goals
expressed within and through a set of expectations. Explicit intent typing is a summary of the
same information. An intent type would therefore at best contain redundant but incomplete
information. It does not imply any additional meaning that is not yet represented better and
more detailed by the given expectations. Intent handler logic would be built solely based on
the expectation expressions.

Also, distribution of intent to the right handlers by matching handler capability with wanted
intent expressiveness cannot be based on intent types. A detailed match between the level
supported expectation and information objects is required to control compatibility of the
intent with handler capability.

For these reasons, the proposals of IG1253 do not introduce intent types. In particular, the
models that specify intent expressiveness do explicitly avoid sub-classes of the intent class and
properties for assigning types and categories to intent objects. It is however possible to
mention types in comments within intent objects. However, comments are solely for human
guidance and documentation and are not processed by intent handlers as part of their
operational processes.

While intent types are not recommended being part of the formal modeling of intent objects,
we recommend introducing them as a tool to describe the autonomous system. In this respect
the autonomous networks framework distinguishes business intent, service intent and
resource intent. This categorizes intent being used between and within the major architectural
layers of an autonomous network. For example, a business intent is in this respect any intent
that carries requirements, goals and constraints targeted at functions and tasks within the
business layer.

There are multiple dimensions for categorizing intent. Intent can address certain concerns and
therefore target a specific functional domain. Intent expressing requirements for automated
contract negotiations in BSS are certainly different from intent imposing radio coverage
requirements in RAN management. What distinguishes these examples are the information
models used to express expectations. The information models are domain specific which gives
the intent a natural scope and implies a type.

Depending on which aspect and concern to describe and discuss a different set of intent
categories might be used. An intent can therefore have multiple types at once coming from
different dimensions of categorization.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 31 of 106

Here are a few examples of dimensions of intent categorization. The list can be extended as
needed:

1. By targeted responsibility scope
This can be the domain and layer in the autonomous network framework, or it can be
the intent handling scope as introduced in Chapter 11.

2. By concerns addressed with intent. Multiples are possibly addressed by a single intent
at once.
Examples: Service delivery, resource behavior, regulatory compliance, ...

3. By origin type
This categorization is derived from the category of the intent source. For example, the
type of entity that created the intent: Human or another system.

4. By origin role
The role of the entity the intent originates from: product manager, customer, user,
technician, ...

5. ... the list can be extended as needed ...

Intent objects are a collection of distinct expectations. This means a single intent can
potentially address many concerns at once and therefore partially meet the conditions of
several intent categories.

The dimensions and categories can be extended if needed for explaining further aspects of the
operation. There is already sophisticated work on intent types and categories done by other
work groups and organization. Their proposal is often based on domain expertise. We propose
to use these proposals of intent categorization as needed as long as intent typing is not
introduced in the models for creating intent objects.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 32 of 106

7. Principles of Intent-driven operation

7.1. Intent Management function

We introduce the intent management function as the entity that operates an autonomous
system by using intent. It can assume the role of an intent owner or intent handler or both
according to intent life-cycle management and interface as defined in Chapter 8 and IG1253C.

Figure 7.1: Intent management function

Figure 7.1 introduces the intent management function. Without implying a specific
implementation, we assume that intent management functions operate based on knowledge,
make decisions about actions to be taken and has the means to execute the chosen actions.

Knowledge refers to knowing the operational goals and requirements as specified by intent.
The intent management function is an endpoint of the intent interface through which it
received the intent it is supposed to handle, thus base its operational decision and actions on.

Knowledge also means knowing the state of the system or domain for which an instance of the
intent management function has the responsibility to operate. While intent specifies the
wanted state to be in, measurements and analytics results determine the current state. The
decision of the intent management function is mainly about closing the gap between the
current measured and wanted state.

The intent management function decides about suitable actions needed to fulfill the intent.
The chosen action plan can involve the definition of further intent used to communicate
requirements and goals to other sub-systems. This means an intent management function can
act by defining intent. In this case this instance of the intent management becomes an intent
owner. It can however also act through conventional interfaces for example by invoking
processes or changing system configuration. The actuation of the intent management function
would then implement all needed interfaces. This means that an intent management function
interacts with and relies on other functions of the domain it operates. This domain
responsibility makes instances of the intent management function highly contextual. They

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 33 of 106

have a defined and exclusive scope of responsibilities. The scoping of intent handling is further
discussed in Chapter 11.

7.2. Intent reporting

Intent reports are exchanged between intent management functions for reporting on status
and success of intent handling. Intent management function can have the role of intent
handler or intent owner. Intent objects are created by the intent owner and sent to the intent
handler. The intent handler operates based this intent and reports back to the intent owner
about progress and success. The roles of intent management functions are discussed in further
detail in the context of intent life cycle management in Chapter 8.

Intent reports are therefore knowledge objects that always correspond to an intent. If an
intent is sent by an intent owner to an intent handler, the intent handler will start sending
reports back to the owner. This means for each individual intent object there will be a
sequence of reports directly related to this intent.

Intent reports are pushed by the reporting intent handler rather than being pulled by the
intent owner. When and why to create reports is determined by conditions defined within the
intent through reporting expectations. The intent handler has access to detailed state
information and measurements of the domain or system it operates. This means only intent
handlers can detect if an intent is violated. Therefore, only a push mechanism for reporting
would allow immediate reporting of major events such as intent degradation. While intent
owners define through intent objects what operational aspects are relevant, an intent handler
would use its domain knowledge to report on these aspects and only on these aspects. Intent
handlers are in this respect knowledge aggregator and relevance filter for the intent owners.

Intent report is the only mechanism provided by intent based operation to inform the intent
owner about the system state and system compliance to the intent. This encapsulates the
lower level details about resources and only communicate about the requirement details with
the intent owner. This creates good separation of concerns and clear separation of authority
and responsibility between domains. However, it is allowed that an intent manager
implements additional interfaces directly with measurement, analytics and any information
system or inventory available. This can be done in addition to intent based operation with its
intent reporting mechanism, but it is outside the scope of specifications and standards about
intent and its management.

Intent reports also play a role in the intent life-cycle management. They also communicate
handling status and progress. Communication from the owner about setting, modification or
removal of intent is answered with an intent report. In this respect the intent report also
carries information about handler decisions such as acceptance or rejection of intent and the
rejection reason.

The intent management function that has sent the intent is the receiver of the associated
reports. Although intent reports are pushed by the intent handler, the receiver of the
report has full control of the reporting. It specifies the reporting conditions through the
intent. If additional or less reporting is needed, the intent owner can modify the intent and the
reporting expectations within. The intent handler would adjust its reporting accordingly.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 34 of 106

7.3. Intent in the autonomous network framework (ANF)

The intent management function is a generic architectural component for the realization of an
autonomous network's framework. All intent is created, managed and operated by intent
management functions and through the intent interface. Thus realizes an intent overlay across
architectural layers and throughout autonomous domains.

Figure 7.2: Example Intent-driven operation within the autonomous network's framework

Figure 7.2 shows an example of multiple intent management functions with their individual
responsibility scopes. Note that the arrow representing the intent interface is bi-directional in
this picture. This includes the direction of intent setting as well as the direction of intent
reporting between intent management functions. All procedures proposed on this interface
are discussed in detail in Chapter 10 and IG1253C.

In this example there is one intent handling function in business operation. It receives its
intent from contract and order management. This intent might originate from SLAs, and it
reflects the contractual obligation towards a customer and the needs of the respective users.
While contract and order management might be an automated system that generates intent,
further intent can come directly from human personnel of the customer. Also, the operator's
personnel can inject further intent directly into the autonomous system. Human intent setting
would be done through respective frontend. In this example we show customer and business
portals. Both are human interface frontend allowing direct or indirect intent specification by
humans.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 35 of 106

In the service operation layer, this example shows three distinct intent management functions.
An OSS intent manager receives all intent for service operation coming from the business
operations layer. This intent manager then decides the service operation processes needed. It
breaks down the received goals and requirements into suitable instrumental goals. These are
then distributed to sub-domains of service operation as intent. Here two sub-domains are
shown: Orchestration and Network management. However, this is only meant to be an
example of the principles of Intent-driven operation. In a real-world autonomous network,
there are more and potentially different domains and layers from the ones shown here.

Resource operation consists of multiple autonomous domains. Using the intent mechanism, it
is possible that service operation interacts with each autonomous domain through intent.
Typically, intent management functions within service operation would decide what goals and
requirements each autonomous domain needs to fulfill. These are the instrumental goals of
service operation. These goals are reflected in a set of distinct, but coordinated intent objects,
each targeting the intent handler within an autonomous domain.

Please note that intent is not only used between the layers of the Autonomous Networks
Framework, but also between autonomous domains, within the layers. Please also note that in
this respect autonomous domains do not only subdivide resource operation, but also separate
responsibility scopes of intent-driven operation within Service and Business operation layers.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 36 of 106

8. Intent life-cycle
Intents are distinct knowledge objects with separate life-cycle. This life-cycle is managed by
intent management functions. Each instance of an intent management function can assume
the following lifecycle management roles:

Intent Owner

The intent owner is the origin of intent. If has created the intent object and it is responsible to
manage its lifecycle. This includes changing the intent content if needed and finally removing
the intent object. Only an intent management function in the role of an intent owner is
allowed to create, modify or remove the intent.

Intent Handler

The intent handler receives an intent object and operates the domain it is responsible for
accordingly. Intent handlers do not modify intent, but they can reject it. However, once
accepted they are obliged to fulfill the requirements and goals as well as possible based on the
resources and solutions it has available. Intent handlers report back to the intent owners
about the handling status and success.

Every intent object has exactly one owner and one handler. The relationship between multiple
intent owners and handlers is discussed in further detail in IG1253C.

Figure 8.1: Intent lifecycle phases

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 37 of 106

The intent lifecycle consists of the following phases:

Detection:

In the detection phase the intent owner identifies if there is a need to define new or
change/remove existing intent to set requirements, goals, constraints. An intent management
function has its own terminal goals to fulfill. It would break its terminal goals down into a
suitable set of detailed instrumental goals. Typically, these instrumental goals need to be
fulfilled by other functions and domains and therefore they need to be not only defined but
distributed to suitable handlers throughout the autonomous system. This is what the intent
owner is doing using intent. In the detection phase the intent owner can react to changes in its
own terminal goals or to changes in the fulfillment in its instrumental goals. In this respect the
intent owner will need to collect information about the goals' fulfillment. Intent reports
coming from handlers are one source for this information. Through intent reports the intent
owner is able to react on intent handling success. In any case it is task of an intent owner to
assure the fulfillment of its terminal goals and the first step is to detect if any changes are
needed in its instrumental goals and therefore in the intent objects it owns.

Investigation:

In the investigation phase the intent owner finds out what intents are feasible. This has two
aspects: first, it needs to find suitable intent handlers that have the right domain
responsibilities and support the intent information the owner wants to define. Intent handler
capability management and detection would be used for this process.

The other aspect of investigation would be finding out if the wanted intent is realistic. This
means, if the intent handler would be able to successfully reach the wanted goals and meet
the requirements. This depends on the current resource situation and state of the system and
can vary over time. Typically, the feasibility of intent is done through a guided negotiation
process between the intent handler and intent owner. The owner can explore what the
handling result of a wanted intent would be, what would be the best result the handler can
achieve, or what would be the most challenging requirements, the aspiring intent handler can
offer to fulfill.
Feasibility checks and negotiation can become a challenging task for the intent handler. It
might involve nested requests to further intent handlers, advanced prediction models or a
combination of both.

Definition:

At the end of the investigation phase, the intent owner knows what is possible and which
handlers can be used. By combining this information with the needs that were identified in
detection, the intent owner can now decide and plan all needed intents. In the definition
phase the intent owner formulates the intent it needs to use, and it creates the respective
intent objects.

Distribution:

In the distribution phase the intent owner contacts an intent handler in order to send a new
intent or modify or change an existing one. This way the intent owner acts on the plan it has
made in definition phase. In this phase an intent management function becomes intent
handler by receiving new intent. The intent handler decides if it can accept the intent. If not, it
would send a report with the rejection reason back to the owner. While this finishes the life-
cycle of this particular intent object, the intent owner can start over with detection to create a
new plan. If the intent handler accepts the intent, it starts operating based on it.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 38 of 106

Operation:
Each intent an intent management function handles constitutes yet another set of goals and
requirements to be considered in its decisions and actions. Intent handlers operate their
domain of responsibility according to the given intent. They also report back to the owner
about status and success while continuously reacting to intent fulfillment threads. Intent
reports would be evaluated by the intent owner as part of its detection process, which leads to
the next iteration of the intent life cycle.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 39 of 106

9. RACI of intent and intent handling
We use a responsibility assignment matrix [raci] to discuss the roles and responsibilities of
intent-driven operation. We propose to follow the RACI model and its role distinction for tasks.
While RACI models were originally designed to describe tasks and roles in human executed
processes, we extend and apply the same model to describe entities within an autonomous
network. In this chapter we focus on the tasks and entities involved in intent-driven operation.

R = Responsible (also recommended)
Those who do the work to complete the task. There is at least one role with a participation
type of responsible, although others can be delegated to assist in the work required.

A = Accountable (also approver or final approving authority)
The one ultimately answerable for the correct and thorough completion of the deliverable or
task, the one who ensures the prerequisites of the task are met and who delegates the work to
those responsible. In other words, an accountable must sign off (approve) work that
responsible provides. There must be only one accountable specified for each task or
deliverable.

Accountability is linked to liability. A party that is accountable for the actions done to perform
a task is liable for the effects and consequences these actions have. This means a party can
only be accountable if it can be liable in the legal sense. This is a necessary property of any
party to be considered accountable according to the RACI model. Legal persons such as
corporations can therefore be accountable. Individual persons can be accountable only if they
are in a position that implies liability. Some management positions can have this property of
the person being personally liable. Persons in positions that do not directly imply liability for
their actions can therefore not be accountable in the sense of a RACI model. They are typically
allocated in a hierarchy with a person or organization above them, which is liable.

Machines and autonomous systems are never legally liable and can therefore can never be
accountable for a task. Accountable entities assign responsibilities for tasks, and they might
have assigned responsibility to other persons or to an autonomous system. This means, that
responsibility can be handed down in a hierarchy and shared when a task is subdivided into
sub-tasks and therefore the responsibility for the task is sub-divided into a set of
responsibilities for the sub-tasks. These responsibilities are assigned to one or multiple
individual entities. Accountability always stays with the person or organization that is liable
and has oversight over all delegated responsibilities no matter if they were delegated to other
persons or autonomous systems.

C = Consulted (sometimes consultant or counsel)
Those whose opinions are sought, typically subject-matter experts; and with whom there is
two-way communication.

In a technical infrastructure one entity with the responsibility for a task might utilize the
services of other entities as needed. This can be an information or data service delivering input
needed to perform the task. Also, policies can be consulted as part of a decision process the
responsible entity performs. Furthermore, a person can be consulted by an autonomous
system as part of the process through a frontend.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 40 of 106

In this respect, a consultation activity can be broken down into subtasks and therefore implies
a set of sub-tasks with distinct responsibilities. For example, the insights of an analytics
function can be important for performing a task. The entity with the responsibility of the task
would therefore consult the analytics function about this insight. On the other hand, creating
the insight is a process that can be broken down into a set of tasks with associated
responsibilities. In this respect it matters for the RACI analysis what level and scope of
functional decomposition is chosen to describe the system. In this chapter the analysis is done
to describe intent management and the main tasks associated with intent owners and intent
handlers.

I = Informed (also informee)
Those who are kept up-to-date on progress, often only on completion of the task or
deliverable; and with whom there is just one-way communication.

When assigning RACI roles to the technical entities involved in intent handling, informing is
interpreted as sending information on the results of a task or sub-task to a party whose own
responsibilities depend on it. For example, when an intent handler has done actions towards
intent fulfillment, it will inform the intent owner about the results.

A RACI model is typically used to describe and discuss the roles of human actors with respect
to tasks in a process. Here we propose to extent the scope of RACI models to also include
automated entities such as the intent management function in the role of intent owners
and/or intent handler. In this respect it is important to capture the relationship between the
human workforce and autonomous systems, how they share RACI roles and how they interact
with each other in taking these roles.

The beneficiary of intent is the person or entity (legal person) whose concerns and needs are
addressed by the intent. They are the entities benefiting from the intent. There are many
parties that can be considered to be beneficiaries, for example:

• Customers of the service provider
Customers and associated end users benefit, because intent expresses and
communicates their needs with respect to services that need to be delivered and their
detailed agreed characteristics. This is typically legally controlled through contracts
including SLA or frame agreements. Their details are expressed as intent and
combined with intent directly provided through self-service portals.

• Service provider shareholders
The owners of network operators and service providers are beneficiaries of the intent
the service providers use for steering the operation of their infrastructure and
network. They benefit from services being delivered with cost optimized resource
usage while receiving compensation for fulfilling the contractual obligations. Intent is
in this respect a tool to steer the more or less automated systems into the direction of
a preferential business result and return of investment.

• Legislator and Regulator
For example a market regulator might use intent towards the operator to enforce legal
requirements. Compliance to regulation constitutes their benefit.

• Other parties or interest groups

Further entities can become beneficiaries if they have a concern to be satisfied by the
operator. This concern might then either be expressed explicitly as intent or it is
communicated in a different way, but influences the intents being used within
operation.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 41 of 106

The service provider or operator is the central acting party for intent-driven operation. It
receives intent from beneficiaries. These intents are external if they are coming from a party
outside the administrative domain of the service provider.

A service provider with an autonomous or semi-autonomous network employs a human
workforce in combination with automated or autonomous systems. Intent is used to
communicate the concerns of the operator to its partly human partly autonomous workforce.
This intent is internal. It is primarily expressing the service provider's concerns and needs. One
concern is typically to fulfill the needs of external beneficiaries. Consequently, internal intent
reflects external intent. Additionally, internal intent distributes inherent concerns of the
operator, such as its business goals, strategies and policies.

In this environment of business and legal relationships, the service provider is accountable for
all tasks within the administrative domain it controls. This implies that the service provider is
liable for the effects and consequences caused by the actions being done by any entity within
this domain. These actions are executed by the personnel the service provider employs or the
autonomous systems utilized and assigned tasks. The service provider is therefore accountable
for Intent-driven operation with all involved actions and effects they might have on
beneficiaries. This is the case for all external intent received and accepted by the service
provider as well as for all internal intent the service provider uses to steer the underlying
infrastructure. The service provider is accountable for all positive and negative outcomes
including also collateral and unintended side effects.

In this respect the service provider must trust that the intents received by external parties are
correct and complete and therefore reflect the needs of the beneficiaries accurately. The
beneficiaries take the role of intent owners in this relationship while the service provider is the
intent handler. The beneficiaries are therefore accountable and responsible for correctly
performing the tasks of an intent owner. This means they are accountable for the tasks
involved in defining the intents and therefore liable if the intent they send is not correct.
Nevertheless, the service provider is accountable also for concerns that are not explicitly
stated by intent. For example, legal compliance always applies and can also not be overruled
by externally received intent.

In terms of the RACI model, the service provider's personnel is responsible for tasks of intent-
driven operation including its sub-tasks. We propose to extent this notion of responsibility and
therefore the scope of the RACI model to autonomous technical systems. An autonomous
system can therefore be directly the responsible entity for a set of tasks. This means, while
accountability for tasks is always assigned to a person or legal person, the responsibility can be
assigned to human individuals and teams as well as autonomous systems.

Intent primarily targets the behavior of autonomous systems operating a technical
infrastructure. It impacts the utilization of typically common and limited resources. This means
that actions done for the task to fulfill the intents associated with one beneficiary can impact
the outcomes for other beneficiaries. The accountable party is liable for these side effects. It is
therefore an important aspect for the responsible parties to consider negative side effects
when executing their tasks. Intent defined by the accountable entity can be used to steer this
process.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 42 of 106

An autonomous system is usually under human supervision. This refers to a person or team
responsible to monitor the autonomous system and ready to step in. This might be needed, if
the autonomous system for example does not fulfill intents, takes too risky decisions or misses
out on optimization opportunities. The human team can apply a range of actions. They might
re-configure the autonomous system, potentially by adding intent to shift its behavior.
Artifacts such as policies, applications, models or data might be missing although needed or
the use cases the system is asked to operate. In this respect ML models might get out of sync
with reality and data scientist need to step in and tune or re-train the model with new data.
This would be enabled by well-defined and efficient AI governance processes including
monitoring and explainability. Ultimately the human team might also completely take over and
operate manually if no other action works.

The autonomous system and the human team monitoring and maintaining it can be seen as a
unit with respect to intent-driven operation. They share the responsibility for a set of tasks,
but with variable allocation between the autonomous systems and the human technician. In
normal operation the autonomous system is the sole responsible entity for operational tasks,
while the human concentrates on monitoring correct operation. In exceptional situations, for
example if the autonomous system fails in its tasks or if it requires assistance and approval, the
split of responsibilities shifts. The autonomous system might escalate tasks to the human, or
the human might seize responsibility for some tasks. In extreme cases the human technician
might choose to completely take over all operational tasks if necessary.

Within an intent-driven autonomous system the intent management function in the role of
intent handler as introduced in chapter 8 is the responsible entity for intent-driven
autonomous operation. It receives intent and it involves other functions in the operation. It is
also responsible for performing the intent reporting task.

9.1. RACI for intent lifecycle management tasks

intent-driven operation is realized by instances of the intent management function by
performing intent lifecycle management through the intent handling management service
(aka. intent interface). This chapter discusses the classification of major tasks involved in intent
lifecycle management and assignment of RACI roles.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 43 of 106

Figure 9.1: Parties involved in management of internal and external intent.

Figure 9.1 shows the parties involved in tasks for intent-driven operation. Beneficiaries build a
relationship with the service provider by acting as external intent owners considering the
service provider as intent handler. The overall administrative domain of the service provider is
subdivided into autonomous domains including autonomous multiple layers of intent usage.
All tasks involved in intent-driven operation through intent lifecycle management are
distributed to intent management functions in intent owner and intent handler roles. The
tasks involved and associated assignment of RACI roles are shown in Table 1.

Humans and other functions than intent management functions can be involved in the
operation processes, but only as consulted or informed parties. For example, in usual
operation humans are only in a consulting role. This usually refers to the personnel of the
service provider using an autonomous system to operate and a human team to supervise the
system. The autonomous system might choose to escalate and seek assistance from them
when needed. Only in exceptional cases, such as failure of autonomous operation the
responsibility for tasks in intent management would be reassigned to humans. Table 1
discusses normal operation in which operational tasks and in particular the tasks of intent
management are assigned to the intent management function.

Humans also monitor the autonomous system. Tasks associated with monitoring are not part
of intent handling and therefore not in scope of this discussion.

Table 1: RACI assessment of intent-driven operation

Intent LCM
phase

Task Human Intent
owner

Intent
handler

Other
management
functions

Detection C R C C
 Monitor operational

state (intent
handlers and
infrastructure)

- R C C

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 44 of 106

Intent LCM
phase

Task Human Intent
owner

Intent
handler

Other
management
functions

 Identify the need to
change intent

C R - -

Investigation - R C C
 Investigate intent

options
- R C C

 Feasibility
assessment

- I R C

Definition - R - -
 Decide which intent

details to use
- R - -

Distribution - R I I,C
 Register intent

handling capability
profile

- - R I

 Select intent
handler

- R - C

 Communicate intent - R I -
 Assess and accept

intent
- I R C

Operation C C,I R C
 Monitor operational

state
(underlying
Infrastructure)

- - R C

 Detect deviations - - R C
 Plan action C C R C
 Execute action plan - - R C
 Report handling

status
- I R C

R: Responsible, C: Consulted, I: Informed, -: not involved

Intent-driven operation within an autonomous network is driven by the intent management
function. The intent lifecycle determines the distinct tasks involved in the operation. These
tasks are split mainly between an intent management function in the role of intent owner and
an instance in the role of intent handler. The intent lifecycle is introduced and discussed in
Chapter 8.

Next to the intent management functions there are other management functions participating
in the operation and also humans might get involved. Table 1 summarizes the assessment or
roles according to the RACI model.

Please note, that this assessment is done from the perspective of a single intent instance. In
general, and with multiple intents involved intent management function can assume multiple
roles. For example, an intent owner for one intent can be the handler of other intents. In these
scenarios these other intents the intent manager instance handles will play a major role in the

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 45 of 106

decisions about the intent it owns. A separate assignment of RACI roles would apply to each
distinct intent object separately.

Detection phase

The responsibility for tasks in the detection phase lies with the intent owner.
Intent handlers contribute through intent reporting. Other management functions also
contribute if needed for example with analytics insights and measurement of KPI. This means
intent handlers and other management.

Functions are consulted in the task of monitoring the system state.
The intent owner is responsible to identify if new intent or changes to existing intent is
needed. The intent owner is ideally making this decision autonomously, buy it has the option
to consult with humans if needed.

Investigation phase

The intent owner drives the investigation and is therefore the responsible entity. This
investigation is mainly about asking intent handlers if they can successfully handle the wanted
intent and what would be the result if this intent would be given to the handler. The owner
explores options and consults intent handlers. One significant task in this process is the
assessment of potential intent fulfillment success within an intent handling scope and with the
available resources. The intent handler is responsible for this task. This task is enabling the
intent handler to be consulted in the overall investigation phase. The intent owner will be
informed about the results.
Other management functions might get consulted by the intent handler if needed in the
feasibility assessment.

Definition phase

Based on the information gathered in detection and investigation, the intent owner would
select one of the investigated options and creates intent objects accordingly. This phase and all
its associated tasks are in the responsibility of the intent owner.

Distribution phase

In the distribution phase the intent owner is responsible for the task of communicating the
intent created in the definition phase to the intent handler. Consequently, the intent handler is
an informed party. In return the intent handler informs the intent owner if it accepts the
intent. The intent handlers is responsible to do so and to perform all necessary assessment
and evaluation tasks potentially consulting with other management functions.
A key task in the distribution process is the selection of a suitable intent handler based on
intent handling profile. This is a process enabled by the intent handler registry. It is the
responsibility of each intent handler to inform the intent handler registry about its intent
handling capability profile. The intent handler registry is consulted by the intent owner when
performing intent handler selection. Intent handler capability profiles and the intent handler
registry are introduced and discussed in more detail in Chapter 12.

Operation phase

In this phase the underlying infrastructure is operated to fulfill the intent. The tasks of the
operation phase are therefore primarily in the responsibility of the intent handler.
The intent handler needs to monitor the state of the underlying infrastructure. It is gathering
all needed information by consulting with other management functions, such as inventories,
data management systems and analytics functions.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 46 of 106

The intent handler then needs to identify the reason to act derived from a discrepancy
between the monitored state of the system and the wanted state defined by intent. Other
management function might be consulted for this task.

The intent handler would plan suitable actions to improve the fulfillment of intent. It would
consult with other management functions if needed. They can help to propose actions, predict
their potential impact, or evaluate their feasibility. If needed, the intent handler might also
consult with the intent owner or directly with humans about the preference of alternative
action plans.

Ultimately the intent handler has decided how to act and will execute the actions. The intent
handler is responsible for the execution as a whole. This might involve multiple sub-tasks other
management functions are responsible for. With respect to the overall responsibility of the
intent handler these other management functions are therefore informed or consulted
depending on the details of the actions involved.

The intent handler is also responsible to report intent handling status and inform the intent
owner about it.

9.1.1. RACI of intent handling capability management

Instances of the Intent management function participate in tasks for intent handling capability
management. The analysis of these tasks according to RACI is shown in Table 2.

Table 2: RACI assessment of intent handling capability management

Task Human intent
owner

Intent
handler

Intent handler
registry

Register intent handling
capability profile

- - R I

Select intent handler - R - C

R: Responsible, C: Consulted, I: Informed, -: not involved

Intent managers are responsible to register themselves in the Intent manager registry
described in Chapter 12 and IG1253D. The intent manager registry therefore becomes the
informed party.

The intent owner needs to identify and select suitable intent handlers as part of its tasks and
role within intent lifecycle management. The intent owner is responsible for this task and the
intent manager registry is consulted about the intent handler capability profiles. These tasks
are performed over the intent manager discovery interface described in Chapter 12 and
IG1253D.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 47 of 106

10. Intent interface
The intent handling interface is the means of communication between two intent
management functions. One of them is in the intent handler role and the other in the intent
owner role. This interface and its procedures are closely related to the phases and tasks within
intent lifecycle management.

This chapter provides a summary of the intent interface. IG1253C contains a more in depth
discussion of the interface with detailed examples about the communication procedures. This
proposal is inspired by the introduction of interfaces through management services as
described by 3GPP in [28.812].

The intent handler interface is independent of use-cases, application domains and system
layers. It is primarily concerned with managing the lifecycle of intent objects and related intent
reports. All domain specific information would be encapsulated within the intent and subject
to the modeling of intent. This domain independence immediately means that an
implementation of the intent handling interface can be re-used for every intent management
function irrespective of its intent handling scope.

Figure 10.1: The intent handling management service and interface

Figure 10.1 shows the intent interface modeled as management service. More specifically, we
introduce the intent handling management service. Consumers and providers of the intent
handling MnS are both instances of an intent management function. The producer is an intent
management function in the role of intent handler, while the consumer is an intent
management function in the role of owner. These roles are assumed on a per intent basis. This
means the same instance of an intent management function can be the producer of the intent

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 48 of 106

handling MnS for some intent, while it is the consumer for other intent. It is however never
both for any distinct intent object.

The intent handling MnS defines a couple of procedures for communication. Mandatory
procedures need to be implemented by any intent management function. They represent the
bare minimum of communication needs between intent handlers and owners.

Optional procedures and the respective communication procedures address advanced
features such as intent negotiation and owner/handler collaboration on prioritization. This is
optional, because supporting them would require advanced capabilities of intent management
functions, such as predictive and speculative models. Simple intent management function
implementations would typically not have these capabilities due to cost of complexity or
because they are not needed for the responsibility domain of an intent management function.

Mandatory Procedures:
These procedures need to be supported by every intent management function.

SET:
This procedure is used by an intent owner to communicate the new or modified intent to an
intent handler.
This is how the intent owner communicates the needed intent. The handler would reply with
an initial report. The handler can accept or reject the intent.

REMOVE:
This procedure is used to remove an intent object. This is how the owner of the intent object
retires (delete) intent that is not needed anymore and informs the handler. The handler will
send a final report in return and remove the intent from the set of requirements that
determines its operational actions and decisions.

REPORT:
This procedure is used to communicate intent reports. It is initiated by intent handlers once
they are required to report the intent handling status and success back to the owner of the
intent.

Optional Procedures:
These procedures can be implemented if needed. They provide features for negotiating intent
and for collaborative optimization of decisions and actions. This means, implementing optional
procedures can lead to higher levels of autonomy and optimized operation on the intent
control loop. An intent management function can use the mechanism of intent handler
capability management to announce its range of support.

JUDGE, PREFERENCE:
This procedure allow a collaborative evaluation of proposed solutions. This is part of the
operation phase within the intent life cycle. The handler asks the owner to judge alternative
outcomes corresponding to alternative solution strategies and actions. This is done before
these actions are executed. This way the intent handler achieves a better understanding of the
intent owner's needs and priorities that were not apparent from the intent.
The intent handler needs to formulate hypothetical outcomes for alternative actions as base
for a judgment decision. This requires predictive capabilities able to estimate the effect of
action on the system state.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 49 of 106

PROBE, ESTIMATE:
This procedure allows exploring the potential handling results of an intent. The process is
typically part of the investigation phase within the intent life cycle. It is initiated by the intent
owner. It involves sending an intent object to the handler, asking the handler to not consider it
in actual operation decisions and actions. The handler shall rather just estimate what the
outcome would be, if the intent would be really set by the owner. The handler would deliver
its assessment in the form of an intent report. This procedure can be used to establish a
process of negotiation between the intent owner and handler.
Providing a good estimate requires predictive capabilities within the intent handler. Predictive
machine learned models and digital twins might be used to gain this capability.

BEST, PROPOSAL:
By using this procedure, an intent owner asks an intent handler for the best intent
configuration it can successfully handle. This refers to the most severe requirement the
handler would be able to successfully comply to. The owner guides the handler by pointing at
expectations to focus on with respect to required/prioritized value ranges.
Guidance by the intent owner is important, because it understands priorities and importance
of one requirement over another one. The asked intent handler does not have this knowledge
because it is derived from concerns and needs of another domain. Therefore, it cannot decide
itself what proposal would be sensible without being told what to focus on.
This procedure can be used as part of the owner and handler negotiation within the
investigation phase of the intent life cycle. It is also possible to use this procedure for asking
the intent handler to provide proposals also for intents that are in operation. This means the
intent owner would not only receive information about the current status of intent handling in
an intent report. It would also receive proposals for the most sever requirements the intent
handler considers to be possible.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 50 of 106

11. Intent management scope
An instance of the Intent management function operates a system according to a clearly
assigned responsibility for task. This refers to the set of responsibilities according to the RACI
model as described in Chapter 9. In this respect implementations of intent management
functions are not generic but specialized in the tasks they are responsible for. The scope of
task responsibility typically matches clearly defined sub-system, ANF layers or autonomous
domain borders. This means every sub-system or domain within an autonomous network has a
unique instance of an intent management function with the responsibility to fulfill the intents
targeting this domain. The range of tasks and borders of responsibilities are referred to as
intent management scope.

IG1253D contains a more detailed discussion of intent management scopes a collection of
proposed intent handling scopes. This chapter demonstrates the concept. It will be revised and
extended in future releases based on detailed use case studies and potentially cross SDO
collaboration. In this respect the scoping of intent handling also plays an important role in the
governance of work executed across SDOs and standardization work groups. The scope of a
domain specific intent standard proposal ideally targets one or several intent handling scopes.
It is in this respect explicitly allowed to define new intent handling scopes as needed. And it is
encouraged to contribute them into the list and documentation of intent handling scopes in
IG1253D. This would ensure that overlaps in scopes are discovered that they can be avoided.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 51 of 106

12. Intent manager capability management
Depending on their scope of operation and responsibilities, instances of the intent
management functions needs domain specific implementations. This means intent
management functions have unique capabilities. Aspects of intent manager capability are:

• Intent manager scope: This describes the range of responsibility for operational tasks
within a system domain or sub-system. By associating a defined scope with an intent
management function, this intent manager claims that it is the responsible entity for
all intent targeting this scope.

• Intent interface support: This refers to the optional intent interface procedures
supported by this intent management function. This means that this intent
management function has implemented also some of the more advanced and
challenging processes implied by the optional interface procedures.

• Intent notation format: Intent and intent reports are represented as knowledge
graphs. For the transmission over an interface these graphs are serialized and there
are various notation formats available for this purpose, for example TURTLE, XML or
JSON-LD. An intent management function might have implemented support for all of
them, a subset of them or it might even support further alternatives or proprietary
formats.

• Intent expressiveness: This refers to the intent extension and intent information
models understood by an intent management function when used within intent and
intent reports. The intent management function understands any intent if it is build
using a model federation from this set of constituents. This does not imply, that it will
always be successful in fulfilling the intent, but it understands the meaning of the
requirements the intent carries.

12.1. Intent manager profile

An intent manager profile is an information object that describes these capabilities offered by
an instance of an intent management function.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 52 of 106

Figure 12.1: Example profile of an intent manager.

Figure 12.1 shows an example intent manager profile. In this example the intent management
function has the intent handling scope of "Slice Management". Furthermore, it supports the
PROBE, BEST and PROPOSAL optional procedures on the intent interface and intent and intent
reports can be transmitted encoded in XML, JSON-LD and TURTLE notation.

Furthermore, the profile lists the supported models for intent and intent report expression.
The intent manager described by this intent manager profile supports and understands intent
and intent reports expressed using these models.

This capability profile information is important for multiple tasks within the intent life cycle. It
allows an intent owner to identify the intent handler instance that is responsible for the
domain targeted by the intent it wants to set. The profile also determines what vocabulary is
available in the communication with that targeted intent handler. Furthermore, the profile
provides information about which interface procedures for intent feasibility study and
requirement negotiation would be available to use in the investigation phase of the intent life
cycle.

Please note, that the list of supported models also contains the intent common model,
although it is considered to be mandatory for every intent management function to
implement. However, there might be multiple versions of the model and the intent handler
profile allows defining, which of them are supported.

More details on intent manager capability profiles and the model for encoding them are
described in IG1253D.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 53 of 106

12.2. Intent handler registration and discovery

The information contained in the intent manager capability profile of one intent manager
needs to be considered by other intent managers. They require the information about each
other's capability to collaborate effectively in intent life-cycle management and intent-driven
control loops. In this chapter we introduce a mechanism how the intent manager capability
profiles are distributed. More details and a proposed model for formulating the profile is
provided in IG1253D.

Intent management functions register themselves with their intent handler profile at the
intent manager registry. This is done through the intent manager registration interface
exposed by the intent manager registry. In this respect it is the responsibility of each intent
management function to keep its profile information up to date. This can be needed for
example if dynamically deployed artifacts such as policies or machine learned models
introduce or remove capabilities.

Figure 12.2: Intent manager registration and discovery

Figure 9 shows the interfaces involved in intent handling, intent handler registration and intent
handler discovery. Within an administrative domain, such as an operator's network, there will
usually be one intent management registry. This is only logically centralized and distributed
deployments for redundancy and performance reasons can be chosen.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 54 of 106

If intent is used directly across administrative boundaries, for example between operators and
their customers a common intent manager registry can be used. Alternatively, both parties can
grant access to their respective intent managers and expose the profiles of the intent
managers that shall be visible. For example, the operator might expose the intent manager for
order management to their customers.

The intent manager registry exposes an interface for discovery. It allows to query the intent
handler registry. This way intent owners can identify suitable intent handlers for the intents
they want to create.

It would also be possible to expose different profiles internally and externally. This can be
needed if the operator would allow customers to formulate intent about service orders, while
additional intent about the operator's policies and goals regarding contract and SLA
acceptance can only be defined by the operator. The detailed authorization and profile
publishing mechanisms for these use cases are future work.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 55 of 106

13. Modeling of intent objects and reports

13.1. The nature and use of intent models

Intents were defined as being the requirements, goals and constraints that reflect needs and
communicate them to the autonomous system. This is knowledge created by an intent
management function and sent to another intent management function to be considered as
requirements in its autonomous operation. While intent might be based on the intentions and
needs of a human or an organization, intent objects are practically exchanged between
machines. They need to arrive at exactly the same interpretation of the intent content, which
is achieved by standardized models. This means, we understand intent modeling as a challenge
knowledge modeling with comprehensively defined vocabulary and semantics.

Intent modelling is not done to communicate to a human developer what needs to be
implemented. This type of models are only directly used by a human developer and the
implemented system complies to the model, because the developer has implemented it
accordingly. Interface information and data models in API design are typically used this way.
UML is by far the most popular modelling environment and language for this style of model
use and it provides sophisticated tooling and expressiveness for this purpose.

Intent models are used differently. They allow creating information objects that are directly
consumed and worked with by a machine. This means the developer is not a necessary
middleman anymore to transform the model into implemented logic. The machine will directly
reason about the modeled objects and therefore makes online use of the model and all its
semantics definitions directly. This means, intent management involves a machine reasoning
about the knowledge conveyed through the intent model within an environment of knowledge
about the operated systems and infrastructure. This means intent models must have formal
semantics that allow machine reasoning and logic inference. Modeling with formally defined
ontologies would enable this capability. This approach is also essential for building more
advanced self-adapting systems and that is a key characteristic of higher levels of autonomy. A
popular and widely used standard for these modeling challenges is the Resource Description
Framework (RDF) [rdf] by the World Wide Web Consortium (W3C) [w3c].

Individual intents are knowledge objects represented and expressed in the form of ontology
graphs. This means that any language able to specify ontology graphs is in principle suitable for
expressing intent. We recommend however to base the intent modeling of the Resource
Descriptor Framework (RDF) [rdf] family of standards including the related RDF Schema (RDFS)
and the Web Ontology Language (OWL). These are actively developed standards with broad
application in knowledge management use cases. They were developed to formally express
knowledge within machines and enable automated inference from the models.

Intent-driven operation as proposed by IG1253 is based on two central knowledge objects:
intent and intent report. The discussion regarding modeling techniques, languages and base
standards are valid for both.

13.2. Expressiveness of intent

Intent modeling defines the expressiveness of intent. It introduces vocabulary and semantics
needed to express and encode the knowledge about requirements, goals and constraints an
intent object shall carry. Standardized intent models define common semantics in order to

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 56 of 106

enable to two parties to agree on the meaning of intent and remove ambiguities and divergent
interpretation.

The intent model needs to provide sufficient expressiveness to cover all relevant use cases.
Autonomous operation is in general a multi domain task. Consequently, intent models must
provide domain specific and use case specific expressiveness. For example, intent on business
level might express user requirements as well as goals on financial results. These intents would
determine for example the outcomes of automated order and contract management, which
might include automated contract negotiation. These are the responsibilities of the business
layer and the intent used on that layer expresses matching requirements, goals and
constraints.

Other domains would have different responsibilities and operational tasks. They deal with
different types of resources and therefore require different expressiveness within the intent.
For example:

• Concerns of RAN management include coverage, quality of service and availability of
services as delivered by the radio network and individual cell sites and resources
within it. Intent targeting RAN would need expressiveness for setting requirements
about these concerns.

• Network function management deals with deployment of network function with
typical requirements concerning scale and allocation.

• Slice management has the concern to set up and configure network slices to that they
deliver the required quality of service.

• Service management is concerned with end-to-end orchestration and assurance and is
required to assure an overall satisfactory user experience.

Each of these domains has its specific types of requirements. Consequently, intent targeting
them needs to be based in a model that provides vocabulary to express these specific
requirements. It is therefore a central concern of standards about intent modeling to provide
comprehensive domain-specific expressiveness. And, because intent is communicated
between intent management function in different domains, intent modeling is a cross-domain
task.

While domains have considerable differences there are also many common concerns with
respect to model expressiveness to the extent that modelling concepts and vocabulary can be
shared. For example, all domains will need the expressiveness to define numerical goals based
on metrics and KPI defining thresholds, target values and required ranges. The exact metrics
that are used are highly domain specific. For example, BSS might be concerned with cost
metrics and high level user experience measures, while autonomous domains in resource
management deal with requirements that express performance of distinct resources. All
metrics and KPI have in common that they are measurable with a numeric value. This means a
model that provides the vocabulary for referring to a metric and set a numeric target would
directly be useable in all domains and cover a broad range of intent use cases.

Another example is that all domains typically need to express the requirement that something
needs to be delivered. What this something is varies with domain. It can for example be a
service, a slice, an application, a network function or even an entire network. But this is only a
variation in the targeted object or resource and not in the semantics of the requirement that
something needs to be delivered. It is possible to express this with generic and domain
independent vocabulary. We can conclude from this discussion that intent in various domains
are similar with respect to what expressiveness they need from the intent model, although the
details can be highly domain specific.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 57 of 106

Another important point to consider is that it would not be very practical to approach this with
developing a single model that contains a superset of all domains, application and use case
expressiveness. The size of the model, the diverse competences needed to develop it and the
organizational challenge of central governance are problematic. Domain expertise is
distributed across projects and work groups within various specialized Standards Defining
Organizations (SDO). It is good practice that specialized work-groups define the standards
specific to a domain. On the other hand, this practice often leads to significant differences in
modeling and interface design even for similar challenges. This ultimately leads to high cost in
developing similar interfaces and functions several times.

In intent standardization we have a combination of common modelling challenges and domain
specific ones. There is a considerable amount of expressiveness that is domain independent.
Also, the interface for life cycle management and negotiation of intent can be designed in a
domain independent and therefore re-useable way. The proposed way to approach this is
through using federated model as explained in Chapter 14.

13.3. Requirements and concerns for intent modeling

This chapter lists and explains essential requirements for intent modeling. They provide the
base for proposals ranging from the choice of modeling standard to the detailed
expressiveness. This chapter also explains how the chosen and proposed concepts will meet
the requirements

13.3.1. Intent is knowledge

Intent carries knowledge about requirements, goals and constraints, including context and
supplementary information. It needs to do this based on suitable vocabulary and semantics.
We understand Internet modeling as a challenge of expressing abstract knowledge in a way
that a machine can draw conclusions from it. This means intent models shall be anchored in an
ontology that covers the abstract concepts involved with vocabulary and implied semantics
accessible to machine reasoning tools.

We propose to use the Resource Description Framework as base of intent modeling. It is a
popular standard in knowledge modeling and knowledge management applications. It has a
proven track record and mature tools are available. This includes machine reasoning tools that
derive inference from the knowledge in automated processes.

13.3.2. Ambiguity free semantics

Intent models need to be able to express the semantics of intent so that two intent managing
functions always agree on the meaning. Ambiguities in the model would lead interpretations
depending on assumptions made in the development of intent managers. Divergent
interpretations are hard to avoid if the model for intent expression leaves room for it. This is
important, because intent is used on cross domain and cross system interfaces in
heterogeneous multi-vendor environments. Even under these circumstances all involved
systems must agree on the meaning of intent even though these systems were independently
developed. Intent standards must ensure this with comprehensive specifications and formal
modeling approaches. Formal models based on ontologies of abstract concept as well as
modularity through federated constituent models are core use cases and strengths of RDF and
therefore a central reason for choosing it.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 58 of 106

13.3.3. Domain awareness and domain independence

The proposed intent mechanism is supposed to work across multiple industry domains and
within one domain across all involved systems and sub-system. It is therefore not preferential
to choose techniques that are only applicable in a subset or even a single application domain.
A base for common intent modeling must therefore not contain domain specific constructs or
assumptions. On the other hand, Intent modeling must allow domain specific expressiveness
to allow precise semantic mapping of vocabulary for all relevant concerns of an individual
domain. Furthermore, the scope of intent-based operation will expand over time into
additional domains with their unique requirements.

Many practical modeling tasks for intent are similar across multiple domains. There are
considerable similarities in vocabulary and concepts needed in various domains. For example,
many domains require the expressiveness to set goals based on KPI thresholds and value
ranges. This indicates that vocabulary and semantics defined in generic, domain independent
models can cover already many practical modeling tasks.

In conclusion, a modular approach to intent modeling is preferred. It a would allow combining
models defining common expressiveness and generic vocabulary with domain specific models
that add domain concepts and specialized vocabulary. Extensions can be made by adding
additional models or by building new combinations. We refer to this concept as model
federation. RDF uses IRI for globally unique references combined with notations that makes it
easy and intuitive to combine vocabulary from different namespaces representing multiple
constituent models. In RDF, this kind model modularity is a basic and commonly used
mechanism. This particularly allows to seamlessly combine models created and published
independently by multiple organizations.

13.3.4. Semantics for automated inference

The receiver of intent is always a machine. And this machine needs to draw conclusions form
the intent. This is a machine reasoning task enabled by the semantic mapping of vocabulary
within the modeling standard. RDF and the related RDFS and OWL have roots in symbolic AI
and are often used in combination with logic reasoners for inference. This means that RDF
models allow to create the respective semantics and tools and environments are available for
implementing reasoning based processes and applications. This constitutes a proven base for
implementing knowledge-centric applications with the capability to dynamically react and self-
adapt to changes in the knowledge and in the underlying models. It allows implementation
patterns where changes in the knowledge modify the system behavior through machine
reasoning and logic inference.

13.3.5. Knowledge base and efficient query

Knowledge centric operation is based on intense interaction between a knowledge base and
functions that implement reasoning about the knowledge for decision and action taking. The
intent handling function is a good example where such an implementation pattern is expected.
This means efficiency in the interaction between the function and knowledge will directly
impact the performance of intent handling. It is therefore a major concern when choosing the
platforms and base components for implementing intent handlers.

RDF based models are linked data graphs, typically managed in graph databases. There are
many options including highly scalable corporate grade offers. Interaction with the knowledge
and in particular queries with implicit reasoning is typically based on SPARQL [sparql]. It is a
standardized and highly efficient query language that is often natively supported by databases
that can accommodate the knowledge base.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 59 of 106

13.3.6. Efficient serialization and notation

Intent is expressed as ontology graph that need to be transferred between intent management
function. This means that efficient serialization and notation formats need to be available.

The RDF infrastructure contains multiple formats and languages for serialization, notation and
interchange of models. TURTLE [turtle] was developed specially for this task and it also
provides a syntax that is intuitively readable by humans. It is therefore often also used as
notation format in modelling. Other serialization formats are RDF/XML [rdfxml] and JSON-LD
[jsonld]. The use for further formats and languages such as YAML appears possible, but it is not
standardized yet.

13.3.7. Convenient human oversight and monitoring

The modelling of intent and its operation including intent reporting and the related knowledge
representation must be understandable by humans if they want to observe the operation. This
means intuitive presentation tools and formats should be available.

For RDF models there is the serialization through TURTLE with a syntax that is easy to learn
and intuitive to use by technically trained personnel. In addition, there are graphical tools as
well as text based tools for model visualization and review. This is however only a basic tool
set for inspecting the models and knowledge. More advanced presentation that distinguishes
the competence and interests of different users would however require the design of a
presentation layer that implements the needed features. More advanced systems could also
include techniques for explainable AI and automated system monitoring and escalation.

13.3.8. Competence

Personnel competent to work with the chosen modelling technique should be widely available
or it must be possible to easily learn the techniques for somebody who is trained in other
modelling approaches. RDF is a very popular choice in knowledge management. This means
that competent and experienced personnel is available. Furthermore, the effort to acquire this
competence in RDF/RDFS/OWL modeling is on a similar level as with other modelling
standards and languages.

13.3.9. Open standards

The base techniques and standards for intent modelling must be open and freely accessible.
Ideally it is based on standards defined by an organization that is widely accepted and
continues to actively maintain the chosen to model standard. Ideally it is also neutral, based on
industry collaboration and does not impose prohibitive restrictions on participation and
membership. This is the case for RDF, which is standardized, published and maintained by
W3C.

13.4. Discussion of modeling standards

This chapter compares modeling using the Unified Modeling language UML [uml] and the Web
Ontology language (OWL) [owl]. The comparison is done as a base for selecting the modeling
standard better suited for the challenges of intent modeling. This discussion follows and cites
major findings from the paper "A detailed Comparison of UML and OWL" [umlolw]. It presents
a detailed and comprehensive comparison of UML versus OWL from the RDF modeling
family. In this respect the statements about OWL apply to the entire RDF/RDFS/OWL modeling
stack. The paper is written with the explicit goal to facilitate good decisions about which
technology to use for which purpose and how to use them together and integrate them.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 60 of 106

UML is regarded to be an instance of the Meta Object Facility (MOF) and it is partly a
specialization of it. UML is typically used in combination with the Object Constraints Language
(OCL) [ocl]. It extends UML with a declarative language for describing rules. In this comparison,
UML is considered to be combined with OCL.

Figure 13.1: Four layer metamodel architecture of UML

OWL is the top of a four level modeling framework. It is built on top of RDF and RDF Schema.
Each level provides specialization of the level below.

Figure 13.2: Four layer modeling framework of RDF/OWL

13.4.1. Syntax

With respect to concrete syntax UML has a standardized graphical representation as well as a
representation in XML called Metadata Interchange (XMI).

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 61 of 106

RDF also has an XML notation called RDF/XML [rdfxml]. Furthermore, RDF has a dedicated
notation format called Terse RDF Triple Language (TURTL) [turtle], which is often also used
directly for editing RDF models due to its intuitive syntax. Another alternative for RDF/OWL
models is the JavaScript Object Notation for Linked Data (JSON-LD) [jsonld]. Graphical tools for
developing RDF/OWL models exist, but unlike UML the graphical elements are not
standardized.

The concrete syntax of UML and RDF are not the same even if they both use XML as concrete
notation. Name tags are distinct and synonyms as well as homonyms are possible.

13.4.2. Semantics

When considering their semantics, it becomes clear that UML and RDF were devised to fulfill
different purposes. RDF/OWL supports the representation of knowledge about a system. UML
was developed primarily to support the construction of a software system.

It can be argued that both are similar because the underlying goal is the representation of a
system. Both are object-centric, and the main component of knowledge representation is an
object and its relation to other objects. The relation is known as property, predicate or
association.

Furthermore, both languages allow knowledge to represent an abstraction of the elements of
a concrete system. Instead of representing every object explicitly, they allow to represent the
common properties of sets of objects and therefore classify objects through their properties.

Both languages have two basic layers of knowledge representation, namely concrete, instance-
level information called extensional or assertional knowledge representation, and abstract,
type-level information called terminological or intentional knowledge representation. For
extensional knowledge representation, the semantic domain is the set of objects and objects
relations (object states) under consideration at a given point in time.

Both languages differ in the way knowledge is understood and expressed. This leads to a
difference in the role of terminological knowledge and extensional knowledge. Ontology
engineering with RDF/OWL uses a terminological knowledge representation approach to
classify
extensional knowledge and to infer new knowledge from it. If the extensional knowledge
contradicts the ontology, it is identified as not satisfying the ontology.

UML system models with a terminological knowledge representations are used in software
engineering to represent and constrain the allowed set of system states. A concrete system
state (extensional knowledge representation) must satisfy the constraints laid down by the
system model to be a legal instance of it.

Both approaches start with extensional knowledge to define a terminology, but while ontology
engineering reuses this ontology to apply it to other extensional knowledge to deduce further
extensional knowledge, in software development it is used for the construction of a (single)
system (i.e., extensional knowledge representation). The consequence is that extensional
knowledge in the UML is intended to be dependent on a terminological knowledge
representation (i.e., a class model).

The difference between the constructional motivation for UML and the representational
motivation behind RDF/OWL is reflected in their different underlying assumptions. These
influence the set of available constructs as well as their interpretation.

UML and RDF/OWL make different assumptions regarding the interpretation of language
expressions or statements. One of the most fundamental assumptions in knowledge
representation is the world assumption. UML interpretation is based on a closed world

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 62 of 106

assumption. This means UML models are always considered to be complete. In contrast,
RDF/OWL have an open world assumption and models are interpreted as representing partial
knowledge. A difference on world assumption is one of the main reasons why UML and
RDF/OWL models cannot simply map into each other.

13.4.3. Conclusions and proposals

Both languages were devised for the purpose of knowledge representation and have common
roots in object-orientation. This did lead to a high degree of similarity in their syntax. On the
other hand, each language has a slightly different purpose that manifests itself in several ways.
OWL restricts itself to a set of inference-supporting constructs. This directly enables logical
inference through machine reasoning implementations, which is the basis for implementing
knowledge-centric adaptive processes. UML, in contrast, is not concerned with automatic
deducibility of information from the knowledge and offers an unrestricted constraint language.
It additionally focuses on describing implementation related issues that are very useful in the
process of designing and implementing a software system, irrelevant for abstract knowledge
representation.

Logical inference is a key feature with respect to intent modeling. The receiver of intent is a
machine that needs to derive inference directly from the model and by that interpret the
intent with respect to additional knowledge about the system state and decide on actions. RDF
based models directly support this type of model use. In contrast, UML models would describe
how an intent based system needs to be implemented. The receiver of the model is therefore
a human developer translating the model into coded logic. Rules and policies. This
implementation represents the model semantics and by that compliance to the model is
reached. Intent being data instances according to the model would therefore meet an
implementation that interprets it as intended.

Both approaches would in principle work to communicate the intent information towards a
system that can interpret it correctly and handle it. However, model changes in UML models
would require modifying the implementation. This is a coding effort involving the
implementation of rules, policies and even the instances of management functions. This
means human involvement. In the knowledge-centric and machine reasoning based approach,
changes effect primarily the model, and inference based on ontologies can adapt the system
behavior. Semantics in the ontology make this work and in many cases human involvement in
the system adaptation can be avoided. This is the key for reducing human involvement and by
that ultimately reaching higher levels of autonomy.

The first major reason for proposing RDF in intent modeling is therefore the ontology nature
of the models with semantics allowing direct inference through machine reasoning and logic
based implementations of intent managers.

The differences in fundamental assumptions used with OWL and UML lead to different
interpretations of common language constructs. In other words, while UML and RDF/OWL
share a large set of similar language constructs, these constructs possess different meanings
with different mappings in the semantic domain. As a result, it is impossible to directly
translate OWL ontologies into UML models and vice versa without the loss or corruption of
information. A translation between the models is a major effort that would require rules for
domain specific interpretation of models and creating an equivalent model within the
boundaries of the domain. Limiting to the semantics that are relevant in the target domain
might make this practically doable rather than trying a general purpose translation. However,
we do not propose model translation, but using each model paradigm natively for its intended

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 63 of 106

purpose. UML for describing the system implementation and RDF for dynamic knowledge such
as intent including ontologies that carry semantics enabling logical inference.

We propose to use a combination of UML and RDF based models. UML for system
architecture and interfaces, RDF for intent and intent report vocabulary and semantics.

The proposed intent interface is an example of using a combination of UML and RDF modeling.
The intent interface information and data model is proposed to be modeled in UML in
accordance with API policies and guidelines within the working groups that develop detailed
interface and API standards. However, the intent and intent report objects shall be modeled
based on the RDF family of models. This means from the perspective of the API information
and data models an intent or intent report is basically a string type data element. Its internal
structure is not the concern of the interface and API information model. The API is however
concerned with the operations of intent live cycle management and intent negotiation. The
vocabulary and semantics of the intent and intent report objects are modeled in RDF.

The global identification of model elements is a feature of RDF/OWL that is very attractive for
the challenges of intent modeling. Intent is communicated across boundaries of autonomous
domains, layers of the operations stack and even across administrative domains. Globally
unique identification rather than local contextual interpretation makes it easier to reference
objects, resources and data across models and across network functions. These are distributed
across management functions, inventories and catalogs with local information models. Intent
requires an easy method to reference objects across these functions and their inherent
models. Intent needs to refer to objects for defining requirements about them and it uses data
objects to specify the detailed requirement.

Furthermore, autonomous networks benefit from modularity in modeling creating domain
specific models from a selection of common ontologies and generic vocabulary in combination
with domain specific additions. Models are assembled from heterogeneous sources, such as
multiple SDOs in combination with operator and vendor specific models. This federation of
models is directly supported in RDF/OWL modelling and this support is also based on globally
unique identification of objects.

We propose to create domain specific intent models as a federation of models. RDF provides
mechanisms based on its global IRI referencing for simple definition and management of
federated models.

In conclusion, intent can in principle be modeled in UML as well as in RDF. UML has a longer
track record in telecommunication and software development, while RDF rooted in symbolic AI
and the modeling technique chosen for knowledge and reasoning centric applications. Intent
modeling is not primarily a software modeling challenge, but rather knowledge engineering.
Furthermore, we expect that the implementation of intent management will benefit from
logical inference as enabled by RDF based ontologies. We expect that this is a key enabler for
reaching higher levels of autonomy through self-adapting capabilities and decision-making
based on utility considerations. Despite their similarities, RDF/RDFS/OWL has features that
better match with the challenges of intent modeling and intent management. Especially higher
levels of zero-touch autonomy will require self-adapting systems. The roots of RDF in symbolic
AI enable logic reasoning based implementations, which are a key capability for reaching this
goal .

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 64 of 106

14. Model federation
Intent is in general highly domain specific. It must be able to express the requirements, goals
and constraints from all domains participating in intent-driven autonomous operation.
Domains can be very different which respect to expressiveness and information content of the
intent objects they use and understand. BSS for example deals with artifacts and abstract
concepts close to customer and business needs, such as contracts, SLA, monetary
compensation, customer value and service order. At the other end of the spectrum are
domains directly operating the resources of the network, such as radio nodes, cloud
datacenters or network slices management. Requirements and goals here are often based on
metrics and KPI that reflect the state and performance of distinct resources such as latency
and throughput for traffic on a slice or the processing scale of network functions.

Next to technical diversity there are also organizational, administrative and governance
aspects. The different layers and domains of an autonomous network or a network in general
are subject to focused standardization efforts by multiple specialized organizations, projects
and work-groups. This is where domain experts define the architectures, models, interfaces
and any standards according to the needs of their domain. In practice this is often
complemented with operator or vendor specific extensions.

This diversity means that a single unified modeling effort to cover a globally applicable concept
such as intent is impractical. It is therefore not a good practice in the industry. On the other
hand, standards are never built in isolation. One standard is built on top others, which contain
already defined and agreed more general concepts and specifications. This way the industry
stays relatively consistent.

There are concepts in intent based operation that are domain independent. It would be
beneficial to keep the common aspects compatible and avoid incompatibilities by addressing
the same concerns multiple times in parallel domains. Avoiding incompatible and fractured
standardization will have industry-wide cost advantages, because it avoids double
implementation of similar functions and interfaces dealing with similar-but different
information and data models and interpretation of semantic differences at the cross-domain
touch-points.

When introducing a new paradigm such as intent based autonomy it is a challenge to
standardize it in a way that allows to cover domain-specific needs adequately and in a modular
additive way, while staying conceptually aligned and avoid incompatible parallel work. This is
particularly important for intent, as it is a generic concept and operations paradigm. It is only
partially domain specific with the explicit goals to make expansion into further domains as
smooth as possible.

In intent standardization there are the models for intent expression and the interface for
intent life cycle management and requirement negation, where common generic concepts
meet domain specific needs.

In the intent interface this is addressed by an interface information model that is separated
from the models for formulating intent. This means the intent interface models define
semantics of life cycle management and negotiation operations but exclude the expression
details of intent and intent reports. IG1253C discusses the interface and its operation
procedures in detail.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 65 of 106

The models for intent and intent report expression contain generic aspects which are domain
independent. For example, all intent have distinct owners and handlers. All intent is
formulated as a collection of expectation objects that carry the details about requirements and
goals. All intent can furthermore set context for the requirements and provide additional
information. Intent reports contain corresponding information about state of the target
system and to what extent it fulfills the intent requirements. All this can be covered with
model vocabulary and semantics independent and irrespective of the operational domain.
Domain specific vocabulary and semantics would be an extension and specialization of the
more generic model definitions. This indicates modular modeling can be very beneficial for
intent based autonomous systems.

This modularization can be reached by defining a set of additive models. Models defining
domain and use cases specific specialized vocabulary and semantics are doing this by
extending a common root model. The intent modeling needs of a particular domain would
then be covered by a composition of multiple constituent models. Multiple domains are then
covered by different compositions of models. This concept is what we refer to as model
federation.

A model federation avoids multiple independently specified versions of the generic vocabulary
and semantics. But it is still allowing specifying domain and use case specific additions. It
enables an evolution towards more advanced features through new models that are added for
replacing older versions in the federation. It also allows expanding into further domains by
offering additional models that primarily specify the domain specifics. Inter-domain
compatibility is reached by using the same common generic model and derive the extension
models from it.

The root model in intent modelling that defines the generics domain and use case
independent concepts, vocabulary and semantics is referred to as "intent common model".
IG1253A proposes an intent common model intended to fill this role in the federation of
models. A model that defines additional modelling features by extending and specializing the
intent common model is referred to as "intent extension model". IG1253B defines a set of
intent extension models. In addition, the model federation will typically contain models such
as RDF, RDFS and OWL that define the general modelling base the intent related modes are
built on. Models, such as XML schema define generic data types and the OWL time ontology
might be used to gain expressiveness about time concepts. This means the model federation
can contain additional general purpose models not specifically designed for use in intent.

14.1. Models within an intent model federation

Conceptually all intent in currently discussed use cases are very similar in their general
structure and to a great extent also regarding needed expressiveness. For example, many
intents need to specify something that needs to be delivered. In some cases, this something
can be a service, or a product as ordered by a customer. In other cases, it can be a network
slice or a network function. In any case the intent needs to describe all properties of the thing
that needs to be delivered. It depends on the application domain and the corresponding intent
handling scope, what exactly the thing is, and which properties best describe it, but it is always
very similar expressiveness with respect to needed vocabulary and its semantic mapping.
Often the intent can simply refer to an entry within a catalog system.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 66 of 106

Another example would be the definition of non-functional requirements. Often this is done
by setting a target value or value range based on KPI. For example, intent related to services
might require that service availability does not fall below 99.9%. An intent targeting a network
slice might require a minimum available throughput of 1 mbps per user session. While the KPIs
being used can differ significantly between domains, non-functional requirements are typically
expressed by a numerical value that must be reached or exceeded to be compliant.

The conclusion is that many use cases of intent modeling only require generic modeling
features combined with domain specific details. In this context it is a clear goal to avoid
unnecessary divergence in intent standards and keep intent-driven operation compatible
across domains. This means intent expression should be based on generic modeling features
as much as possible and only introduce special features if the needed meaning cannot be
achieved otherwise. Intent modeling can naturally not be kept domain independent, but it is
still possible distinguish common and domain specific aspects and manage the modelling
features separately.

The intent common models defined in IG1253A is the proposal by the Autonomous Networks
Project at TM Form for a common generic intent model that can act as generic root model for
intent and intent reporting. It is designed to be the base of all extensions and specializations in
intent modeling. The intent common model defines common modeling artifacts. It specifies for
example the classes of intent and intent report. All intents are objects of the intent class.
Furthermore, the intent common model defines the expectation class and related common
properties. Expectation objects are distinct requirement expressions. For example, a delivery
expectation object allows to specify a requirement to deliver something, for example a service,
a function or a slice. A property expectation can be used to specify a requirement by setting a
metric or KPI based target. These are examples of sub-classes of the expectation class.

Intent extension models can, for example, define further expectation sub-classes to introduce
new types of requirements that cannot be expressed with the generic semantics covered by
the intent common model. We refer to a model as intent extension model if it is based on the
intent common model and extends expressiveness by relating the new modeling artifacts it
introduces to the common artifacts defined in the intent common model. Defining a new sub-
class of expectation is doing exactly this. It creates a new type of expectation derived from a
generic expectation class of the intent common model.

Intent information models are another category of models within a federation. They add
vocabulary but without necessarily being specifically designed for use in intents. For example,
a KPI information model defines a set of KPIs and the identifier the KPI is referred to. This
model might be designed as a general purpose collection of metrics definitions as part of the
design specification of measurements and analytics systems. Intent specific models including
the intent common model therefore not a base model for it. Nevertheless, the defined
artifacts, for example a KPI, are used in intent expression, for example to set a KPI based goal
within an expectation statement. For example, the property expectation class from the intent
common model would be combined with an KPI defined in a domain specific information
model to create a domain-specific requirement. This means that already existing information
models, which were created independently of intent-driven operation might be directly
useable in intent expressions and therefore become part of the model federation.

Intent objects are not explicitly typed. The use of certain expectations and the use of domain
and use-case specific information models imply a certain purpose that corresponds to a type of
intent. However, there is no need to explicitly make this type a part of the intent model.
Typing of intent stays therefore a useful concept for documentation and human understanding
but does not add semantics to the intent object. Therefore, the classes of intent and intent
report do not have sub-classes.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 67 of 106

14.2. Governance and management of model federation

We propose to apply the concept of model federation to intent modeling across the
telecommunication industry and create a unified way to express and operate with intent.
Ideally this is applied and adopted by all SDOs, and projects working on domain and use case
specific intent expressiveness.

The goal of the detailed proposals for intent modeling according to the Autonomous Networks
Project is to not limit the authority of domain specific standardization work groups in other
SDOs. The governance is kept to a minimum. In fact, no further coordination is needed as long
as a common generic intent model is used as base and domain specific models’ extent it. The
authority over the details of the extension models if entirely with the SDO and project that has
defined it.

With respect to the model federation in various domains, the intent common model described
in IG1253A is the only model that is mandatory in the federation. It is defining purely domain
and use-case independent expressiveness. The use of the intent common model as root of
intent modeling makes the resulting intent compliant with the concepts of intent-driven
operation defined by the Autonomous Network Project.

The design and evolution of the intent common model would ideally be a cross SDO effort, and
this can be driven by member companies who contribute to multiple SDOs as well as formal
agreements and statements of intent between the SDO organizations.

It should become good practice to separate expressiveness that is specific to the operational
domain from expressiveness that has broader applicability. The latter should be modeled into
the intent common models, or as optional feature into its own extension model. A fine-grained
partitioning of modelling features into multiple distinct models can avoid parallel
developments and is common practice in the RDF modeling community.

An SDO with the mission to define the operation for a particular domain would not only create
the respective intent extension models. Usually, this domain will contain or multiple instances
of intent management functions. The SDO would define the responsibility scope of the intent
managers within this domain and define the models it is recommended or required to support.
This means the definition of a standardized intent manager includes the specification of its
model federation. It should define the minimal set of mandatory models and it can
recommend further models and alternatives.

It is explicitly not necessary to publish intent extension models or proposed sets of models a
domain specific intent manager needs to support through TM Forum or seek review or
approval for these extensions from TM forum. Every SDO can use its own publication channels
and processes and has full authority about their contributions.

An intent manager capability profiles as introduced in IG1253D allows to describe the model
federation a particular intent manager has implemented support for. Using the services of the
intent manager registry, and intent manager can publish its profile.

14.3. Guidelines for intent extension models

Model federation for intent modeling as proposed by TM Forum Autonomous Networks
introduces a lean governance and minimal central coordination of the models proposed to be
used for expressing intent. We propose a common intent common model that defines the
common and domain specific aspects of intent. Any SDO and workgroup can decide on its own
to define intent extension models and information models to be used for intent-driven

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 68 of 106

operation in that domain. There is no strict need for cross SDO approval or central
coordination as long as the extensions to intent modeling are based on the common
definitions and principles as defined in IG1253 and as long as the intent common model
defined in IG1253A is considered a common foundation. The extensions must be done in a
compatible way.

The requirements for creating intent modeling extensions with preserved compatibility are:

• Extension models are built against the intent common model. This is the common
domain independent foundation of intent modeling. This can be done using the classes
and properties already defined in the intent common model and referring to them in
the definition of new artifacts. An example for this would be the definition of new sub-
classes of expectations.

• Modeling artifacts that are potentially useful for multiple domains should be
contributed into the intent common model or put into generic intent extension
models rather than being kept in the domain specific intent extension model. This is
not a requirement, but highly encouraged in order to avoid introducing multiple
redundant artifacts, which all address the same concern. This would be the part of the
proposed model federation where good collaboration between SDOs is encouraged.

• Extension models do not introduce artifacts that contradicts the definition of intent, or
the principles of intent-driven operation. For example, artifacts that allow imperative
statements within intent would violate the definition that intent is purely a declarative
expression of requirements, goals, and constraints without specifying how to achieve
them. So, a general agreement on definition and concepts would be preferential.

14.4. Model federation examples

14.4.1. Mutual agreement on models between intent managers

Federation of models allows intent managers to implement a distinct set of models to be used
in the intent and intent reports it sends and receives. This means two intent managers that
want to exchange intent and intent reports need to agree on the models used. They both can
only use modeling features in their communication that both implement support for.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 69 of 106

Figure 14.1: Example of different domain specific model federations

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 70 of 106

The example in Figure 14.1 shows four distinct intent managers with a specification of their
scope and the related set of models they support. All of them support the intent common
model in combination with a set of other models. For example, the intent manager responsible
for service management would receive and handle intent coming form an intent manager
allocated in business operation and responsible for order management. This intent can contain
requirements about service KPI and customer experience metrics, because both intent
managers understand the same models regarding these topics.

The example intent manager on the service operations layer uses subsequent intent to put
requirements on RAN and Core Network Operation. This means that the service level intent
manager needs to implement models that allow the formulation of RAN and Core Network
requirements.

In this example the business layer intent manager is not concerned directly with details of RAN
and Core Network operation. The service layer provides in this respect an abstraction of the
resource operation.

Furthermore, in this example, RAN and Core Network are distinct domains that do not
exchange intent with each other. This means, it is not necessary that they implement and
support each other's domain specific models. Please note that this is an example, and it is
explicitly allowed to have horizontal use of intent within the same system layer. From intent
modeling perspective the only prerequisite is that both involved intent managers have
respective overlaps in the set of supported federated models.

14.4.2. Practical expression of model federation within an intent notation

The following example shows the use of constituent models within an intent. The color coding
distinguishes constituent models and the vocabulary they contribute within the model
federation.

@prefix icm: <https://tmforum.org/2020/07/intent/> .@prefix
tel: <http://sdo1.org/TelecomConcepts/> .@prefix
met: <http://sdo1.org/metrics/version2/> .@prefix
sli: <http://sdo2.org/2021/03/SliceIntent/> .@prefix
slk: <http://sdo2.org/2019/SliceKPI/> .@prefix
slm: <http://sdo3.org/v1.1/SliceManagmet/> .@prefix
cat: <http://operator.com/Catalog/> .@prefix
ope: <http://operator.com/Inventory/> .

ope:ExampleIntent2021031100002 a icm:Intent ; icm:hasExpectation
ope:E1, ope:E2, ope:E3, ope:E4 .
 ope:E1 a icm:DeliveryExpectation ;
 icm:target _:function ;
 icm:params ope:P1 .ope:P1 a icm:DeliveryParam
; icm:targetDescription cat:amf .ope:E2 a icm:DeliveryExpectation ;
 icm:target _:slice ;
 icm:params ope:P2 .ope:P2 a icm:DeliveryParam
; icm:targetDescription cat:SliceTypeA .ope:E3 a
icm:PropertyExpectation ;
 icm:target _:function ;
 icm:params ope:P3 .ope:P3 a icm:PropertyParam ; tel:subscribers [
icm:upTo 1000] ; met:availability [icm:atLeast 99.9] .ope:E4 a
icm:PropertyExpectation ;
 icm:target _:slice ;
 icm:params ope:P4 .ope:P4 a icm:PropertyParam ; slk:latency [a
slk:Latency ; icm:atMost 10] ;
 slm:sliceState [a slm:State icm:oneOf slm:up,

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 71 of 106

slm:available] .ope:E5 a sli:LinkExpectation ; icm:target _:slice ;
 icm:params ope:P5 .ope:P4 a sli:LinkParameter
; sli:connectingEndPointOf _:function .

In this example the intent object is build using multiple models. Each model is represented by
a unique URI through which all vocabulary defined in the model can be referred to.
At the beginning of the intent object each used model is specified and a pre-fix is assigned.
This is common practice in TURTLE notation of RDF/RDFS/OWL based models. It makes the
notation readable by shortening the long and repetitive part of the full URI. For examples
metrics from version 2 of the metrics model defined by sdo1 would be identified by a
combination of the metrics name as used in the model and a prefix that identifies the model.

The example intent object is defined internally within the domain of an operator and therefore
has a URI based on the operator's domain.

All objects used in the intent expression with the prefix "icm:" are from the intent common
model as defined in IG1253A. The intent common model is the root model for all intent
definitions. It defines base classes for intent objects and its internal structure. It defines for
example the class "icm:Expectation". An expectation is a distinct type of requirement. An
intent is then a set of multiple types/classes of expectation. The intent common model defines
expectation classes that are generic and not domain or use case specific. This means, what
they allow expressing is useful in many domains and constitutes a general pattern. For
example, the expectation sub-class "icm:PropertyExpectation" allows to establish a
requirement based on metrics including KPI.

Using KPI for expressing a quantitative target is a pattern that is frequently used in many
domains. The actual metrics and KPI used are domain specific. Other models are then used to
extent and complement the expressiveness with domain specific extensions. For example, a
standard about telecommunication metrics would introduce a KPI and define it in detail. The
intent model can now link to the respective standard and point to the KPI needed. For
example, the slice latency referred to by "slk:latency" point to the latency metric from the slice
KPI model as defined by sdo2. The requirement for the slice is therefore expressed using the
generic property expectation in combination with the domain specific KPI.

Another possible extension would be the introduction of further classes of expectation. In the
example above, the "sli:LinkExpectation" is a sub-class of "icm:Expectation" as defined in the
slice intent model by SDO2. Here SDO2 is considered to be responsible to standardize slice
management. Based on the intent common model a work group within SDO2 has created a
domain specific extension to provide the expressiveness needed for intents concerning slices.

14.5. Linking to and from other modeling standards

In telecommunication and IT implementations UML and Yang and other standards are
frequently used for describing interface information models and data schema. This means the
intent manager exist in a heterogeneous environment of many modeling standards. Intent
management needs to consider all aspect of the system state that might be relevant for
fulfilling the intent. For example, a metrics based requirement can only be managed if this
metric is measured. A functional requirement is typically formulated using pre-defined
functions that resides in a catalog. Inventories keep track of artifacts such as deployed
software instances, used resources and topology information about the managed network. All
this data and information is relevant for the tasks of an intent management function and
intent might express requirements with and about it. Therefore, Intents often require referring

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 72 of 106

to objects and artifacts described by various models based on other modeling technologies
than the intent model.

14.5.1. Referencing with constructed IRI/URI

Referencing to an artifact from intent models is based on IRI and URI. Referencing to models
based on other technologies than RDF bears the main challenge of creating a respective IRI.
The main issue is that non RDF models often miss a globally unique identifier and have local
references instead.

Distinguished names (DN) are a frequently used format for unique identifiers of objects. It is
standardized by ITU [x500] and for example the base of referencing in LDAP and used in 3GPP
[32.300]. Distinguished names in general only provide identification in a local context and
namespace. There are however proposals for mapping between distinguished names and
IRI/URI. For example, 3GPP describes a mapping scheme in TS 32.158 [32.158].

URIs are globally unique. For this reason, only a globally unique DN with a domain component
is directly tappable into a URI. The mapping rules are as follows [32.158]:

- The DN prefix is mapped semantically to the authority component of the URI. The syntax of
the DN prefix is modified to match the syntax of the authority component.

- The Local Distinguished Name (LDN) is mapped semantically to the path component of the
URI. The syntax of the LDN is modified to match the syntax of the path component.

However, when DNs do not contain a domain component a mapping scheme is still possible by
assigning a proxy domain component to the local context by convention.

For example, the objects in a catalog are identified through Local Distinguished names that do
not contain domain information. The inventory is however deployed within an operator's
network and therefore the operator's domain can be used to narrow down the context. Then
there might be multiple instances of the inventory within the network. This can be
represented through an initial path component in the URI string. This way the individual
instance of the inventory could be uniquely identified. Finally, the LDN can be appended to the
partial URI similarly as described in [32.158].

This URI creation scheme works if the owner of the domain (e.g., the operator) consistently
assigns and manages the naming for identifying local nodes and instances of functions that
exist within its domain. There are potentially different algorithms that can be used to
formulate the URI and it is a choice of the domain owner, which one to use. In any case the
resulting URI would be globally unique as it contains the unique identifier of the domain, and a
path managed by the domain authority. The result is globally unique and there therefore be
exposed outside of the domain, if necessary. For example, if the operator and their customer
exchange intent and intent reports that were modeled according to IG1253 and its sub-
documents. The system that needs a URI for unique referencing would then be able to
assemble the URI itself from the local naming and addressing conventions.

The IRI/URI would be composed of:

1. The administrative domain of the system in which the addressed object resides. For
example, the operator's domain in the form of "https://www.operator.com/"

2. An address of the targeted system within that domain. For example,
"/NorthernChina/ServiceCatalog/"

3. The local identifier (LDN) of the addressed object within the system that manages it.
This would typically follow the local information model and addressing scheme. For
example, "/Services/ManufacturingServices/ExampleService0001". This refers to the

https://www.operator.com/

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 73 of 106

individual service "ExampleService0001", which resides in the "ManufacturingServices"
table within the "Services" section of the catalog.

All together, these parts form a URI, which addresses the Example Service defined in the
Northern China catalog of the operator with the domain "operator.com"

"https://www.operator.com/NorthernChina/ServiceCatalog/Services/Manufactu
ringServices/ExampleService0001"

This URI can be directly used in RDF based models and in the knowledge base of the intent
manager to reference this object. It is however only a proxy URI and accessing this object
requires an adapter that translates this URI into a query specific to the interface exposed by
this catalog implementation. Building generic adapters is possible. Using the naming
convention set by the operator it is then possible to use the URI and route requests for the
identified object to the right local node. DNS can for example translate the URI into the IP
address of the node by which the addressed object is managed. Within the context of that
node the LDN component carried by the URI would uniquely address the object.

The method of creating artificial proxy URIs might not always be practical or expressive
enough when dealing with dynamically changing data and resources. A more capable
alternative is the use of selectors proposed by W3C in [select].

Objects to refer to are often represented and by data and organized in databases. W3C has
proposed how to map data allocated in relational databases in [rdb2rdf].

14.6. Model federation as cross industry use case enabler

The intent common-model is also designed to allow extensions into other industry and
technology domains than just telecommunication. For example, domains such as IoT or
automated manufacturing can certainly also profit from the paradigm of intent based
operation. The details are out of scope of this document, but the proposals for intent modeling
and in particular the model extension and federation mechanisms would allow exploring and
define intent in a broader application scope. This means intent as defined here has the
potential to become a universal base for autonomous operation across classical industry
borders. This would allow automation of truly cross industry use cases where intent can have a
central role in communicating and distributing requirements as well as setting up cross-
domain control loops. This helps to manage for example the diversity in IoT and utility
applications. Consequently, standardization organizations and work groups from any industry
with respective needs for intent-driven operation would be invited to participate in the
proposed federated modeling of intent.

http://operator.org/

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 74 of 106

15. Overview of specified models
The following models are defined in the current release of the IG1253x family of documents:

Figure 15.1: Models specified in IG1253x and their dependencies

The intent manager and intent interface ontologies provide general vocabulary about intent
management.

The intent common model is the root for expressing intent and intent reports. For a particular
intent manager, it is typically federated with a set of intent extension models that define
optional additional vocabulary and semantics.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 75 of 106

The intent manager capability profile model defines the details of how an intent manager can
specify its capabilities and scope.

All these models are based on the RDF/RDFS modeling family. OWL was not used yet, but it
might be in future versions.

In addition, further models are used for specific needs. For example, the intent common model
the intent temporal validity and intent compliance latency models need to express points in
time or time durations. They gain the respective vocabulary from the W3C time ontology. Basic
data types, such as strings and integers are provided by XML Schema.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 76 of 106

16. Intent related closed loops
Intent managers are involved in three different types of control loops shown in Figure 16.1.

Intent control loop

This is the control loop related to the intent life cycle and executed between two intent
managers typically in distinct roles of intent owner and intent handler. This control loop is
executed over the intent interface. It consists of two basic actions: Intent is defined and
communicated in one direction to set requirements. Intent reports close the loop by
communicating the fulfillment and handling state back to the origin of the intent.

Intent manager inner loop

Intent managers have to continuously check that their goals are fulfilled and take actions if
not. This is a typical assurance control loop. The subject to be assured are mainly the
requirements, goals and constraints defined by intent. This means that the Intent manager
inner loop interacts with the intent control loop/

Other control loop

Intent managers exist in an environment that is not fully adapted to intent based operation.
This means, there are many control loops that are based on other interfaces than the intent
interface. The intent manager can participate in these loops if this is needed for assuring that
the intent expectations are met. This means and intent manager can act through action on
other control loops as part of its handler role. An intent manager in the owner role acts
towards other intent managers through the intent interface by defining and sending intent. By
doing this it is initiating intent control loops to control the fulfillment of its instrumental goals.
The terminal goals of an intent manager might however come from the intents it is handling,
but they can also originate from other interfaces as part of other control loops.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 77 of 106

Figure 16.1: Control loops related to intent managers

The inner control loop of an intent manager in the role of intent owner is mainly concerned
with control of the intent life-cycle. This means the intent owner uses intent reports coming
from the handlers to monitor if the intent fulfillment is meeting its requirements. It can act for
example by adding or changing intent.

The inner control loop of an intent handler is concerned with taking action to assure that the
requirements from the intent are met and the result is reported. In the handler's inner loop, it
continuously analyses the state of the underlying infrastructure and decides on action plans
and strategies to improve its intent fulfillment state. Actuation of the handler would be
through further control loops. They can be intent-driven of the handler decides to act by
sending further intent, thus assuming an intent owner role for this intent. But action through
participation in any other control loop is equally possible. In this respect there is only one
control loop within an intent manager covering all handled and owned intent, because all
requirements have to be met and potential contradictions and conflicts between them need to
be detected and resolved, for example, through prioritization.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 78 of 106

Figure 16.2: Control loops within and around an intent manager

An intent manager typically participates in multiple intent control loops assuming the role of
intent handler for some and intent owner for others. In addition, it participates in any number
of other, non-intent based control loops. This situation is illustrated in Figure 16.2. If an intent
manager has the dual role of being handler of some intent and owner of others, there is still a
single inner loop. It is part of the concerns of the handler role to act according to the received
requirements and these actions constitute an owner role if they involve the creation and
sending of further intent. The concerns and therefore the loops converge into a single one.

16.1. Interaction with real-time control loops

Intent handling typically involves many distinct activities within the handling control loop. For
example, the system state needs to be collected through measurement and analytics.
Furthermore, solution proposals and action plans would need to be generated, evaluated,
prioritized and acted on. Also, formal obligations of the intent mechanism, such as the
generation of intent reports would be executed. Many of the tasks in intent handling involve
evaluation capabilities or even predictive models and assessment of alternatives and risk or
actions. Complex processes like this can usually not be executed, while also meeting
challenging real time requirements. System reaction times would stay on the level of best
effort. If intent handling requires very low latency reaction times or if challenging real time
requirements apply, the implementation of intent handling might follow a different approach.
Low latency control loop require simpler models that directly translate an observation into
actions with as small intermediate steps as possible or controlled by managing time budgets
and actuation deadlines. Extensive evaluations and exploration of alternatives are usually not
possible if the real-time and action latency requirements are demanding.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 79 of 106

Low latency requirements can be met if the intent handler interacts with one or several low
latency real-time enabled control loops. The intent handler can act on intent by putting a
specialized control loops in place. These control loops are designed to meet the real-time
requirements by deciding and acting in a distinct closed loop without involving the intent
handler in every decision and action. Intent handlers are not in the low latency loop and can
therefore also not apply prioritization and action approval to each action directly. The intent
handler needs to trust the implementation of the control loop to act in a preferential way.
What the intent handler will do however, is to monitor the action results and check if they
were preferential for the composition of intent present in the system. It can retrospectively
assess if the actions that were performed were the right and optimal ones. The intent handler
can then act and influence future actions of the autonomous real-time control loop by
changing its configuration or by replacing the control function that is in charge of the real time
control with a more capable implementation or by updating the models it is based on. This
means the intent handler would be able to indirectly assure and improve the real-time control.

Figure 16.3: Interaction with other functions that themselves participate in control loops

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 80 of 106

Figure 16.3 shows a typical scenario of an intent manager participating in a non-intent based
control loop and acting through other than intent interface. Here the intent manager in the
handler role is acting by configuring or ordering action from another control function within
the domain. This control function is then controlling a set of resources. Their performance and
state is observed through measurement and analytics functions. The intent manger also
obtains its information about the system state through an established measurement and
analytics infrastructure. This closes the loop from the perspective of the intent handler.

This setup allows an intent manager to indirectly participate in real-time or near real-time
control, while itself does not have an implementation able to meet real-time operation
requirements. The real time control is happening between the other control function and
resources, while the intent manager observes the progress and can interfere and influence by
replacing the real-time enabled control function or changing its configuration and models.

From the perspective of real-time control functions, this means that their implementation
does not directly need to consider intent or include an intent management function. It can stay
a specialized control function with a highly efficient implementation. It is typically doing a
control task with narrow scope, but this allows it to do it well and efficiently. The
generalization and allocation of its tasks within a broader environment of diverse
requirements can be left to the non-real time intent management system.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 81 of 106

17. Intent from natural and domain specific
languages

Intent specified and managed according IG1253 is not the only way to express and manage
intent. There are many use cases where the use of other language for intent expression and
methods for managing would be a better choice. For example, on the human-machine
interface presenting and expressing intent using natural language or a domain specific
language (DSL) made for this purpose can lead to a more immersive and intuitive experience
for human users. This is particularly the case for users, who are not technically trained and not
familiar with formal notations of models. These users should not be exposed directly to formal
intent modeling. Other human users in the role of technicians, who oversee the autonomous
systems for the operator might however prefer formal notation and require the clarity and
precision it provides. The point is that humans are very diverse in their abilities, preferences
and needs and this can be reflected with a range of languages and methods used.

In the context of this discussion, we refer to intent expressed according to IG1253 as "formal
intent" and intent expressed using other domain specific languages including natural language
as "DSL intent".

The details of how DSL intents are encoded and managed are best defined by the party that
specifies interfaces and interactions within a domain. This is typically an SDOs, and work group
specialized in the respective domains. Therefore, we consider the details of expressing and
handling of DSL intent to be out of scope of the IG1253 set of specification documents.
Nevertheless, this document acknowledges that interwork with DSL intent is required and its
integration into autonomous network operation needs to be addressed.

This chapter proposes modeling of the touch-points between the use of formal intent and DSL
intent. It is doing so without implying specific details in the modeling and expressiveness of
DSL intent as well as the management functions and procedures involved.

The main idea is that DSL intent is used only on the periphery of the autonomous network.
Inside the autonomous network intent is always expressed as formal intent according to
IG1253 and this intent exclusively used between intent handlers and owners. Formal intent is
always the reference for all intent handling. DSL intent is solely used for compatibility with
external systems and interaction with human users, but never propagated directly to intent
handlers. This is possible, because formal intent is defined in IG1253 with a model federation
approach allowing it to cover the needed vocabulary and semantics of multiple domains.

DSL intent can be used by a human user or a technical system.
This would be a system designed and implemented without considering formal intent
according to IG1253. A human-machine interface is typically realized through a frontend
implementation for direct exposure of intent to human users. It offers presentation and
editing capabilities according to the needs and abilities of the targeted human audience. While
formal intent can be used directly also on this interface as there are standard formats for its
direct editing and presentation, but other DSL for intent expression might be preferential
depending on the targeted human audience. This interface is also not necessarily based on
textual representation but can include other media such as audio and speech.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 82 of 106

Other technical systems using DSL intent might be designed according to a broad range of
other standards or system vendors' own specifications. Typically, the intent models used in
these systems only cover the expressiveness as needed for domain the system is designed to
operate in. An example for using domain specific intent would be an ordering system
belonging to the customer using DSL intent to communicate the customer's needs to the
operator's autonomous network.

DSL intent is used to express and convey requirements, goals, and constraints.
We consider that DSL intent complies with basic principles of intent-driven operation. It only
contains declarative requirements and goals according to the intent definition of IG1253. This
particularly means that it is free of imperative artifacts the prescribe actions or particular
solutions.

DSL intent is used as part of a control loop

This means there is in general the need to communicate back to the entity the DSL originates
from and provide feedback about the intent handling progress and status.

DSL intent is not necessarily free of ambiguity.

Ambiguity means that the semantics expressed by intent are not necessarily interpreted the
same way by different systems. Usually this can occur if not all content of the intent is
completely covered by standardized formal models. Natural language is a good example where
a statement can be interpreted differently depending on context, situation and parties
involved in the conversation. Correct understanding of a statement implies that originator and
recipient have the same contextual knowledge and based on that agree on the statement's
meaning. A human statement in natural language therefore assumes that the receiving system
has respective models that match the context and meaning implied by the human and cover all
its aspects. This typically requires that the system is able to distinguish who has made the
statement and in which context. Misinterpretations of the statement are hard to avoid if any
aspect relevant to the meaning gets lost between systems or is not covered by models and
implementation. This also means that two systems receiving the same statement might not
necessarily agree on its meaning. Only standardized and complete models would avoid this
ambiguity.

Formal intent according to IG1253 is ambiguity-free, because all its expressiveness is covered
by formal modeling. This means two systems sharing intent according to IG1253 will arrive at
the same interpretation of its meaning. When dealing with potentially ambiguous DSL intent,
this means that a single point of interpretation preferential. This interpretation and its
representation as formal intent would then become the reference for all subsequent decisions
and actions in autonomous operation. The single point of interpretation should also be
logically allocated as close to the originator as possible to capture all needed contextual
information. Furthermore, a sequence of multiple conversion steps with multiple
intermediate domain specific languages should be avoided because every step bears the risk of
losing partial meaning. Even small losses per conversion can accumulate and entirely distort
the message. Figure 11 shows the use of DSL intent and how it enters IG1253 based
autonomous network operation through intent interpretation.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 83 of 106

Figure 17.1: Intent interpretation on the periphery of autonomous networks

Also, on the interface that is using DSL and natural language there will most likely be a notion
of owner and handler with distinct role in realizing intent management targeting intent-driven
operation. It is not in scope of IG1253 to define these details. This is naturally left to the
domain specific specifications. In this document we only go as far as defining the entry point of
DSL intent through an interpretation point.

17.1. Modeling intent originating from domain specific languages

We propose to model the use of DSL intent through the generic management service "intent
interpretation". There can be multiple different domain specific languages, and we would
consider that each of them is modeled through a distinct variant of the intent interpretation
management service. Here we only imply that this management service exists, but not the
detailed procedures on its interface or other details of its implementation. In this respect the
intent interpretation management service is placeholder for any service interface used to
define and manage intent that is not the formal intent according to IG1253 and therefore not
managed through the intent handling MnS.

The producer of the intent interpretation MnS is referred to as Intent Interpreter. Its main role
is to receive the DSL intent and translate it into a formal intent according to IG1253. The
corresponding formal intent would then propagate further into the IG1253 compliant
autonomous network for handling. Formal intent rather than the original DSL intent would be
used directly for operation and intent handling.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 84 of 106

Figure 17.2: Introduction of intent interpretation

The intent interpreter produces formal intent from the DSL intent, and it needs to issue it into
autonomous network operation. It would also need to receive intent reports and translate
them back into the respective reporting formats and procedures specific to the DSL intent and
its interface. This means that the intent interpreter becomes a consumer of the intent
handling MnS. Consequently, it assumes the role of intent owner in the lifecycle management
of the formal intent objects it has created from the DSL intent. It therefore becomes a proxy
owner for the human or technical system the DSL intent actually originates from. However, the
fact that it is a proxy owner and that the formal intent it provides originates from a DSL intent
is entirely transparent to the intent handlers. From their perspective it is yet another owner,
and they receive yet another intent.

The intent Interpreter is providing a suitable interface endpoint according to the needs and
specifications of the DSL intent. This is captured by modeling it as a distinct management
service. The detailed interaction procedures on this interface is defined externally and the
implementation of the intent interpreter needs to provide a mediation between the interface
procedures of DSL intent and the IG1253 intent interface.

Figure 12 shows how to model multiple sources of intent. Next to formal intent the picture
also shows how to model natural language and DSL intent specified using another domain
specific language.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 85 of 106

Any DSL intent would be translated into formal intent through the intent interpreter. The
intent interpreter assumes the role of intent owner for the formal intent. At this point all
intent, no matter in which format it was originally provided would follow the specifications of
IG1253. All intent would be lifecycle managed and handled through the intent handling MnS
accordingly.

Figure 17.3 also shows the intent management function that handles intent from multiple
sources and some of them did originally come from domain-specific intent through intent
interpreter and proxy owner.

Figure 17.3: Various sources of intent

Intent provided through legacy interfaces can in principle also be modeled with the approach
presented here. However, these interfaces often mix requirement and goals with imperative
aspects such as policy triggers or process invocations. Interfaces that meet this criterion need
a separate analysis with respect to their coexistence and interwork with intent-driven
operation in Autonomous networks. This is out of scope for IG1253 for now but a topic that
should be included at a later stage or investigated by another project.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 86 of 106

18. Implementation aspects of intent
management

18.1. Concerns addressed through intent versus implementation

Requirements and constraints can be specified by intent or handled implicitly by the
implementation logic of the autonomous system.

The behavior of an autonomous system is primarily determined by the implementation of
decision and action taking logic. This includes hard coded logic, but also more dynamically
changing artifacts with more flexible life-cycles. Examples for that are policies, rules or apps
(e.g., rAPPs in ORAN). Also, machine learned models would fall into this category.

Implementation artifacts address implicitly many concerns and requirements already. In fact,
these requirements are addressed at design time by a human system architect, developer or
data scientist when implementing these artifacts. Deploying them into the autonomous
system makes them available as solution capabilities.

Intent, by definition, does not include any imperative aspects that prescribe a particular
solution. This means intent and any implementation logic that determines its handling are
mutually exclusive.

Successful intent handling is always based on a good match between what an intent expresses
and what the system implementation can do based on all its available solution components.
Therefore, if intent cannot be handled successfully, the root cause might be that the intent
handling does not have suitable solution artifacts and is therefore limited in its options. Please
note that this is not a limitation of available resources, but a limitation in finding a solution for
how to use these resources.

This first means that even if a concern is addressed through intent expressing a respective
requirement, the autonomous system might still fail to act on it if it does not have suitable
solution finding and planning artifacts available.

This also means, even if a concern and requirement is not subject to intent, the autonomous
system might still consider it. In this scenario, all solutions the system finds would comply
anyway.

For example, no intent might have expressed a requirement that strict tenant separation is
applied in service deployments. However, all solutions options the system finds for service
deployments nevertheless contain it. This requirement is implicitly addressed for example by
policies involved in the solution finding process.

That a requirement is not communicated by intent is not necessarily a limitation. Not all
concerns need to be dynamically changeable or allow being chosen by, for example, the
customer or service provider. Other concerns and especially basic common sense can very well
be addressed in the implementation of solution finding algorithms.

If, however an intent, which explicitly asks for sharing service instances between tenants,
would be given to the same autonomous system described in the example above, this intent
cannot be fulfilled. All available solutions do not consider this aspect as required. This first can
mean that the operator explicitly wants to avoid the implied solutions. Not fulfilling this intent
is therefore the right reaction. This requirement is wrongly given, and the autonomous system
has protected the operator. This outcome would be reported back to the intent origin.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 87 of 106

On the other hand, this new requirement might be a variant ask for by customers and the
operator agrees. It reflects a new customization variant of the services sold to the customer.
The rationale might be that this more resource-efficient deployment variant can be offered for
a lower price. However, the operator's autonomous network is not yet able to handle this new
variant. This causes a breach of autonomy, because in order to fulfill this new intent, the
implementation of the system or some of its solution finding artifacts need modification. This
is typically a task involving humans and requiring considerable lead-time to implement.

In this example, a system able to produce solutions for tenant separation as well as for service
instance sharing would be more autonomous. It either has already more complex polices
available that can produce both solution variants and select them accordingly, or it has the
capability to analyze the new intent and therefore adapt its policies itself.

In any case this system does not assume anymore that the multi-tenancy concern is always
addressed the same way. Consequently, it needs to be told by intent when either of the
alternatives would apply. This shows how a concern can become subject to intent when the
system expands towards more autonomous behavior. In this respect "more autonomous" is
understood as more situations can be handled without human involvement.

18.2. Conflict detection and resolution

A system is usually given multiple intent from multiple sources. There are two levels of
conflict:

Explicit contradictions:

Intents directly conflict with each other by expressing explicitly opposing or incompatible
requirements. For example, one intent is stating that all network links shall be encrypted,
while another intent is stating that all network links must not be encrypted. Consequently, at
least one of these intents will get violated. Nevertheless, as long as these requirements are
provided with context that resolves the conflict they can coexist. This can for example be a
non-overlapping scope such as requiring encrypted links for one user group and no encryption
for another user group. As long as the user groups do not overlap, there is no explicit
contradiction.

Contradictions also disappear if one requirement includes another one. For example, if one
intent requires at least 10 ms latency and another one for the same target at least 5 ms. There
is no conflict, because a solution exists that satisfies both. In this example, reaching 5 ms
latency also satisfies the 10 ms latency requirement.

Conflicting handling actions:

In many cases conflicts are not obvious form the requirement itself but originates from
conflicting actions being proposed in their handling. This will happen if the intents are realized
with a common infrastructure and limited resources. For example, one intent might ask for
increased RAN coverage and another intent for increased throughput delivered to users.
Actions are proposed to satisfy these intents and both actions imply opposing reconfiguration
of RAN cells. For example, by changing antenna tilt, but in opposite directions. Each proposed
RAN configuration will improve the fulfillment of the two intents but degrade the other.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 88 of 106

This indicates that intent handlers should be able to prioritize and therefore find the
operational state that is globally preferential even if it means to degrade some intents. Please
note that partially degraded intents would only occur if the handler does not have the means
to satisfy all intent. All it can do is prioritize by maximizing global utility, at least within its
handling scope. In any case the partial degradation would be communicated to the intent
owners to allow them to take action accordingly.

18.3. Intent expressing the wanted ideal system state

Intent is introduced as knowledge about the requirements and goals of a system. This can be
understood as the wanted or targeted state the system should ideally be in. This means there
is a range of preferred states that fulfill the intent, and it is the task of intent handling to bring
the system into these states through suitable actions.

Intents are additive and therefore there are in general multiple intents the system is working
to fulfill. This might not always be possible due to conflicts between the intents, the actions
planned to fulfill them or the current availability of resources. This means that there are no
states the system can reach that would fulfill all intent. In this case the task of intent handling
would be to reach a state that is as close to the ideal state as possible.

This discussion also indicates that intent fulfillment is related to the measured state of the
system. The goal of intent handling is therefore to close the gap between the measured
current state and the wanted ideal state.

A system with the capability to act proactively would be able to predict future states. This
allows it to detect intent degradation ahead of time and avoid it by acting with preventive
measures before a non-preferential situation is actually happening. In any case intent is the
decisive factor for determining if a current or future state is preferential or considered
degraded. However, when dealing with predicted future states there is always a considerable
amount uncertainty. Also, future intent changes might require re-evaluation of the situation
and change of planned actions.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 89 of 106

19. Appendix A: Intent Management Ontology

19.1. Motivation and background

Intent management is based on the use of intent management function. It embodies the
intent life cycle management with well-defined roles and phases. This model introduces the
categorization of functions and concepts of intent management. It provides basic vocabulary
that can be used by other models, for example the intent common model and intent extension
models.

Ideally this ontology will be integrated into a bigger context. It can for example become part of
TM Forum's SID.

19.2. Notation and namespaces

The intent common model is defined in a namespace under the TM Forum domain. It has the
following dependencies to other models:

Model Prefix Namespace Published
by

Intent
Management
Ontology

imo https://www.tmforum.org/2020/07/IntentManagme
ntOntology *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema version
1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

XML Schema xsd http://www.w3.org/2001/XMLSchema# W3C
*: Proposed IRI to show the concept. It might be different when the model is published.

The intent management ontology is modeled based on RDF and RDFS and it uses data types
according to the XML Schema.

19.3. Principles and vocabulary overview

19.3.1. Intent management function and its roles

There are always two instances of intent management functions involved in the life cycle of
intent. They are described by their role and are either an intent owner or intent handler. The
intent management ontology provides vocabulary to describe these roles:

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

http://www.w3.org/2001/XMLSchema

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 90 of 106

Figure 19.1: Roles of intent management functions

19.3.2. Intent model classification

Intent modeling is based on a model federation of an intent common model with a set of
intent extension models. The intent management ontology provides vocabulary to categorize
models with respect to their role in intent modeling:

Figure 19.2: Categorization of models used in intent expression.

19.4. Vocabulary specification

19.4.1. Classes

Class: imo:Handler
Definition: An object of class imo:Handler represents the intent management

function in the role of intent handler for the intent
Instance
of:

rdfs:Class
imo:IntentLCMrole

Subclass
of:

imo:IntentManager

Class: imo:IntentCommonModel
Definition: the model in the role of intent common model
Instance of: rdfs:Class
Subclass of: imo:IntentModel

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 91 of 106

Class: imo:IntentExtensionModel
Definition: the model in the role of intent common model
Instance of: rdfs:Class
Subclass of: imo:IntentModel

Class: imo:IntentLCMrole
Definition: the role an intent manager can take
Instance of: rdfs:Class

Class: imo:IntentManager
Definition: An object of class icm:IntentManager represents an instance of an

intent management function represents the intent management
function.

Instance
of:

rdfs:Class

Class: imo:IntentModel
Definition: describes a model that can contribute to modeling intent and intent

reports
Instance
of:

rdfs:Class

Subclass
of:

imcp:Model

Class: imo:Model
Definition: a model used in intent management
Instance of: rdfs:Class

Class: imo:Owner
Definition: An object of class imo:Owner represents the intent management

function in the role of intent owner for the intent
Instance
of:

rdfs:Class
imo:IntentLCMRole

Subclass
of:

imo:IntentManager

19.4.2. Instances

No instances defined.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 92 of 106

19.4.3. Properties

Property: imo:intentHandler
Definition: The property imo:intentHandler allows referring to an instance of an

intent management function that is in the role of owner of the intent
Instance
of:

rdf:property

Domain: rdf:Resource
Range: imo:Handler

Property: imo:intentOwner
Definition: The property imo:intentOwner allows referring to an instance of an

intent management function that is in the role of owner of the intent
Instance
of:

rdf:property

Domain: icm:Resource
Range: imo:Owner

Property: imo:modelReference
Definition: Specifies the IRI/URI of a model
Instance of: rdf:property
Domain: imo:Model
Range: xmd:string

19.5. Model usage and examples

The intent management ontology provides vocabulary as a base for intent common and intent
extension models as well as the expression of intent manager profiles. Examples can be found
in the documents describing these models in detail.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 93 of 106

20. Appendix B: Understanding
RDF/RDFS/OWL modeling and reading
TURTLE notation

20.1. The RDF modeling stack

W3C has specified a set of models targeting use case in knowledge engineering and rooted in
symbolic AI methods and enabling inference through logical reasoning:

• RDF: Resource Description Framework [rdf], [rdfprim], [rdfsem]

• RDFS: Resource Description Framework Schema [rdfs]

• OWL: Web Ontology Language [owl], [owl2doc]

The models can be expressed with multiple notation formats. W3C describes the following:

• TURTLE: Terse EDF Triple Language [turtle]

• RDF/XML: XML notation for RDF [rdfxml]

• JSON-LD: JavaScript Object Notation for Linked Data [jsonld], [rdfjson]

The IG1253 family of documents uses TURTLE notation for modeling examples, because it
provides the most intuitive and readable syntax.

All related specifications by W3C can be found at https://www.w3.org/TR/?tag=data.

Figure 20.1: Overview of RDF modeling stack and notation formats

20.2. Triples as basic building blocks

In RDF models everything is expressed as triple statements in the form of
SUBJECT PREDICATE OBJECT

An RDF model consists therefore of a set of triple statements.

Predicates are often also referred to as properties. This means that the object is considered to
be a property of the subject.

https://www.w3.org/TR/?tag=data

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 94 of 106

Figure 20.2 shows the equivalent graph representation of the triple statement.

Figure 20.2: Graph representation of triples as knowledge graph

Subjects and objects are nodes in the graph and predicates establish a link between them.
Different predicates have different meanings and semantics associated with them. Using a
particular predicate within a triple statement establishes the knowledge that the subject and
object have the respective relationship. Any number of predicates can be defined and used for
expressing relationships.

Please note that the subject of one statement can be the object of another one. This way
entire knowledge graphs are built with triple statements as basic building blocks. Different
predicates are used to establish knowledge about different types of relationship between the
nodes in the graphs. Figure 20.3 shows an example graph with multiple predicates and further
nodes. Every predicate arrow would correspond to one triple statement in the textual notation
of the model. The arrow represents the predicate pointing from the subject to the object of
the triple statement.

Figure 20.3: Knowledge graphs using multiple predicates

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 95 of 106

20.3. Referencing by IRI/URI

Everything in an RDF based model is referenced by an IRI or URI.

URI: Uniform Resource Identifier [uri]:
URIs are a sequence of characters that identify a physical or logical resource. It can be used to
identify anything, such as real-world objects, people, places, concepts, information resources,
…
They are standardized by IETF in RFC3986.

IRI: Internationalized Resource Identifier [iri]:
Defined by IETF in RFC3987 and greatly expanding the set of characters permitted in URI.

Subjects, predicates and objects are referred to by an IRI/URI. This means a subject-predicate-
object statement in RDF takes the following form:
<IRI of subject> <IRI or predicate> <IRI or object>

For example:

http://example.com/IntentIndividuals/intent00001 http://www.w3.org/1999
/02/22-rdf-syntax-
ns#type https://www.tmforum.org/2020/07/IntentCommonModel/Intent .

This example expresses that "intent00001" in the example.com domain is of type intent. The
"type" property used is the type according to the RDF standard and "Intent" is a class defined
in the TM Forum intent common model. This statement expresses that "intent00001" is an
individual of the class "Intent". Or in other words, "intent00001" is an intent.

This chapter uses green, red and blue colors in examples to clarify what the subject predicates
and objects are within the statements. The color coding is not part of RDF standard and has no
meaning for the models.

When multiple statements are given there is no meaning associated with or implied by their
order.

Through rigorous use of IRI/URI, models based on RDF/RDFS/OWL have globally unique
references for everything they model. This is the foundation for combining and federating
models.

20.4. TURTLE makes RDF models readable

TURTLE is a notation format for RDF based models. It has a textual representation that
provides a syntax that is more intuitively readable by human users.

The bare RDF statement using full URI are hard to read due to the use of IRI/URI. Much of an
IRI/URI string is however repeated many times within a model and typically only the final part
of the string is in focus of modeling. TURTLE allows to define a prefix representing a part of an
IRI/URI string.

The following example uses turtle notation for the example statement given in the previous
chapter:

@prefix : http://example.com/IntentIndividuals/ .
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# .
@prefix icm: https://www.tmforum.org/2020/07/IntentCommonModel/ .

:intent00001 rdf:type icm:Intent .

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 96 of 106

Here three prefixes are defined in the TURTLE document to be used within all statements. By
using the prefixes in the example statement about the type of the intent individual it became
much more readable. Prefixes can also be understood as distinguishing namespaces used in
the model.

Statements in TURTLE syntax are terminated by a full stop "." character. It is naming
convention and common practice to start the names if classes with an upper case letter and
the names of predicates.properties with a lower case letter.

TURTLE has a reserved keyword "a" representing a shortcut for the often needed "rdf:type".
The following statements are therefore equivalent:

ex:intent00001 an icm:Intent .
ex:intent00001 rdf:type icm:Intent .

It also allows to use the keywords "true" and "false" instead of the boolean individuals
"xsd:true" or "xsd:false" from XML Schema.

20.5. Nature of objects

Everything that can be referenced by an IRI/URI can be an object in RDF statements. This can
be objects in the same knowledge base, but due to the global referencing it can be any object
globally. For example, the intent residing within the knowledge base of the intent manager can
reference a service within a catalog or a resource individual within an inventory as long as a
URI can be created that addresses these objects in the respective systems. In many cases URI
can be created and used even if the targeted system is not using RDF based information
models.

Objects can also be literals, such as strings, integers or boolean values. For example:

ex:intent00001 rdfs:comment "example intent used as example" .
ex:SliceLatency ex:latestMeasurement 10 .

XML Schema datatypes are typically used to explicitly state the type of literals:

ex:SliceLatency ex:unit "Second^^xsd":string .

Labelled blank nodes (b-node) are expressed by "_:" followed by its label:

ex:expectation01 icm:target _:x .
_:x rdf:type ex:Service .

In this example a blank node with label "x" is used. Labeled blank nodes can be subjects as well
as objects in statements.

Blank nodes can be used as variables or placeholders, for example, if a concrete individual of
the meant object is not known.

Next to labeled blank nodes there are also unlabeled blank nodes represented by square
brackets "[]".

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 97 of 106

The following statements create the knowledge graph in Figure 20.4:

ex:expectation01 an icm:DeliveryExpectation .
ex:intent00001 icm:hasExpectation ex:expectation01 .

Figure 20.4: Examples graph, where all nodes are labeled by IRI/URI.

We can model a similar graph using unlabeled blank nodes and nested statements:

ex:intent00001 icm:hasExpectation [an icm:DeliveryExpectation] .

The graph in Figure 20.5 is equivalent to the one in Figure 20.4 with the only difference that
the mode formerly referenced by ex:expectation01 has now no IRI/URI. It is however still an
instance of class icm:DeliveryExpectation.

Figure 20.5: Example graph with blank node

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 98 of 106

The unlabeled node is represented by the square brackets "[]". There are still two distinct
statements in the textual representation. The blank node "[]" is the object of the first
statement with "icm:hasExpectation" as predicate. This same blank node is used as implied
subject of all statements given between "[" and "]". In this example the statement "an
icm:DeliveryExpectation" has the blank node as subject. It is expressing that the blank node is
something of class delivery expectation.

The following example shows some more expressiveness involving unlabeled blank nodes:

[] foaf:knows [foaf:name "Bob"] .

This statement expresses "Someone knows someone else, who has the name Bob". Here the
first blank nodes used as subject has no properties, and we therefore do not know more about
it. The second blank nodes has the property foaf:name with the value "Bob". So, we know,
whatever or whoever this blank node represents, it has the name "Bob". This example uses the
friend of a friend (foaf) ontology.

20.6. Predicate lists

Often multiple predicates reference the same subject:

ex:intent00001 an icm:Intent .
ex:intent00001 rdfs:comment “example intent” .
ex:intent00001 ex:somePredicate ex:SomeObject .

In TURTLE the same can be expressed by a series of predicates and objects, separated by a
semicolon ";", following a subject. This means the subject only needs to be stated once. The
semicolon symbol is used to repeat the subject subsequent triple statements:

ex:intent00001 an icm:Intent ;
 rdfs:comment "example intent" ;
 ex:somePredicate ex:SomeObject .

20.7. Object Lists

Often multiple triple statements have the same subjects and predicates with different objects:

ex:intent1 icm:hasExpectation ex:E01 .
ex:intent1 icm:hasExpectation ex:E02 .
ex:intent1 icm:hasExpectation ex:E03 .

In TURTLE notation the same can be expressed by a series of objects separated by comma ","
and following a predicate. This means that the subject and predicate are repeated for each
object.

ex:intent1 icm:hasExpectation ex:E01, ex:E02, ex:E03 .

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 99 of 106

20.8. Domain and Range in model definitions

When defining models, this involves a description of its vocabulary. Usually it defines classes,
individuals and properties/predicates. Properties are described with their domain and range:

• Domain specifies what can be used as subject in triple statement with this property

• Range specifies what can be used as objects in triple statements with this property

Figure 20.6: Illustration of domain and range of a predicate

For example, the property "icm:hasExpectation" is introduced in the intent common model in
IG1253A. It has the domain of "icm:Intent" and therefore can be used as property of subjects
of class icm:Intent. It also is defined with the range "icm:Expectation". This means in triples,
this property has objects that are of class icm:Expectation. This means the property
icm:hasExpectation can be used to link expectation objects to intents.

Blank nodes are used as subjects or objects in triple statements, and they contain statements
with properties about them. It is possible to state explicitly the class of this blank node, for
example:

ex:intent1 icm:hasExpectation [a icm:Expectation
; icm:target _:service] .

In the following statement the class of the blank node is not explicitly given:

ex:intent1 icm:hasExpectation [icm:target _:service] .

However, the "icm:hasExpectation" property has a range definition of objects of class
"icm:Expectation". When using the model it can therefore be inferred from the range of the
property, that the blank node is of class "icm:Expectation".

There are however also Subclasses of the class icm:Expectations, for example
icm:DeliveryExpectation. If the blank node is more specifically one of the Subclasses, this
cannot be inferred implicitly, because there are multiple options and it needs to be stated
explicitly:

ex:intent1 icm:hasExpectation [a icm:DeliveryExpectation
; icm:target _:service] .

Please note that this does not violate the range specification because it covers all sub-classes
as well.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 100 of 106

21. Appendix C: Terminology

Domain Information model

Data used within an application is typically created by management function, stored in
databases communicated over interfaces. Information models are used to describe the
individual data elements and the structures to organize and categorize them. These
information models are specific to an application domain in the same way as the data they
model. In the expression of intent a typical task would be to define target values for domain
specific data elements.

Domain-specific model

Intent-based operation is a generic paradigm of operating based on declarative knowledge
about requirements rather than imperative invocation of operational processes. Intent is in
this respect the carrier of knowledge of these requirements. The expression of intent is based
on vocabulary and its semantics defined by models and standardized by TM Forum and other
SDOs. The expressiveness needed is in many cases dependent on the application domain and
system level where the intent is used and for which it needs to express requirements. The
vocabulary and semantics needed to gain sufficient expressiveness for requirements within a
domain would be defined in domain-specific models. They are typically based on a domain
independent model and provide extension and specialization to the generic concepts. The
domain independent model for intent expression is referred to as intent common model and
any model that builds on the intent common model by defining expanded vocabulary and
semantics is referred to as intent extension model. Intent extension models are therefore
typically domain or use case specific.

Intent Interface

Intent and intent reports are carriers of information that would be communicated between
two instances of intent management functions. The intent interface is the interface between
two instances of intent management functions. They exchange information in the form of
intent and intent reports over this interface. Over this interface all communication concerning
intent and between intent management function is done. They manage the life cycle of
individual intent objects, report on success and state, coordinate operational priorities, assess
feasibility and negotiate what detailed requirement an intent can contain to successfully
handle it and reach a compliant system state. We model this interface with the introduction of
an intent handling management service. An intent management function in the role of intent
handler would be the producer of the intent handling management service. Another intent
management function in the role of intent owner would be the consumer of it.

Intent Object

An intent object is an individual intent. It can come in various forms and expressions. It can for
example be a text document that uses a notation format such as TURTLE, XML or JSON-LD to
encode all information of the intent. Such a document would also be used to communicate
intent objects over an interface. Within a knowledge base an intent object is a node in the
knowledge graph. It is an individual of class icm:intent according to the intent common model
defined in IG1253 A. The detailed information and requirement specifications an intent
typically consists of are contained in the properties associated with this individual node. The
textual and graph representations of intent objects are equivalent and can be completely
converted into each other.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 101 of 106

22. Appendix D: Abbreviations and acronyms

3GPP 3rd Generation Partnership Project
ANF Autonomous Networks Framework
BSS Business Support System
DN Distinguished Name
DSL Domain Specific Language
IETF Internet Engineering Task Force
IoT Internet of Things
IRI Internationalized Resource Identifier
ISO International Organization for Standardization
ITU International Telecommunication Union
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
KPI Key Performance Indicator
LDAP Lightweight Directory Access Protocol
MnF Management Function
MnS Management Service
MOF Meta Object Facility
OCL Object Constraints Language
OMG Object Management Group
OWL Web Ontology Language
RDF Resource Description Framework
RDFS RDF Schema
RACI Responsible, Accountable, Consulted, Informed
RAN Radio Access Network
SDO Standards Defining Organization
SKOS Simple Knowledge Organization System
SHACL Shapes Constraint Language
SHEX Shape Expression Language
SPARQL Protocol And RDF Query Language
SQL Structured Query Language
TURTLE Terse RDF Triple Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
XMI Metadata Interchange
XML eXtensible Markup Language
YAML Yet Another Markup Language

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 102 of 106

23. Appendix E: References

[28.812] 3GPP TR 28.812: "Study on scenarios for intent-driven management services for
mobile network, V17.1.0, 2020-12

[32.158] 3GPP TS 32.158, V16.04, 2021-09, Design Rules for REpresentational State Transfer
(REST),
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specification
Id=3396

[32.300] 3GPP TS 32.300 version 5.0.2 Release 5, Name convention for Managed Objects,
https://www.etsi.org/deliver/etsi_ts/132300_132399/132300/05.00.02_60/ts_132300v05000
2p.pdf

[dbpedia] DBpedia, Global and Unified Access to Knowledge Graphs,
https://www.dbpedia.org/

[dc] Dublin Core Metadata Initiative Specifications,
https://www.dublincore.org/specifications/dublin-core/

[dcat] Data Catalog Vocabulary DCAT, Version 3, W3C Working Draft, 04 May 2021,
https://www.w3.org/TR/2021/WD-vocab-dcat-3-20210504/

[foaf] FOAF, Friend of a friend ontology, Namespace Document, 14 January 2014,
http://xmlns.com/foaf/spec/#term_LabelProperty

[ibn] A. Clemm, L. Ciavaglia, L. Z. Granville and J. Tantsura: "intent-driven Networking -
Concepts and Definitions"

[ig1218] Autonomous Networks Business Requirements and Framework v2.0.0

[ig1230] TM Forum IG1230: "Autonomous Networks Technical Architecture v1.1"

[ig1252] TM Forum IG1252, Autonomous Networks Levels Evaluation Methodology v1.0.0

[ig1235A] Intent Modeling v1.1.0

[ig1235B] Intent Extension and Information models v1.0.0

[ig1235C] Intent Life cycle management and Interface v.1.1.0

[ig1235D] Intent Manager Scope and Capability Management v1.0.0

[iri] Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005.
Proposed Standard, RFC3987. URL: https://tools.ietf.org/html/rfc3987

[jsonld] JSON-LD 1.1, W3C Recommendation, 16 July 2020, https://www.w3.org/TR/2020/REC-
json-ld11-20200716/

[ocl] Object Management Group, "OCL 2.0 Specification" OMG Specification, June 2005

[owl] OWL 2 Web Ontology Language Primer (Second Edition), W3C Recommendation, 11
December 2012, https://www.w3.org/TR/owl2-primer/

[owl2doc] OWL 2 Web Ontology Language Document Overview (Second Edition), W3C OWL
Working Group, 11 December 2012, https://www.w3.org/TR/owl2-overview/

[owltime] Time Ontology in OWL, W3C Candidate Recommendation. 26 March 2020,
https://www.w3.org/TR/2020/CR-owl-time-20200326/

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3396

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3396

https://www.etsi.org/deliver/etsi_ts/132300_132399/132300/05.00.02_60/ts_132300v050002p.pdf

https://www.etsi.org/deliver/etsi_ts/132300_132399/132300/05.00.02_60/ts_132300v050002p.pdf

https://www.dbpedia.org/

https://www.dublincore.org/specifications/dublin-core/

https://www.w3.org/TR/2021/WD-vocab-dcat-3-20210504/

http://xmlns.com/foaf/spec/#term_LabelProperty

https://tools.ietf.org/html/rfc3987

https://www.w3.org/TR/2020/REC-json-ld11-20200716/

https://www.w3.org/TR/2020/REC-json-ld11-20200716/

https://www.w3.org/TR/owl2-primer/

https://www.w3.org/TR/owl2-overview/

https://www.w3.org/TR/2020/CR-owl-time-20200326/

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 103 of 106

[prof] The Profiles Vocabulary, W3C Working Group Note, 18 December 2019,
https://www.w3.org/TR/2019/NOTE-dx-prof-20191218/

[raci] M. Smith, J. Erwin: "Role & Responsibility Charting (RACI)", Project Management Forum,
2005

[rdb2rdf] A Direct Mapping of Relational Data to RDF, W3C Proposed Recommendation 14
August 2012, https://www.w3.org/TR/2012/PR-rdb-direct-mapping-20120814/

[rdb2rdf_uc] Use Cases and Requirements for Mapping Relational Databases to RDF, W3C
Working Draft 8 June 2010, https://www.w3.org/TR/2010/WD-rdb2rdf-ucr-20100608/

[rdf] RDF 1.1 Concepts and Abstract Syntax, W3C, https://www.w3.org/TR/rdf11-concepts/

[rdfjson] RDF 1.1 JSON Alternate Serialization (RDF/JSON), W3C Working Group Note, 07
November 2013, https://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

[rdfprim] W3C, RDF Primer, https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

[rdfs] W3C, RDF Schema 1.1, W3C Recommendation 25 February 2014,
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

[rdfsem] W2C, RDF Semantics, W3C Recommendation 25 February 2014,
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

[rdfxml] RDF 1.1 XML Syntax, W3C Recommendation, 25 February 2014,
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

[rfc7575] M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. E. Carpenter, S. Jiang and
L. Ciavaglia: "Autonomic Networking: Definitions and Design Goals (RFC7575)"

[select] Selectors and States, W3C Reference Note: https://www.w3.org/TR/2017/NOTE-
selectors-states-20170223/

[shacl] Shapes Constraint Language (SHACL). Holger Knublauch; Dimitris Kontokostas. W3C. 20
July 2017. W3C Recommendation. URL: https://www.w3.org/TR/shacl/

[shex] Shape Expression Language 2.next (SHEX), 2019-08-31. W3C Community Group Draft
Report, https://shexspec.github.io/spec/

[skos] SKOS Simple Knowledge Organization System Reference. Alistair Miles; Sean Bechhofer.
W3C. 18 August 2009. W3C Recommendation. URL: https://www.w3.org/TR/skos-reference/

[sparql] SPARQL 1.1 Overview, W3C Recommendation 21 March 2013,
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

[turtle] W3C, RDF 1.1 Turtle, Terse RDF Triple Language, W3C Recommendation, 25 February
2014, https://www.w3.org/TR/2014/REC-turtle-20140225/

[uml] Unified Modeling Language Specification, Version 2.0, July 2005, Object Management
Group, https://www.omg.org/spec/UML/2.0/

[umlowl] A detailed Comparison of UML and OWL, Kilian Kiko and Colin Atkinson, University of
Mannheim, 2008,

[uri] Uniform Resource Identifier (URI): Generic Syntax, T. Berners-Lee; R. Fielding; L. Masinter.
IETF. January 2005. Internet Standard RFC3986, https://datatracker.ietf.org/doc/html/rfc3986

[w3cdocs] W3C, All Standards and Drafts, https://www.w3.org/TR/?tag=data

[x500] ITU-T Recommendation X.500 (1993): "Information technology - Open Systems
Interconnection - The Directory: Overview of concepts, models and services".
https://www.itu.int/itu-t/recommendations/rec.aspx?rec=2996&lang=en

https://www.w3.org/TR/2019/NOTE-dx-prof-20191218/

https://www.w3.org/TR/2012/PR-rdb-direct-mapping-20120814/

https://www.w3.org/TR/2010/WD-rdb2rdf-ucr-20100608/

https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/

https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

https://www.w3.org/TR/2017/NOTE-selectors-states-20170223/

https://www.w3.org/TR/2017/NOTE-selectors-states-20170223/

https://www.w3.org/TR/shacl/

https://shexspec.github.io/spec/

https://www.w3.org/TR/skos-reference/

https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

https://www.w3.org/TR/2014/REC-turtle-20140225/

https://www.omg.org/spec/UML/2.0/

https://datatracker.ietf.org/doc/html/rfc3986

https://www.w3.org/TR/?tag=data

https://www.itu.int/itu-t/recommendations/rec.aspx?rec=2996&lang=en

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 104 of 106

24. Appendix E: Future work
The following topics need some further documentation and examples and will be addressed in
future phases of the Autonomous networks project.

Topic Description
End-to-
end use
cases

The document IG1253E is planned to be added in future releases. It is
dedicated to use all techniques and concepts from IG1253 and its sub-
documents to show end-to-end autonomous operation.

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 105 of 106

25. Administrative Appendix

25.1. Document History

25.1.1. Version History

Version Number Date Modified Modified by: Description of changes
1.0.0 28-May-2021 Alan Pope Initial Release
1.1.0 26-Nov-2021 Alan Pope

25.1.2. Release History

Release
Status

Date
Modified

Modified by: Description of changes

Pre-
production

28-May-2021 Alan Pope Final edits prior to publication

Production 26-Jul-2021 Adrienne
Walcott

Updated to reflect TM Forum
Approved Status

Pre-
production

26-Nov-2021 Alan Pope Final edits prior to Sprint 2021-6
publication

25.2. Acknowledgments

25.2.1. Guide Lead & Author

Member Title Company
Jörg Niemöller Expert of Analytics and Customer Experience Ericsson

25.2.2. Main Contributors

Member Title Company
Jörg Niemöller Expert of Analytics and Customer

Experience
Ericsson

Kevin McDonnell Senior Director, Intelligent Automation Huawei
James O'Sullivan Product Director, Intelligent Automation Huawei
Dave Milham Chief Architect TM Forum
Vinay Devadatta Practice Head (Innovation & Industry

Relations)
Wipro
Technologies

Azahar Machwe OSS Automation BT Group plc
Wang Lei Systems Expert Huawei
Tayeb Ben
Meriem

Senior Standardization Manager (OSS) Orange

 IG1253 Intent in Autonomous Networks v1.1.0

© TM Forum 2021. All Rights Reserved. Page 106 of 106

25.2.3. Additional Inputs

Member Title Company
Lester Thomas Chief IT Systems Architect Vodafone

Group
Ankur Goyal Lead Consultant Infosys
Emmanuel A.
Otchere

Chief Technical ExpertVP, Standards & Industry
Development

Huawei

Min He Chief Architect Futurewei

			Notice

			Table of Contents

			List of Figures

			List of Tables

			1. Executive Summary

			Introduction

			1. Document overview

			1.1. Scope and purpose

			1.2. Overview

			2. Motivation for intent

			2.1. Fully manual operation

			2.2. Operation with automated execution

			2.3. Adaptive automation towards autonomy

			2.4. The purpose of intent

			3. Definition of Intent

			3.1. History of intent definition

			3.2. Definition of intent

			4. Properties of intent

			4.1. Declarative goals and utility: the wanted state

			4.2. Composible and additive

			4.3. Persistent and lifecycle managed

			4.4. Infrastructure agnostic and portable

			4.5. Measurable and grounded in data

			5. Expressiveness of intent

			5.1. SLA negotiations and agreement

			5.2. Delivery of user services

			5.3. Behavior of resource services

			5.4. Regulatory and legislative requirements

			5.5. Solution Bias

			5.6. Limit Risk Taking

			5.7. Common sense

			5.8. Communicate and escalate to humans

			5.9. Customer and resource value

			5.10. Default or minimum requirements

			6. Categorization of intent

			7. Principles of Intent-driven operation

			7.1. Intent Management function

			7.2. Intent reporting

			7.3. Intent in the autonomous network framework (ANF)

			8. Intent life-cycle

			9. RACI of intent and intent handling

			9.1. RACI for intent lifecycle management tasks

			9.1.1. RACI of intent handling capability management

			10. Intent interface

			11. Intent management scope

			12. Intent manager capability management

			12.1. Intent manager profile

			12.2. Intent handler registration and discovery

			13. Modeling of intent objects and reports

			13.1. The nature and use of intent models

			13.2. Expressiveness of intent

			13.3. Requirements and concerns for intent modeling

			13.3.1. Intent is knowledge

			13.3.2. Ambiguity free semantics

			13.3.3. Domain awareness and domain independence

			13.3.4. Semantics for automated inference

			13.3.5. Knowledge base and efficient query

			13.3.6. Efficient serialization and notation

			13.3.7. Convenient human oversight and monitoring

			13.3.8. Competence

			13.3.9. Open standards

			13.4. Discussion of modeling standards

			13.4.1. Syntax

			13.4.2. Semantics

			13.4.3. Conclusions and proposals

			14. Model federation

			14.1. Models within an intent model federation

			14.2. Governance and management of model federation

			14.3. Guidelines for intent extension models

			14.4. Model federation examples

			14.4.1. Mutual agreement on models between intent managers

			14.4.2. Practical expression of model federation within an intent notation

			14.5. Linking to and from other modeling standards

			14.5.1. Referencing with constructed IRI/URI

			14.6. Model federation as cross industry use case enabler

			15. Overview of specified models

			16. Intent related closed loops

			16.1. Interaction with real-time control loops

			17. Intent from natural and domain specific languages

			17.1. Modeling intent originating from domain specific languages

			18. Implementation aspects of intent management

			18.1. Concerns addressed through intent versus implementation

			18.2. Conflict detection and resolution

			18.3. Intent expressing the wanted ideal system state

			19. Appendix A: Intent Management Ontology

			19.1. Motivation and background

			19.2. Notation and namespaces

			19.3. Principles and vocabulary overview

			19.3.1. Intent management function and its roles

			19.3.2. Intent model classification

			19.4. Vocabulary specification

			19.4.1. Classes

			19.4.2. Instances

			19.4.3. Properties

			19.5. Model usage and examples

			20. Appendix B: Understanding RDF/RDFS/OWL modeling and reading TURTLE notation

			20.1. The RDF modeling stack

			20.2. Triples as basic building blocks

			20.3. Referencing by IRI/URI

			20.4. TURTLE makes RDF models readable

			20.5. Nature of objects

			20.6. Predicate lists

			20.7. Object Lists

			20.8. Domain and Range in model definitions

			21. Appendix C: Terminology

			22. Appendix D: Abbreviations and acronyms

			23. Appendix E: References

			24. Appendix E: Future work

			25. Administrative Appendix

			25.1. Document History

			25.1.1. Version History

			25.1.2. Release History

			25.2. Acknowledgments

			25.2.1. Guide Lead & Author

			25.2.2. Main Contributors

			25.2.3. Additional Inputs

IG1253A_Intent_Common_Model_v1.1.0.pdf

TM Forum 2021. All Rights Reserved.

TM Forum Introduction Guide

Intent Common Model

IG1253A
Team Approved Date: 26-Nov-2021

Release Status: Pre-production Approval Status: Team Approved
Version 1.1.0 IPR Mode: RAND

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 2 of 55

Notice
Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to TM FORUM, except as needed for the
purpose of developing any document or deliverable produced by a TM FORUM Collaboration
Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

181 New Road, Suite 304
Parsippany, NJ 07054, USA
Tel No. +1 862 227 1648
TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 3 of 55

Table of Contents
Notice .. 2

Table of Contents .. 3

Executive Summary ... 6

Introduction .. 7

1. Motivation and background .. 8

2. Notation and namespaces ... 9

3. Vocabulary overview ... 11

3.1. Class Overview .. 11

3.2. Formulating intent .. 13

3.3. Specifying context ... 14

3.4. Providing additional information .. 15

3.5. Intent reporting .. 15

3.6. Intent handling states and events .. 18

3.7. Intent update states and events ... 18

4. Vocabulary specification .. 20

4.1. Classes ... 20

4.2. Individuals ... 27

4.3. Properties ... 30

5. Model usage and examples ... 40

5.1. Using variables vs. individuals in expectation targets 40

5.2. Referring to resources in external systems .. 40

5.3. Specifying what shall be delivered (Functional Requirements) 41

5.4. Specifying requirements with properties ... 43

5.5. Specifying Reporting Conditions ... 45

5.6. Intent reporting of current handling status .. 47

5.7. Reporting of degraded intent ... 49

5.8. Reporting of intent rejection .. 51

6. Administrative Appendix ... 54

6.1. Document History ... 54

6.1.1. Version History ... 54

6.1.2. Release History ... 54

6.2. Acknowledgments .. 54

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 4 of 55

6.2.1. Guide Lead & Author .. 54

6.2.2. Main Contributors .. 54

6.2.3. Additional Inputs .. 55

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 5 of 55

List of Figures

Figure 3.1: Classes for categorization of elements ... 11

Figure 3.2: Classes for categorization of elements ... 12

Figure 3.3: Classes and properties of intent common model ... 13

Figure 3.4: Properties of the intent report.. 16

Figure 3.5: Reporting about expectation details ... 17

Figure 3.6: The intent handling states with state transition events ... 18

Figure 3.7: The associated state machine of intent handling and intent update with state
transition events ... 19

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 6 of 55

Executive Summary
The foundation of intent driven operation is the life cycle management of intent objects and
the communication of intent and the related intent reports. This is how humans communicate
their requirements to the autonomous system and this is how sub-systems communicate
requirements between each other and report on their success in operating accordingly. This
document introduces the models that determine how intent is expressed. This includes
defining the modeling concepts and artifacts to be used when formulating intent. It means to
clearly define the semantics of the detailed modeling artifacts to avoid ambiguities in model
interpretation.

We propose to use model federation in intent expression. This means that individual intent is
expressed by using the intent common model and any number of intent extension models and
intent information models. The intent common model is defining modeling artifacts such as
classes and properties that are domain independent. This makes them common. Every intent,
no matter of the application domain or use case it is used in, would be built using the intent
common model. This document describes the intent common model for expressing intent as
well as intent reports.

However, the intent common model is not complete, as it does not contain the expressiveness
needed in certain application domains. This would be covered by intent extension and intent
information models. Those additional models can be proposed by any standards organization
or work group with the mission to define the detailed operation of a particular domain. A
future IG1253B will introduce some intent extension models. But any other organization or
work group is also invited to do so and contribute to the federation of models that makes
intent useful within and across any number of application and industry domains.

Having this inter-organization collaboration around a federation of models will ensure that
intent standards and concepts stay aligned. This bears the opportunity that interfaces and at
least parts of intent management implementations can be re-used to a great extent across
domain specific solutions. It reduces the need of translation between models and interfaces
and therefore helps to reduce complexity in integration.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 7 of 55

Introduction
This document introduces the intent common model. It defines how intent and intent report
objects shall be expressed. It defines the model that is commonly used for all intents
independent of their domain. This makes it the only model that is mandatory within the
proposed model federation.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 8 of 55

1. Motivation and background
Intent is introduced in IG1253 as formal expression of requirements, goals and constraints.
Intent management functions control and participate in the life cycle of intent. They
communicate with each other over the intent interface. The main artifacts on this interface are
intents and intent reports. The intent common model specified in this document defines
common vocabulary and semantics that can be used for formulating intent as well as intent
reports.

Intent modeling is based on a model federation. This means that the definition of
expressiveness needed by an intent management function is distributed over multiple distinct
models. One model defines the domain independent expressiveness. This model is mandatory
to be used in a model federation and all intent management function are required to
completely implement support for it. This model is the intent common model specified in this
document.

The intent common model introduces basic artifacts, such as classes and properties. This
means that the definitions of the intent common model are universally applicable to all intent
management functions irrespective of their application domain and handling scope. It also
does not contain the vocabulary and semantics needed for optional features and concerns,
such as intent negotiation.

The intent common model is in general not the only source for intent expressiveness. An
intent management function has a scope of responsibility, which usually matches an
operational domain. This means it needs to use the generic vocabulary of the intent common
models with domain specific additions. This is managed through a model federation, in which
the intent common model is combined with intent extension models and intent information
models. Those are optional and therefore only need to be supported by an intent
management function if they provide expressiveness that matches the responsibility scope of
the intent manager. A set of intent extension models is specified in IG1253B. However, intent
extension models and intent information models can originate from any organization, project
or work group.

The Resource Description Framework (RDF) and the RDF Schema (RDFS) are proposed as base
for intent modeling. One of the reasons for this recommendation is the categorical use of
globally unique identifiers for all modeling artifacts. Based on this, RDF models make it easy to
work with multiple namespaces and to distribute expressiveness over multiple several distinct
models. Model federation relies on these characteristics of RDF based modeling.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 9 of 55

2. Notation and namespaces
The intent common model is defined in a namespace under the TM Forum domain. As usual in
RDF modeling, an IRI starting with the domain of the model defining organization is used for
referencing all artifacts within the model.

The intent common model depends on the following models and uses the respective
namespaces

Model Prefix Namespace Published
by

Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCommo
nModel/ *

TM Forum

Intent
Manageme
nt Ontology

imo https://www.tmforum.org/2020/07/IntentManag
mentOntology/ *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

W3C time
Ontology in
OWL

t http://www.w3.org/2006/time# W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

RDF and RDFS provide the meta model for defining intent models. For example, classes in the
intent model are derived from the definition of "Class" in RDFS. Properties in the intent model
are respectively derived from the definition of "Property" in RDF.

The time ontology model is used to allow the expression of time based conditions for creation
of intent reports. If needed additional models for time expression can be used. They would be
introduced as intent extension models.

The Example namespace is used for separating the namespace for example objects within this
document.

The intent common model is based on the Resource Description Framework (RDF) and the
Resource Description Framework Schema (RDFS). Intent and intent report objects are
knowledge graphs in the form of an ontology. RDF is a well-established standard for formally
expressing knowledge this way.

In this document we present examples for modelling with the intent common models using
the Terse RDF Triple Language (Turtle). Turtle is a serialization format of RDF knowledge
graphs with intuitive syntax. It combines formal completeness with easy readability and is
therefore ideal for presenting the intent common model components.

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

http://example.com/intent

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 10 of 55

Objects in RDF are referenced by a globally unique IRI. Turtle allows prefix definitions
capturing the initial and repetitive part of the URI. This considerably shortens the syntax and
provides the benefit of significantly improved readability.

A version of the intent common model is designated by its date of publication. This versioning
scheme becomes part of the IRI of all artifacts within the model. A published model is
immutable. Any change or extension therefore requires publishing a new model under a new
IRI that typically differs in the part that specifies the model version.

TM Forum publishes the intent common model. It also hosts the project and process for model
governance and creation of future model versions. This project is where changes and
extensions to the intent common model are planned and discussed and where the publication
of model versions is scheduled. Currently, these tasks are performed by the TM Forum
Autonomous Networks Project.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 11 of 55

3. Vocabulary overview

3.1. Class Overview

For reaching precise expressiveness, the intent common model is proposing the following class
hierarchy:

Figure 3.1: Classes for categorization of elements

Elements that constitute and specify requirements are of class icm:RequirementDefiner. For
example, intents are instances of this class and expectations and expectation params are sub-
classes.

Elements that carry information about the system state for reporting are of class
icm:RequirementReporter. Intent Reports are instances of this class and expectation reports as
well as expectation report params are sub-classes.

The property icm:reportsAbout associates a requirement reporter object with the requirement
definer object it is reporting about.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 12 of 55

The intent common model distinguishes sub-classes of expectation, which are mirrored by
sub-classes of expectation reports. They represent different types of requirements. Expressing
these requirements might need different parameters specific to a sub-class of expectation and
expectation report. The intent common model introduces the classes icm:DeliveryParam,
icm:PropertyParam and icm:ReportingParam to associate sets of parameter types with the
respective sub-classes of expectation and expectation report. Note, that these classes are sub-
classes of icm:ExpectationParam as well as icm:ExpectationReportParam. This means the same
parameters can be used in formulating a requirement and also for reporting on its status.

The intent common model also introduces the class icm:RequirementExplainer and the sub-
class icm:Context. They are mirrored for intent reporting by the classes
icm:RequirementReportExplainer and icm:ReportContext. Objects of these classes do not
define requirements directly, but they carry information about the requirement. This might for
example contain the requirement through side conditions and scoping. For example, the
requirement to deliver 10 Mbit/s throughput to users might be constraint by the maximum
number of users that simultaneously use the service.

Figure 3.2: Classes for categorization of elements

All objects within an intent or intent report that are involved in specifying requirements and its
side conditions or reporting about them are of class icm:RequirementElement. This means
these objects inform the intent handler what it needs to comply with.

All objects that are not involved in defining and reporting on requirements are of class
icm:InformationElement. They carry contextual or descriptive information that might be
interesting for the intent handler to make better decisions or helps to trace and monitor the
intent-based operation.

Objects of class icm:ReferencableNode need to be modeled in a way that they are represented
by an IRI/URI. This practically means that blank nodes cannot be used as instances of this class.
This ensures that objects within an intent report can refer back to the corresponding
requirement defining objects within the intent.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 13 of 55

3.2. Formulating intent

The intent common model defines the basic classes and properties for practically modelling
and expressing intents and detailed expectations within. Every intent is an individual of class
icm:Intent. Distinct requirements are of individuals of icm:Expectation and its subclasses. In
this respect an intent is a set of expectations.

Figure 3.3: Classes and properties of intent common model

The intent common model defines a generic set of expectation subclasses:

• The class icm:DeliveryExpectation is used for requiring what needs to be delivered by
the underlying infrastructure and managed system.

• The class icm:PropertyExpectation allows defining conditions and goals that need to be
fulfilled. It can for example require the system or its resources to be in a certain state
or to meet a numerical target. Those are usually expressed by a combination of metric-
based targets and qualifiers expressing the related conditions that need to be met.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 14 of 55

• The class icm:ReportingExpectation allows defining under which conditions the intent
handler is required to create an intent report and communicate it to the intent owner.
Intent reporting is a push mechanism steered by reporting expectations. If the intent
owner requires different reporting schemes, it can update the reporting expectation
accordingly.

Advanced domain and use-case specific vocabulary and semantics is not defined by the intent
common model. The intent common model is rather limited to the bare minimum of
vocabulary and basic semantics of intent expression. If needed, further expressiveness can be
added through model federation using intent extension models in addition to this intent
common model. A set of intent extension models for various use cases are defined in IG1253B.
However, every organization, workgroup or project that needs additional vocabulary and
semantics can propose and publish their own intent extension models.

The intent common model defines properties within an expectation that allow formulating the
details of the requirement. The icm:target property allows referring to what the requirement is
for. This can for example be a service or slice instance or a resource within the managed
system and operated environment. There is no inherent restriction on what the target can be.
The only requirement is that every expectation has a target. This means the use of the target
property is mandatory within an expectation. Multiple expectations with the same target allow
addition and concatenation of different required aspects together.

The icm:params property allows the definition of the details of what is required from the
target. This expresses for example condition of the resource state or targets based on metrics.
What is defined by icm:params is what the intent handler is supposed to fulfill and assure.

3.3. Specifying context

Expectations allow defining requirements within their parameters. However, requirements
might not have universal unconditional applicability. Requirements might only apply under
defined conditions. They might have limited validity or only apply in specific situations with
well-defined applicability boundaries. Also, different alternative requirements might be
applicable in different situations. This is what we call context in intent modeling.

The class icm:Context is introduced to carry the specification of situation and applicability
conditions. This class in the intent common model is however only an anchor point for
additional subclasses that introduce various aspects of context with specific vocabulary and
semantics. Intent extension models shall be used for defining the details. Each additional
model would introduce another aspect of context.

Context can be assigned using the icm:hasContext property. Typical subjects are intents,
expectations and expectation params. For them context can specify ranges and conditions of
applicability.

Expectation targets might also be subject to context. This is not explicitly excluded. However,
this would introduce additional details about the target, such as what the target object is or
shall be and under which conditions. This type of expressiveness would usually be covered by
additional classes of expectations that cover various aspects of requirements, goals and
constraints about the target. Expectations with the same targets are therefore concatenated
various aspects about that target and the details are provided by the params of the various
expectations.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 15 of 55

3.4. Providing additional information

All binding requirements and goals are specified with expectation objects and potentially
further detailed using context. However, the intent owner might want to provide additional
side ground information to the intent handler. This information might help the handler to
make the right choices and set priorities correctly. It is not interpreted as requirement or
constraint and therefore not used to determine if the intent is successfully fulfilled or violated.
The system can not violate the specifications in information objects or become degraded
because of it. Information can however influence the decisions and prioritization done by the
intent handler and therefore can have an effect on the actions taken and operational
strategies chosen.

The intent common model introduces the icm:Information class. subclasses of it would be
used to express different types of information. The intent common model also defines the
property icm:hasInformation allowing assigning various pieces of information. Typically,
information would be assigned to the intent as a whole, individual expectations and the
params and targets within expectations. Information is always optional information and not a
binding requirement that need to be met by the intent handler.

The intent common model only introduces the main class and the property to assign
information. Defining the vocabulary for different types and dimensions of information is left
to intent extension models.

Potential examples of information are:

Customer information: Which customer did the intent originate from or which customer's
requirements does it represent. Also, for which customer the required service or function or
slice need to be delivered.

Market information: In which market or market segment is the intent used.

Geographical information: In which country or region is the intent used.

Intent family relationships: list of other intent objects that are related to each other. This can
for example be higher level intents for which this intent represents a breakdown into
instrumental goals. Another example is a list of intent objects given to other intent handlers by
one owner. In this case the owner has used a set of intents targeting different handlers and
altogether would contribute to fulfill the intent owner's goals.

3.5. Intent reporting

While intents specify the requirements that an intent handler needs to achieve, an intent
report provides details about the actual achievement and current state of the intent handling
and the operated system.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 16 of 55

Figure 3.4: Properties of the intent report

While intents are defined by intent owners and sent to handlers, intent reports provide
information in the other direction from an intent handler towards an owner. Intents and intent
reports form the intent control loop between the intent owner and handler.

The intent common model defines the basic classes and properties used to formulate intent
reports. Intent reports are structurally mirror-images of the intent objects. This means if a
certain expectation class was used in the intent, the respective expectation report class needs
to be present in the intent report object.

All individual intent reports are objects of class icm:IntentReport. Within an intent report every
expectation within the intent is matched with an individual of the class icm:ExpectationReport.
While an expectation contains the requirements to be met by the system, an expectation
report contains the actual state for exactly the same required aspects. For every distinct
expectation there will be an expectation report and for every distinct param within an
expectation, a respective entry is provided in an expectation report. The params within an
expectation report are divided into compliant params using icm:paramsCompliant, degraded
params using icm:paramsDegraded and unknown using icm:paramsUnknown property.
Therefore, the intent handler provides an assessment if it considers the system state to be
compliant or degraded with respect to the intent, or if it does not or not yet know a particular
required aspect of the state. The intent handler would also provide reasons for why a state is
degraded or why it might be unknown. It is doing so using individuals of class
icm:ParamReason.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 17 of 55

Figure 3.5: Reporting about expectation details

Expectation report objects also have target properties. They refer to the concrete instances or
list of instances that are used in the fulfillment of the intent. In the intent expectations,
variables might be used as targets representing placeholders of instances the intent handler is
free to choose. In the report these variables are replaced by referring to the actual instances
that were chosen.

The expectation report objects have an expectation ID assigned to them using the property
icm:expectationParamID. This ID allows referencing every individual expectation in the
corresponding expectation report instance and to match expectation individuals in intent
updates. The ID is generated by the intent owner. Similarly, also parameter objects can have a
unique ID assigned by the property icm:expectationParamID.

Models for intent and intent reports are tightly related. It is highly recommended defining
them together. This is done in the intent common model. It defines not only the classes and
properties to be used for creating intent objects but also the classes and properties needed for
creating intent reports. This is the recommended best practice also for intent extension
models. Keeping intent and intent reporting models together helps to preserve consistency
and completeness. It must for example not happen that intent extension models introduce a
new expectation class, but misses introducing also the respective expectation report class.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 18 of 55

3.6. Intent handling states and events

A general state machine of intent handling is introduced in IG1253 C. The intent common
model complements that by providing the vocabulary for referring to the states and transition
events intent and intent report expression. The progress of intent handling can be expressed
using the icm:IntentHandlingState class. It allows to track the process of intent handling and in
particular to monitor if the system is degraded or compliant with respect to the intent.
Individuals of icm:IntentHandlingState define states of the intent handling state machine as
shown in Figure 3.6.

Figure 3.6: The intent handling states with state transition events

This state machine expresses generalized major phases of intent handling. It is defined mainly
for communication between the intent handler and the owner. Reporting on states and state
transition events according to this state machine ensures that intent owner and handler have a
common and ambiguity free understanding of intent handling status and progress.

The intent common model defines a set of individuals of the class icm:IntentHandlingState
representing the states of the standard intent handling state machine. Furthermore, the intent
common model defines the class icm:IntentHandlingEvent representing the events that lead to
state transitions. The intent common model defines individuals of this class representing the
standard set of state transitions. The states and state transition events are mainly used in
intent reports. The events associated with state transitions are also used by an intent owner to
formulate reporting conditions. The owner specifies which events shall lead to a new intent
report.

3.7. Intent update states and events

The intent common model defines also a state machine for handling intent updates. This state
machine is separated from the state machine of intent handling, because, after an update is
received and before the intent handler has decided to accept the update, operation continues
based on the last accepted version of the intent.

Nevertheless, the intent update state machine is associated with the intent handling state
machine by sharing a few state transition events:

• The intent update state machine is initiated on intent acceptance.

• The intent update state machine is deleted at intent removal.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 19 of 55

• In the state icm:StateUpdating, the intent details are replaced, which can lead to state
transitions in the intent handling state machine, because the compliance of
expectations can change if their requirement details change.

The intent update state machine adds states and transition events specific to the update
process as shown in Figure 3.7.

Figure 3.7: The associated state machine of intent handling and intent update with state transition
events

The state icm:StateNoUpdate is a waiting state. The intent handler assumes this state while
there are not updates ongoing. Once an update is received, the intent handler changes into
icm:StateUpdateReceived and starts evaluating if it can accept the update.

If the update is accepted, the update state transitions into icm:StateUpdating. This means that
the content of the original intent gets replaced by the content received in the update. After
this operation, the update state machine returns to its waiting state icm:StateNoUpdate. The
update has an immediate effect on the evaluation of the system compliance. If the
requirements have changed in the update, this might cause a transition in the intent handling
state from icm:StateCompliant to icm:StateDegraded or vice versa. The dotted line in Figure
3.7 from icm:StateUpdating to the transition events icm:StateDegrades and icm:StateComplies
indicates this possible effect of an update on the intent handling state.

If the update was rejected, the intent handler returns to icm:StateNoUpdate and the content
of the update is discarded.

Each of the transition events of the intent update state machine can be used as criterion for
sending an intent report. This means the intent update state machine adds to possible triggers
for intent reporting.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 20 of 55

4. Vocabulary specification
This chapter presents the vocabulary of the model as reference dictionary. In particular, it
specifies all classes, instances, and properties.

The task statement in the definition points at the modeling task the described model element
would primarily be used for. It distinguishes: "Intent Modeling" and "Intent Reporting". This
indicates that the respective vocabulary would be used within the expression of an intent or
within an intent report.

4.1. Classes

This intent common model proposed the following classes:

Class: icm:Context
Definition: Context objects carry additional conditions and applicability ranges

related to requirements. Different types of context and its specific
vocabulary and semantics would be introduced through subclasses of
icm:Context and defined by intent extension models.

Instance
of:

rdfs:Class

Task: Intent Modeling

Class: icm:DeliveryExpectation
Definition: A delivery expectation is a subclass of expectation. It is used to express

that something needs to be delivered and it specifies what this
something is.

Instance
of:

rdfs:Class

Subclass
of:

icm:Expectation

Task: Intent Modeling

Class: icm:DeliveryExpectationReport
Definition: A delivery expectation report is used to report the detailed state with

respect to a delivery expectation.
Instance
of:

rdfs:Class

Subclass
of:

icm:ExpectationReport

Task: Intent Reporting

Class: icm:DeliveryParam
Definition: Instances of this class are parameters for specifying detailed

requirements within delivery expectations and reporting on these
requirements within delivery expectation reports.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 21 of 55

Class: icm:DeliveryParam
Instance
of:

rdfs:Class

Subclass
of:

icm:ExpectationParam
icm:ExpectationReportParam

Task: Intent Modeling, Intent Reporting

Class: icm:Expectation
Definition: Within an intent, any number of detailed requirements and goals can

be specified together with required constraints. Objects of the class
icm:Expectation and its subclasses can be used to do so. They represent
individual requirements.
Subclasses of icm:Expectation would represent different types of
requirements.

Instance
of:

rdfs:Class

Task: Intent Reporting

Class: icm:ExpectationParam
Definition: Objects of this class can be used as expectation params and therefore

define detailed requirements.
Instance
of:

rdfs:Class

Task: Intent Modeling

Class: icm:ExpectationReport
Definition: Within an intent report, any number of detailed reporting on

requirements and goals can be provided. Objects of the class
icm:ExpectationReport and its subclasses can be used to do so. They
represent individual reporting on requirements and therefore they
mirror the icm:Expectation used in intent. With icm:Expectation a
requirement is formulated and with icm:ExpectationReport the
measured state with respect to the requirement is provided.
Subclasses of icm:ExpectationReport would represent the reporting for
different types of requirements.

Instance
of:

rdfs:Class

Task: Intent Reporting

Class: icm:ExpectationReportParam
Definition: Objects of this class can be used as params within expectation reports

and therefore report on a detailed requirement.
Instance
of:

rdfs:Class

Task: Intent Modeling

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 22 of 55

Class: icm:ExpectationTarget
Definition: Objects of this class the targets of expectation objects. Any individual

of class rdfs:Resource can be used as target.
Instance
of:

rdfs:Class

Task: Intent Reporting

Class: icm:Information
Definition: Within an intent, any number of detailed additional information can be

specified together with required restrictions and constraints. Objects of
the class icm:Information and its subclasses can be used to do so.
Information objects do not represent requirements to be fulfilled, but
rather provide information that helps the intent handler to do better
job from knowing more about the current environment. Information
objects are always optional. This means details of information are
defined by optional intent extension models.
Information objects can be assigned to icm:Intent as well as
icm:Expectation objects and its target and params.

Instance
of:

rdfs:Class

Subclass
of

icm:InformationElement

Task: Intent Modeling

Class: icm:InformationElement
Definition: An instance of this class is involved in providing additional information

that does not constitute an requirement
Instance
of:

rdfs:Class

Task: Intent Reporting

Class: icm:Intent
Definition: Objects of class icm:Intent contain the individual intents. Every intent is

therefore always represented and expressed by an object of class
icm:Intent.
The class icm:Intent does not have subclasses. It is not necessary to
distinguish different types or purposes of intent explicitly.
Different uses and therefore intent types are reflected through its
composition of expectations and detailed requirements and constraints
they express. The purpose of the intent object can however be stated
to a human reader for example by assigning it to the intent object as
rdfs:comment property.
This means that intent extension models can instantiate objects of class
icm:Intent, but they are not allowed to define subclasses of intent.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 23 of 55

Class: icm:Intent
Instance
of:

rdfs:Class

Task: Intent Modeling

Class: icm:IntentHandlingEvent
Definition: Objects of class icm:IntentHandingEvent specify an event that can

occur in the generic process of intent handling. This usually leads to a
state transition in an intent handling state machine.

Instance
of:

rdfs:Class

Task: Intent Reporting, Intent Handling

Class: icm:IntentManagementState
Definition: Objects of class icm:IntentManagementState define a state in a state

machine for intent management.
Instance
of:

rdfs:Class

Task: Intent Reporting, Intent Handling

Class: icm:IntentManagmentProcedure
Definition: Defines which procedure in the intent life cycle management this intent

or intent report is part of.
Individuals of this class define the known procedures. The intent
common model only defines the SET procedure as it is the only one
mandatory. Further procedures can be defined with intent extension
models.

Instance
of:

rdfs:Class

Task: Intent Reporting, Intent Handling

Class: icm:IntentHandlingState
Definition: Objects of class icm:IntentHandlingState define a state in the intent

handling state machine.
Instance
of:

rdfs:Class

Subclass
of:

icm:IntentManagementState

Task: Intent Reporting, Intent Handling

Class: icm:RejectionReason
Definition: Objects of this class define why an intent was rejected.
Instance of: rdfs:Class
Task: Intent Reporting

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 24 of 55

Class: icm:IntentReport
Definition: Objects of class icm:IntentReport are the individual intent reports

created for an intent and as part of the communication between intent
management functions.
In accordance with the icm:Intent class, also icm:IntentReport does not
have subclasses for distinguishing different types of intent reports. The
reasons and details of why a report was sent and for what purpose are
modeled using properties.

Instance
of:

rdfs:Class

Task: Intent Reporting

Class: icm:IntentUpdateState
Definition: Objects of class icm:IntentUpdateState define a state in the intent

update state machine.
Instance
of:

rdfs:Class

Subclass
of:

icm:IntentManagementState

Task: Intent Reporting, Intent Handling

Class: icm:ParamReason
Definition: Reason why there is an issue with an expectation param.
Instance of: rdfs:Class
Task: Intent Reporting

Class: icm:PropertyExpectation
Definition: A property expectation is a subclass of expectation. It is used to express

a requirement based on a property of the expectation target. A typical
example would be a goal based on metrics with a target value to be
reached.

Instance
of:

rdfs:Class

Subclass
of:

icm:Expectation

Task: Intent Modeling

Class: icm:PropertyExpectationReport
Definition: A property expectation report is used to report the detailed state with

respect to a property expectation.
Instance
of:

rdfs:Class

Subclass
of:

icm:ExpectationReport

Task: Intent Reporting

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 25 of 55

Class: icm:PropertyParam
Definition: Instances of this class are parameters for specifying detailed

requirements within property expectations and reporting on these
requirements within property expectation reports.

Instance
of:

rdfs:Class

Subclass
of:

icm:ExpectationParam
icm:ExpectationReportParam

Task: Intent Modeling, Intent Reporting

Class: icm:ReferenceableNode
Definition: An object of this class need to be addressable through IRI/URI. This

means a blank node cannot be used to express an object of this class.
This is introduced ensure that nodes in intents, which are referenced
from intent reports have a IRI/URI.

Instance
of:

rdfs:Class

Task: Intent Modeling

Class: icm:ReportingExpectation
Definition: A property expectation is a subclass of expectation. It is used to express

a requirement about when and under which conditions the intent
handler needs to create and send an intent report.

Instance
of:

rdfs:Class

Subclass
of:

icm:Expectation

Task: Intent Modeling

Class: icm:ReportingParam
Definition: Instances of this class are parameters for specifying detailed

requirements within reporting expectations and reporting on these
requirements within reporting expectation reports.

Instance
of:

rdfs:Class

Subclass
of:

icm:ExpectationParam
icm:ExpectationReportParam

Task: Intent Modeling, Intent Reporting

Class: icm:ReportingExpectationReport
Definition: A reporting expectation report is used to report the detailed state with

respect to a reporting expectation.
Instance
of:

rdfs:Class

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 26 of 55

Class: icm:ReportingExpectationReport
Subclass
of:

icm:ExpectationReport

Task: Intent Reporting

Class: icm:RequirementDefiner
Definition: An object of this class specifies requirements an intent handler has to

comply with
Instance
of:

rdfs:Class

Subclass
of:

icm:RequirementElement
icm:ReferenceableNode

Task: Intent Modeling

Class: icm:RequirementElement
Definition: An instance of this class is involved in setting or reporting on

requirements
Instance
of:

rdfs:Class

Task: Intent Reporting

Class: icm:RequirementExplainer
Definition: An instance of this class specifies constraints and side-conditions for

requirements
Instance
of:

rdfs:Class

Subclass
of:

icm:RequirementElement
icm:ReferenceableNode

Task: Intent Modeling

Class: icm:RequirementReporter
Definition: An object of this class reports on requirements which were specified by

an icm:RequirementDefiner object
Instance
of:

rdfs:Class

Subclass
of:

icm:RequirementElement

Task: Intent Reporting

Class: icm:RequirementReportExplainer
Definition: An instance of this class specifies constraints and side-conditions for

requirements within their respective report
Instance
of:

rdfs:Class

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 27 of 55

Class: icm:RequirementReportExplainer
Subclass
of:

icm:RequirementElement

Task: Intent Reporting

4.2. Individuals

States of the intent handling state machine are individuals of the class
icm:IntentHandlingState:

State Individual Description
icm:StateIntentReceived The intent has been received from the intent owner and

acceptance is considered by the intent handler.
icm:StateCompliant The system state indicates that the intent is fulfilled.
icm:StateDegraded The system state indicates that the intent is not fulfilled.
icm:StateFinalizing The system has stopped operating the intent and doing

final clean-up tasks

States of the intent update state machine are individuals of the class icm:IntentUpdateState

State Individual Description
icm:StateUpdateReceived The handler received an updated intent and is

evaluating it to decide if it accepts or rejects the update.
icm:StateNoUpdate No update process is currently ongoing for the intent.
icm:StateUpdating The update accepted and in progress. This means that

the intent content is being replaced with the received
updates.

Intent handling events are Individuals of the class icm:IntentHandlingEvent.

Event individual Description State machine
icm:IntentReceived A new intent was received

from the intent owner. This is
the first event generated for an
intent.
This event is the original
initiator of intent handling and
leads to the state
icm:StateIntentReceived in the
intent handling state machine.

icm:IntentHandlingState

icm:IntentRejected The intent was rejected. icm:IntentHandlingState
icm:IntentAccepted The intent got accepted. This

event has the following
implications:
• The intent handler starts

considering the intent in its
operation. This means it

icm:IntentHandlingState
icm:IntentUpdateState

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 28 of 55

Event individual Description State machine
will take action for trying to
meet the requirements and
goals set by the intent.

• The intent handling state
machine enters the state
icm:StateCompliant if the
expectations within the
intent are all fulfilled
already. Otherwise, the
state icm:StateDegraded is
entered.

• The intent update state
machine is initiated
entering the waiting state
icm:StateNoUpdate.

icm:StateComplies The intent handler state
changes from
icm:StateDegraded to
icm:StateCompliant.

icm:IntentHandlingState

icm:StateDegrades The intent handler state
changes from
icm:StateCompliant to
icm:StateDegraded.

icm:IntentHandlingState

icm:IntentRemoval The intent owner has ordered a
removal of the intent.
• The intent handler

immediately stops
considering the intent and
its expectations in
operational decisions.
However, the absence of
these expectations might
lead to actions adapting
and optimizing the system
according to the remaining
intents.

• The intent handling state
machine enters the state
icm:StateFinalizing from
whatever state it was in.

• The intent update state
machine terminates and
implicitly discards all
ongoing update handling if
needed.

icm:IntentHandlingState
icm:IntentUpdateState

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 29 of 55

Event individual Description State machine
icm:HandlingEnded The intent handler has finished

all tasks associated with the
removal of the intent. This is
the last event generated for an
intent.

icm:IntentHandlingState

icm:UpdateReceived An update for the intent was
received. This event indicates
that update handling is
initiated.

icm:IntentUpdateState

icm:UpdateRejected The update was rejected and
the intent handler continues
with the previous version of
the intent.

icm:IntentUpdateState

icm:UpdateAccepted The update was accepted and
the intent handler proceeds to
replacing the intent content.

icm:IntentUpdateState

icm:UpdateFinished The intent handler has finished
executing a successful update.
The update state machine
returns to its waiting state
icm:StateNoUpdate.

icm:IntentUpdateState

icm:ReportingIntervalExp
ired

The duration, which is set by
the icm:reportingInterval
property and describing the
time until next report is due,
has expired.

icm:ReportingDurationEx
pired

The duration, which is set by
the icm:reportingDuration
property and describing the
time since last intent report
and until next report is due,
has expired.

The following individuals of the icm:RejectionReason class define available reasons for
rejection. Additional reasons can be added by intent extension models.

Rejection reason individuals Description
icm:IntentUnknownFormat The intent Handler does not understand the

intent format. It is for example provided in a
serialization format this intent handler does
not support.

icm:OwnerNotAccepted The intent manager that has sent the update
was not the original owner.

icm:IntentModelUnknown The intent was based on a model the intent
handler does not support. This indicates a

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 30 of 55

Rejection reason individuals Description
problem with the model federation used in
the formulation of this intent.

icm:SuccessfulHandlingNotExpected The intent handler does not expect that it can
fulfil the intent.

icm:UnspecifiedRejection If the intent handler needs to reject, but none
of the pre-defined reasons applies it can use
this reason.

The following individuals of icm:ParamReason define and distinguish different possible reasons
why a param is degraded or unknown.
This is an open list of individuals and further reasons can be added through intent extension
models.

Param Reason individuals Description
icm:ParamReasonUnspecified No detailed reason.
icm:ValuePending Valuet was not yet received.
icm:TargetUnavailable There is no target instance yet for which a value

could be obtained.
...

The following individuals of icm:IntentManagementProcedure define procedure of intent life
cycle management over the intent interface. The intent common model only defines the set
procedure as this one is the only mandatory. Intent extension models would introduce further
individuals for respective operational interface procedures.

Intent Management
Procedure individuals

Description

icm:ProcedureSET The set procedure means that the intent was
communicated with the SET interface procedure. This
means it is interpreted as operational requirement.
This procedure is the default that is assumed if no
procedure is defined.

4.3. Properties

This intent extension model proposes the following properties:

Property: icm:atLeast
Definition: The icm:atLeast property is used as qualifier in the subject of

icm:params definitions. It is used together with a numerical goal and
requires that the measured value in the system state shall be equal or
greater than the stated target value.

Instance
of:

rdf:Property

Domain: icm:ExpectationParam
Range: icm:ExpectationParam

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 31 of 55

Property: icm:atLeast
Task: Intent Modeling

Property: icm:atMost
Definition: The icm:atMost property is used as qualifier in the subject of

icm:params definitions. It is used together with a numerical goal and
requires that the measured value in the system state shall be equal or
smaller than the stated target value.

Instance
of:

rdf:Property

Domain: icm:ExpectationParam
Range: icm:ExpectationParam
Task: Intent Modeling

Property: icm:currentIntentHandlingState
Definition: Assigns intent handling states to icm:IntentReport objects for

reporting.
Instance
of:

rdf:Property

Domain: icm:IntentReport
Range: icm:IntentHandlingState
Task: Intent Reporting

Property: icm:currentIntentUpdateState
Definition: Assigns intent update states to icm:IntentReport objects for reporting.
Instance of: rdf:Property
Domain: icm:IntentReport
Range: icm:IntentUpdateState
Task: Intent Reporting

Property: icm:exactly
Definition: The icm:exactly property is used as qualifier in the subject of

icm:params definitions. It is used to indicate that the system state shall
exactly match the stated value.

Instance
of:

rdf:Property

Domain: icm:ExpectationParam
Range: icm:ExpectationParam
Task: Intent Modeling

Property: icm:greater
Definition: The icm:greater property is used as qualifier in the subject of

icm:params definitions. It is used together with a numerical goal and

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 32 of 55

Property: icm:greater
requires that the measured value in the system state shall be greater
than the stated target value.

Instance
of:

rdf:Property

Domain: icm:ExpectationParam
Range: icm:ExpectationParam
Task: Intent Modeling

Property: icm:hasContext
Definition: The intent common model allows assigning of context to subjects such

as intents, expectations and expectation params using this property.
Instance
of:

rdf:Property

Domain: icm:Intent, icm:Expectation, icm:ExpectationParam
Range: icm:Context
Task: Intent Modeling

Property: icm:hasExpectation
Definition: The intent common model allows the assigning of expectations to

intents using the icm:hasExpectation property.
The property can be applied to objects of the classes icm:Intent. It can
be used with subjects of class icm:Expectation and its subclasses.

Instance
of:

rdf:Property

Domain: icm:Intent
Range: icm:Expectation
Task: Intent Modeling

Property: icm:hasExpectationReport
Definition: The intent common model allows the assigning of expectations to

intents using the icm:hasExpectation property.
The property can be applied to objects of the classes icm:IntentReport.
It can be used with subjects of class icm:ExpectationReport and its
subclasses.

Instance
of:

rdf:Property

Domain: icm:IntentReport
Range: icm:ExpectationReport
Task: Intent Reporting

Property: icm:hasInformation
Definition: The intent common model allows assigning of information to intents,

expectations, expectation params and expectation targets using this
property.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 33 of 55

Property: icm:hasInformation
Instance
of:

rdf:Property

Domain: icm:RequirementElement
Range: icm:InformationElement
Task: Intent Modeling

Property: icm:hasReportContext
Definition: This property
Instance of: rdf:Property
Domain: icm:RequirementReporter
Range: icm:Context
Task: Intent Modeling

Property: icm:oneOf
Definition: The icm:oneOf property is used as qualifier in the subject of

icm:params definitions. It is used to indicate that the system state shall
exactly match the one of the stated values.

Instance
of:

rdf:Property

Domain: icm:ExpectationParams
Range: icm:ExpectationParams
Task: Intent Modeling

Property: icm:params
Definition: The icm:params property defines all details of the requirements that

are expressed by the expectation.
Objects of icm:params define a set of conditions and goals that need to
be fulfilled to consider the system to be compliant to the expectation
and thus the intent. This means the subject of icm:params are the
detailed requirements, goals and constraints.

Instance
of:

rdf:Property

Domain: icm:Expectation
Range: icm:ExpectationParam
Task: Intent Modeling

Property: icm:paramsCompliant
Definition: The icm:paramsCompliant property reports the values of parameters,

which the reporting intent handler considers to be compliant to the
expectation.

Instance
of:

rdf:Property

Domain: icm:ExpectationReport
Range: icm:ExpectationReportParam

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 34 of 55

Property: icm:paramsCompliant
Task: Intent Reporting

Property: icm:paramsDegraded
Definition: The icm:paramsCompliant property reports the values of parameters,

which the reporting intent handler considers to be degraded with
respect to the expectation.

Instance
of:

rdf:Property

Domain: icm:ExpectationReport
Range: icm:ExpectationReportParam
Task: Intent Reporting

Property: icm:paramsUnknown
Definition: The icm:paramsUnknown property reports parameters from the

expectation which the reporting intent handler does not know the
value yet. This can, for example, happen if a new intent comes in and
the intent handler was not able to set up all needed measurements,
yet. Another reason can be that first an instance of something need to
be deployed first, before its performance can be measured.

Instance
of:

rdf:Property

Domain: icm:ExpectationReport
Range: icm:ExpectationReportParam
Task: Intent Reporting

Property: icm:partOfProcedure
Definition: Provides a reason why the system is degraded with respect to a

param.
Instance
of:

rdf:Property

Domain: icm:Intent, icm:IntentReport
Range: icm:IntentManagmentProcedure
Task: Intent Reporting

Property: icm:reasonForParamDegraded
Definition: Provides a reason why the system is degraded with respect to a

param.
Instance
of:

rdf:Property

Domain: icm:ExpectationReportParam
Range: icm:ParamReason
Task: Intent Reporting

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 35 of 55

Property: icm:reasonForParamUnknown
Definition: Provides a reason why the system is reporting that a param is not

known.
Instance
of:

rdf:Property

Domain: icm:ExpectationReportParam
Range: icm:ParamReason
Task: Intent Reporting

Property: icm:rejectedBecause
Definition: Assigns a rejection reason. This property is typically used in an intent

report about intent or intent update rejection.
Instance
of:

rdf:Property

Domain: icm:Intent, icm:Expectation
Range: icm:RejectionReason
Task: Intent Reporting

Property: icm:reportingDuration
Definition: Specifies a time based condition for intent reporting within an

icm:ReportingExpectation.
After the specified duration has passed since the last intent report a
new intent report must be created. If a report is created before this
duration has expired, the duration timer resets. This means
icm:reportingDuration specifies the maximum allowed duration
between intent reports.

Instance
of:

rdf:Property

Domain: icm:ReportingExpectation
Range: t:Duration
Task: Intent Modeling

Property: icm:reportingDurationLeft
Definition: Reports the time left until an intent report is due, because of duration

reporting. This duration counts from the last report that was sent.
Instance
of:

rdf:Property

Domain: icm:ReportingExpectationReport
Range: t:Duration
Task: Intent Reporting

Property: icm:reportingEvent
Definition: Specifies the intent management events that shall trigger the

generation of a new intent report.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 36 of 55

Property: icm:reportingEvent
Instance
of:

rdf:Property

Domain: icm:ReportingExpectation
Range: icm:IntentHandlingEvent
Task: Intent Modeling

Property: icm:reportedEvent
Definition: Specifies the intent management events that shall trigger the

generation of a new intent report.
Instance
of:

rdf:Property

Domain: icm:ExpectationReportParam
Range: icm:IntentHandlingEvent
Task: Intent Reporting

Property: icm:reportingInterval
Definition: Specifies a time based condition for intent reporting within an

icm:ReportingExpectation.
In regular intervals corresponding to the specified duration a new
intent report is sent. This time interval is kept also if further reports are
created in-between.

Instance
of:

rdf:Property

Domain: icm:ReportingExpectation
Range: t:Duration
Task: Intent Modeling

Property: icm:reportingIntervalLeft
Definition: Reports the time left until an intent report is due, because of interval

reporting.
Instance
of:

rdf:Property

Domain: icm:ReportingExpectationReport
Range: t:Duration
Task: Intent Reporting

Property: icm:reportsAbout
Definition: Refers to the intent this intent report is reporting about.
Instance of: rdf:Property
Domain: icm:RequirementReporter
Range: icm:RequirementDefiner
Task: Intent Reporting

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 37 of 55

Property: icm:reportTimestamp
Definition: Specifies a time based condition for intent reporting within an

icm:ReportingExpectation.
In regular intervals corresponding to the specified duration a new
intent report is sent. This time interval is kept also if further reports are
created in-between.

Instance
of:

rdf:Property

Domain: icm:IntentReport
Range: t:Instant
Task: Intent Reporting

Property: icm:reportNumber
Definition: Allows to provide a sequence number of the intent report. It starts with

1 for the first intent report that was created for the intent and is
incremented with every subsequent report.

Instance
of:

rdf:Property

Domain: icm:IntentReport
Range: xsd:integer
Task: Intent Modeling

Property: icm:sameContextAs
Definition: Refers to a context element and expresses that the subject of class

icm:ReportContext has the same information.
Instance
of:

rdf:Property

Domain: icm:ReportContext
Range: icm:Context
Task: Intent Reporting

Property: icm:smaller
Definition: The icm:smaller property is used as qualifier in the subject of

icm:params definitions. It is used together with a numerical goal and
requires that the measured value in the system state shall be smaller
than the stated target value.

Instance
of:

rdf:Property

Domain: icm:ExpectationParam
Range: icm:ExpectationParam
Task: Intent Modeling

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 38 of 55

Property: icm:target
Definition: The icm:target property defines within an expectation, what object the

expectation is targeted at. This means, which object the requirement
specified by the expectation is meant for.
The object of this property can be anything a requirement can sensibly
be expressed for by the intent. It is often for example referring to
resources or services using IRI that points to that resource. It is possible
to point at individuals or classes of objects.

Instance
of:

rdf:Property
icm:ExpectationParam

Domain: icm:Expectation
Range: icm:ExpectationTarget
Task: Intent Modeling

Property: icm:targetDescription
Definition: The icm:targetDescription property is used in the parameters of a

delivery expectation. It defines what the target is or shall be. The object
is an instance that holds a description of the target.
A delivery expectation defines something that needs to be delivered
and instantiated. The params of this expectation therefore describe this
something. For example, if the target shall be a service instance of a
particular service, icm:targetDescription can refer to the service
description document residing in a service catalog.

Instance
of:

rdf:Property
icm:DeliveryExpectationParam

Domain: icm:ExpectationParam
Range: rdf:Resource
Task: Intent Modeling

Property: icm:targetReport
Definition: The icm:targetReport property specifies which instance the

expectation report is reporting about.
Instance
of:

rdf:Property
icm:ExpectationReportParam

Domain: icm:ExpectationReport
Range: rdf:Resource
Task: Intent Reporting

Property: icm:targetType
Definition: The icm:targetType property is used in the parameters of a delivery

expectation. It defines what the target is or shall be. The object is the
class the target shall be an instance of.
Note that the intent common model does not specify a taxonomy of
deliverable entities and that the range of this property would be
provided by other models.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 39 of 55

Property: icm:targetType
Instance
of:

rdf:Property
icm:DeliveryExpectationParam

Domain: icm:ExpectationParam
Range: rdf:Class
Task: Intent Modeling

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 40 of 55

5. Model usage and examples

5.1. Using variables vs. individuals in expectation targets

Expectation target properties refer to the resources the requirement, goal or constraint is
about. In many practical cases the exact individual of the resource to be used is a choice of the
intent handler. This means, the targeted instance cannot be known by the intent owner when
formulating the intent. The intent owner would use variables as placeholders instead.

Variables allow connecting multiple expectations together by using the same variable as target
in all related expectations.

The intent handler is free to fill a variable with a concrete instance that obeys all related
expectations. The chosen instance is usually communicated to the owner in the intent report.

The delivery expectation has a special role that allows the use of variables. It defines what type
of resource the variable shall be selected from. Typically, this is done by referring to a pre-
defined service or resource type within a catalog.

It is good practice that the intent owner keeps using variables also in subsequent intent
updates, although the chosen instance is known already. This allows the intent handler to
change the instance being used to meet the expectation if needed. If the target mentions a
concrete instance, the handler would be forced to keep using it, because changing it would
then violate the intent.

Targeting resource instance directly might still be very useful in some cases. For example, if the
target is physical and mostly static entity in the environment. For example a radio base station
can be the target if the expectation defines a requirement specific to this radio cell due to its
location.

5.2. Referring to resources in external systems

A practical telecommunication management system does usually consist of multiple distinct
databases. The knowledge base of the intent management function is just one among many.
There are typically also catalogs and inventories as well as diverse data management and
analytics systems that expose a diverse range of interfaces for interacting with the data. Also, a
variety of data and information models might be used.

Intent and intent reports often need to refer to objects in external systems. One example
would be the reference to a service defined in a service catalog that is used to express a
delivery expectation for this service. Another example would be a data management or
analytics system designed to deliver measurements and insights. The metrics used to define
goals in property expectations might directly depend on these sources.

A globally unique reference into the external system can be formed even if these systems do
not directly integrate into the IRI based references in RDF models. The reference to instances
within these external systems can be created as a combination of:

1. The administrative domain,

2. The address or reference under which the targeted system is known in the local
domain,

3. A qualifier based on the information model of the target system.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 41 of 55

Usually it is feasible to build a globally unique proxy IRI from these ingredients.

5.3. Specifying what shall be delivered (Functional
Requirements)

Expectation objects of class icm:DeliveryExpectation can be used to require that something
shall be delivered. This can for example be a service, a user application, a slice, etc. This can be
a business object as defined in service contracts or it can be a resource being used to compose
a bigger application.

Typically, a delivery expectation requires that some instance of a resource, service or function
need to be selected to be used or deployed for satisfying this expectation. The expectation
target typically uses a variable as placeholder until the intent handler has decided what
instance will be used to fulfill this requirement. The instance will then be reported in the target
property of the respective expectation report object. It would be good practice to refer to the
used resource or instance within an inventory if available.

The params of a delivery expectation describing the kind of thing that needs to be delivered.
This can for example refer to classes of resources and services. If there is a catalog of available
services, it would be good practice to refer to the instance within the catalog.

Subclasses of delivery application can be used that are specific to the type of resource to be
delivered. This can enhance readability but does not bear additional semantics.

Example: Deliver a service and slice

@prefix cat: <http://www.operator.com/Catalog/> .
@prefix sli: <http://www.sdo1.org/Models/SliceOntology/> .

ex:ExampleIntentXYZ
 a icm:Intent ;
 rdfs:comment "intent for ordering a service and slice";
 icm:hasExpectation
 [a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params [a icm:DeliveryParam ;
 icm:targetDescription cat:ExampleService]
] ,
 [a icm:DeliveryExpectation ;
 icm:target _:slice ;
 icm:params [a icm:DeliveryParam ;
 icm:targetType sli:Slice ;
 icm:targetDescription cat:ExampleSlice]
] .

This example intent requires two objects to be delivered: a service called “ExampleService”
and a slice called “ExampleSlice” as defined in the service catalog. In both cases the delivery
expectation points at objects defined in a catalog by using the catalog prefix. This consists of
the catalog URI, giving it also a dedicated namespace. In this example the catalog URI is tied to
the operator's domain. What they are referring to is therefore a data object often referred to
as service description or service template. It contains detailed information that describes the
service. It has its own data and information model that is not covered by the intent common

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 42 of 55

model. The intent common model allows referring to these objects, but to retrieve and can
work with them the intent handler needs to implement the interface exposed by the catalog
and the respective information and data models.

A delivery expectation requires that something needs to be delivered. This means, the intent
handler is supposed to create or select an instance that would be used. Furthermore, the
parameters of the delivery expectations provides a description of what this something to be
delivered is. Using the catalog populated with service templates bases this requirement on
already existing systems and artifacts.

For in the delivery expectation about the slice, the parameters also state that the object
referred to by the target shall be an instance of the class sli:Slice. This class is defined in the
slice ontology model defined by SDO1 and referenced by the URI associated with the prefix
"sli:". This means, it is possible to describe the target to be delivered with multiple parameters.

The example above uses blank nodes for modeling expectation and expectation parameter
objects. This should not be done, because intent reports need to refer to them by IRI/URI
while blank nodes only have a machine generated reference with local validity. The following
example is the same intent with the required notation:

@prefix cat: <http://www.operator.com/Catalog/> .
@prefix sli: <http://www.sdo1.org/Models/SliceOntology/> .

ex:ExampleIntentXYZ
 a icm:Intent ;
 rdfs:comment "intent for ordering a service and slice";
 icm:hasExpectation ex:Exp1, ex:Exp2 .

ex:Exp1
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params ex:Par1 .

ex:Par1
 a icm:DeliveryParam ;
 icm:targetDescription cat:ExampleService .

ex:Exp2
 a icm:DeliveryExpectation ;
 icm:target _:slice ;
 icm:params ex:Par2 .

ex:Par2
 a icm:DeliveryParam ;
 icm:targetType sli:Slice ;
 icm:targetDescription cat:ExampleSlice .

This notation creates a graph with the same nodes as the one presented in the beginning of
this example, but none of the nodes is a blank node. All nodes can be referenced through
IRI/URI.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 43 of 55

5.4. Specifying requirements with properties

Intent shall be able to specify non-functional requirements. These are typically expressed as
goals with target values based on aspects of the environmental state including metrics. For
example, a service shall meet a minimum availability target while not exceeding a required
latency and allowing the user to reach a guaranteed minimum throughput.

The intent common model provides vocabulary for these requirements. Metrics and state
based requirements can be specified using icm:PropertyExpectation.

Typically, the icm:params within this class of expectation express a goal using quantitative
qualifier properties such as icm:exactly, icm:oneOf, icm:greater, icm:smaller, icm:atLeast,
icm:atMost. The intent common model defines basic set of generic qualifiers. More
expressiveness can be added through intent extension models if needed.

If any of the requirements expressed within the icm:params property is not met, the
respective expectation is degraded and so is the entire intent.

There is no restriction on the properties that can be used within the parameters of this
expectation for formulating a requirement. Domain specific intent information models would
define the available properties and values. For example, all domain specific metrics would be
introduced using KPIs and metrics specified by intent extension models and intent information
models. Using the mechanisms of model federation ensures that a particular intent
management function communicates which sets of metrics and parameters it supports in the
intents it handles.

Example: Require a slice instance to be in one of the states that indicate the slice is
operational.

@prefix cat: <http://www.operator.com/Catalog/> .
@prefix sli: <http://www.sdo1.org/DomainModels/SliceIntent/v2/> .
@prefix : <http://www.example.org/IntentNamespace/> .

:ExampleIntentXYZ
 a icm:Intent ;
 icm:hasExpectation :Exp1, :Exp2 .

:Exp1
 a icm:DeliveryExpectation ;
 icm:target _:slice ;
 icm:params :Par1 .

:Par1
 a DeliveryParameter ;
 icm:targetDescription cat:ExampleSlice .

:Exp2
 a icm:PropertyExpectation ;
 icm:target _:slice ;
 icm:params :Par2 .

:Par2
 a icm:PropertyParameter ;
 sli:sliceState [icm:oneOf sli:up, sli:available] .

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 44 of 55

This example intent requires that an instance of a slice defined in the operator's catalog shall
be delivered. It also specifies that the slice shall be either in state "sli:up" or "sli:available". The
qualifier property icm:oneOf expresses that the expectation is met if the state metric
sli:sliceState has one of the listed values.

This definition uses the sli:sliceState property from the namespace sli:. This namespace defines
vocabulary specific to slice management. It is defined and published by the example
organization sdo1. This demonstrates also the model federation of the intent common model
with an intent extension model defined by a separate organization.

The example demonstrates how model federation equips the involved intent management
functions with the modeling expressiveness needed for intent-based slice management.

In this example the smallest possible prefix is used. It does not have a label before the colon.
This is useful, if elements from one namespace are used very often.

Note that the two distinct expectations are linked together by using the same target. Here the
variable _:slice is used as a placeholder for the slice individual that is selected by the intent
handler to comply to the expectations.

Example: Require a certain latency, throughput and availability for a service

@prefix cat: <http://www.operator.com/Catalog/> .
@prefix met: <http://www.sdo2.org/TelecomMetrics/Version_1.0/> .

ex:ExampleIntentXYZ
 a icm:Intent ;
 icm:hasExpectation ex:Exp1_delivery ,
 ex:Exp2_property .

ex:Exp1_delivery
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params ex:Par1_description .
ex:Par1_description
 a DeliveryParam ;
 icm:targetDescription cat:ExampleService .

ex:Exp2_property
 a icm:PropertyExpectation ;
 icm:target _:service ;
 icm:params ex:Par2_latency ,
 ex:Par3_throughput ,
 ex:Par4_availability .
ex:Par2_latency
 a icm:PropertyParam ;
 met:latency [icm:atMost "10 ms"] .
ex:Par3_throughput a icm:PropertyParam ; met:throughput [icm:atLeast [
met:value 5 ;
 met:unit met:unitMBPS]
.ex:Par4_availability a icm:PropertyParam ; met:availability [
icm:greater [met:value 99.9 ;
 met:unit met:percentage] .

This example demonstrates the definition of numerical requirements. It defines target values
for a set of metrics. The metrics are defined by a separate model and included with the name

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 45 of 55

space prefix met:. These metrics model is defined and published by the example organization
sdo2.

The example shows two ways to define a metric. For the latency a single string is used to
express the target value and its unit together. The definition of target values for throughput
and availability use properties and individuals from the met: namespace to individually model
the value and unit pair.

The qualifier properties icm:atMost, icm:atLeast and icm:greater from the intent common
model are used to formulate the requirement and therefore the condition for complying to the
intent.

5.5. Specifying Reporting Conditions

Whenever an intent is used, the receiving intent handler is obliged to report on the status and
success in fulfilling the expectations defined in the intent object. The reporting expectation in
the intent allows to specify the detailed conditions for sending an intent report.

Intent reports are pushed from the intent handler to the owner/source of the intent. Using an
imm:ReportExpectation, the criteria and points in time for sending an intent report can be
defined.

Typical examples would be to define a regular sending of reports in combination with an
event-based sending if an intent gets violated.

A criteria-based push mechanism is used to avoid excessive polling of reports. The intent
handler is the only instance that can directly detect violation.

Example: Require reporting

@prefix inv: <http://www.operator.org/Inventory/> .
@prefix t: <http://www.w3.org/2006/time#> .
@prefix imo: <http://www.tmforum.org/2020/07/IntentManagementOntology/> .
@prefix : <http://www.example.org/IntentNamespace/> .

:ExampleIntentXYZ
 a icm:Intent ;
 imo:intentOwner :IntentManagerXYZ ;
 icm:hasExpectation :Exp1_slice_delivery ,
 :Exp2_slice_property ,
 :Exp3_service_delivery ,
 :Exp4_service_property ,
 :Exp5_reporting .

:Exp1_slice_delivery
 a icm:DeliveryExpectation ;
 icm:target _:slice ;
 icm:params :Par1_slice_description .
:Par1_slice_description
 a icm:DeliveryParam ;
 icm:targetDescription cat:ExampleSlice .

:Exp2_slice_property
 a icm:PropertyExpectation ;

http://www.w3.org/2006/time

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 46 of 55

 icm:target _:slice ;
 icm:params :Par2_slice_state .
:Par2_slice_state
 a icm:PropertyParam ;
 sli:sliceState [icm:oneOf sli:up, sli:available] .

:Exp3_service_delivery
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params :Par3_service_description .
:Par3_service_description
 a icm:DeliveryParam ;
 icm:targetDescription cat:ExampleService .

:Exp4_service_property
 a icm:PropertyExpectation ;
 icm:target _:service ;
 icm:params :Par4_latency, :Par5_throughput, :Par6_availability .
:Par4_latency
 a icm:PropertyParam ;
 met:latency [icm:atMost "10 ms"].
:Par5_throughput
 a icm:PropertyParam
 met:throughput [icm:atLeast [met:value 5 ;
 met:unit met:unitMBPS] .
:Par6_availability
 a icm:PropertyParam ;
 met:availability [icm:greater [met:value 99.9 ;
 met:unit met:percentage] .

:Exp5_reporting
 a icm:ReportingExpectation ;
 icm:target ex:ExampleIntentXYZ ;
 icm:params :Par7_interval, :Par8_event .
:Par7_interval
 a icm:ReportingParam ;
 icm:reportingInterval [a t:Duration ;
 t:numericDuration 10 ;
 t:temporalUnit t:unitMinute] .
:Par8_event
 a icm:ReportingParam ;
 icm:reportingEvent icm:ReportingIntervalExpired ,
 icm:IntentRejected ,
 icm:StateComplies ,
 icm:StateDegrades ,
 icm:HandlingEnded ,
 icm:UpdateRejected ,
 icm:UpdateFinished] .

This example intent demonstrates the definition of conditions for intent reporting. It reuses
delivery and property expectations from previous examples and adds a reporting expectation.
A reporting expectation defines, if and when the intent handler is required to send an intent
report to the intent owner.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 47 of 55

The intent owner is referenced using the property imo:intentOwner from the Intent
Management Ontology model. The intent owner is ex:IntentManagerXYZ. This is an instance of
the class imo:intentOwner also from the Intent Management Ontology. Through the intent
owner it is possible to retrieve the intent manager profile that contains the address of the
intent owner. This information would be used by the intent handler to notify the intent
manager that is owner of this intent about the availability of a new report.

Unlike previous examples, this one makes use of defining individual expectations params and
giving them IDs.

The target of the reporting expectation is the intent itself, because it is the individual reports
would need to be created for.

Here a time based reporting requirement is formulated. It uses the time ontology published by
W3C. The icm:reportingInterval property requires to send a report regularly after a certain
time duration has passed. This reporting scheme is independent of other reporting criteria,
such as event based reporting. This means the time duration does not reset if a report is sent
because of an intent handling event between the regular reports.

Using instead the icm:reportingDuration property, the time duration would be measured from
the point in time when the last report was sent independent of the condition that triggered
the report. This means the duration would be understood as the maximum time between
reports.
In this example the icm:reportingEvent is used to specify for which intent handling events the
intent owner wants to be informed and receive an intent report about. If this property is
missing in the reporting expectation, this means the intent owner has decided not to be
informed about any handling event. While this is possible, it is usually not useful, because it
would mean that the intent owner would not get notified if and why the intent or updates to
the intent were rejected. However, this reporting condition based on common state machines
and related events establishes common understanding between the intent owner and handler
about what the intent handling process is doing, what it has decided and what it has achieved.

5.6. Intent reporting of current handling status

The example intent report shown in here is created for the example intent from Chapter 5.5.

In this example intent report all expectations from the original intent are met and the system
is therefore compliant to the intent.

Example: Typical Intent Report

@prefix inv: <http://www.operator.org/Inventory/> .
@prefix t: <http://www.w3.org/2006/time#> .
@prefix imo: <http://www.tmforum.org/2020/07/IntentManagementOntology/>
.
@prefix : <http://www.example.org/IntentNamespace/> .

:ExampleIntentReportXYZ
 a icm:IntentReport ;
 rdfs:comment "example intent report" ;
 imo:intentOwner :IntentManagerXYZ ;
 imo:intentHandler :IntentManagerABC ;
 icm:reportsAbout :ExampleIntentXYZ ;
 icm:reportTimestamp [t:inXSDDateTimeStamp "2022-12-

http://www.w3.org/2006/time

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 48 of 55

01T10:30:10+10:00"^^xsd:dateTime] ;
 icm:currentIntentHandlingState icm:StateCompliant ;
 icm:currentIntentUpdateState icm:StateNoUpdate ;
 icm:reportNumber 42 ;
 icm:hasExpectationReport
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout :Exp1_slice_delivery ;
 icm:targetReport inv:slice000001 ;
 icm:paramsCompliant [a icm:DeliveryParam ;
 icm:reportsAbout :Par1_slice_description ;
 icm:targetDescription cat:ExampleSlice]
] ,
 [a icm:PropertyExpectationReport ;
 icm:reportsAbout :Exp2_slice_property ;
 icm:target inv:slice000001 ;
 icm:paramsCompliant [a icm:PropertyParam
 icm:reportsAbout :Par2_slice_state ;
 sli:sliceState sli:available]
] ,
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout :Exp3_service_delivery ;
 icm:target inv:service00010 ;
 icm:paramsCompliant [a icm:DeliveryParam ;
 icm:reportsAbout :Par3_service_description ;
 icm:targetDescription cat:ExampleService]
] ,
 [a icm:PropertyExpectationReport ;
 icm:reportsAbout :Exp4_service_property ;
 icm:target inv:service00010 ;
 icm:paramsCompliant
 [a icm:PropertyParam ;
 icm:reportsAbout :Par4_latency ;
 met:latency [met:value 8 ; met:unit met:unitS]
] ,
 [a icm:PropertyParam ;
 icm:reportsAbout :Par5_throughput ;
 met:throughput [met:value 15 ; met:unit met:unitMBPS]
] ,
 [a icm:PropertyParam ;
 icm:reportsAbout :Par6_availability ;
 met:availability [met:value 99.93 ; met:unit met:percentage]
]
] ,
 [a icm:ReportingExpectationReport ;
 icm:reportsAbout Exp5_reporting ;
 icm:target ex:ExampleIntentXYZ ;
 icm:paramsCompliant
 [icm:reportsAbout :Par7_interval ;
 icm:reportingIntervalLeft [a t:Duration ;
 t:numericDuration 10 ;
 t:temporalUnit t:unitMinute]
] ,
 [icm:reportsAbout :Par8_event ;
 icm:reportingEvent icm:reportingIntervalExpired
]
] .

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 49 of 55

This example creates ex:ExampleIntentReportXYZ. It is an individual of the icm:IntentReport
class.

The imo:intentOwner and imo:intentHandler properties attach references to the intent
management function instances that take these roles for the intent.

The icm:reportsAbout property refer to the intent instance this report is reporting about.

The intent report uses the icm:currentIntentHandlingState and icm:currentIntentUpdateState
properties to report that the system is currently compliant to the intent and that no update is
currently ongoing.

The icm:reportNumber property states that this is the 42nd report for this intent.

The icm:reportingTime property attaches the timestamp of when this report was created.

With the icm:hasExpectationReport property a list of expectation reports is provided. For each
expectation in the intent report will provide respective reporting.

Using the icm:reportsAbout property, elements link the report information they provide to the
respective elements in the intent. Please note that this relationship cannot be derived from
the structure or order in which the information is presented in the intent report.

The first delivery expectation report repeats the related expectation from the intent. This way
the intent handler confirms that it is delivering the expected slice from the catalog. There was
not much more to choose for the handler other than determining, which slice individual shall
be used to fulfill this intent and more specifically this expectation. The target of this
expectation report now contains the reference to the slice instance in the inventory
representing the slice that is used to fulfil this expectation.

The first property expectation report is about another requirement for the same slice, thus
the same slice reference to the inventory is provided in the target. The corresponding
expectation the params required the slice to be in one of two states. In the report the current
state is given.

The second delivery expectation report confirms the delivery of the example service from the
catalog and with the target property it provides the reference to the service instance in the
inventory.

The second property expectation report provides the currently measured values for the
metrics that were required in the corresponding property expectation.

The reporting expectation report states what triggered the creation of this report. In this
example the time interval has reached the 10 minutes triggering the reporting interval expired
event. The property icm:reportingIntervalLeft shows the time left until the next interval report
is due. As this report was created at the expiry of a reporting interval, the full reporting
interval time is left.

5.7. Reporting of degraded intent

The example intent report shown in here is created for the example intent from Chapter 5.5.

In this example intent report all expectations from the original intent are met and the system
is therefore compliant to the intent.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 50 of 55

Example: Intent Report of degradation

@prefix inv: <http://www.operator.org/Inventory/> .
@prefix t: <http://www.w3.org/2006/time#> .
@prefix imo: <http://www.tmforum.org/2020/07/IntentManagementOntology/> .
@prefix : <http://www.example.org/IntentNamespace/> .
:ExampleIntentReportXYZ
 a icm:IntentReport ;
 rdfs:comment "example intent report" ;
 imo:intentOwner :IntentManagerXYZ ;
 imo:intentHandler :IntentManagerABC ;
 icm:reportsAbout :ExampleIntentXYZ ;
 icm:reportTimestamp [t:inXSDDateTimeStamp "2022-12-
01T10:30:10+10:00"^^xsd:dateTime] ;
 icm:currentIntentHandlingState icm:StateDegraded ;
 icm:currentIntentUpdateState icm:StateNoUpdate ;
 icm:reportNumber 43 ;
 icm:hasExpectationReport
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout :Exp1_slice_delivery ;
 icm:targetReport inv:slice000001 ;
 icm:paramsCompliant [a icm:DeliveryParam ;
 icm:reportsAbout :Par1_slice_description ;
 icm:targetDescription cat:ExampleSlice]
] ,
 [a icm:PropertyExpectationReport ;
 icm:reportsAbout :Exp2_slice_property ;
 icm:targetReport inv:slice000001 ;
 icm:paramsCompliant [a icm:PropertyParam ;
 icm:reportsAbout :Par2_slice_state ;
 sli:sliceState sli:available]
] ,
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout :Exp3_service_delivery ;
 icm:targetReport inv:service00010 ;
 icm:paramsCompliant [a icm:DeliveryParam ;
 icm:reportsAbout :Par3_service_description ;
 icm:targetDescription cat:ExampleService]
] ,
 [a icm:PropertyExpectationReport ;
 icm:reportsAbout :Exp4_service_property ;
 icm:targetReport inv:service00010 ;
 icm:paramsCompliant [a icm:PropertyParam ;
 icm:reportsAbout :Par5_throughput ;
 met:throughput [met:value 15 ;
 met:unit met:unitMBPS]
] ,
 [a icm:PropertyParam ;
 icm:reportsAbout :Par6_availability ;
 met:availability [met:value 99.93 ;
 met:unit met:percentage]
] ;
 icm:paramsDegraded [a icm:PropertyParam ;
 icm:reportsAbout :Par4_latency

http://www.w3.org/2006/time

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 51 of 55

 met:latency [met:value 15 ;
 met:unit met:unitS]
]
] ,
 [a icm:ReportingExpectationReport ;
 icm:reportsAbout :Exp5_reporting ;
 icm:target ex:ExampleIntentXYZ ;
 icm:paramsCompliant [a ReportingParam ;
 icm:reportsAbout Par7_interval ;
 icm:reportingIntervalLeft [a t:Duration ;
 t:numericDuration
2 ;
 t:temporalUnit
t:unitMinute
]
] ,
 [a ReportingParam ;
 icm:reportsAbout Par8_event ;
 icm:reportingEvent icm:StateDegrades ;
]
] .
This example shows a report for the ex:ExampleIntentXYZ from chapter 5.5. This report shows
that the system is degraded with respect to the intent.

The degradation coming from exceeding the latency goal of the second property expectation.
The report params are separated into two groups for compliant and degraded parameters.
While the latency is degraded, the throughput and availability are still compliant.

The reporting expectation report shows that the reason for reporting is that the system has
changed its state into degraded. With icm:reportingIntervalLeft the report indicates that 2
minutes are left until the next regular interval report is due.

5.8. Reporting of intent rejection

This example demonstrates how a rejection after receiving the intent is communicated with an
intent report.

The intent report is still complete with respect to covering all expectations, but the intent
handler might not have values to report for some of them

The example intent report shown here is created for the example intent from Chapter 5.5.

Example: Typical Intent Report

@prefix inv: <http://www.operator.org/Inventory/> .
@prefix t: <http://www.w3.org/2006/time#> .
@prefix imo: <http://www.tmforum.org/2020/07/IntentManagementOntology/> .
@prefix : <http://www.example.org/IntentNamespace/> .
:ExampleIntentReportXYZ
 a icm:IntentReport ;
 rdfs:comment "example intent report" ;
 imo:intentOwner :IntentManagerXYZ ;
 imo:intentHandler :IntentManagerABC ;
 icm:reportsAbout :ExampleIntentXYZ ;
 icm:reportTimestamp [t:inXSDDateTimeStamp "2022-12-
01T10:30:10+10:00"^^xsd:dateTime] ;

http://www.w3.org/2006/time

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 52 of 55

 icm:currentIntentHandlingState icm:StateFinalizing ;
 icm:rejectedBecause icm:UnspecifiedRejection ;
 icm:reportNumber 1 ;
 icm:hasExpectationReport
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout :Exp1_slice_delivery ;
 icm:targetReport _:slice ;
 icm:paramsUnknown [a icm:DeliveryParam ;
 icm:reportsAbout :Par1_slice_description ;
 icm:reasonForParamUnknown icm:TargetUnavailable
]
] ,
 [a icm:PropertyExpectationReport ;
 icm:reportsAbout :Exp2_slice_property ;
 icm:targetReport _:slice ;
 icm:paramsUnknown [a icm:PropertyParam ;
 icm:reportsAbout :Par2_slice_state ;
 icm:reasonForParamUnknown icm:TargetUnavailable
]
] ,
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout :Exp3_service_delivery ;
 icm:targetReport _:service ;
 icm:paramsUnknown [a icm:DeliveryParam ;
 icm:reportsAbout :Par3_service_description ;
 icm:reasonForParamUnknown icm:TargetUnavailable
]
] ,
 [a icm:PropertyExpectationReport ;
 icm:reportsAbout :Exp4_service_property ;
 icm:targetReport inv:service00010 ;
 icm:paramsUnknown [a icm:PropertyParam ;
 icm:reportsAbout :Par5_throughput ;
 icm:reasonForParamUnknown icm:TargetUnavailable
] ,
 [a icm:PropertyParam ;
 icm:reportsAbout :Par6_availability ;
 icm:reasonForParamUnknown icm:TargetUnavailable
] ,
 [a icm:PropertyParam ;
 icm:reportsAbout :Par4_latency ;
 icm:reasonForParamUnknown icm:TargetUnavailable
]
] ,
 [a icm:ReportingExpectationReport ;
 icm:reportsAbout :Exp5_reporting ;
 icm:target ex:ExampleIntentXYZ ;
 icm:paramsCompliant
 [a ReportingParam ;
 icm:reportsAbout Par7_interval ;
 icm:reportingIntervalLeft [a t:Duration ;
 t:numericDuration 2 ;
 t:temporalUnit t:unitMinute]
] ,
 [a ReportingParam ;
 icm:reportsAbout Par7_interval ;

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 53 of 55

 icm:reportedEvent icm:IntentRejected]
] .

This example shows an intent report that might have been created by the intent handler as
response to receiving an intent from the owner. In this report the intent handler states that it
rejects the intent. It provides a reason for rejection, although the reason is unspecified in this
example.

This intent report follows the general rule that it needs to report on every expectation and
expectation param individually. Here, there are no instances of resources selected or
deployed, because the intent never became operational. This means there cannot be detailed
states or measurements about used resources. Consequently, the intent report states that
params are unknown with the reason that the target is unavailable.

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 54 of 55

6. Administrative Appendix

6.1. Document History

6.1.1. Version History

Version Number Date Modified Modified by: Description of changes
1.0.0 28-May-2021 Alan Pope Initial Release
1.1.0 26-Nov-2021 Alan Pope Updated to v1.1.0

6.1.2. Release History

Release
Status

Date
Modified

Modified by: Description of changes

Pre-
production

28-May-
2021

Alan Pope Final edits prior to publication

Production 26-Jul-2021 Adrienne
Walcott

Updated to reflect TM Forum
Approved status

Pre-
production

26-Nov-2021 Alan Pope Final edits prior to publication

6.2. Acknowledgments

6.2.1. Guide Lead & Author

Member Title Company
Jörg Niemöller Expert of Analytics and Customer Experience Ericsson

6.2.2. Main Contributors

Member Title Company
Jörg Niemöller Expert of Analytics and Customer

Experience
Ericsson

Kevin McDonnell Senior Director, Intelligent Automation Huawei
James O'Sullivan Product Director, Intelligent Automation Huawei
Dave Milham Chief Architect TM Forum
Vinay Devadatta Practice Head (Innovation & Industry

Relations)
Wipro
Technologies

Azahar Machwe OSS Automation BT Group plc
Wang Lei Systems Expert Huawei
Tayeb Ben
Meriem

Senior Standardization Manager (OSS) Orange

Leonid Mokrushin Principle Researcher Ericsson

 IG1253A Intent Common Model v1.1.0

© TM Forum 2021. All Rights Reserved. Page 55 of 55

6.2.3. Additional Inputs

Member Title Company
Lester Thomas Chief IT Systems Architect Vodafone

Group
Ankur Goyal Lead Consultant Infosys
Emmanuel A.
Otchere

Chief Technical ExpertVP, Standards & Industry
Development

Huawei

Min He Chief Architect Futurewei

			Notice

			Table of Contents

			List of Figures

			Executive Summary

			Introduction

			1. Motivation and background

			2. Notation and namespaces

			3. Vocabulary overview

			3.1. Class Overview

			3.2. Formulating intent

			3.3. Specifying context

			3.4. Providing additional information

			3.5. Intent reporting

			3.6. Intent handling states and events

			3.7. Intent update states and events

			4. Vocabulary specification

			4.1. Classes

			4.2. Individuals

			4.3. Properties

			5. Model usage and examples

			5.1. Using variables vs. individuals in expectation targets

			5.2. Referring to resources in external systems

			5.3. Specifying what shall be delivered (Functional Requirements)

			5.4. Specifying requirements with properties

			5.5. Specifying Reporting Conditions

			5.6. Intent reporting of current handling status

			5.7. Reporting of degraded intent

			5.8. Reporting of intent rejection

			6. Administrative Appendix

			6.1. Document History

			6.1.1. Version History

			6.1.2. Release History

			6.2. Acknowledgments

			6.2.1. Guide Lead & Author

			6.2.2. Main Contributors

			6.2.3. Additional Inputs

IG1253B_Intent_Extension_Models_v1.0.0.pdf

TM Forum 2021. All Rights Reserved.

TM Forum Introductory Guide

Intent Extension Models

IG1253B
Team Approved Date: 26-Nov-2021

Release Status: Pre-production Approval Status: Team Approved
Version 1.0.0 IPR Mode: RAND

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 2 of 59

Notice
Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to TM FORUM, except as needed for the
purpose of developing any document or deliverable produced by a TM FORUM Collaboration
Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

181 New Road, Suite 304
Parsippany, NJ 07054, USA
Tel No. +1 862 227 1648
TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 3 of 59

Table of Contents

Notice .. 2

Table of Contents .. 3

List of Figures .. 6

Executive Summary ... 7

Introduction .. 8

1. Intent Validity .. 10

1.1. Motivation and background ... 10

1.2. Notation and namespaces .. 10

1.3. Principles and vocabulary overview ... 11

1.3.1. Validity inheritance and adoption .. 12

1.3.2. Validity in intent reports .. 13

1.3.3. Validity events .. 13

1.3.4. Intent handler interpretations and actions .. 14

1.4. Vocabulary Specification... 14

1.4.1. Classes .. 14

1.4.2. Individuals... 15

1.4.3. Properties ... 15

1.5. Model usage and examples .. 17

2. Temporal Validity ... 19

2.1. Motivation and background ... 19

2.2. Notation and namespaces .. 19

2.3. Principles and vocabulary overview ... 20

2.4. Vocabulary Specification... 21

2.4.1. Classes .. 21

2.4.2. Individuals... 21

2.4.3. Properties ... 21

2.5. Model usage and examples .. 21

2.5.1. Intent validity period start .. 21

2.5.2. Alternative expectations with mutually exclusive validity 23

2.5.3. Intent report considering validity ... 24

3. Acceptance and rejection control .. 26

3.1. Motivation and background ... 26

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 4 of 59

3.2. Notation and namespaces .. 26

3.3. Principles and vocabulary overview ... 27

3.4. Vocabulary specification ... 29

3.4.1. Classes .. 29

3.4.2. Instances ... 29

3.4.3. Properties ... 30

3.5. Model usage and examples .. 31

3.5.1. Specifying time budget for acceptance decision and rejection override . 31

4. Intent compliance latency ... 32

4.1. Motivation and background ... 32

4.2. Notation and namespaces .. 32

4.3. Principles and vocabulary overview ... 33

4.4. Vocabulary specification ... 34

4.4.1. Classes .. 34

4.4.2. Instances ... 35

4.4.3. Properties ... 35

4.5. Model usage and examples .. 36

4.5.1. Specifying time budget for recovery from degradation 36

4.5.2. Setting default recovery time budget for an intent handler 37

5. Proposals of best intent ... 39

5.1. Motivation and background ... 39

5.2. Notation and namespaces .. 39

5.3. Principles and vocabulary overview ... 40

5.4. Vocabulary specification ... 43

5.4.1. Classes .. 43

5.4.2. Instances ... 43

5.4.3. Properties ... 43

5.5. Model usage and examples .. 44

5.5.1. Asking for a proposal .. 44

5.5.2. Reporting a proposal .. 46

6. Intent Family Relation .. 49

6.1. Motivation and background ... 49

6.2. Notation and namespaces .. 50

6.3. Principles and vocabulary overview ... 50

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 5 of 59

6.4. Vocabulary specification ... 51

6.4.1. Classes .. 51

6.4.2. Instances ... 52

6.4.3. Properties ... 52

6.5. Model usage and examples .. 53

6.5.1. Communicating ancestor and sibling intents ... 53

7. Appendix A: Ideas for further intent extension models .. 55

7.1. States per requirement object.. 55

7.2. Sets of expectation targets ... 55

7.3. Side conditions and assumptions of an expectation 55

7.4. Expected Degradation and Compliance .. 55

7.5. Report Measurement Timing .. 56

7.6. Autonomous risk taking .. 56

7.7. Intent and expectation priority... 56

7.8. User and market information ... 57

7.9. Allocation constraints ... 57

8. Appendix B: References ... 58

9. Administrative Appendix ... 59

9.1. Document History ... 59

9.1.1. Version History ... 59

9.1.2. Release History ... 59

9.2. Acknowledgments .. 59

9.2.1. Guide Lead & Author .. 59

9.2.2. Main Contributors .. 59

9.2.3. Additional Inputs .. 59

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 6 of 59

List of Figures

Figure 0.1: Intent Model Dependencies Overview ... 8

Figure 1.1: Specialization from the intent common model .. 11

Figure 1.2: Validity definition and reporting ... 12

Figure 2.1: Temporal validity as subclass of validity and interval ... 20

Figure 3.1: Vocabulary of acceptance and rejection control .. 28

Figure 4.1: Vocabulary Overview .. 33

Figure 5.1: Vocabulary for asking for proposals within an intent. .. 41

Figure 5.2: Vocabulary for providing a proposal in an intent report .. 42

Figure 6.1: Vocabulary for expressing intent family relationships .. 51

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 7 of 59

Executive Summary
This document describes a set of proposed intent extension models. They extend the
vocabulary and semantics of the intent common model introduced in IG1253A.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 8 of 59

Introduction
Intent and intent report objects are expressed using a federation of the intent common model
and a defined set of intent extension and intent information models. The concept of intent
modeling through a model federation is introduced in IG1253. The intent common model is
the only mandatory model in the federation and introduced in IG1253A.

This document specifies a proposed set of intent extension models. These extensions address
various concerns and purposes, such as validity management of intent and expectation, etc.
For these concerns the specified intent extension models add optional additional vocabulary
and define its semantics. These models constitute specializations of and extensions of the
intent common model presented in IG1253A. They add to a modular landscape of intent
models and allow expanding of the model supported by each distinct intent manager. Intent
management functions can optionally implement support for intent extension models and
announce their support through the intent manager capability profile as described in IG1253D.

The intent extension models presented in this document are optional, but still generic in the
sense that they address concerns that are not specific to a network domain such as Radio,
Transport, Cloud, etc. The models for these domains should be proposed by projects and
workgroups specialized in the respective technologies and use cases. But nevertheless, the
models here demonstrate how intent extension models can be build as specialization and
extension of the intent common model and therefore fit compatibly into the intent model
federation.

Each chapter in this document contains a separate intent extension model. The intent
extension models presented in detail in this document are:

Figure 0.1: Intent Model Dependencies Overview

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 9 of 59

Intent validity
This model allows attaching validity conditions to intents, expectation and individual
expectation parameters. The vocabulary of this model expresses under which conditions the
intent handler needs to consider a requirement presented within the intent of the entire
intent.

Temporal validity
This model is a specialization of intent validity. It allows defining temporal conditions, such as
time periods of validity.

Acceptance and rejection control
Intent handlers can reject an intent or an intent update. This model allows the intent owner to
define how much time the handler has to make this decision. Furthermore, this model allows
owner to override rejections and therefore enforce acceptance.

Intent Compliance Latency
Intent managers take actions to bring the system into a compliant state. This model allows an
intent owner to define how urgent compliance to the intent is. It expresses this with the
definition of time budgets until compliance should be reached by handler actions.

Proposal of best intent
The intent interface defines the optional BEST/PROPOSAL procedure. Using it, the intent
owner can ask another intent manager to propose the best value for a particular requirement
goal it would be able to handle successfully. This model defines the vocabulary to be used
within an intent asking for a particular proposal and it defines the vocabulary available to
make the proposal through and intent report.

Intent Family Relation
A single intent is usually part of a group of intents that together are used within the
autonomous network to address a concern. There are for example parent intents, child intents
and sibling intents. This model provides the vocabulary to provide this information within the
intent.

Appendix A discusses further models and their potential purpose without presenting a detailed
proposal. A full proposal for these model ideas could be added in future revisions of the
document.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 10 of 59

1. Intent Validity

1.1. Motivation and background

By default, the requirements, goals and constraints expressed within an intent have universal
validity. This means an intent handler is expected to try to make the system comply to all
expectations unconditionally and as long as the intent is not removed by the owner. But this
might not be necessary and the requirements the intent carries might only be needed in
certain situations or for specific time intervals. In default intent management the intent owner
would be required to monitor when the intent or individual expectations are needed and
explicitly set and remove them. This can become a repetitive task involving considerable
communication traffic between intent handler and owner. Furthermore, it does not allow an
intent handler to know about requirements ahead of time and prepare early to meet them
immediately when needed.

With the intent validity model, the intent owner can delegate the validity control to the
handler by specifying the detailed conditions of validity within the intent. The model allows
defining complex validity schemes involving multiple types of conditions and alternative
requirements with mutually exclusive validity.

The intent owner only needs to update the intent if the requirement details themselves or the
validity conditions need a change. No communication is needed to initiate each instance of
change in validity. Most importantly, the intent handler has information that can be used to
prepare the system ahead of time, for example, by reserving resources needed to meet a
requirement before the requirement becomes valid. This way it is possible to avoid temporal
degradation implied by requirement changes, because the actions needed to reach compliance
can be planned and executed ahead of time.

The intent validity model only introduces the ontology and the semantics of validity
specifications within intent and intent report objects, as well as corresponding vocabulary for
assigning validity to intent and its elements. This model does not allow defining directly the
concrete criteria and conditions of validity. The expressiveness for different categories and
types of conditions would be introduced by separate intent extension models. For example the
temporal validity model introduced in this document defines how to formulate time based
validity specifications.

1.2. Notation and namespaces

The intent validity model is defined in a namespace under the TM Forum domain. This intent
extension model depends on the following models and uses the respective namespaces

Model Prefix Namespace Published
by

Intent
Validity

iv https://tmforum.org/IntentExtension/2021/12/Intent
Validity *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

https://tmforum.org/Intent

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 11 of 59

Model Prefix Namespace Published
by

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

TM Forum
Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCommon
Model *

TM Forum

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for intent validity is "iv".

The intent validity model has a dependency to RDF and RDFS, because they are the chosen
base standards for all intent and intent report models.

The intent validity models uses datatype defined in XML Schema.

The intent validity model specializes and extents the definitions of the intent common model.

The example namespace is used for separating the namespace for example objects within this
document.

1.3. Principles and vocabulary overview

Validity is expressed by an object of class iv:Validity. It is a subclass of class im:Context defined
in the intent common model.

Figure 1.1: Specialization from the intent common model

Furthermore, the intent validity model defines additional instances of the classes
icm:IntentHandlingState and icm:IntentHandlingEvent.

http://www.w3.org/2001/XMLSchema

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://example.com/intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 12 of 59

A validity object can be assigned to an intent or other requirement defining objects within an
intent such as expectations, expectation parameters or context using the property
iv:hasValidity. If the validity condition associated with it indicates it is not valid, this object and
all requirements it bears are not considered for determining if the system is currently
degraded or compliant. For example, an expectation object being not valid would lead to the
same conclusion about current compliance as if the expectation object were removed from
the intent and not present at all. However, this only applies for determining the current intent
handling state. Additional logic and decisions by the handler based on the validity information
can apply and change the intent handler's behavior and action taking.

Figure 1.2: Validity definition and reporting

Multiple validity objects can be used in the same object. However, they need to be related to
each other through qualifiers of conjunction (iv:and), disjunction (iv:or), negation (iv:not),
exclusive or (iv:xor) and equality (iv:same). Validity has in this respect a boolean value
associated with it. It is interpreted as true if valid and false if not valid. The property
iv:hasValidityValue associates a validity object with its boolean validity value.

1.3.1. Validity inheritance and adoption

If a nested object, such as an expectation within and intent, does not specify its own validity, it
is inheriting it from the parent. This is assumed for requirement defining objects. They are
defined in the intent common model as instances and Subclasses of the class
icm:RequirementDefiner. These are objects in the range of icm:hasExpectation,
icm:hasContext and icm:params properties. This means, that an object in triple statements
with these properties by default inherits the validity from the subject. On the other hand, if an
object has its own validity explicitly specified through iv:hasValidity or iv:sameValidityAs, its
explicit specification overrides an inherited one. If no validity is specified for an object directly
or inherited from a parent, unconditional and unlimited validity is assumed for this object by
default. This means, if the vocabulary of the intent validity model is not used in an intent
expression, the intent and all requirement specifications within it are considered to be
unconditionally valid. The property iv:currentlyValid states the boolean validity value of its
subject.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 13 of 59

Using the property iv:sameValidityAs allows to inherit the validity explicitly from other objects
of class icm:RequirementDefiner. These are icm:Intent, icm:Expectation,
icm:ExpectationParam and icm:Context according to the intent common model. The
referenced object is not necessarily a parent object or an even an object in the same graph or
namespace. It can, for example, be another intent or an expectation within another intent. If
the object referenced does not have its own explicit validity definition, then its default or
inherited validity is used. If the referenced object does not exist, the inherited validity is
considered to be false, which means it is not valid.

This means, by default and if no explicit validity information is provided, an intent is
considered valid and expectations inherit this validity from the intent they are embedded in.
The presence of explicit validity information changes this default assumption. Intent would
become only valid according to the explicit validity information assigned to it. Expectations
inherit this validity from the intent they are included in unless they further specify their own
validity. Consequently, the validity of an expectation can differ from the entire intent. It is for
example possible to specify that an expectation and only the requirements it carries are valid
while the intent is not. This can be wanted, for example, if an intent is invalid, but the intent
owner still wants to receive intent reports for it. By default, intent reporting expectations
would inherit the validity from the intent and reporting might stop if the intent became
invalid. Overriding the validity for reporting expectations allows the intent owner to continue
monitor the system state.

1.3.2. Validity in intent reports

Intent reporting continues according to the reporting expectation and its validity. It is
therefore possible for the intent owner to keep getting reports about the intent compliance
even though the intent is invalid. A reporting expectation within an intent is subject to the
same validity setting and inheritance mechanisms as any other expectation object. This means
that an intent becoming invalid will also invalidate the reporting expectation, unless the
reporting expectation has its own separately defined validity.

In intent reports the iv:reportedIsValid property can be used with icm:IntentReport,
icm:ExpectationReport, icm:ExpectationReportParam subjects, which are Subclasses of
icm:RequirementReporter. It states if, at the time of the report, the corresponding Intent,
Expectation, Expectation Param or Context object was valid. The intent handler would use this
property in the respective report for every object with an iv:hasValidity or iv:sameValidityAs
property in the intent. It is allowed to assign iv:reportedIsValid also for report objects where
the corresponding object in the intent does not have a validity explicitly assigned. However,
the validity of these objects would either be true by default or inherited directly from the
parent. This means the validity value can always be inferred for these objects. Within intent
reports it is also possible to state from which object validity was inherited from. This is stated
with the iv:validityFrom property.

When validity conditions invalidate the entire intent, the handling state would always show
compliance and never report degradation, because all requirements that could get the system
to be considered degraded are not valid. If such a compliance assessment is wanted also for
invalid requirements, a separate intent extension model can introduce the respective
vocabulary.

1.3.3. Validity events

The intent validity model extents set of individuals of intent handling events by defining one
additional event iv:ValidityChange. This event is issued once the validity of a requirement
defining object within the intent changes. This can be used in reporting expectations, allowing

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 14 of 59

the intent owner to ask for reports if and when any requirement defining object changes its
validity. Which object has now a changed validity can be determined from the
iv:reportedIsVaslid property provided in the intent report.

1.3.4. Intent handler interpretations and actions

Intent handler might not actively take action for getting the system into a state that complies
with the intent. It is also not guaranteed that resources are reserved for invalid requirements.
The intent handler has full authority over the actions and solution strategies. It is therefore
possible, that one intent handler decides to keep all resources needed for an intent reserved
even for invalid requirements. This would most likely result in immediate compliance once the
validity changes and the requirements are valid again. Another intent handler implementation
might have a different strategy with a similar result. It does release resources for invalid
requirements and it would reserve them again ahead of time before the validity status is
changing. The latter strategy has the potential to serve users more efficiently as resources are
not unnecessarily bound, but might fail to regain the resources when needed. The main point
is that good validity conditions that indicate future validity changes enable optimization
strategies by the intent handler. It can act proactively and plan a time series of actions.

Contradicting validity statements for intent and its elements need to be used with great care
to ensure that at any point in time the valid set of requirements within an intent is consistent.
If the handler were left with incomplete requirements it will still interpret them and try to
comply, but this might have unwanted effects.

1.4. Vocabulary Specification

1.4.1. Classes

This intent extension model proposed the following class:

Class: iv:Validity
Definition: Objects of class iv:Validity carry information about the validity of intent

and expectation objects.
Instance
of:

rdfs:Class

Subclass
of:

icm:Context

Task: Intent Modeling

Class: iv:ValidityEvent
Definition: Objects of class iv:ValidityEvent carry information about the change of

validity of intent and expectation objects.
Subclass
of:

icm:IntentHandlingEvent

Task: Intent Modeling

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 15 of 59

1.4.2. Individuals

The following table contains individuals of class iv:Validity

Validity Individual Description
iv:IsValid Unconditionally valid
iv:IsNotValid Unconditionally invalid

The following are additional individuals of class icm:IntentHandlingEvent

Intent Handling Event
individual

Description

iv:ValidityChange Some requirement within the intent has changed its
validity

1.4.3. Properties

This intent extension model proposes the following properties:

Property: iv:and
Definition: The subject is valid if its other conditions as well as the object are

valid.
Instance
of:

rdf:property

Domain: iv:Validity
Range: iv:Validity
Task: Intent Modeling

Property: iv:currentlyValid
Definition: This property provides information within an intent report about the

validity of the subject.
Instance
of:

rdf:property

Domain: icm:RequirementDefiner
Range: xsd:boolean
Task: Intent Modeling

Property: iv:hasValidity
Definition: Assigns validity to a requirement definer object such as intent,

expectation, expectation param or context.
Instance
of:

rdf:property

Domain: icm:RequirementDefiner
Range: iv:Validity
Task: Intent Modeling

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 16 of 59

Property: iv:hasValidityValue
Definition: States the boolean validity value of a validity object
Instance of: rdf:property
Domain: iv:Validity
Range: xsd:boolean
Task: Intent Modeling

Property: iv:not
Definition: The subject is valid if and only if the object is not valid. The subject has

the reverse validity or the object.
Instance
of:

rdf:property

Domain: iv:Validity
Range: iv:Validity
Task: Intent Modeling

Property: iv:or
Definition: The subject is valid if its other conditions or the object are valid.
Instance of: rdf:property
Domain: iv:Validity
Range: iv:Validity
Task: Intent Modeling

Property: iv:reportedIsValid
Definition: This property provides information within an intent report if a

requirement defining object is valid. It is the validity of the requirement
definer, the requirement reporter is reporting about

Instance
of:

rdf:property

Domain: icm:RequirementReporter
Range: xsd:boolean
Task: Intent Reporting

Property: iv:same
Definition: the subject has the same validity as the object.
Instance of: rdf:property
Domain: iv:Validity
Range: iv:Validity
Task: Intent Modeling

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 17 of 59

Property: iv:sameValidityAs
Definition: Defines that the validity shall be inherited and therefore be the same

as the validity of another object. In statements with this property the
subject inherits and adopts the validity of the object.

Instance
of:

rdf:property

Domain: icm:RequirementDefiner
Range: icm:RequirementDefiner
Task: Intent Modeling

Property: iv:validityFrom
Definition: This property provides information within an intent report. It refers to

the source the validity of the requirement defining object this
requirement reporter is reporting about if it was inherited or adopted
from another object.

Instance
of:

rdf:property

Domain: icm:RequirementReporter
Range: icm:RequirementDefiner
Task: Intent Reporting

Property: iv:xor
Definition: The subject is valid if either its other conditions or the object are valid,

but not if both are.
Instance
of:

rdf:property

Domain: iv:Validity
Range: iv:Validity
Task: Intent Modeling

1.5. Model usage and examples

Using iv:hasValidity allows to assign an explicit validity object, for example to an intent. Here
the validity object "ex:V1" was assigned to "ex:Intent1". Or in other words Intent1 has the
validity expressed by V1.

ex:Intent1 iv:hasValidity ex:V1 ; icm:hasExpectation ex:E1 .

Please note, that the detailed conditions of validity would depend on the vocabulary of further
models that specialize in various types of conditions. For this reason the examples stay on the
level of validity objects and do not show the detailed conditions within. The temporal validity
model is an example of such models and therefore its specification in Chapter 2 provides more
detailed examples.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 18 of 59

In the previous example the expectation object ex:E1 is assigned to the intent. As no validity
was assigned explicit to ex:E1, it inherits the validity from the intent it is included in.

ex:Intent1 iv:hasValidity ex:V1 ; hasExpectation ex:E1 , ex:E2 .

ex:E2 iv:hasValidity ex:V2 .In this example, the second expectation assigned to the
intent has its own validity definition. This means the requirements of the intent including ex:E1
are valid according to ex:V1. The second expectation ex:V2, has its own validity. This means
the requirements it carries are valid according to validity of ex:V2 irrespective of the validity of
the intent as a whole. An example where this makes sense is the reporting expectation. The
intent owner might want the reporting continuing irrespective of the validity of the intent or
any requirement within. This means that the reporting expectation would need a validity that
is decoupled from the intent validity.

ex:Intent1 iv:hasValidity ex:V1 ; hasExpectation ex:E1 , ex:E2
.ex:E2 a icm:ReportingExpectation ; icm:target ex:Intent1
; iv:hasValidity ex:IsValid .In this example the reporting expectation is set to be
always valid. This is expressed by assigning ex:IsValid as validity to the reporting expectation.
The object ex:IsValid is an pre-defined individual of class iv:Validity indicating unconditional
valid.

It is possible to combine and concatenate validity objects with logical qualifiers:

ex:E2
 a icm:Expectation ;
 iv:hasValidity ex:V3 .ex:Intent2 iv:hasExpectation ex:E2 .ex:Intent3
iv:hasValidity [a iv:Validity
; iv:sameValidityAs ex:E2
; iv:or ex:V4] .

In this example ex:Intent3 is valid if the expectation ex:E2 from ex:Intent2 is valid or if the
conditions of ex:V4 indicate validity. This example not only demonstrates the use of a logical
operator for validity, but also the referencing of validates across intent and object type
boundaries.

With this vocabulary it would for example be possible to express mutually exclusive validity.

ex:Intent4 iv:hasValidity ex:V5 .ex:Intent5 iv:hasValidity [
iv:not [iv:sameValidityAs ex:Intent4]] .

This example assigns validity ex:V5 to ex:Intent4. It then expresses that ex:Intent5 has the
opposite validity of ex:Intent4. In other words, Intent5 is only valid if and when Intent4 is not.
This can be particularly useful when defining mutually exclusive sets of requirements.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 19 of 59

2. Temporal Validity

2.1. Motivation and background

The requirements or constraints expressed by intent might not be needed all the time. For
example a service might need to be delivered at the start date and time of the respective
SLA/Contract and not earlier. Or the delivery of a service needs to stop at the end of the
contract. This constitutes a time interval between the start and end times of the contract. To
express that the service is only needed throughout this time interval, it could be assigned as
validity condition to the intent about the service delivery.

Another example is that a service needs to be delivered with high availability and excellent
performance during office hours, when many users are expected and service performance
directly impacts work efficiency for the users. At night and weekends the less strict
requirements for the service performance might apply to save costs. In this case the intent
owner can choose to define two sets of expectations representing the high and low demand
requirements. It would then assign mutually exclusive validity definitions based on temporal
conditions to each of the expectation sets.

The temporal validity model extents the intent validity model by defining time intervals as
validity condition. It is using the OWL Time ontology to gain expressiveness about date and
time related concerns.

2.2. Notation and namespaces

The temporal validity model is defined in a namespace under the TM Forum domain. This
intent extension model depends on the following models and uses the respective namespaces.

Model Prefix Namespace Published
by

Intent
Temporal
Validity

itv https://tmforum.org/IntentExtension/2021/12/Intent
TemporalValidity *

TM Forum

Intent
Validity

iv https://tmforum.org/IntentExtension/2021/12/Intent
Validity *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

TM Forum
Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCommon
Model *

TM Forum

https://tmforum.org/Intent

https://tmforum.org/Intent

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

http://www.w3.org/2001/XMLSchema

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 20 of 59

Model Prefix Namespace Published
by

W3C time
ontology in
OWL

t http://www.w3.org/2006/time W3C

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for intent temporal validity is "itv".

The intent temporal validity model has a dependency to RDF and RDFS, because they are the
chosen base standards for all intent and intent report models.

The intent temporal validity models uses data types defined in XML Schema. Furthermore, it
gains expressiveness for time from the OWL time Ontology.

The intent temporal validity model specializes and extents the definitions of the intent
common model and the intent validity model.

The Example namespace is used for separating the namespace for example objects within this
document.

2.3. Principles and vocabulary overview

The intent temporal validity model defines the class itv:TemporalValidity. It is a subclass of
iv:validity. Temporal validity objects define validity conditions based on time. The proposed
model for expressing time is the W3C time ontology. Temporal validity is also a subclass of
t:Interval from the time ontology.

Figure 2.1: Temporal validity as subclass of validity and interval

The W3C OWL time ontology allows the expression of temporal entities and more specifically
of time intervals. Defining itv:TemporalValidity as subclass of t:interval as well as subclass of
iv:Validity, a time interval becomes a validity condition. Whenever the current system time is
within the specified time interval, the validity condition is met and validity is assumed. By using
the properties introduced in the intent validity model, this time based validity can be assigned
to requirement defining objects.

The class t:Interval is a subclass of t:TemporalEntity. A temporal entity can be a point in time
or time interval. It is possible to define a time period before or after a point in time or a time

http://www.w3.org/2006/time

http://example.com/intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 21 of 59

duration. This provides the expressiveness for many possible time schedules. The time interval
can be closed and have a distinct start and endpoint. It can also be open, for example defining
a start, but no end. This would be interpreted as becoming valid at the interval start, but
staying valid indefinitely. Properties, such as before and after are defined by the time ontology
and are very useful to define the validity interval in relation to other temporal entities.

Please note that these properties leave open how the intent handler translates them into
concrete action plans. It is for example not implied that throughout an invalidity period of an
intent the related resources must be kept reserved. This would be a valid action but it is up to
the intent handler to decide if it wants to reserve resources in order to be sure it can be
compliant once the intent will become valid again. Alternatively it can decide to release the
resources and re-assign them when the time is right to prepare for the intent to become valid
again. Which is the right strategy depends on the situation and nature of the requirements and
resources involved. The intent itself does not prescribe a particular solution but only sets the
requirements that are expected to be met. The intent owner can only state requirements and
when they are valid, but must not prescribe how the intent handler is implementing these
requirements.

2.4. Vocabulary Specification

2.4.1. Classes

This intent extension model proposed no new classes.

Class: itv:TemporalValidity
Definition: Objects of class iv:Validity carry information about the validity of intent

and expectation objects.
Instance
of:

rdfs:Class

Subclass
of:

iv:Validity,
t:Interval

Task: Intent Modeling

2.4.2. Individuals

No individuals defined.

2.4.3. Properties

No properties defined.

Please note that the properties defined in the intent validity model apply also to temporal
validity objects. Also, the used time ontology provides many useful properties for defining a
time interval that is interpreted as validity period.

2.5. Model usage and examples

2.5.1. Intent validity period start

This example demonstrates how to define that an intent shall become valid at a particular
point in time.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 22 of 59

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix icm: https://tmforum.org/2020/07/intentCommon/ .
 @prefix iv: https://tmforum.orv/2021/07/intentValidity/ .
 @prefix itv: https://tmforum.orv/2021/07/intentTemporalValidity/ .
 @prefix t: http://www.w3.org/2006/time .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix ex: http://example.org/IntentValidityExample .

 ex:ExampleIntentXYZ
 a icm:Intent ;
 iv:hasValidity
 [a itv:TemporalValidity
 t:after [a t:Instant ;
 t:inXSDDateTimeStamp 2022-12-01T10:30:10+10:00 ;
] ;
] ;
 icm:hasExpectation ex:E1, ex:E2 .

 ex:E1
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params ex:P1 .
 ex:P1
 a icm:DeliveryParam ;
 icm:targetDescription ex:ExampleService .

 ex:E2
 a icm:ReportingExpectation ;
 icm:target ex:ExampleIntentXYZ ;
 icm:params P2 .
 ex:P2
 a icm:ReportingParam ;
 icm:reportingEvent icm:intentRejected,
 icm:intentAccepted,
 icm:intentComplies,
 icm:intentDegrades,
 icm:handlingEnded,
 icm:updateRejected,
 icm:updateFinished,
 iv:ValidityChange ;
 iv:hasValidity iv:IsValid .

The example uses the intent validity model in combination with the intent temporal validity
model, which defines the concrete validity condition based on time. Here the validity is an
open time interval that starts at 10:30 AEST on the 1st of December 2022. This means that the
service the intent requires to be delivered does not need to be delivered before that time.

The temporal validity is expressed using the rich vocabulary of the W3C OWL time ontology. In
this example the temporal validity is expressed as the time interval after a time instant. This
time instant is a point in time. It is specified using an XML schema datatype that encodes the
timestamp. XML schema was used, because it provides a compact way to express simple time
stamps. The W3C OWL time ontology defines also other alternatives to define for example
points in time or durations accommodating a variety of calendars, formats and other local
conventions about time and date.

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

https://tmforum.orv/2021/07/IntnetValidity/

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 23 of 59

The delivery expectation does not define its individual validity. This means it inherits the
validity from the intent it is embedded in.

The reporting expectation defines its own validity. In this example it assigns a pre-defined
validity individual indicating unconditional validity. This means the reporting stays valid
irrespective other validity specifications of the intent and other expectations. The intent owner
will therefore still receive reports for all specified events, even if the intent is invalid. The
reporting expectation also uses the validity change events. This specifies that a report shall be
created if the validity of any element with the intent changes its validity.

2.5.2. Alternative expectations with mutually exclusive validity

One of the main use cases for modeling validity is the possibility to define multiple alternative
sets of expectations. They would address the same targets, but specify different requirements
in the parameters. Validity information would then state if and when an expectation
alternative shall be considered by the intent handler.

Please note that overlaps in validity should usually be avoided if the expectations state
competing and mutually exclusive requirements. If they become valid for the same time, the
system would not be able to become compliant, because there is always one or another
expectation that cannot be met.

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix icm: https://tmforum.org/2020/07/intentCommon/ .
 @prefix iv: https://tmforum.orv/2021/07/intentValidity/ .
 @prefix itv: https://tmforum.orv/2021/07/intentTemporalValidity/.
 @prefix t: http://www.w3.org/2006/time .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix met: http://www.sdo2.org/TelecomMetrics/Version_1.0/ .
 @prefix ex: http://example.org/IntentValidityExample .

 ex:ExampleIntentXYZ
 a icm:Intent ;
 icm:hasExpectation ex:E1_delivery, ex:E2_property, ex:E3_property_alt
.

 ex:E1_delivery
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params ex:P1_description .
 ex:P1_description
 a icm:DeliveryParam ;
 icm:targetType ex:ExampleService .

 ex:E2_property
 a icm:PropertyExpectation ;
 icm:target _:service ;
 icm:params ex:P2 ;
 iv:hasValidity ex:V1 .

 ex:E3_property_alt
 a icm:PropertyExpectation ;
 icm:target _:service ;
 icm:params P3 ;
 iv:hasValidity [iv:not [iv:sameValidityAs ex:E2_property]] .

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

https://tmforum.orv/2021/07/IntnetValidity/

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 24 of 59

 ex:P2
 a icm:PropertyParam ;
 met:users [icm:atMost 1000];
 met:throughputPerUser [icm:atLeast [met:value 10 ;
 met:unit met:unitMBPS]] .
 ex:P3
 a icm:PropertyParam ;
 met:users [icm:atMost 500] ;
 met:throughputPerUser [icm:atLeast [met:value 5 ;
 met:unit met:unitMBPS]] .

 ex:V1
 a itv:TemporalValidity ;
 a t:Interval ;
 t:hasDateTimeDescription [t:dayOfWeek t:Monday ,
 t:Tuesday ,
 t:Wednesday ,
 t:Thursday ,
 t:Friday] .

In this example intent does not have its validity specified and is therefore by default universally
valid. It contains however expectations with validity information.

The delivery expectation with target _:service also does not have a validity defined. It inherits
its validity from the intent as the intent is universally valid, so is this expectation. Through the
same target it is associated with two property expectations.

The first property expectation has a validity specified that makes it valid on weekdays. The
second property expectation defines a validity that is opposite of the validity of the first
property expectation. This means, the time interval in which the two property expectations
are valid is exactly opposite. When the first one is valid the other one is not and vice versa. In
this example the two property expectations have different goals regarding users to be
supported and minimum throughput that need to be available to them. Here, more users need
to be served with a higher throughput on weekdays than on weekends. This example
demonstrates how complex time schedules with different requirement details can be
expressed.

2.5.3. Intent report considering validity

This example shows an intent report. It is reporting about the example intent from Chapter
2.5.1. It is showing how the intent handler can inform the intent owner if the intent and its
expectations are valid at the time of reporting.

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
 @prefix icm: https://tmforum.org/2020/07/intentCommon/
 @prefix iv: https://tmforum.orv/2021/07/intentValidity/
 @prefix itv: https://tmforum.orv/2021/07/intentTemporalValidity/
 @prefix t: http://www.w3.org/2006/time
 @prefix xsd: http://www.w3.org/2001/XMLSchema#
 @prefix met: http://www.sdo2.org/TelecomMetrics/Version_1.0/
 @prefix ex: http://example.org/IntentValidityExample

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

https://tmforum.orv/2021/07/IntnetValidity/

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 25 of 59

 ex:ExampleIntentReportXYZ
 a icm:IntentReport ;
 imo:intentOwner ex:IntentManagerXYZ ;
 imo:intentHandler ex:IntentmanagerABC ;
 icm:reportsAbout ex:ExampleIntentXYZ ;
 icm:reportTimestamp [t:inXSDDateTimeStamp 2022-12-01T10:20:10+10:00
] ;
 icm:currentIntentHandlingState icm:StateDegraded ;
 icm:currentIntentUpdateState icm:StateNoUpdate ;
 iv:reportedIsValid false ;
 icm:reportNumber 42;

 icm:hasExpectationReport
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout ex:E1 ;
 icm:target _:service ;
 icm:paramsUnknown
 [icm:reportsAbout ex:P1 ;
 icm:reasonForParamUnknown icm:TargetUnavailable
] ;
] ,
 [a icm:ReportingExpectationReport
 icm:reportsAbout ex:E2 ;
 icm:target ex:ExampleIntentXYZ ;
 icm:paramsCompliant
 [icm:reportsAbout ex:P2 ;
 icm:reportingEvent icm:intentAccepted,
 icm:intentComplies ;
] ;
 iv:reportedIsValid true;
].

Using the property iv:reportedIsValid, the intent report specifies the intent validity value is
xsd:false and the intent is therefore not valid at the time of reporting. Please note the
timestamp of the report. It is before the starting time of the intent validity interval defined in
the intent in chapter 2.5.1. The intent is not valid and so is the delivery expectation, which
inherits the validity from the intent.

The reporting expectation had its individual validity specification. In the example intent it was
set to be always valid. Because this constitutes an explicit validity specification reporting
expectation report state its current value as being xsd:true.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 26 of 59

3. Acceptance and rejection control

3.1. Motivation and background

When receiving an intent for the first time or with new content as update, the intent handler
needs to decide if it accepts or rejects the intent or its update. Rejection might have formal
reasons. The intent handler might not understand some content, because it does not support a
model the intent owner has used in the intent expression. This indicates a problem in the
owner, as it has not interpreted the intent manager capability profile of the handler correctly.

Another reason for rejection might be that the intent handler does not believe it can
successfully meet all expectations given the resources it has available. This is a soft rejection
because the intent handler could in principle start trying to meet the expectations, although it
would most likely not succeed. In this case the intent owner might ask the handler to accept it
anyway. This implies that the owner accepts the consequence of not getting a system state
that is fully compliant. This might make sense to do if the intent is about delivering an
important service. It might be more important that the service is somehow working with
limitations than not having it at all.

The acceptance and rejection control model allows the intent owner to specify a rejection
override for certain rejection reasons. The handshake between the owner and handler might
start with a first intent being sent to the handler and results in a rejection. If needed the intent
owner would then send a new intent with the same requirements, but this time with a
rejection override for the rejection reason from the first try.

Another concern of intent acceptance is the time the handler has for this initial decision. The
intent common model does not define a maximum time for the first reply of the intent
handler. The intent owner can however send a removal request for the intent if the decision
has taken too long. The acceptance and rejection control model provides another possibility.
The intent owner can specify a time budget for the acceptance decision. After this time has
expired without an acceptance decision by the handler, the intent is automatically rejected.
This time budget can be specified individually for the initial acceptance of the intent or for
intent updates.

3.2. Notation and namespaces

The acceptance and rejection control model is defined in a namespace under the TM Forum
domain. This intent extension model depends on the following models and uses the respective
namespaces.

Model Prefix Namespace Published
by

Acceptance
and
Rejection
Control

arc https://tmforum.org/IntentExtension/2021/12/I
ntentAcceptanceRejectionControl *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

https://tmforum.org/Intent

http://www.w3.org/1999/02/22-rdf-syntax-ns

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 27 of 59

Model Prefix Namespace Published
by

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

TM Forum
Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCom
monModel *

TM Forum

W3C time
Ontology in
OWL

t http://www.w3.org/2006/time W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for the acceptance and rejection control model is "arc".

The model has a dependency to RDF and RDFS, because they are the chosen base standards
for all intent and intent report models. It uses datatype defined in XML Schema. Furthermore,
it gains expressiveness for time from the OWL time Ontology.

The acceptance and rejection control model specializes and extents the definitions of the
intent common model.

The Example namespace is used for separating the namespace for example objects within this
document.

3.3. Principles and vocabulary overview

By attaching the properties arc:intentAcceptanceLatency and arc:updateAcceptanceLatency to
an intent, the owner sets a time budget for the intent handler to make an acceptance or
rejection decision.

http://www.w3.org/2000/01/rdf-schema

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

http://example.com/intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 28 of 59

Figure 3.1: Vocabulary of acceptance and rejection control

The acceptance time is a t:Duration object according to the owl time ontology model. The
timer related to this duration starts at reception of the intent or intent update. If the timer
exceeds the time budget, the intent owner is supposed to interrupt its considerations and
immediately reject the intent or intent update.

If an intent or an intent update gets rejected because the decision time expired, this causes an
icm:intentRejected or icm:updateRejected event. No additional events are defined specific to
this rejection cause. However, the rejection reason is then reported to be
arc:IntentAcceptanceLatencyExpired or arc:UpdateAcceptanceLatencyExpired. The acceptance
and rejection control model defines these additional individuals of class icm:RejectionReason
to cover the forced rejection at expiry of the given time budget.

Using the properties arc:intentRejectionReasonOverride and
arc:updateRejectionReasonOverride the intent owner can define rejection reasons for which
the handler should accept anyway. The owner implicitly accepts potential state degradation.

The acceptance and rejection control model defines a set of additional individuals of class
icm:RejectionReason to communicate that the reason for rejection was that a rejection
override was not possible. This is usually an additional rejection reason next to the reason why
the handler originally wanted to reject. A rejection override might not be possible if, for
example, the intent handler does not support some models used in the intent. This means
override would work for rejections because of a negative projection of handling success. But
an override is not possible for reasons where the handler has no sensible way forward.

In intent reports the acceptance or rejection would appear as defined in the intent common
model through information about events, states and rejection reasons. The acceptance and
rejection control model contributes additional rejection reasons to intent reporting.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 29 of 59

3.4. Vocabulary specification

3.4.1. Classes

Class: arc:IntentAcceptanceLatency
Definition: Instances of this class define how long it is allowed to take from intent

reception until the intent handler has decided on acceptance of the
intent.
If this time expires without the intent handler having concluded to
accept, the intent will get rejected with rejection reason
arc:IntentAcceptanceLatencyExpired.

Instance
of:

rdfs:Class

Subclass
of:

icm:Context
t:Duration

Task: Intent Modeling

Class: arc:UpdateAcceptanceLatency
Definition: Instances of this class define how long it is allowed to take from intent

update reception until the intent handler has decided on acceptance of
the update.
If this time expires without the intent handler having concluded to
accept, the update will get rejected with rejection reason
arc:UpdateAcceptanceLatencyExpired.

Instance
of:

rdfs:Class

Subclass
of:

icm:Context
t:Duration

Task: Intent Modeling

3.4.2. Instances

icm:RejectionReason individuals Description
arc:IntentAcceptanceLatencyExpired The defined time budget for the decision

to accept an intent has expired.
arc:UpdateAcceptanceLatencyExpired The defined time budget for the decision

to accept an intent has expired.
arc:IntentRejectionOverrideNotPossible The intent could not be accepted

although the intent owner has asked to
accept anyway. This might happen, for
example, if the intent handler does not
fully understand the intent content.

arc:UpdateRejectionOverrideNotPossible The intent update could not be accepted
although the intent owner has asked to
accept anyway. This might happen, for
example, if the intent handler does not
fully understand the intent content.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 30 of 59

3.4.3. Properties

Property: arc:intentAcceptanceLatency
Definition: This property assigns a time budget for making an intent acceptance

decision after an intent is received.
Instance
of:

rdf:Property

Domain: icm:Intent
Range: arc:IntentAcceptanceLatency
Task: Intent Modeling

Property: arc:intentRejectionReasonOverride
Definition: This property overrides a rejection decision an intent handler might

make.
The intent owner states the potential rejection reason for which the
handler should accept the intent anyway.
By asking for a rejection override an intent owner confirms that it
would accept potential intent degradation for now.

Instance
of:

rdf:Property

Domain: icm:Intent
Range: icm:RejectionReason
Task: Intent Modeling

Property: arc:updateAcceptanceLatency
Definition: This property assigns a time budget for making an acceptance decision

after an intent update is received.
This is typically defined in the intent graph that constitutes the update.
This information in the update has priority over the information that
was potentially present in the previous and to be updated version of
the intent.

Instance
of:

rdf:Property

Domain: icm:Intent
Range: arc:UpdateAcceptanceLatency
Task: Intent Modeling

Property: arc:updateRejectionReasonOverride
Definition: This property overrides a rejection decision an intent handler might

make.
The intent owner states the potential rejection reason for which the
handler should accept the intent update anyway.
By asking for a rejection override an intent owner confirms that it
would accept potential intent degradation for now.

Instance
of:

rdf:Property

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 31 of 59

Property: arc:updateRejectionReasonOverride
Domain: icm:Intent
Range: icm:RejectionReason
Task: Intent Modeling

3.5. Model usage and examples

3.5.1. Specifying time budget for acceptance decision and rejection override

The following example intent shows how to express an intent acceptance latency.

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema#
 @prefix icm: https://tmforum.org/2020/07/IntentCommonModel/
 @prefix arc:
https://tmforum.orv/2021/07/intentAcceptanceRejectionControl/
 @prefix t: http://www.w3.org/2006/time
 @prefix xsd: http://www.w3.org/2001/XMLSchema#
 @prefix met: http://www.sdo2.org/TelecomMetrics/Version_1.0/
 @prefix ex: http://example.org/IntentExample

 ex:ExampleIntentXYZ
 a icm:Intent ;
 arc:intentAcceptanceLatency
 [t:numericDuration 2 ;
 t:temporalUnit t:unitSecond];
 arc:intentRejectionReasonOverride icm:SuccessfulHandlingNotExpected ;
 icm:hasExpectation ex:E1, ex:E2 .

 ex:E1
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params ex:P1 .
 ex:P1
 a PropertyParam ;
 icm:targetType ex:ExampleService ;.

 ex:E2
 a icm:PropertyExpectation
 icm:target _:service ;
 icm:params ex:P2 .
 ex:P2
 a icm:PropertyParam ;
 met:throughputPerUser
 [icm:atLeast [met:value 10 ;
 met:unit met:unitMBPS]] .

In this example the intent owner specifies that the handler has two seconds to decide if it
accepts or rejects the intent.

Furthermore, the intent owner states that an intent shall still be accepted, although the
handler wants to reject, because it does not expect it can successfully meet the intent
expectations.

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 32 of 59

4. Intent compliance latency

4.1. Motivation and background

The system state might become degraded with respect to the requirements specified within
the intent. If this is happening the intent handler is expected to take action for bringing the
system back into a compliant state. It might take time for the action to show an effect. How
much time this typically takes depends on the actions taken. For the intent owner it might not
be acceptable that the system recovers eventually after a potentially long period of time. It
might need fast recovery from degradation. The intent compliance latency model allows an
intent owner to specify how much time the intent handler is given to reach "compliant" state.
This means the intent owner can specify how long it would be willing to tolerate an intent
degradation. The intent owner can express this by setting a recovery time budget. The handler
can consider this for example by taking more aggressive action.

Next to defining specific time budgets per intent it might be useful to define general default
compliance targets for an intent manager. This means an intent can be used with the intent
manager as expectation target. This means, the intent manager is expected to comply to these
requirements with all action it takes. Defining compliance latency this way sets the default
compliance latency target.

This model distinguishes

• Setting a goal for initial compliance latency after the intent and its constituent
expectations were initially received.

• Setting a goal for reaching compliance again after an intent or an expectation was
updated.

• Setting a goal for recovery to compliance latency after an intent or an expectation got
degraded.

The goals are temporal goals expressed as time duration.

4.2. Notation and namespaces

The intent compliance latency model is defined in a namespace under the TM Forum domain.
This intent extension model depends on the following models and uses the respective
namespaces.

Model Prefix Namespace Published
by

Intent
Compliance
Latency

icl https://tmforum.org/IntentExtension/2021/12/Inte
ntComplianceLatency *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

https://tmforum.org/Intent

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 33 of 59

Model Prefix Namespace Published
by

TM Forum
Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCommon
Model *

TM Forum

W3C time
Ontology in
OWL

t http://www.w3.org/2006/time W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for the intent compliance latency model is "icl".

The model has a dependency to RDF and RDFS, because they are the chosen base standards
for all intent and intent report models. It uses data types defined in XML Schema.
Furthermore, it gains expressiveness for time from the OWL time Ontology.

The intent compliance latency model specializes and extents the definitions of the intent
common model.

The Example namespace is used for separating the namespace for example objects within this
document.

4.3. Principles and vocabulary overview

The intent compliance latency model defines the class icl:ComplianceLatency as a subclass of
icm:Context. It is also a subclass t:Duration from the OWL time ontology. This means it
represents a time duration.

Figure 4.1: Vocabulary Overview

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

http://example.com/intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 34 of 59

A compliance latency is a target time budget the intent handler has available to reach a
compliant system state with its actions. This way the intent owner communicates and
quantifies urgency of complying to the intent.

A compliance latency is assigned using the properties icl:initialComplianceLatency,
icl:updateComplianceLatency and icl:recoveryComplianceLatency. This subject is a
requirement definer according to the intent common model. These are intent, expectation,
expectation params and context class subjects. For them compliance latency can be defined. If
the subject is an intent, the respective compliance latency time budget means that the system
is expected to become compliant to the entire intent within this time. If the subject is an
expectation, then compliance within the time budget is only expected for the requirements of
this particular expectation.

The property icl:recoveryComplianceLatency has icl:ComplianceLatency as range. It defines a
time duration until the system is supposed to recover from degradation. .

The properties icl:initialComplianceLatency and icl:updateComplianceLatency define
respective target latencies for reaching compliance after the intent was initially received or
after it was updated. This means the model distinguishes three cases of degradation: after
initial reception, after update reception or after degradation was reached for other or
unknown reasons. It allows setting individual time targets for reaching complicate again.

If multiple compliance latencies are defined, their fulfillment is considered separately and this
can lead to multiple events. For example, the intent owner can specify a compliance latency
for recovery of 2 minutes and another one also for recovery of 5 minutes. With a reporting
expectation that asks for a report at the icl:RecoveryComplianceLatencyExpired event, the first
event would be generated if the system is not compliant 2 minutes after it was degraded. If it
is still continuously degraded after 5 minutes, another expiry event would lead to yet another
report.

The compliance latency always counts from the time degradation was discovered. This
includes the degradation that was initially determined after intent reception or after an
update. If the system fails to recover after the specified time, an icm:IntentHandlingEvent is
generated. Furthermore, the intent handler can reject an intent or intent update if it considers
the compliance latency times specified are too short to be sensibly reached and it would state
this as rejection reason. The intent compliance latency model defines additional individuals of
class icm:IntentHandlingEvent and of class icm:Rejection reason to allow expressing this.

4.4. Vocabulary specification

4.4.1. Classes

Class: icl:ComplianceLatency
Definition: instances of this class define how long it is allowed to take until

compliance with an intent or intent object is reached or reached again.
Instance
of:

rdfs:Class

Subclass
of:

icm:Context
t:Duration

Task: Intent Modeling

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 35 of 59

4.4.2. Instances

The following table defines additional individuals of class icm:IntentHandlingEvent

icm:IntentHandlingEvent individuals Description
icl:InitialComplianceLatencyExpired The time specified for initial compliance

has expired without the system becoming
compliant.

icl:UpdateComplianceLatencyExpired The time specified for reaching compliance
after an update has expired without the
system becoming compliant.

icl:RecoveryComplianceLatencyExpired The time specified for reaching compliance
after a degradation has expired without
the system becoming compliant.

The following table defines additional reasons for intent or intent update rejection as
individuals of class icm:RejectionReason

icm:RejectionReason individuals Description
icl:InitialComplianceLatencyShort The time specified about initial compliance

target is too short. The intent handler rejects,
because it does not expect that it can
transition the system into a compliant state
within the specified time

icl:UpdateComplianceLatencyShort The time specified about update compliance
target is too short. The intent handler rejects,
because it does not expect that it can
transition the system into a compliant state
after an update within the specified time

icl:RecoveryLatencyShort The time specified about recovery compliance
target is too short. The intent handler rejects,
because it does not expect that it can
transition the system into a compliant state
after it got degraded, within the specified time

4.4.3. Properties

Property: icl:initialComplianceLatency
Definition: Defines the time it is allowed to take until the intent becomes first

compliant after it got received by the handler.
Instance
of:

rdf:property

Domain: icm:RequirementDefiner
Range: icl:ComplianceLatency
Task: Intent Modeling

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 36 of 59

Property: icl:updateComplianceLatency
Definition: Defines the time it is allowed to take until the intent becomes

compliant after it an update was received.
Instance
of:

rdf:property

Domain: icm:RequirementDefiner
Range: icl:ComplianceLatency
Task: Intent Modeling

Property: icl:recoveryComplianceLatency
Definition: Defines the time it is allowed to take until the intent becomes first

compliant after it got received by the handler.
Instance
of:

rdf:property

Domain: icm:RequirementDefiner
Range: icl:ComplianceLatency
Task: Intent Modeling

4.5. Model usage and examples

4.5.1. Specifying time budget for recovery from degradation

The following example intent shows how to define a target time budget for recovery from
degradation

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix icm: https://tmforum.org/2020/07/IntentCommonModel/ .
 @prefix icl: https://tmforum.orv/2021/07/intentComplianceLatency/ .
 @prefix t: http://www.w3.org/2006/time .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix met: http://www.sdo2.org/TelecomMetrics/Version_1.0/ .
 @prefix ex: http://example.org/IntentExample .

 ex:ExampleIntentXYZ
 a icm:Intent ;
 arc:RecoveryComplianceLatency
 [t:numericDuration 2 ;
 t:temporalUnit t:unitMinute];
 icm:hasExpectation ex:E1, ex:E2, ex:E_reporting .

 ex:E1
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params ex:P1 .
 ex:P1
 a icm:DeliveryParam ;
 icm:targetType ex:ExampleService .

 ex:E2
 a icm:PropertyExpectation ;

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 37 of 59

 icm:target _:service ;
 icm:params P2 .
 ex:P2
 a icm:PropertyParam ;
 met:throughputPerUser
 [icm:atLeast [met:value 10 ;
 met:unit met:unitMBPS] ;
] .

 ex:E_reporting
 a icm:ReportingExpectation ;
 icm:target ex:ExampleIntentXYZ ;
 icm:params P3 .
 ex:P3
 a icm:ReportingParam ;
 icm:reportingEvent icm:intentRejected,
 icm:intentAccepted,
 icm:intentComplies,
 icm:intentDegrades,
 icm:handlingEnded,
 icm:updateRejected,
 icm:updateFinished,
 icl:InitialComplianceLatencyExpired,
 icl:UpdateComplianceLatencyExpired,
 icl:RecoveryComplianceLatencyExpired .

In this example intent owner asks the intent handler that it should recover from degradation
within two minutes after the degradation has happened.
Furthermore, the intent owner expects an intent report if the compliance latency for initial
compliance, compliance after update or compliance after degradation has expired

4.5.2. Setting default recovery time budget for an intent handler

This example demonstrates how to use an intent for defining default compliance latencies of
an intent handler

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix icm: https://tmforum.org/2020/07/IntentCommonModel/ .
 @prefix icl: https://tmforum.orv/2021/07/intentComplianceLatency/ .
 @prefix t: http://www.w3.org/2006/time .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix met: http://www.sdo2.org/TelecomMetrics/Version_1.0/ .
 @prefix ex: http://example.org/IntentExample .

 ex:ExampleIntentXYZ
 a icm:Intent ;
 icm:hasExpectation ex:E1, ex:E_report .

 ex:E1
 a icm:PropertyExpectation
 icm:target icm:IntentManagerABC001 ;
 icm:params ex:P1 .
 ex:P1
 a icm:PropertyParam
 arc:InitialComplianceLatency [t:numericDuration 5 ;
 t:temporalUnit t:unitMinute] ;

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 38 of 59

 arc:UpdateComplianceLatency [t:numericDuration 1 ;
 t:temporalUnit t:unitMinute] ;
 arc:RecoveryComplianceLatency [t:numericDuration 2 ;
 t:temporalUnit t:unitMinute] .
 ex:E_report .
 a icm:ReportingExpectation
 icm:target ex:ExampleIntentXYZ ;
 icm:params ex:P2 .
 ex:P2
 a icm:ReportingParam ;
 icm:reportingEvent icm:intentRejected ,
 icm:intentAccepted ,
 icm:intentComplies ,
 icm:intentDegrades ,
 icm:handlingEnded ,
 icm:updateRejected ,
 icm:updateFinished ,
 icl:InitialComplianceLatencyExpired ,
 icl:UpdateComplianceLatencyExpired ,
 icl:RecoveryComplianceLatencyExpired .

In this example a property expectation is used with a target referring to an individual intent
manager. So the stated requirement is about the operation of the intent manager. This use of
intent can set default operational requirements. An intent like this typically has an owner
associated with setting operational policies. This can for example be a frontend system
through which technical personnel of the network operator maintains and configures the
autonomous network system.

In the property expectation sets now goals for compliance latency. As this is a goal for the
intent manager, it is therefore applicable to all actions across other intents the intent manager
is taking. If any action to reach compliance in any intent handled by this intent manager fails to
meet these goals, this intent is degraded and the respective event is issued. In this example
there is also intent reporting specified. This means the intent handler will report that this
intent has degraded.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 39 of 59

5. Proposals of best intent

5.1. Motivation and background

The BEST/PROPOSAL procedure on the intent interface allows to ask an intent management
function to propose the most severe requirements it can successfully handle. This is a
procedure typically executed in the investigation phase of the intent life-cycle and therefore
part of a negotiation between the intent owner and a prospective intent handler. The intent
owner can use this to investigate what an intent handler is able to achieve. Alternatively this
can be used with an intent that is in operation phase of the intent life cycle. This means the
intent handler is actively operating based on this intent. Using the bes/proposal procedure for
this intent means that the intent owner wants to monitor if the handler could achieve
different requirements.

In any case the intent owner needs to guide the process. This means that it formulates an
intent with all needed expectations reflecting the wanted requirements. The difference to a
usual intent is that some requirements can be marked by the owner. It wants a proposal from
the intent handler about the best it can do for these marked requirements given that all the
other requirements also apply. The intent handler would add its proposals to the intent report.

Typically, the intent owner would ask for a proposal about expectations or expectations
parameters. It is practically a good idea to limit the number of distinct requirements a proposal
is asked for simultaneously to a singe one of very few. With any additional requirement that is
part of the proposal the ambiguity about what to prioritize would increase. The intent handler
would need to speculate about utility considerations from the intent owner's domain of
concerns to make a reasonable proposal. This should be avoided as much as possible to
preserve separation of concerns between intent owner and handler. Alternatively the intent
owner can actively steer the exploration by making multiple best/proposal operations with
varying requests. This way an active conversation between the owner and handler can be
established without forcing the handler to speculate about concerns outside its domain.

The optional proposal of best intent model has a mutual dependency with the optional
BEST/PROPOSAL procedure on the intent interface. If an intent manger supports the
BEST/PROPOSAL procedure it needs to also implement support for the proposal of best intent
model.

5.2. Notation and namespaces

The proposals of best intent model is defined in a namespace under the TM Forum domain.
This intent extension model depends on the following models and uses the respective
namespaces.

Model Prefix Namespace Published
by

Proposal
Best Intent

pbi https://tmforum.org/IntentExtension/2021/12/Pro
posalBestIntent *

TM Forum

https://tmforum.org/Intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 40 of 59

Model Prefix Namespace Published
by

Intent
Interface
Ontology

iio https://www.tmforum.org/2020/07/IntentInterface
Ontology *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

TM Forum
Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCommon
Model *

TM Forum

W3C time
Ontology in
OWL

t http://www.w3.org/2006/time W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for the proposal of best intent model is "pbi".

The model has a dependency to RDF and RDFS, because they are the chosen base standards
for all intent and intent report models. It uses data types defined in XML Schema.
Furthermore, it gains expressiveness for time from the OWL time Ontology.

The proposal of best intent model specializes and extents the definitions of the intent common
model. It is also using definitions of the Intent Interface Ontology.

The example namespace is used for separating the namespace for example objects within this
document.

5.3. Principles and vocabulary overview

The proposal of best intent is an intent extension model that specializes and extents the intent
common model. It is introducing the class pbi:ProposalExpectation as new subclass of the class
icm:Expectation.

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

http://example.com/intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 41 of 59

Figure 5.1: Vocabulary for asking for proposals within an intent.

A proposal expectation defines for which requirement defining object a proposal shall be
made. This means it would be possible to ask for proposal for expectation parameters, but also
entire expectations and even entire intents. However, the more complex the object to be
proposed is, the more speculation needs to be done by the intent manager about the priorities
of parameters. The proposal mechanism does not restrict the scope of a proposal, but in
practical scenarios a proposal request should be narrow in scope and actively curated by the
asking intent manager because it has the domain authority that can set priorities.

The target of the proposal expectation is the object the proposal shall be made for. The
parameter of the proposal expectation define a schedule for making proposals. This can be a
pbi:proposingFrequency property defining a time duration. This requires regular proposals
with the duration setting the time until the next proposal is due. The property
pbi:proposingTime allows to specify a particular point in time when a proposal shall be done.
pbi:ProposeImmediately is an instance of t:Instant. It refers to the time of intent reception and
can be used with a pbi:proposingTime property to specify that immediately after reception, a
proposal shall be created.

Intent reports are used to communicate a proposal. The new intent handling event
pbi:ProposalMade signifies that a new proposal is available. This event can be used in the
reporting expectation to require that a report is sent for every new proposal that is available.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 42 of 59

Figure 5.2: Vocabulary for providing a proposal in an intent report

The intent report that carries a proposal has a pbi:proposalNumber property attaching the
sequence number of the proposal. This sequence number is different from the report
sequence number, because it is only used for intent reports that actually carry a proposal.
Other intent reports without a proposal included might be sent between those that carry a
proposal.

In an expectation report object a proposal is made using the iio:bestParams property. It
defines an icmExpectationReportParam that carries the proposed values. This is similar to the
use of icm:paramsCompliant. The difference is that the content of icm:paramsCompliant
contain the measured or predicted values for handling the intent according to the
expectations, while pbi:paramsBest communicates the best values the intent handler can
reach if needed and with the action strategies and resources it has available.

The pbi:ProposalExpectationReport mirror the proposal expectation of the intent. It mainly
confirms the reason for creating this report.

A proposal can be asked by using the SET or BEST interface procedures. If the BEST interface
procedure was used to send the intent with the proposal expectation, the intent handler will
not consider this intent in operation and only start proposing according to the schedule
defined in the proposal expectation. . If a SET was used, the intent handler will actually start
operating with the intent it will make proposals in addition. This means it is possible to get
proposals as part of the intent negotiation in the investigation phase of the intent life cycle.
And it is also possible to get proposals for intent that is currently actively operated. This way
the intent owner can monitor what the most severe requirements would be.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 43 of 59

5.4. Vocabulary specification

5.4.1. Classes

Class: pbi:ProposalExpectation
Definition: Allows defining for which parameters in other expectations a proposal

shall be made for
Instance
of:

rdfs:Class

Subclass
of:

icm:Expectation

Task: Intent Modeling, Intent Best Proposal

Class: pbi:ProposalExpectationReport
Definition: Allows report on the expectation to make proposals
Instance of: rdfs:Class
Subclass of: icm:ExpectationReport
Task: Intent Reporting, Intent Best Proposal

5.4.2. Instances

The following table defines additional individuals of class icm:intentHandlingEvent

Intent Handling Event individual Description
pbi:ProposalMade A proposal was created by the intent handler

The following table defines instances of class t:Instant

Proposal Time
Individual

Description

pbi:ProposeImmediately this refer to now in the context of a temporal entity. It is
used to express that a proposal shall be created now.

5.4.3. Properties

Property: pbi:paramsBest
Definition: Specifies the best the intent handler can do for the parameter. This is

the reaction to a proposal expectation.
Typically, this is used to report the best value of a metric or KPI the
intent handler thinks is possible to reach in its current situation.

Instance
of:

rdf:property

Domain: icm:ExpectationReport
Range: icm:ExpectationReportParam
Task: Intent Reporting

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 44 of 59

Property: pbi:proposingFrequency
Definition: Specifies the time duration between proposals are supposed to be

created
Instance
of:

rdf:property

Domain: icm:ExpectationParam
Range: t:Duration
Task: Intent Modeling

Property: pbi:proposingTime
Definition: Specifies a point in time, when a proposal is supposed to be created
Instance of: rdf:property
Domain: icm:ExpectationParam
Range: t:Instance
Task: Intent Modeling

Property: pbi:proposalNumber
Definition: Specifies the proposal serial number starting at 1 for the first proposal

made and incrementing by 1 with each consecutive proposal.
Instance
of:

rdf:property

Domain: icm:IntentReport
Range: XSD:Integer
Task: Intent Reporting

5.5. Model usage and examples

5.5.1. Asking for a proposal

This example demonstrates how an intent can look like that is asking the intent handler to
make proposals.

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix icm: https://tmforum.org/2020/07/IntentCommonModel/ .
 @prefix icl: https://tmforum.orv/2021/07/intentComplianceLatency/ .
 @prefix iio: https://www.tmforum.org/2020/07/IntentInterfaceOntology .
 @prefix t: http://www.w3.org/2006/time .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix ex: http://example.org/IntentExample .
 ex:ExampleIntentXYZ
 a icm:Intent ;
 icm:partOfProcedure iio:BestProcedure ;
 icm:hasExpectation ex:De1, ex:De1, ex:Pe1, ex:Pe1ex:Re1 .

 ex:De1
 a icm:DeliveryExpectation ;

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 45 of 59

 icm:target _:service ;
 icm:params DeP1 .

 ex:DeP1
 a icm:ExpectationParam ;
 icm:targetIsA ex:ExampleService .

 ex:Pe1
 a icm:PropertyExpectation ;
 icm:target _:service ;
 icm:params PeP1, PeP2 .

 ex:PeP1
 a icm:ExpectationParam ;
 met:throughputPerUser [icm:atLeast [met:value 10 ;
 met:unit met:unitMBPS]] .

 ex:PeP2
 a icm:ExpectationParam ;
 met:latency [icm:atMost [met:value 20 ;
 met:unit met:unitS]] .

 ex:ProEx1
 a pbi:ProposalExpectation ;
 icm:target ex:PeP1 ;
 icm:params ex:ProExP1 .

 ex:ProExP1
 a icm:ExpectationParam ;
 pbi:proposingTime pbi:ProposeImmediately ;
 pbi:proposingFrequency [a t:Duration ;
 t:numericDuration 5 ;
 t:temporalUnit t:unitMinute] .

 ex:Re1
 a icm:ReportingExpectation ;
 icm:target ex:ExampleIntentXYZ ;
 icm:params ReP1 .

 ex:ReP1
 a icm:ExpectationParam ;
 icm:reportingEvent icm:intentRejected,
 icm:intentComplies,
 icm:intentDegrades,
 icm:handlingEnded,
 icm:updateRejected,
 icm:updateFinished,
 pbi:ProposalMade .

This example intent has a delivery expectation and a property expectation with the same
target. It is defining requirements for a service to be delivered. More specifically the property
expectation has two params setting targets for throughput and latency.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 46 of 59

The proposal generation is steered by a proposal expectation. Its target is ex:PeP1, which is the
parameter of the property expectation that expresses throughput requirement. This means
the intent owner requires the throughput target value from the property expectation, but it
also asks for proposals about the best throughput the intent handler would be able to achieve.
This request is valid in the context of other expectations. Here the proposal shall be made
considering that the latency requirement is still met.

The parameters of the proposal expectation furthermore define a schedule for proposal
generation. It states that a proposal is needed immediately at the reception of the intent and
then every 5 minutes.

The proposals would be delivered to the intent owner through intent reports. The reporting
expectation sets this up by using the pbi:ProposalMade event as reporting event. This means
that every time a proposal is created according to the proposing schedule, this event occurs
and a report is sent that contains the proposal.

This example is considering that the intent is used as part of the BEST procedure. The property
icm:PartOfProcedure indicates this. Consequently, the intent is hypothetical and not meant to
be interpreted as requirement for current operation. The intent handler is only asked to
provide proposals. It would do so by sending intent reports according to the proposing
schedule. This ends when the intent owner removes the intent.

If the SET procedure were used instead, the intent handler would start to actively operate
based on the requirements defined within the intent. Additionally, it would create proposals
according to the target and schedule defined by the proposal expectation.

5.5.2. Reporting a proposal

This example demonstrates how to deliver a proposal to the intent owner with an intent
report. This intent report is related to the example intent defined in Chapter 5.5.1.

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix icm: https://tmforum.org/2020/07/IntentCommonModel/ .
 @prefix icl: https://tmforum.orv/2021/07/intentComplianceLatency/ .
 @prefix iio: https://www.tmforum.org/2020/07/IntentInterfaceOntology .
 @prefix t: http://www.w3.org/2006/time .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix ex: http://example.org/IntentExample .
 ex:ExampleIntentReportXYZ
 a icm:IntentReport ;
 imo:intentOwner ex:IntentManagerXYZ ;
 imo:intentHandler ex:IntentmanagerABC ;
 icm:partOfProcedure iio:BestProcedure ;
 icm:reportFor ex:ExampleIntentXYZ ;
 icm:reportTimestamp [t:inXSDDateTimeStamp 2022-12-01T10:20:10+10:00
] ;
 icm:currentIntentHandlingState icm:StateCompliant ;
 icm:currentIntentUpdateState icm:StateNoUpdate ;
 iv:currentValidityState iv:CurrentlyInvalid
 icm:reportNumber 42;
 pbi:proposalNumber 1;

 icm:hasExpectationReport
 [a icm:DeliveryExpectationReport ;
 icm:reportsAbout ex:De1 ;
 icm:target _:service ;
 icm:paramsCompliant [icm:reportsAbout ex:DeP1 ;

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/2020/07/intent/

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/2006/time

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 47 of 59

 icm:targetIsA ex:ExampleService ;
] ;
] ,
 [a icm:PropertyExpectationReport
 icm:reportsAbout ex:Pe1 ;
 icm:target _:service ;
 icm:paramsCompliant
 [icm:reportsAbout ex:PeP1 ;
 met:throughputPerUser [icm:atLeast
 [met:value 12 ;
 met:unit met:unitMBPS]
] ;
] ,
 [icm:reportsAbout ex:PeP2 ;
 met:latency [icm:atMost
 [met:value 14 ;
 met:unit met:unitS]] ;
];
 pbi:paramsBest
 [icm:reportsAbout ex:PeP1 ;
 met:throughputPerUser [icm:atLeast
 [met:value 20 ;
 met:unit met:unitMBPS]] ;
] ;
] ,

 [a pbi:ProposalExpectationReport ;
 icm:reportsAbout ex:ProEx1 ;
 icm:target ex:PeP1 ;
 icm:paramsCompliant
 [pbi:proposingFrequency pbi:ProposeImmediately] ;
] ,

 [a icm:ReportingExpectationReport ;
 icm:reportsAbout ex:Re1
 icm:target ex:ExampleIntentXYZ ;
 icm:paramsCompliant [icm:reportingEvent pbi:ProposalMade] ;
];
].

In this example intent report the proposal number indicates that it carries the proposal with
serial number 1. It is the first proposal made.

The intent and therefore also this intent report is part of the Best/Proposal procedure as
indicated by the icm:partOfProcedure property therefore used in the investigation phase of
the intent life cycle. The intent report is therefore a hypothetical report based entirely on a
state prediction by the intent handler. Because of this the target of delivery and property
expectation reports is still a blank node. The intent is not meant to be actively fulfilled no
service is instantiated. Consequently, no instance is available to report about.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 48 of 59

In the intent the proposal is asked for the throughput parameter in the property expectation.
In the respective property expectation report the proposal is provided using the
pbi:paramsBEST property. Here, the intent handler states that it would currently be able to
comply to a throughput requirement of at least 20 MBPS.

Next to the proposal the intent owner also states the current value of that parameter and
other required ones. This can be a currently measured value for targets that are known. Here
the target is not known and therefore the provided values are predictions. The prediction and
proposals differ, because the prediction is based on the solution strategies the intent handler
would choose to just meet the requirements. There might be more costly or aggressive
alternative solutions available that can lead to better results. The prediction of what these
strategies could accomplish would be stated in the proposal.

The proposal expectation report states which proposal generation condition has caused this
proposal to be created. In this example the proposal was generated as immediate first
proposal. Furthermore, the reporting expectation report mentions that this report was
generated as reaction to the event of a proposal being made.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 49 of 59

6. Intent Family Relation

6.1. Motivation and background

An intent is often used together with other intent to achieve a requirement. For example, a
first intent might require a service to be delivered and the intent handler creates a second
intent that requires the network functions needed for this service and a third intent requiring a
slice. In the terminology introduced here, this set of inter-dependent intents is called an intent
family. Intents are related and considered to be in the same family if they are part of the
solution for a common requirement. The following relationships are recognized:

Parent and child intent
An intent is a child of another intent if it directly contributes to satisfy the requirements set by
the other intent. This other intent is therefore the parent of the first. Intents can have multiple
parents. In fact every intent that has directly contributed to defining the requirements of
another intent is considered to be one of its parents. In reverse, one intent can have multiple
child intents. These are all the intents that set requirements in various subsequent intent
handlers. This is a relationship of terminal and instrumental goals. The parent is trying to
satisfy its terminal goals and its child intents are used to set and distribute the instrumental
goals needed.

Ancestors
All intent above in the parent-child hierarchy are ancestors. This refers to parent intents and
all parents of parents.

Root Intent
This is an intent without parents. It is usually the original intent coming directly from human
interaction or ordering systems.

Sibling Intent
Two intents are siblings if they have the same parents and are used together to achieve the
goals of the parents. In this scenario, the intent owner has created several intents and send
them to multiple handlers. This handler and this intent are therefore one of a set used to
achieve the owner's goals. The intents used in this operation and siblings.

This model allows communicating intent relationships. This information can be attached to an
intent using a specialization of class icm:Information. Intent family relationships therefore do
not carry requirements the system would need or even can be compliant to. It is only used for
tracking and information purposes. This information can be valuable to human technicians
when they monitor the autonomous system or try to debug its processes.
Family relationships can have multiple dimensions depending on what type of relationship is
relevant. For example, two intents can be related because they both contribute to the delivery
of the same service. Another example would be two intents that are related, because they are
both serving users from the same user group. It is therefore possible that an intent is member
of multiple families and these families do not necessarily share the same members. The intent
family relationship model is therefore a tool that can be used differently depending on the use
case and what type of relationship would be relevant to trace and document.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 50 of 59

The current version of this model only has the vocabulary to attach intent family relation
information to intents and not to intent reports. This might be useful, because child
relationships need to be communicated upwards. A future version of this model can be
extended accordingly.

6.2. Notation and namespaces

The proposals of the intent family relations model is defined in a namespace under the TM
Forum domain. This intent extension model depends on the following models and uses the
respective namespaces.

Model Prefix Namespace Published
by

Intent
Family
Relation

ifr https://tmforum.org/IntentExtension/2021/12/Intent
FamilyRelation *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

TM Forum
Intent
Common
Model

icm https://www.tmforum.org/2020/07/IntentCommon
Model *

TM Forum

Example
namespace

ex http://example.com/IntentModeling/ n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for the intent family relation model is "ifr".

The model has a dependency to RDF and RDFS, because they are the chosen base standards
for all intent and intent report models.

The intent family relation model specializes and extents the definitions of the intent common
model.

The example namespace is used for separating the namespace for example objects within this
document.

6.3. Principles and vocabulary overview

Information about the family of an intent is expressed using an object of class ifr:IntentFamily.
It is assigned to an intent using the ifr:hasFamily property.

https://tmforum.org/Intent

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://example.com/intent

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 51 of 59

Figure 6.1: Vocabulary for expressing intent family relationships

Family relationships to other intents are specified with the ifr:hasAncestor, ifr:hasChild,
ifr:hasParent, ifr:hasRoot and ifr:hasSibling properties. They refer to the intents that have the
respective relationships to the intent the family is specified for.

Intents can be part of multiple families. These families are distinguished by relationship
category. For example, intents might be related, because they all contribute to the delivery of
a service. Or they all contribute to the same customer contract. This model defines as few
examples of family relationship categories as individuals of class ifr:RelationshipCategory.
However, this list is supposed to be extended depending on use cases that need the respective
information.

6.4. Vocabulary specification

6.4.1. Classes

Class: ifr:IntentFamily
Definition: Instances of this class are ancestors of other intents
Instance of: rdfs:Class
Subclass of: icm:Information

Class: ifr:RelationshipCategory
Definition: Allows defining for which parameters in other expectations a proposal

shall be made for
Instance
of:

rdfs:Class

Subclass
of:

n/a

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 52 of 59

6.4.2. Instances

The following table defines individuals of class ifr:RelationshipCategory

ifr:RelationshipCategory
individual

Description

ifr:SameCustomer All intents in the family have in common that they
contribute to serving the same customer

ifr:SameContract All intents in the family have in common that they
contribute to fulfilling the same contract

ifr:SameBusinessPolicy All intents in the family have in common that they
contribute to satisfy the same business policy of the
operator

ifr:SameUserGroup All intents in the family have in common that they
contribute to serving users from the same group

... further proposals are welcome

6.4.3. Properties

Property: ifr:hasAncestor
Definition: Refers to an intent that is considered to be an ancestor of the intent

the family is specified for
Instance
of:

rdf:property

Domain: ifr:IntentFamily
Range: icm:Intent

Property: ifr:hasChild
Definition: Refers to an intent that is considered to be a child of the intent the

family is specified for
Instance
of:

rdf:property

Domain: ifr:IntentFamily
Range: icm:Intent

Property: ifr:hasFamily
Definition: Assigns a family specification to an intent
Instance of: rdf:property
Domain: icm:Intent
Range: ifr:IntentFamily

Property: ifr:hasParent
Definition: Refers to an intent that is considered to be a parent of the intent the

family is specified for
Instance
of:

rdf:property

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 53 of 59

Property: ifr:hasParent
Domain: ifr:IntentFamily
Range: icm:Intent

Property: ifr:hasRoot
Definition: Refers to an intent that is considered to be a root of the intent the

family is specified for
Instance
of:

rdf:property

Domain: ifr:IntentFamily
Range: icm:Intent

Property: ifr:hasSibling
Definition: Refers to an intent that is considered to be a sibling of the intent the

family is specified for
Instance
of:

rdf:property

Domain: ifr:IntentFamily
Range: icm:Intent

Property: ifr:relatedBy
Definition: Refers to an intent that is considered to be a Child of the intent the

family is specified for
Instance
of:

rdf:property

Domain: ifr:IntentFamily
Range: ifr:RelationshipCategory

6.5. Model usage and examples

6.5.1. Communicating ancestor and sibling intents

This example demonstrates how an intent can contain information about family relationships.

 @prefix rdfs: http://www.w3.org/2000/01/rdf-schema# .
 @prefix ifr:
https://tmforum.org/IntentExtension/2021/12/IntentFamilyRelation .
 @prefix icm: https://tmforum.org/2020/07/IntentCommonModel/ .
 @prefix xsd: http://www.w3.org/2001/XMLSchema# .
 @prefix met: http://www.sdo1.example.org/v2/TelcoMetrics/ .
 @prefix ex: http://example.org/IntentExample .
 ex:ExampleIntentXYZ
 a icm:Intent ;
 icm:partOfProcedure iio:BestProcedure ;
 icm:hasExpectation ex:De1, ex:De1, ex:Pe1, ex:Pe1ex:Re1 .
 ifr:hasFamily [a IntentFamily ;
 ifr:relatedBy ifr:SameContract ;
 ifr:hasRoot ex:Intent0001 ;

http://www.w3.org/2000/01/rdf-schema

https://tmforum.org/Intent

https://tmforum.org/2020/07/intent/

http://www.w3.org/2001/XMLSchema

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 54 of 59

 ifr:hasParent ex:Intent0005 ;
 ifr:hasSibling ex:Intent0204 ;
 ifr:hasSibling ex:Intent0333
] .

 ex:De1
 a icm:DeliveryExpectation ;
 icm:target _:service ;
 icm:params DeP1 .

 ex:DeP1
 a icm:ExpectationParam ;
 icm:targetIsA ex:ExampleService .

 ex:Pe1
 a icm:PropertyExpectation ;
 icm:target _:service ;
 icm:params PeP1, PeP2 .

 ex:PeP1
 a icm:ExpectationParam ;
 met:throughputPerUser [icm:atLeast [met:value 10 ;
 met:unit met:unitMBPS]] .

 ex:PeP2
 a icm:ExpectationParam ;
 met:latency [icm:atMost [met:value 20 ;
 met:unit met:unitS]] .

 ex:Re1
 a icm:ReportingExpectation ;
 icm:target ex:ExampleIntentXYZ ;
 icm:params ReP1 .

 ex:ReP1
 a icm:ExpectationParam ;
 icm:reportingEvent icm:intentRejected,
 icm:intentComplies,
 icm:intentDegrades,
 icm:handlingEnded,
 icm:updateRejected,
 icm:updateFinished .

This example intent contains information of a family it is part of. This family is defined by
contributing to the same contract. In this family are one root intent, which was for example
the one created by the order management system in business operation after the contract was
approved and its fulfillment is needed. The family relation also refers to one direct parent and
two sibling intents

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 55 of 59

7. Appendix A: Ideas for further intent
extension models

The following models are not yet fully defined, but mainly ideas of interesting modeling
features and use cases. These models might be defined in detail in future revisions of this
document.

7.1. States per requirement object

Intent handling is based on objects that define requirements. Naturally, intent itself is a
requirement defining object. Other examples are expectation and expectation parameters.
Each of them defines a subset of the requirements an intent handler has to comply to.
Compliance or degradation is tracked by the intent handler state machine defined as part of
the intent common model. However, the system can be compliant not only to the entire
intent, but to each subset of requirements. This proposed model would allow the definition of
separate state machines for each requirement defining object. With events associated to these
state machines the intent reporting triggers can become more specialized and focused if
needed.

7.2. Sets of expectation targets

The intent common model defines intent targets that can refer to any resource of referable
object for the purpose of defining a requirement about it. If multiple targets are given in a
single expectation, there are multiple possible interpretations of the requirement. The
question is, for example, if each referenced target shall individually comply to the
requirement, or any of the targets. Another interpretation is that all targeted resources
together as a group shall lead to compliance. Each individual target alone would not comply,
but might contribute. This proposed intent extension model would introduce qualifiers that
clearly distinguish the interpretations of multiple targets within an expectation.

7.3. Side conditions and assumptions of an expectation

A property expectation can define concrete goals to be reached. Sometimes these goals might
depend on assumptions. For example a throughput target might only apply up to a certain
number of simultaneous users. This constitutes another type of validity condition and this
proposed intent extension model would introduce suitable vocabulary.

7.4. Expected Degradation and Compliance

An intent handler might have predictive capabilities. This means it can potentially predict that
it is heading towards a situation it would not be able to comply to an intent. Another example
would be that the intent handler is degraded and it has already taken action. However, the
actions do not show immediate effect on the system state, but it is still expected that
compliance is reached. In this situation the owner sees continued degradation. Information
about when the handler expects that the system reaches compliance again would be valuable

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 56 of 59

information. The proposed intent extension model would introduce the vocabulary for these
use cases. It would specify, for example, new intent handling events that inform the owner
that the handler has taken action and is waiting for them to show results. In the intent report
the handler can specify a time duration after which it expects compliance. Similarly, an event
might signify that a prediction has shown coming state degradation. This can lead to a report
in which the intent handler states when it expects the degradation to start. It might also state
when it expects to recover after.

7.5. Report Measurement Timing

An intent report is based on the measurement of system state. Many requirements specify
target values or value ranges using a KPI or similar metrics. The intent handler needs to
measure these metrics to be able to assess its compliance to the intent and the need for
actions. However, many metrics and KPI are the result of distributed measurements that are
then filtered, aggregated and correlated until they contain the information the intent handler
needs. This process bears a latency. This means the intent handler always sees the past system
state. If the measurement delay is too high, it might not even be possible to take sensible
actions, because the situation that needed countermeasures is long gone. For intent reporting
this means that the reported system state is also old. The intent owner might be interested to
know how old the reported values are. This proposed intent extension model would introduce
the vocabulary to specify for each expectation report parameter additional information about
the time of measurement.

7.6. Autonomous risk taking

The intent handler is autonomously taking action to keep the intent fulfilled. These actions
might be risky in the sense that they can fail and instead of reaching a preferential state, a
more or less disastrous outcome is possible. In practice any outcome has a probability and it is
higher for more results. Risk can be defined as the accumulated probability of all outcomes
that lead to a degradation. This can further be refined by introducing a weight factor that is
higher the less preferential an outcome is. The intent owner might want to restrict risk taking
by the intent handler using these risk metrics a defining constraint and. This requires the
intent handler to select action strategies from the set of actions with acceptable risk
associated with them. This intent extension model would introduce the needed vocabulary for
this use case.

7.7. Intent and expectation priority

This intent extension model would define a basic mechanism for assigning absolute and
relative priority values to requirement defining objects such as expectations and expectation
parameters. This could be introduced through a new subclass of Context. The intent handler
might use these values to prioritize actions that would prefer the compliance to some
requirements with high priority over those with lower priority.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 57 of 59

7.8. User and market information

An intent might be used within a particular market or country and the involved services might
serve or address a particular type or group of users. Information about these aspects might be
interesting for the intent handler for making better choices regarding actions and priority.
Information about these aspects can come from the intent owner and can be provided as
information object. This proposed intent extension model would define the respective
vocabulary.

7.9. Allocation constraints

Intent handlers decide autonomously which of the resources within their scope shall be used
to fulfill the intent. It can for example deploy new instances in datacenter or choose to re-uses
existing instances to satisfy the intent. The intent handler would by default choose the data
center location that would best fulfill intents or even do a random selection. However, it might
be required that certain locations are avoided. This can be for example for legal and other
reasons. Users might want to keep their data away from certain governments and
organizations.
This intent extension model introduces an allocation expectation. It would allow defining
requirements on what locations shall be preferred or need to be avoided for the resources
used to fulfil the intent. The model would for example allow conditions based on geographical
location or based on administrative domains or topology information.

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 58 of 59

8. Appendix B: References

[1] W3C Resource Description Framework Version 1.1: https://www.w3.org/TR/rdf11-
concepts/

[2] W3C RDF Schema 1.1: https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

[3] W3C Time ontology in Owl: https://www.w3.org/TR/owl-time/

https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

https://www.w3.org/TR/owl-time/

 IG1253B Intent Extension Models v1.0.0

© TM Forum 2021. All Rights Reserved. Page 59 of 59

9. Administrative Appendix

9.1. Document History

9.1.1. Version History

Version Number Date Modified Modified by: Description of changes
1.0.0 26-Nov-2021 Alan Pope Initial Release

9.1.2. Release History

Release Status Date Modified Modified by: Description of changes
Pre-production 26-Nov-2021 Alan Pope Final edits prior to publication

9.2. Acknowledgments

9.2.1. Guide Lead & Author

Member Title Company
Jörg Niemöller Expert of Analytics and Customer Experience Ericsson

9.2.2. Main Contributors

Member Title Company
Jörg Niemöller Expert of Analytics and Customer

Experience
Ericsson

Kevin McDonnell Senior Director, Intelligent Automation Huawei
James O'Sullivan Product Director, Intelligent Automation Huawei
Dave Milham Chief Architect TM Forum
Vinay Devadatta Practice Head (Innovation & Industry

Relations)
Wipro
Technologies

Azahar Machwe OSS Automation BT Group plc
Wang Lei Systems Expert Huawei
Tayeb Ben
Meriem

Senior Standardization Manager (OSS) Orange

Leonid Mokrushin Principle Researcher Ericsson

9.2.3. Additional Inputs

Member Title Company
Lester Thomas Chief IT Systems Architect Vodafone

Group
Ankur Goyal Lead Consultant Infosys
Emmanuel A.
Otchere

Chief Technical ExpertVP, Standards & Industry
Development

Huawei

Min He Chief Architect Futurewei

			Notice

			Table of Contents

			List of Figures

			Executive Summary

			Introduction

			1. Intent Validity

			1.1. Motivation and background

			1.2. Notation and namespaces

			1.3. Principles and vocabulary overview

			1.3.1. Validity inheritance and adoption

			1.3.2. Validity in intent reports

			1.3.3. Validity events

			1.3.4. Intent handler interpretations and actions

			1.4. Vocabulary Specification

			1.4.1. Classes

			1.4.2. Individuals

			1.4.3. Properties

			1.5. Model usage and examples

			2. Temporal Validity

			2.1. Motivation and background

			2.2. Notation and namespaces

			2.3. Principles and vocabulary overview

			2.4. Vocabulary Specification

			2.4.1. Classes

			2.4.2. Individuals

			2.4.3. Properties

			2.5. Model usage and examples

			2.5.1. Intent validity period start

			2.5.2. Alternative expectations with mutually exclusive validity

			2.5.3. Intent report considering validity

			3. Acceptance and rejection control

			3.1. Motivation and background

			3.2. Notation and namespaces

			3.3. Principles and vocabulary overview

			3.4. Vocabulary specification

			3.4.1. Classes

			3.4.2. Instances

			3.4.3. Properties

			3.5. Model usage and examples

			3.5.1. Specifying time budget for acceptance decision and rejection override

			4. Intent compliance latency

			4.1. Motivation and background

			4.2. Notation and namespaces

			4.3. Principles and vocabulary overview

			4.4. Vocabulary specification

			4.4.1. Classes

			4.4.2. Instances

			4.4.3. Properties

			4.5. Model usage and examples

			4.5.1. Specifying time budget for recovery from degradation

			4.5.2. Setting default recovery time budget for an intent handler

			5. Proposals of best intent

			5.1. Motivation and background

			5.2. Notation and namespaces

			5.3. Principles and vocabulary overview

			5.4. Vocabulary specification

			5.4.1. Classes

			5.4.2. Instances

			5.4.3. Properties

			5.5. Model usage and examples

			5.5.1. Asking for a proposal

			5.5.2. Reporting a proposal

			6. Intent Family Relation

			6.1. Motivation and background

			6.2. Notation and namespaces

			6.3. Principles and vocabulary overview

			6.4. Vocabulary specification

			6.4.1. Classes

			6.4.2. Instances

			6.4.3. Properties

			6.5. Model usage and examples

			6.5.1. Communicating ancestor and sibling intents

			7. Appendix A: Ideas for further intent extension models

			7.1. States per requirement object

			7.2. Sets of expectation targets

			7.3. Side conditions and assumptions of an expectation

			7.4. Expected Degradation and Compliance

			7.5. Report Measurement Timing

			7.6. Autonomous risk taking

			7.7. Intent and expectation priority

			7.8. User and market information

			7.9. Allocation constraints

			8. Appendix B: References

			9. Administrative Appendix

			9.1. Document History

			9.1.1. Version History

			9.1.2. Release History

			9.2. Acknowledgments

			9.2.1. Guide Lead & Author

			9.2.2. Main Contributors

			9.2.3. Additional Inputs

IG1253C_Intent_Life_Cycle_Management_and_Interface_v1.1.0.pdf

TM Forum 2021. All Rights Reserved.

TM Forum Introductory Guide

Intent Life Cycle Management
and Interface

IG1253C
Team Approved Date: 26-Nov-2021

Release Status: Pre-production Approval Status: Team Approved
Version 1.1.0 IPR Mode: RAND

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 2 of 38

Notice
Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to TM FORUM, except as needed for the
purpose of developing any document or deliverable produced by a TM FORUM Collaboration
Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

181 New Road, Suite 304
Parsippany, NJ 07054, USA
Tel No. +1 862 227 1648
TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 3 of 38

Table of Contents

Notice .. 2

Table of Contents .. 3

List of Figures .. 5

Executive Summary ... 6

Introduction .. 7

1. Intent life cycle .. 8

1.1. Roles in the intent life-cycle management ... 8

1.2. Tasks of intent owners and handlers .. 8

1.3. Phases of the intent life-cycle ... 9

1.4. States and events of intent handling .. 11

1.5. States machine of intent updates ... 12

1.6. Additional state machines .. 14

2. The intent Interface ... 15

2.1. Intent Handling Management Service .. 15

2.2. Intent handler and owner relationship... 16

3. Mandatory procedures of the intent interface ... 18

3.1. Setting and modifying intent .. 18

3.2. Removal of intent ... 19

3.3. Reporting on intent status .. 19

3.4. Examples ... 19

3.4.1. Basic intent lifecycle management: Setting, Rejection, Modification,

Reporting, Removal .. 20

3.4.2. Intent Lifecycle Management: Multiple intents to multiple handlers 21

3.4.3. Multi-level intent handling ... 22

4. Optional procedures of the Intent Interface ... 25

4.1. Collaborative Evaluation ... 25

4.1.1. Example: Asking the intent owner for a judgment 26

4.2. Intent Probing ... 27

4.2.1. Example: Intent Probing ... 27

4.3. Intent best options ... 29

4.3.1. Example: Proposing the best possible intent ... 29

5. Further assumptions and proposals .. 32

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 4 of 38

6. Appendix A: Intent Interface Ontology .. 34

6.1. Motivation and background ... 34

6.2. Notation and namespaces .. 34

6.3. Principles and vocabulary overview ... 34

6.4. Vocabulary specification ... 35

6.4.1. Classes .. 35

6.4.2. Instances ... 35

6.4.3. Properties ... 35

6.5. Model usage and examples .. 36

7. Administrative Appendix ... 37

7.1. Document History ... 37

7.1.1. Version History ... 37

7.1.2. Release History ... 37

7.2. Acknowledgments .. 37

7.2.1. Guide Lead & Author .. 37

7.2.2. Main Contributors .. 37

7.2.3. Additional Inputs .. 38

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 5 of 38

List of Figures

Figure 1.1: Intent life cycle .. 9

Figure 1.2: State machine of intent handling and intent operational state 11

Figure 1.3: State machine of intent handling and intent operational state 13

Figure 2.1: Intent handling management service (MnS) constituting the intent interface 15

Figure 2.2: Multiple intent owners and handlers ... 16

Figure 2.3: Hierarchy of intent handling dual handler/owner role .. 17

Figure 3.1: Intent Lifecycle management example with basic interface procedures 20

Figure 3.2: Intent Lifecycle management example with basic interface procedures and multiple
handlers ... 22

Figure 3.3: Intent Lifecycle management example with multiple levels of intent handling 23

Figure 4.1: Intent handler asking the intent owner for a judgment on solution preferences .. 26

Figure 4.2: Probing of expected intent handling outcomes .. 28

Figure 4.3: Asking a handler for best intent it can do .. 30

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 6 of 38

Executive Summary
The concepts of intent driven operation were introduced in IG1253. Intents are defined as
being knowledge objects. They have a defined life cycle that needs to be actively managed.
Intent management functions implement the respective management task. This involves
communication between intent management functions to exchange intents and intent reports.
The interface allows sending intent, reporting on handling success, modifying the intent and
finally ordering its removal. Optionally the interface allows collaborative evaluation of solution
alternatives. It also provides procedures that for feasibility investigation establish if an intent
can be fulfilled and negotiation about which level of requirements and could be used. In all
cases the interface is always used between two intent managers in different roles within the
life cycle management of an intent.

This document defines the details of the intent life cycle including the related roles and tasks
of intent management functions. Furthermore, this document defines the interface through
which these intent managers perform intent life cycle management actions. It proposes the
mandatory interface procedures that allow basic intent management. Furthermore, it
describes optional procedures that introduce more sophisticated handshake and interaction
between intent managers for reaching better results. On the other hand, these procedures
require more demanding implementations with predictive capabilities.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 7 of 38

Introduction
Operational processes in telecommunications systems are typically exposed by management
functions. Other functions and the subsystems in which they reside in can order actions by
invoking these processes. The receiving management function would then execute the process
and any associated actions. These could be actions such as deployment and instantiating
resources or setting of a target configuration. Typically, the initiated process would terminate,
and the ordered actions would be executed. This means that subsystems expose the actions
they can perform, and other subsystems can order them.

Intent based operation changes this interaction paradigm. Subsystems no longer expose
actions and processes anymore, but instead accept an intent that contains the requirements
they must meet in its operation. This means that the system receiving the intent can itself
choose the actions and processes that need to be executed.

This has two advantages based on the increased separation of concerns. The first is that the
system that defined and sent the intent does not need to understand how to implement the
requirement. It does not need an implementation capable of understanding and managing the
complexity of actions and their effects within the domain of another system.

The second advantage is that the system receiving the intent has all the models, information,
and business logic to understand the environment for which it is responsible. This makes it
well-equipped to develop action strategies. All the intelligence is concentrated in a single
system, minimizing complexity through focus. Learning from observation and adapting to
change also becomes less complex when it is limited in scope.

Using intent and basing the operation on the setting of requirements has another effect:
processes that eventually finish once an order task is completed are replaced by a continuous
loop that constantly monitors the system and assures through its actions that the system
meets the requirements. Other systems can affect and influence the system by adding or
removing requirements. This would be noticed in the monitoring and assurance loop and can
lead to actions by which the system adapts and optimizes its state according to the newly valid
requirement's composition.

We believe that this new operational and interaction paradigm has tremendous benefits for
achieving autonomy in practice. AI technologies such as machine-learned models and
inference from logic reasoning will be required. Their implementation will benefit from
specialization.

In practice, this discussion means that intent is a semi-permanent knowledge object. Its
creation represents a new requirement, and its removal means that the requirement is no
longer needed. The intent is therefore not only knowledge about requirements, but also an
object with a life cycle. In intent-based operation, managing the life cycle of an intent
practically replaces imperative interfaces which are based on action orders and process
invocation. Consequently, the intent interface is primarily a lifecycle management interface.

This document is part of the IG1253 set of specifications. It defines the life cycle of Intent
objects and the interface to manage them. It also specifies a simple descriptive ontology
model over the interface.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 8 of 38

1. Intent life cycle

1.1. Roles in the intent life-cycle management

Intents are knowledge objects with an actively managed life cycle. The active component in
intent life-cycle management is an intent management function (aka. intent manager). Intent
is in this respect exclusively used in the communication between two instances of intent
management functions.

The two intent managers involved in the management of one individual intent assume distinct
and exclusive roles in the life-cycle of this intent. These roles imply certain responsibilities and
tasks for each intent manager involved.

Intent Owner
The intent owner is the origin of the intent. It is the entity that has created the intent and
formulated all requirements and information within it. It is using this intent to communicate
requirements, goals, or constraints to other intent management function and therefore impact
their tasks and behavior. The owner of an intent is responsible for managing its life cycle.
Consequently, the intent owner is the only entity and role allowed to modify intent objects. It
is also responsible to actively remove the intent if the requirements it contains are not needed
anymore.

Intent Handler
An intent management function assumes the role of intent handler by receiving an intent
object from an intent owner. It becomes intent handler for that intent. An intent handler
considers the requirements, goals and constraints specified in this intent object when
operating the domain and infrastructure it is responsible for. Within its scope of
responsibilities, the intent manager in the role of intent handler is responsible to transition the
system state into a state that complies to the intent. Typically, this involves monitoring the
state, comparing it to the intent defined requirements and through its decisions and actions
keeping the system compliant while the intent is present and valid. An intent manager cannot
modify or remove intent, for which it is in the handler role. Only the intent owner can. The
intent handler is however responsible for keeping the owner updated about the intent
fulfillment state and progress through intent reports.

An intent manager can assume exactly one of these roles for each individual intent. One
individual intent has exactly one owner and exactly one handler. It is however possible that
one intent manager is in the role of intent owner for several intents and at the same time the
handler for a different set of intents.

1.2. Tasks of intent owners and handlers

An intent handler can reject intent, for example if it is not able to fulfill the intent or if it does
not understand or support some given requirements due to the nature of the autonomous
domain it manages. It might also propose alternative requirements, which this intent handler
is confident it can comply to. These and further interaction schemes between the intent owner
and intent handler are described in more detail in Chapter 2.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 9 of 38

Intent handlers must report on the status and fulfillment progress of all intents they have
received. The detailed criteria for when and under which conditions a report is due are
determined by the intent owner and included in the intent object itself as reporting
expectation. This means reporting is yet another detailed requirement satisfying a need of the
owner.

The assignment of intent life-cycle roles are specific to every intent individually. The same
intent manager can be in the role of intent handler for one intent, but at same time it might be
intent owner of another intent.

An individual intent can only have one owner. Furthermore, it can also not have multiple
handlers. In a concrete use cases the same requirement might be needed in different system
domains and sub-systems, each operated by a distinct intent manager. This can be realized by
creating multiple distinct intent objects with similar content. They have the same intent owner
but are sent separately to different intent handlers. In any case each of these intents would be
managed within its own life-cycle.

Furthermore, the owner and handler roles cannot be transferred to other entities throughout
the lifecycle of an intent. This means for any intent object the owner stays always that same
and, once chosen, the intent handler as well. If, for whatever reason the management of
intent shall move to different intent manager instances, this would require creating a new
intent with similar content, sending it to the new handler and deleting the original intent
releasing the original handler from its duties.

Intent objects cannot be temporarily activated or de-activated. They can only be created and
sent to a handler and later the owner can remove them. If the intent must not be considered
anymore, the owner needs to remove it. If later the same requirements are needed again, the
owner would create a new similar intent and send it to the handler again. However, these are
the actions available when relying solely on the intent common model. The document IG1253B
describes intent extension models, which specify extensive vocabulary for defining validity of
intent or of individual requirements within the intent. Complex validity conditions and time
schedules can be defined within the intent by the intent owner.

1.3. Phases of the intent life-cycle

The intent lifecycle consists of the following phases:

Figure 1.1: Intent life cycle

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 10 of 38

Detection (Monitor, Analyze)
The intent owner monitors and analyzes the state of the underlying infrastructure as well as
changes in demand reflected by its own goals. It determines if its own goals are sufficiently
fulfilled. This allows intent owners to detect if it needs to revise its own solution strategy and
implement it by modifying the requirements, goals or constraints given as intent to the
underlying management layers and autonomous domains.

This need to adapt solution strategy and associated intent can be motivated by new or
changed goals given to the intent owner. It can also originate from observation through
received intent reports and other means, such as analytics insights and measurement of
metrics and KPI. Also, a root cause analysis can play a role indicating which detail of the intent
needs, attention.

Investigation (Discover, Negotiate, Predict)
The intent owner determines what intent is feasible. This refers to the composition of
requirements, goals, and constraints and if an intent manager is available with the authority to
handle them. The domain and the resources within, for which a prospective intent handler is
responsible for has to match the nature of the requirements. This can be based on experience
with the underlying infrastructure, management layers and autonomous domains. Or it can be
determined from a negotiation and feasibility check in collaboration with intent managers
within the targeted domains. Intent handlers would provide their estimate and prediction
about intent handling success. Furthermore, intent managers publish their capabilities and
allow other intent mangers to discover a suitable intent handler. This procedure is described in
IG1253D.

Definition (Decide, Create, Modify, Remove)
The intent owner decides a solution strategy. This is based on the need determined in the
detection phase and considers feasibility according to the investigation phase. The intent
owner implements its solution strategy by defining intent to be given to the underlying
management layers and autonomous domains.

Practically this means that the intent owner selects, for which intent handling domain it wants
to define or modify requirement. If needed it would create multiple intent and targets each
impacted intent handling domain by individual intent. The intent owner creates new intent,
modifies existing intent or retires intent that is not needed anymore.

Please note that each individual intent object has its own life cycle managed. However, the life
cycles of multiple intent objects often relate to each other by being part of a solution strategy
that involves multiple intent handlers and multiple individual intent objects. It is in the
responsibility of the intent owner to manage these relationships and keep the individual intent
objects consistent with each other.

Distribution (Act, Select, Route, Send)
In this phase the intent owner acts by distributing the defined intent. It first verifies the right
target intent handler for each individual intent object. For modified intent the used intent
handler does not change, but its capabilities with respect to supported information elements
might have and to be considered.

If a suitable intent handler is discovered, the intent owner informs it about changes over the
intent interface. This includes setting of new intent, modification of existing intent or removal
of intent that is not needed anymore.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 11 of 38

Operation (Measure, Decide, Act, Report)
The intent handler is operating its autonomous domain according to requirements, goals, and
constraints of all intents it handles. An individual intent object contributes this set. The
operation requires that the intent handler performs its own analysis, decision-making, and
actuation trying to fulfill the intent and keeping it fulfilled.

The intent handler cannot modify the intent. It can only report on its success and compliance
state to the intent owner. This reporting is done individually for each distinct intent object
towards the respective owner. The reporting closes the life-cycle loop as it enables the
detection phase in the intent owner.

1.4. States and events of intent handling

Intent handlers need to continuously follow up on the intent handling success. This is the base
for deciding if actions need to be initiated and it also provides the basis for reporting the
system state and current handling success to the intent owner. We define a generic state
machine of intent handling. It creates a reference for reporting. This ensures that handler and
owner have a common and consistent interpretation of the state and handling progress.

Figure 1.2: State machine of intent handling and intent operational state

In this document we introduce the state machine as guiding principle for intent handlers and
for consistent communication about handling state and progress with the intent owner. The
vocabulary for expressing information about the state and transition events is part of the
intent common model and therefore defined in IG1253A.

The intent handler would maintain state information individual for each intent. The following
states within the intent handler are defined:

Received
This is the initial handling state of an intent when it is received by an intent handler. This state
is valid only before the intent handler can send a first report to the owner. The first report
would either accept or reject the intent. If it is rejected, the state machine transitions to the
state "Finalizing" and ends after all needed cleanup is done. The intent is not handled and no
further actions about it are taken by the handler.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 12 of 38

Compliant
All expectations of the intent are met according to the current state of the system determined
by measurements and analytics.

Degraded
The intent handling is in this state if any of the expectations from the intent is not met.

Finalizing
The removal of the intent was ordered, and the intent handler has stopped considering the
intent in operation. The intent handler is doing final clean-up actions before ending the state
machine.

The operation decisions and actions of the intent handler try to transition the intent handling
state into "compliant" and keep it there until the intent is removed. External factors, such as
resource shortage, user actions or errors of any kind can lead to the intent to become
degraded. If this is happening the intent handler would immediately start to plan corrective
actions trying to actively transition the system back into a compliant state.

It might not be possible to reach a compliant state, for example when facing persistent
resource shortage. In this case the intent handler would prioritize which and to what extent
intents need to be fulfilled while leaving some degraded. The intent handler would report this
situation back to the owners of degraded intents so that they can evaluate if a continued
degradation is acceptable or if they need to take action themselves. Nevertheless, the intent
handler would continuously monitor the state and develop solutions that can bring all intents
back to a compliant state once this is possible again.

Even if the state of intent handling is compliant, the intent handler might still look for
alternative solutions and actions that can optimize the way it reaches compliance. For
example, there might be another solution that reaches compliance with less resource usage, or
which results in compliance being more robust. In this respect the pressure to change the
solution for an already compliant intent might come from other intents and the need to
comply to them as well.

Intent handlers with predictive capabilities can apply proactive actions to avoid expected
future degradation ahead of time. This way it might be possible to avoid getting into a
degraded state altogether.

This state machine describes each intent individually. The intent management function is
usually the handler of many intents in parallel. The intent management function will try to
keep as many intents in "compliant" state as possible. And if this is not possible, it will
prioritize to minimize the accumulated negative impact of intent degradation. Considerations
based on global utility might apply.

1.5. States machine of intent updates

Intent handlers continue to operate with the original/previous intent until a received update is
accepted. Before the update is accepted it is therefore not allowed to overwrite the previous
version of the intent, because it is still a valid and currently used requirement for operation.
Consequently, we propose a separate state machine for intent updates.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 13 of 38

Figure 1.3: State machine of intent handling and intent operational state

Figure 1.3 shows the intent handling state machine in black together with the intent update
state machine in red.

The intent update state machine is created with the original acceptance of the intent. It
initially assumes the waiting state "no update"

The following states are defined in the intent update state machine.

No Update
No update process for the intent is currently ongoing. This state is the default state when the
update state machine is instantiated. It is a waiting state until an update is actually received.

Update Received
If an update is received for the intent the update state machine changes into this state. The
intent handler is evaluating if it can accept the update. If not, the update is discarded, and the
intent handler returns to "No Update" state.

Updating
This state is reached after the intent handler has accepted the intent update. In this state the
replacement of the old intent content with the new one is executed. After this is finished, the
update state transitions back to "No Update".

Once accepted and executed, the update might cause a compliance transition in the intent
handling state machine. A compliant intent might transition to degraded if the update contains
more severe requirements, which the current operational solution and system configuration
cannot fulfill anymore. Corrective actions by the intent handler are needed. The other way
around an update towards more relaxed requirements might cause a transition into compliant
state even without any actions by the intent handler. Actions might still be taken to potentially
reduce the current resource usage that might not be needed any more for meeting the relaxed
requirements.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 14 of 38

When the intent owner orders a removal of the intent, the intent update state machine is not
needed anymore, and it reaches its end state together with the intent handling state machine.

1.6. Additional state machines

The state machines for intent handling and intent update described in this document provide
vocabulary for reporting on intent fulfillment progress. The intent handling and intent update
states as well as events associated with state transitions are used in intent reports. The intent
common model in IG1253A specifies the details. This implies that the states and state
transition events of intent handling and intent update state machines constitute a mandatory
minimum vocabulary in reporting.

Reporting of additional states and transition events from additional state machines can be
specified through intent extension models. Additional state machines or at least additional
handing events might be associated with optional interface procedures.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 15 of 38

2. The intent Interface
The description of the intent interface is based on defining a management service and
specifying the details of its consumer and producer entities. This type of interface description
is common practice in various SDOs. Nevertheless, this document describes the interface with
respect to high level procedures in intent life cycle management. A mapping to an API
description is future work outside the scope of this document. In TM Forum the work on a
respective intent API specification has started. It is expected to result in the new API TMF 921.

2.1. Intent Handling Management Service

The intent interface described in this document is the interface between two individual intent
management functions. Through this interface the intent management functions manage the
life cycle of intent objects. Therefore, the participating intent managers have the roles of
intent owner and intent handler. Furthermore, the intent interface establishes a control loop
through intent setting and intent reporting in return. The reporting on intent status and
success closes the loop that was initiated by the intent owner when issuing the intent to a
handler.

Figure 2.1: Intent handling management service (MnS) constituting the intent interface

The intent interface is established by introducing the intent handling management service. An
instance of the intent management function in the role of intent handler is the producer of this
management service. The consumer is another instance of an intent management function in
the role of intent owner.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 16 of 38

2.2. Intent handler and owner relationship

When building an operations system based on intent, there are typically multiple sources of
intent. Examples are user facing frontend through which human personnel can directly enter
intent or service ordering systems that manage SLA and derive intent from them. This means
that often the intents given to an intent handler originate from multiple distinct intent owners.

Furthermore, every intent handler has a distinct scope of responsibilities for handling the
intent within a domain. An intent owner might therefore issue multiple intents to address the
requirements for each effected domain through separate intent objects. This means that there
are in general many to many relationships between intent owners and intent handlers as
depicted in Figure 2.2.

The intent used between one owner and handler is always a unique object. This means that
there are never multiple owners for the same intent and an intent object is also never sent to
multiple handlers.

Figure 2.2: Multiple intent owners and handlers

Intent handlers can act by creating further intent to be sent into subordinate domains. This
practically assigns a dual role to an intent manager. It is in the intent handler role for the
intents it has received from another intent owner. Furthermore, this intent manager would be
in the intent owner role for all intent it creates itself and sends to further intent handlers. This
creates a hierarchy of intent handling where the handling of higher-level intent results in lower
level intent being created. Figure 2.3 shows three levels of intent handlers. The one in the
middle is handler of the first intent and simultaneously the owner of the second.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 17 of 38

Figure 2.3: Hierarchy of intent handling dual handler/owner role

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 18 of 38

3. Mandatory procedures of the intent
interface

Mandatory procedures need to be implemented and supported by each intent manager. They
are considered to be the minimum set of interface capabilities for enabling basic intent life
cycle management and intent based operation.

3.1. Setting and modifying intent

Intent owners can set new intent or modify existing intent objects. This is achieved with the
“SET” Procedure:

SET <intent>

It is used in the distribution phase of the intent life-cycle and sent from intent owner to intent
handler.

A repeated set for the same individual intent object with new content overwrites existing
intent and therefore modifies it. A separate modification procedure is not needed.

The intent owner can use the SET procedure at any time for sending new intent or for
modifying existing intent .

The receiving intent handler will issue an immediate response according to the mechanism of
the underlying REST protocol. This will confirm the reception of the message but without
considering the intent content. A first intent report would be sent by the intent handler as
soon as it has analyzed the intent object and reached a conclusion if it would accept or reject
the intent.

If the intent handler rejects the intent it would communicate the decision to the intent owner
with an Intent report. This report would also include a rejection reason. The following example
reasons might be used. Further, reasons can be added to the list if needed:

Unsupported expectations: The intent contains expectation classes the intent handler does
not support. It has not implemented them. As expectation objects represent binding
requirements, not understanding them implies that correct handling cannot be guaranteed,
thus the intent needs to be rejected.

Unsupported information model in expectation: The intent contains details based on
information models within expectation expressions. The intent handler might support the
expectation objects involved, but not the information models used for expressing the details
within. For example, a KPI from an unsupported metrics model is used within a known
expectation class. The semantics of the expectation is understood, but not the details of the
requirement. This means that the entire expectation is not understood. As expectations
represent binding requirements, this implies that it cannot be guaranteed that the intent is
handled correctly.

Out of scope: The intent defines details that is not in the domain scope of the intent handler.
The intent handler might well understand all used expectation objects and information within.
But what is required is beyond the scope of responsibilities of this intent handler. This means
that this intent was sent to the wrong handler.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 19 of 38

Unsuccessful handling: If the intent handler cannot fulfill the intent it will report this. This
means that the intent handler does not expect that the intent can be fulfilled and that it will
stay in a degraded state for the foreseeable future. In this case the intent handler reject the
intent. An intent extension models defined in IG1253B introduces the possibility to override a
rejection. This makes sense for the owner if it is, for example, more important to deliver a
service in a degraded state resulting in reduced user experience, than to not providing the
service at all.

3.2. Removal of intent

The intent owner can withdraw an intent using the “REMOVE” procedure.

REMOVE <intent object URI>

The remove procedure identifies the intent object to be removed through its IRI/URI.

On reception of the removal order, the intent handler would delete the related requirements
and constraints from its knowledge and issue a final report that also acknowledges the
removal.

3.3. Reporting on intent status

The intent handler will use the “REPORT” procedure to send reports to the intent owner.

REPORT <intent report>

The intent report is created based on the intent common model and domain specific intent
extension models as described in IG1253A and IG1253B.

The intent handler sends a report after every reception of a SET or REMOVE in the intent API
and according to the criteria defined by a reporting expectation within the intent.

The intent Interface does not contain a procedure in which intent reports can be explicitly
requested. They are never pulled by the intent owner directly, but always pushed by the intent
handler according to the reporting criteria specified within the intent. Nevertheless, the intent
owner can control the reporting by setting and changing the intent reporting criteria.

3.4. Examples

The following examples show how to execute intent lifecycle management through the intent
interface.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 20 of 38

3.4.1. Basic intent lifecycle management: Setting, Rejection, Modification, Reporting,
Removal

Figure 3.1: Intent Lifecycle management example with basic interface procedures

The intent lifecycle management process starts with an intent management function detecting
the need for intent. In this example this is based on observations of the intent management
functions including its configuration of goals. This intent management function decides that
new intent is needed, and it therefore assumes the role of an intent owner for that intent.

In the investigation phase, the intent owner would determine if there were intent handlers
available that have the needed capabilities for the intents the owner wants to create.

In definition phase the intent owner creates the intent object containing all expectations it
needs. It would then enter the distribution phase in which it sends the intent to the selected
intent handler.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 21 of 38

In this example the intent handler rejects the first intent. It might do this because currently it
does not have sufficient resources available to successfully fulfill the intent. It communicates
the intent rejection by sending an initial intent report that contains the reason for rejection.

On reception of the rejection the lifecycle of that intent ends. As the intent has failed, the
needs of the intent owner is not met. It therefore goes into detection for a new intent and
starts its life cycle. Based on the rejection details it might be able to find a different solution
strategy. It creates this new intent and distributes it to a handler.

In this example the new revised intent is given to the same intent handler and this time it
accepts the intent. It is doing so by sending an initial intent report stating that the intent is
accepted. The intent becomes a new requirement for the intent handler and will be
considered in decisions and actions of this intent handler.

Acceptance of an intent also starts intent reporting according to the reporting expectation. If
the condition of an intent reporting expectation is fulfilled, the intent handler sends a report
to the intent owner.

After a modification, the older version of the intent stays valid until the handler accepts the
change.

3.4.2. Intent Lifecycle Management: Multiple intents to multiple handlers

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 22 of 38

Figure 3.2: Intent Lifecycle management example with basic interface procedures and multiple
handlers

In this example the intent owner has made a plan that involves requirements targeting
multiple domains. This is realized by creating multiple intents and sending them to the intent
handlers responsible for the respective domains. Each involved intent has its own life cycle
managed by the same instance of an intent management function taking the owner role for
both.

In this scenario independent intent objects with independent life cycles mean that the owner
can modify or remove them individually. Also, the owner will receive separate reports for each
intent object.

3.4.3. Multi-level intent handling

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 23 of 38

Figure 3.3: Intent Lifecycle management example with multiple levels of intent handling

In this example, Intent Manager 2 receives an intent and becomes intent handler for "intent1".
It then starts operating the intent and planning a solution strategy with actions. In this
example the result of this process is to set requirements in another domain and use the intent
mechanism to do so. This means Intent Manager 2 starts the life cycle for another intent
"intent2". It therefore becomes owner of this new intent. Here the same intent management

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 24 of 38

function is in the role of handler and owner at the same time. But it is taking these roles for
different intents.

The destination domain of the new "intent2" is managed by the Intent Manager 3. It is getting
the role of handler for "intent2".

While the life cycles of both intents are in principle independent, there is a causal relationship
between the intents. The detection phase performed by Intent Manager 2 in the owner role is
related to the requirements set by "intent1".

In this example both intent handlers start sending reports to the respective intent owners. At
some point Intent Manager 1 detects that the "intent1" is not needed anymore and it orders
its removal from Intent Manager 2. The removal of "intent1" removes a requirement from the
domain managed by Intent Manager 2. This new situation is considered in the detection phase
of the life cycle of "intent2". In this example the decision is made that "intent2" is also not
needed and consequently it is removed.

Note, that the removal of "intent2" is not a necessary consequence of removing "intent1". It is
fully in the responsibility of Intent Manager 2 to remove it or modify it or even leave it
untouched depending on all known requirements.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 25 of 38

4. Optional procedures of the Intent Interface

An intent management function always implements the mandatory procedures of the intent
interface described in Chapter 3. They can be complemented with additional optional
procedures introduced in this chapter. These optional procedures add further capabilities to
the intent life cycle management. This enables further refined and optimized operation.
However, these advanced capabilities can be a challenging to implement. They might require,
for example, advanced AI techniques or more complex handling processes. Their
implementation can be costly, consume a lot of resources to execute and in some intent
handling use cases, they might not provide significant advantages. For these reasons we
propose to implement them only if possible and needed.

The intent manager capability profile introduced in IG1253D enables a handshake between
owner and handler if and which optional procedures are available.

4.1. Collaborative Evaluation

The intent handler might find multiple solutions for fulfilling the intent. All the solutions and
the related actions are in principle feasible as they fulfill the intent and do not degrade others.
But the possible solutions are still expected to produce different outcomes. One of them might
be better and more optimized in one aspect and another solution might be better in another
aspect. The intent handler cannot further decide what is better. However, the intent owner
has the needed domain knowledge and would be able to decide. The collaborative evaluation
allows the intent handler to ask the intent owner to decide, which out of many possible
outcomes is preferred.

This is initiated by the intent handler using the “JUDGE” procedure asking the intent owner for
a judgment on the solutions.

JUDGE <outcome report 1>, <outcome report 2>, …, <outcome report n> [<deadline>]

In this procedure multiple intent reports are sent. Each of them represents the expected
outcome for a solution. It is also possible to set a deadline for an answer.
It is up to the intent handler to decide which owner to ask. This can for example depend on
which intent is the most significantly impacted one by the action alternatives. The respective
intent handler would be asked for judgment.

It is also possible to ask multiple intent handlers for their judgement. The intent can therefore
collect multiple opinions about the outcome and based on that prioritize and decide.

Please note, that the intent handler is not presenting the solution details and the actions it is
planning to do. The intent owner is on the system level above and would not understand these
details. The intent handler would rather use intent reports to communicate the expected
outcomes of these actions. This means the owner can judge based on effect of the actions
rather then their nature.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 26 of 38

When asked through the JUDGE procedure which solution to prefer, the intent owner can
evaluate and communicate its choice using the PREFERENCE procedure.

PREFERENCE <outcome report IRI 1>, <outcome report IRI 2>, …, <outcome report IRI m>

The owner uses the unique IRI/URI of each presented outcome report to send list of them back
to the intent handler. The list refers to reported outcomes that would be approved by the
owner. The list is sorted with the most preferred outcome first. If an outcome report is left out
of the answer, this is an indication that the respective solution should be avoided.

The outcome reports are created as intent reports according to the intent model.

4.1.1. Example: Asking the intent owner for a judgment

Figure 4.1: Intent handler asking the intent owner for a judgment on solution preferences

In this example the intent handler found multiple possible solutions to fulfill the intent. They
produce different outcomes, but it is beyond the knowledge of the intent handler to decide
which of the solutions is preferable. In this situation the intent handler first determines an
estimate on the expected results for each alternative solution. It creates an intent report
object containing a hypothetical report for the expected outcome. The intent handler then
uses the judge interface for sending these hypothetical intent reports to the intent owner.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 27 of 38

The intent owner can now evaluate which reported outcome is more preferential. It would
inform the intent handler about its evaluation by sending a PREFERENCE message. It contains a
knowledge object that contains preference information.

A basic way for intent owners to express their preferences might be by sorting the intent
reports on the order of preference with the best being first in the list and the other reported
outcomes following in descending order of preference. Completely unacceptable solutions can
be indicated by leaving them out of the preference answer. This simple answer consists of a
qualitative evaluation but not a quantitative one. The intent owner does not quantify how
much better one of the options is over another one. Expressing this is currently not in scope of
this document but will be considered in future iterations.

4.2. Intent Probing

The intent owner might want to explore what intent requirements and constraints are actually
possible and what outcomes can realistically be provided by the intent handlers. This would
need to be known before actually setting an intent that becomes a requirement.

An intent owner can use the PROBE procedure for sending an intent to an intent handler
without the expectation that is actually be acted upon.

PROBE <intent object>

The intent handler would start generating reports for this intent stating what the expected
outcome would be if the intent becomes a requirement.

Also, intent set using the PROBE procedure need to be actively life cycle managed by the intent
owner. Similar to the SET procedure the probing intent can be modified using further PROBE
messages. This allows exploring multiple options and find out how the intent handler and the
domain it controls would react.

The probing intent would be removed using the REMOVE procedure.

4.2.1. Example: Intent Probing

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 28 of 38

Figure 4.2: Probing of expected intent handling outcomes

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 29 of 38

The example shown in Figure 4.2 demonstrates the use of the probing interface procedure.
Probing is part of the investigation phase, and it is initiated by the intent owner. It wants to get
an estimate about the expected outcome if the wanted intent is actually used. The wanted
intent is sent to an intent handler using the PROBE procedure. The receiving intent handler
would start sending reports representing its estimate of handling results if the intent would be
set.

The intent handler would continue sending hypothetical reports until the probing intent is
removed buy the owner. This enables the intent owner to observe as long as needed. It is also
possible to modify the probing intent in order to test diverse intent configurations.

Ultimately the intent owner would proceed by removing the probing intent and continue with
the lifecycle. This means, based on the probing results it can decide in definition phase what
intent configuration to use. The intent owner would create the intent and send it to the
handler. The lifecycle continues as usual.

4.3. Intent best options

The intent owner might be interested to know what the most challenging requirements are it
can use in an intent and still have intent handler fulfill it. This would be initiated by the intent
handler using the BEST procedure.

BEST <intent object>

With the BEST procedure the intent owner sends an intent object where one or multiple
expected parameters are marked that the best possible value should be selected.

The intent handler would reply using the PROPOSAL procedure, which is equivalent for intent
reporting.

PROPOSAL <intent report>

In the PROPOSAL procedure the intent handler would send an intent object that shows the
best currently possible value for the marked properties so that the intent can be fulfilled.

It is also possible to ask for the best possible proposal for already existing intent. This can be
sensible if the intent handler fails to fulfill the intent as is and the owner wants to know what
the best level would be the intent handler can do. The intent owner can ask for this and steer
the process using a proposal expectation.

4.3.1. Example: Proposing the best possible intent

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 30 of 38

Figure 4.3: Asking a handler for best intent it can do

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 31 of 38

In the example sequence, shown in Figure 4.3 the intent owner performs an investigation by
using the BEST procedure. It wants to assess what are the best or most severe requirements
within an intent the selected handler can successfully meet.

The intent owner steers this process by creating an intent object in which one or potentially
multiple expectation parameters are marked asking for a proposal for them. This creates an
under specified intent object with incomplete expectations. This intent object is then sent to
the intent handler using the BEST procedure. The intent handler is expected to fill in the open
expectation parameters with the best values or value combinations if expects it is able to
successfully handle.

The intent handler does this investigation based on its currently known state and available
resources. If multiple parameters are left open, the intent handler will propose the best
combination according to its knowledge and interpretation.

The intent handler creates a new intent object by copying the one received in the BEST request
and filling in its proposal for the open parameters. It therefore completes the intent. This new
intent is then sent back to the intent owner that has asked for the best proposal.

In this example the intent owner asks the handler for the best proposal with multiple variants
of an intent. This can be done in sequence as shown here or in parallel testing multiple options
at once.

It is possible to ask for the best proposal for many distinct expectations and properties at once.
This would however give many degrees of freedom to the intent handler and therefore as the
handler to prioritize itself and assume, which combination of settings is the most
advantageous to the asking owner. This might not always match with the actual goals of the
owner. It is therefore a good practice if the owner tightly controls the process by only asking
for a single or just a few best proposals at a time. The intent owner can explore the
possibilities by repeating BEST requests focusing on different aspects.

In this example the intent owner proceeds into definition phase after a few best proposal
queries. It is using the results to define the intent that is then sent for operation.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 32 of 38

5. Further assumptions and proposals
The interface proposed in this document is described based on high level operations and
procedures for communication use cases between intent management functions. This includes
performing intent live cycle management including reporting. Furthermore, it covers additional
capabilities for feasibility prediction, negotiation between intent managers and collaborative
decisions making. The described high level procedures need to be mapped into an API model
and specification. The details of this work are out of scope of this document and will be done
in collaboration with the open API project at TM forum.

Nevertheless, we expect and assume the following:

• The intent interface will be based on REST.

• All intent based communication over the intent interface is asynchronous.

• CRUD operations might be applicable, but the details need to be determined together
with the open API project.

Advanced features and capabilities in the interface are defined, which are not mandatory. If an
intent manager supports them it can announce this as part of its intent manager capability
profile as described in IG1253 D. This allows to create more or less capable implementations of
intent management according to their domain needs. It also allows an evolution from simple
to more sophisticated intent management and the gradual introduction of new technologies
and latest research results. This evolution would gradually increase the autonomy level,
because it means that more and even complex tasks can be automated without requiring
human intelligence and involvement. The system would become more confident and trusted
about its actions.

The procedures in the intent handling interface contain two types of objects: intent and intent
report. Both are built following RDF/RDFS according to IG1253A and B. This means intent and
intent objects take the form of a knowledge graph. On the interface this requires to serialize
and encode the graph. We propose to use a serialization in TURTLE as interchange format, but
also other notation and serialization formats such as XML or JSON are already defined by W3C
and further ones might be possible as well.

For querying the knowledge graph including simple logical inference W3C proposes SPARQL.
We recommend to also use it for interaction with a knowledge base as it provides efficient
syntax is often already supported by graph database systems that can implement the
knowledge base of intent managers.

We do not support or introduce a mechanism for explicitly activating and deactivating intent.
An intent being sent to the intent handler is immediately active in this respect. This means that
it immediately becomes a requirement when received. An intent owner can remove the intent
or modify it an any time. This allows to reach a similar behavior to activation/deactivation. The
intent owner is in control and needs to follow up on what intent needs to be in operation.

An explicit activation and deactivation action is also conflicting with the definition of intent.
Intent is not supposed to contain imperative statements that prescribe behavior. This
definition extents to the intent interface. Activation and deactivation constitute imperative
statements that would result in intent managers changing their behavior and actions in a
prescribed way. We support alternatives that rely on setting requirements in combination with
validity conditions about requirements. We propose to set and control conditional validity of
intent and its detailed requirements. This capability is added by intent extension models.
IG1253B describes the intent validity and temporal validity model. They provide vocabulary
needed to control validity in a way that the intent handler can use this information in its

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 33 of 38

decisions and plan if and when actions needed to be compliant. The intent owner can define
validity schedules and based on them the handler can plan ahead its action taking to ensure
that requirements are fulfilled when they are valid and needed. We consider this to be a
superior mechanism for managing requirements than explicit activation and deactivation
orders.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 34 of 38

6. Appendix A: Intent Interface Ontology

6.1. Motivation and background

Intent modeling and in particular the formulation of intent capability management needs
vocabulary to describe the intent interface. It needs to express, for example, the support of
interface procedures and model notation formats in intent manager capability profiles as
introduced in IG1253D.

The contents of this model can be included into general standard models, such as TM Forum's
SID. This is future work which would make the existence of the intent interface ontology as a
standalone model unnecessary.

6.2. Notation and namespaces

The temporal validity model is defined in a namespace under the TM Forum domain. This
intent extension model depends on the following models and uses the respective namespaces.

Model Prefi
x

Namespace Published
by

Intent
Interface
Ontology

iio https://www.tmforum.org/2020/07/IntentInterfaceOn
tology *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema
1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

*: Proposed IRI to show the concept. It might be different when the model is published.

The proposed prefix label for intent interface ontology model is "iim".

The intent temporal validity model has a dependency to RDF and RDFS, because they are the
chosen base standards for all intent and intent report models. In the TM Forum family of
intent models it primarily depends on the intent management ontology.

6.3. Principles and vocabulary overview

The intent interface ontology provides generic vocabulary describing the intent interface.

The intent interface defines a set of mandatory and optional procedures used in intent life
cycle management. These procedures are of class iio:InterfaceProcedure. The intent interface
ontology specifies individuals of this class for each of the currently defined interface
procedures.

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

http://www.w3.org/2001/XMLSchema

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 35 of 38

Intent and intent report objects are expressed as RDF graphs. There are various notation
formats defined used in serializing and packaging these graphs for sending within interface
procedures. These notation formats are represented in the intent interface ontology as objects
of class iio:NotationFormat. The intent interface ontology defines individuals of this class
representing the proposed formats.

6.4. Vocabulary specification

6.4.1. Classes

...

Class: iio:InterfaceProcedure
Definition: A procedure of the intent interface
Instance of: rdfs:Class

Class: iio:NotationFormat
Definition: An object of this class represents a notation format for serialization of

intent graphs on the intent interface.
Instance
of:

rdfs:Class

6.4.2. Instances

The following instances of the class iio:InterfaceProcedure are defined for referencing
supported procedures on the intent interface within intent manager capability profiles:

State Individual Description
iio:SetProcedure The mandatory SET/REMOVE/REPORT procedure on the intent

interface
iio:JudgeProcedure The JUDGE/PREFERENCE procedure on the intent interface
iio:BestProcedure The BEST/PROPOSAL procedure on the intent interface
iio:ProbeProcedure The POBE/ESTIMATE procedure on the intent interface
... ...

The following instances of the class iio:NotationFormat are defined.

State Individual Description
iio:TURTLEnotation Refers to TURTLE notation for serialization of RDF model

graphs
iio:RDXMLFnotation Refers to XML notation for serialization of RDF model graphs
iio:JSONLDnotation Refers to JSON-LD notation for serialization of RDF graphs
... ...

6.4.3. Properties

No properties defined

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 36 of 38

6.5. Model usage and examples

The model is used for example in the expression of intent manager capability profiles.
Examples of this use case can therefore be found in IG1253D.

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 37 of 38

7. Administrative Appendix

7.1. Document History

7.1.1. Version History

Version Number Date Modified Modified by: Description of changes
1.0.0 28-May-2021 Alan Pope Initial Release
1.1.0 26-Nov-2021 Alan Pope Updated to v1.1.0

7.1.2. Release History

Release
Status

Date
Modified

Modified by: Description of changes

Pre-
production

28-May-
2021

Alan Pope Final edits prior to publication

Production 26-Jul-2021 Adrienne
Walcott

Updated to reflect TM Forum
Approved status

Pre-
production

26-Nov-2021 Alan Pope Final edits prior to publication

7.2. Acknowledgments

7.2.1. Guide Lead & Author

Member Title Company
Jörg Niemöller Expert of Analytics and Customer Experience Ericsson

7.2.2. Main Contributors

Member Title Company
Jörg Niemöller Expert of Analytics and Customer

Experience
Ericsson

Kevin McDonnell Senior Director, Intelligent Automation Huawei
James O'Sullivan Product Director, Intelligent Automation Huawei
Dave Milham Chief Architect TM Forum
Vinay Devadatta Practice Head (Innovation & Industry

Relations)
Wipro
Technologies

Azahar Machwe OSS Automation BT Group plc
Wang Lei Systems Expert Huawei
Tayeb Ben
Meriem

Senior Standardization Manager (OSS) Orange

Leonid Mokrushin Principle Researcher Ericsson

 IG1253C Intent Life Cycle Management and Interface v1.1.0

© TM Forum 2021. All Rights Reserved. Page 38 of 38

7.2.3. Additional Inputs

Member Title Company
Lester Thomas Chief IT Systems Architect Vodafone

Group
Ankur Goyal Lead Consultant Infosys
Emmanuel A.
Otchere

Chief Technical ExpertVP, Standards & Industry
Development

Huawei

Min He Chief Architect Futurewei

			Notice

			Table of Contents

			List of Figures

			Executive Summary

			Introduction

			1. Intent life cycle

			1.1. Roles in the intent life-cycle management

			1.2. Tasks of intent owners and handlers

			1.3. Phases of the intent life-cycle

			1.4. States and events of intent handling

			1.5. States machine of intent updates

			1.6. Additional state machines

			2. The intent Interface

			2.1. Intent Handling Management Service

			2.2. Intent handler and owner relationship

			3. Mandatory procedures of the intent interface

			3.1. Setting and modifying intent

			3.2. Removal of intent

			3.3. Reporting on intent status

			3.4. Examples

			3.4.1. Basic intent lifecycle management: Setting, Rejection, Modification, Reporting, Removal

			3.4.2. Intent Lifecycle Management: Multiple intents to multiple handlers

			3.4.3. Multi-level intent handling

			4. Optional procedures of the Intent Interface

			4.1. Collaborative Evaluation

			4.1.1. Example: Asking the intent owner for a judgment

			4.2. Intent Probing

			4.2.1. Example: Intent Probing

			4.3. Intent best options

			4.3.1. Example: Proposing the best possible intent

			5. Further assumptions and proposals

			6. Appendix A: Intent Interface Ontology

			6.1. Motivation and background

			6.2. Notation and namespaces

			6.3. Principles and vocabulary overview

			6.4. Vocabulary specification

			6.4.1. Classes

			6.4.2. Instances

			6.4.3. Properties

			6.5. Model usage and examples

			7. Administrative Appendix

			7.1. Document History

			7.1.1. Version History

			7.1.2. Release History

			7.2. Acknowledgments

			7.2.1. Guide Lead & Author

			7.2.2. Main Contributors

			7.2.3. Additional Inputs

IG1253D_Intent_Manager_Capability_Profiles_v1.0.0.pdf

TM Forum 2021. All Rights Reserved.

TM Forum Introductory Guide

Intent Manager Capability
Profiles

IG1253D
Team Approved Date: 26-Nov-2021

Release Status: Pre-production Approval Status: Team Approved
Version 1.0.0 IPR Mode: RAND

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 2 of 30

Notice
Copyright © TM Forum 2021. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published, and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this section are included on all such copies
and derivative works. However, this document itself may not be modified in any way, including
by removing the copyright notice or references to TM FORUM, except as needed for the
purpose of developing any document or deliverable produced by a TM FORUM Collaboration
Project Team (in which case the rules applicable to copyrights, as set forth in the TM FORUM
IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by TM FORUM or
its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and TM
FORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Direct inquiries to the TM Forum office:

181 New Road, Suite 304
Parsippany, NJ 07054, USA
Tel No. +1 862 227 1648
TM Forum Web Page: www.tmforum.org

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/IPRPolicy/11525/home.html

http://www.tmforum.org/

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 3 of 30

Table of Contents

Notice .. 2

Table of Contents .. 3

List of Figures .. 5

Executive Summary ... 6

Introduction .. 7

1. Intent Management Scopes... 9

1.1. Governance of Intent Management Scopes ... 12

1.2. Collection of Intent Management Scopes .. 12

1.2.1. In Business Operation Exemplar ... 12

1.2.2. In Service Operation Exemplar ... 12

1.2.3. In Resource Operation Exemplar .. 13

2. Intent Manager Capability ... 14

3. Intent Manager Registry .. 15

3.1. Registration of intent managers ... 16

3.2. Discovery of intent manager .. 16

4. Appendix A: Intent Manager Capability Profile Model .. 17

4.1. Motivation and background ... 17

4.2. Notation and namespaces .. 17

4.3. Principles and vocabulary overview ... 18

4.3.1. Intent manager address and contact information 18

4.3.2. Intent Management Scope ... 19

4.3.3. Intent LSM role ... 19

4.3.4. Supported notation format .. 19

4.3.5. Supported interface procedures .. 19

4.3.6. Supported Models .. 20

4.4. Vocabulary specification ... 20

4.4.1. Classes .. 20

4.4.2. Instances ... 20

4.4.3. Properties ... 21

4.5. Model usage and examples .. 25

4.5.1. Typical Intent Manager Capability Profile .. 25

5. Appendix B: Abbreviations and acronyms ... 28

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 4 of 30

6. Appendix C: References ... 29

7. Administrative Appendix ... 30

7.1. Document History ... 30

7.1.1. Version History ... 30

7.1.2. Release History ... 30

7.2. Acknowledgments .. 30

7.2.1. Guide Lead & Author .. 30

7.2.2. Main Contributors .. 30

7.2.3. Additional Inputs .. 30

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 5 of 30

List of Figures

Figure 1.1: Example intent management scope.. 10

Figure 1.2: Multiple example intent management scopes ... 11

Figure 3.1: Intent manager registration and discovery ... 15

Figure 4.1: Overview of classes and properties .. 18

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 6 of 30

Executive Summary
In this document, we introduce a registration and discovery scheme involving an intent
manager capability profile. Intent management functions can publish their capability profile
including their scope of responsibilities through an intent manager registry function. The intent
manager registry exposes a query interface allowing discovery of intent managers through the
details of their profile.

This document introduces intent manager scopes, which express the operations tasks within
distinct autonomous domains, system levels and sub-systems the intent manager is concerned
with. The intent manager scope is part of the intent manager capability profile. We describe
example profiles as based for partitioning the entirely of operational task and assigning
subsets to distinct intent managers. This introduces modularity and specialization of intent
managers.

Furthermore, we propose a model for expression of intent manager capability profiles and the
interface exposed by the intent manager registry function.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 7 of 30

Introduction
Intent management functions were introduced in IG1253. They drive the intent life cycle,
communicate intent and intent reports over the intent interface and coordinate autonomous
operation within an autonomous domain, system layer or sub-system. The implementation of
intent management functions can vary significantly with respect to capabilities as autonomous
coordinators of intent based operation for a domain. Domains have various complexities being
reflected in more or less feature rich intent management.

For example, a domain may employ a set of rule based policies for making operational
decisions and for executing actions. This kind of implementation is typically not very adaptive
to new situations, but for less complex domains with a stable and predictable environment this
may still be the best choice. The need for updating rules to adapt the system is a human
activity that would constitute a breach of autonomy. In stable environments this may only be
needed in exceptional cases.

The intent manager in this example would not have access to sophisticated prediction models
and therefore would not be able to support optional interface procedures such as
JUDGE/PREFERENCE, PROBE/ESTIMATE and BEST/PROPOSAL. Other intent managers may have
these capabilities as a result of a faster evolution of its implementation. The use of machine
learning, probabilistic reasoning and digital twins can lead to better operational decisions with
sophisticated conflict detection, risk analysis and prediction of action effects.

Intent managers can also differ significantly with respect to intent expressiveness. This
manifests itself in different compositions of their supported model federation. This variation is
naturally driven by the needs of the autonomous domain and system the intent manager is
associated with. Domain specific models in the federation deliver the domain vocabulary and
semantics needed. On top of this intent extension functions also introduce further domain
independent, but optional modeling artifacts. One example is the modeling of temporal
validity of requirements as demonstrated in IG1253 B.

Following from this discussion it is a basic requirement that intent managers can detect which
other intent mangers are available and what their scope of responsibility is. This determines if
intent can be used to impact an operational domain with the intent paradigm of setting
requirements.

Furthermore, an intent manager needs information about the capabilities of the intent
manager within the targeted domain. This determines, for example, what expressiveness is
available due to the supported model federation in the target intent manager. And it
potentially limits the intent interface operations that can be used.

Intent Manager Scopes define the set of operational tasks and resources an intent manager is
responsible for. This is a subset of all operational tasks and resources within an autonomous
network. Every intent manager has a well-defined scope. It must not overlap with the scopes
of other intent managers. This way direct conflicts in the actions of intent managers are
avoided. Most importantly, intent manager scopes define which intent manager is responsible
to handle a particular requirement. This determines how requirements need to be distributed
to distinct intents and where these intents need to be sent to. Intent manager scopes are
therefore mandatory information within an intent manager profile.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 8 of 30

This document proposes a model for expressing Intent Manager Capability Profiles. The model
presented here is based on the Resource Description Framework (RDF) [rdf] family of models.
It was chosen for consistency with the other models presented in the IG1253x suit of
documents. And it is also using base ontologies, such as the intent management ontology
introduced in IG1253 and the intent interface ontology described in IG1253C. They provide a
convenient base vocabulary. However, the considerations that made RDF/RDFS the modelling
standard of choice for intent and intent report models do not necessarily apply to the
modeling of intent manager capability profiles or to the related interface models for
publication and discovery. Other model families, such as UML appear perfectly well suited for
these purposes.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 9 of 30

1. Intent Management Scopes
Each instance of an intent management function has a well-defined scope of operation. This
usually corresponds to an autonomous domain and level in the technical architecture or a
subsystem within the autonomous network. Practically it refers to a set of resources and a
corresponding set of operational tasks and processes an individual intent manager is
responsible for. This responsibility implies that it is the only intent manager authorized to use
these resources for operation and it is the only one making or coordinating the decisions and
actions concerning resources and functions within its scope. Consequently, this intent
manager has the sole responsibility to fulfil the intent targeting this scope.

The operational scope of and intent management function is referred to as an Intent
Management Scope or intent manager scope. Both terms are used synonymously.

Intent managers are not allowed to directly interfere and interact with the intent operation
that is in scope of another intent manager. An intent manager can however use intent to put
additional requirements on the operation of another intent manager scope, asking the
respective other intent manager reach a state that fulfills all needs. Intent management
functions are in this respect single points of contact for all operational request within the
intent mechanism.

In this environment it is therefore essential that intent management functions know each
other's scope of responsibility. This allows them to avoid conflicting overlaps in decisions and
actions and it also allows to identify the right destination for a requirement and package it into
intent accordingly. This means an intent manager wanting to put requirements, would know
which other intent manager is responsible for handling it due to its expressed scope. In this
respect intent management scopes partition the entire intent aware autonomous operation
and uniquely assign responsibilities to the intent managers within.

Every intent manager scope corresponds to exactly one instance of the intent management
function. An autonomous network typically consists of multiple intent manager scopes and all
of them together define the vertical and horizontal range of intent-driven operation. The
horizontal range refers to the number of operational domains on the same operational layer
that are automated through intent driven operation concepts. Examples are autonomous
domains in resource operation, such as cloud, transport and RAN management. Each of them
would employ a dedicated intent manager with capabilities and an implementation that
matches the needs of that domain.

The vertical range refers to further layering into sub-domains through nested intent manager
scopes. This is achieved by splitting responsibilities into lower and higher level tasks and
implement separate intent management functions. The higher level intent manager can then
use intent to influence the lower level operation by defining its operational requirements and
goals and form an inter-layer control loop that closes through intent reporting. This means
Intent manager scopes can be nested creating a hierarchy and subdivision into smaller scopes.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 10 of 30

Figure 1.1: Example intent management scope

Figure 1.1 shows an example of an intent manager scope. In this example, the intent handling
scope of service orchestration and assurance is shown. This is an example scope from the
service operation layer in the autonomous network architecture [ig1230]. It refers to intents
being used to communicate requirements of services to be delivered.

This example intent manager scope contains one intent management function. It receives
service-related intents, and it tries to comply to the intent utilizing and collaborate with other
functions of the service operation layer. Applications and policies determine the decisions that
can be made and processes that are available within this scope. An orchestrator function
would be able to choose and allocate resources needed for realizing the service. There are
catalogs of available service elements, inventories containing the currently instantiated
resources and analytics functions that help to determine and interpret the system state. These
functions are typical for service operation. Other scopes would consist of one intent manager
in combination with a number of functions and services specific to the domain and level.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 11 of 30

Figure 1.2: Multiple example intent management scopes

Figure 1.2 shows several intent manager scopes. Each of them contains exactly one instance of
an intent management function implemented specifically implemented for the responsibilities
needed in its scope. Other management functions of the autonomous network are considered
to be part of this scope if the function and service they provide are relevant to the tasks for
which the particular intent management function is responsible. For example, the intent
manager scope of order management would include functions for SLA negotiation, a catalog of
available service products, and portals that implement front-ends for customer engagement.

Typically, the entire operating system is not aligned to the intent paradigm. There are scopes
of responsibility within the operating system that are not covered by intent management. This
means that the respective autonomous domain or system has not yet been converted to
intent-based operation yet or the nature of the tasks does not allow operation through intent
management.

The intent manager scope is a key entry in the intent manager capability profile, which
describes an instance of the intent management function. It summarizes and publishes
responsibilities and range of operation. Typically, the intent manager scope implies certain
expressiveness and content that can be used in the intent targeting it.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 12 of 30

1.1. Governance of Intent Management Scopes

Intent management scopes should be defined collaboratively by multiple SDOs. SDOs and
workgroups within SDOs have specific competences and mission statements with well-defined
scopes. We expect that this naturally matches a set of intent handling scopes. This also implies
that the respective work-group within an SDO would define the capabilities of an intent
manager within this scope. This includes a proposal, which models the intent manager shall
support and it will also define and name the intent manager responsibility scope. This means
central governance of intent management scopes is not strictly needed, and we expect to see
them being proposed from multiple parties and organizations.

1.2. Collection of Intent Management Scopes

This chapter defines scopes of intent managers. For the time being this collection of intent
manager scopes is provided to exemplify the principle. The list is not meant to be complete or
final. We expect that a practical list of intent handling scopes would be defined over time. This
would involve future studies of use-cases. It would also involve multiple SDOs, because
working groups with an agenda to study and standardize a particular autonomous domain can
best decide a sensible partitioning of intent handling. In this respect the definition of intent
handling scopes is directly related to the definition of domain specific intent extension models.

The following sub-chapters present example intent manager scopes within the major
operational layers of an autonomous network.

1.2.1. In Business Operation Exemplar

Contract Negotiation Scope

This is the scope of an intent manager that coordinates automated contract negotiation. All
intent that expresses requirements of the operator with respect to acceptance of contracts
from financial and marketing perspective would be in scope.

Order Management Scope

This is the scope of an intent manager that receives customer orders for service products and
creates intent requiring their fulfillment and assurance from the underlying system.

Regulatory Policies Scope

This scope refer to an intent manager that translates regulatory and legal requirements into
intent. This way local market legislation and regulation can be considered within the intent
based autonomous system.

Operator Policies Scope

This is the scope of an intent manager that allows the operator to formulate strategic business
policies and issue them as intent for the autonomous system to consider.

1.2.2. In Service Operation Exemplar

Service Orchestration and Assurance

The intent manager of this scope receives all intent about services that need to be delivered. It
interacts with orchestration and assurance systems to break down the service intent resources
to be used and their configuration across multiple autonomous domains. Typically, this intent
manager would act by setting multiple intents in resource operation.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 13 of 30

1.2.3. In Resource Operation Exemplar

Core Network Intent Management Scope

This is the scope of an intent manager that has the responsibility for core network resources
and the related operational tasks.

Transport Management Scope

This is the scope of an intent manager that has the responsibility for transport resources and
the related operational tasks.

Slice Management Scope

This is the scope of an intent manager that has the responsibility for setup and assurance of
slices.

Network Function Management Scope

This is the scope of an intent manager responsible to coordinate the deployment and
assurance of network functions.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 14 of 30

2. Intent Manager Capability
Intent managers need to be aware of other intent managers' presence in the system as well as
their capabilities. For example, intent managers in the role of intent owners decide to use
intent for putting requirements on the operation of another autonomous domain. First this
requires to detect if the targeted domain is participating in the intent mechanism by exposing
an intent management function. To send an intent to it is also must be capable to assume the
role of intent handler for that domain. The intent manager scope is the key information
determining responsibility of intent managers. Knowledge about the address of the intent
manager would then allow to actually contact it over the intent interface and send the intent.

All intent managers have to support the mandatory procedures of the intent interface. Other
intent managers need to know if optional procedures are also supported and can be used in
the communication with an intent manager. For example, and intent owner might benefit
from the availability of PROBE/ESTIMATE or BEST/PROPOSAL procedures when assessing the
feasibility of requirement details it wants to put into an intent. Intent handlers should know if
the owner of an intent supports the JUDGE/PREFERENCE procedure allowing asking questions
back to the owner for optimizing operational decision. The support of interface procedures can
be further differentiated with respect to supported versions.

A central aspect of an intent manger's capability is its support for models within a model
federation for intent and intent report expression. This is typically a federation of domain
independent generic models such as the intent common model or RDF/RDFS as modelling
base, and any number of domain dependent intent extension and intent information models.
IG1253A defines the intent common model and IG1253B proposes and defined several intent
extension models.

The model defined in Appendix A of this document provides vocabulary to formulate intent
manager capability profiles. Chapter 3 introduces the intent manager registry. It provides
interfaces for publishing intent manager capability profiles and for discovery of intent
managers through its published profile information.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 15 of 30

3. Intent Manager Registry
This document proposes the introduction of an intent manager registry function. It stores
information about all available intent managers. Furthermore, it enables the discovery of
intent managers through queries about the profiles.

The interfaces of the intent manager registry are shown in Figure 3. The intent manager
registration interface allows uploading intent manager capability profiles to the intent
manager registry. This publishes the presence of an intent manager and its scope and
capabilities. The intent manager discovery interface allows searches in the published intent
manager capability profiles.

Figure 3.1: Intent manager registration and discovery

Intent manager discovery is essential for intent owners deciding if they can use intent towards
an autonomous domain and what they can express with this intent. The discovery answers the
question if there is a respective intent manager present in the system with a scope that
matches the target domain. On the other hand intent handlers need discovery to get access to
the capabilities of the intent owner. This shows for example what vocabulary can be used in
intent reports and if the JUDGE/PREFERENCE procedure is supported by the owner.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 16 of 30

3.1. Registration of intent managers

An autonomous network consists of multiple instance of intent management function. Each of
them is having a unique implementation that matches the autonomous domain, operational
layer and sub-system it is responsible for. This means every intent manager has unique set of
capabilities as well as a defined scope of responsibilities. To make this information available to
other functions, and intent manager creates a profile about its own scope and capabilities. It
then sends the profile to the intent manager registry.

Depending on the implementation of an intent manager, its capability profile might not be
constant. It can change, for example, if policies or apps are added or machine learned models
are replaced with an improved version. In modern systems these are artifacts with own life
cycles and changes in them can introduce or remove features with an effect on capabilities of
an intent manager.

The details of the interface deign are future work. Capability publication interfaces are a
common feature in adaptable systems. Therefore, standard methods and processes for
designing the respective interface registration and publication interface and be applied.

3.2. Discovery of intent manager

The intent manager registry exposes an interface that allows to query intent manager
capability profiles. In this document we are using models based on RDF/RDFS for expressing
the intent manager capability profile. Therefore, it would be sensible to base the discovery
interface on a query language designed and standardized for RDF. The query language
proposed to be used for discovery of intent managers is SPARQL [sparql]. SPARQL is a
standardized query language inspired by SQL style database queries. It adds expressiveness for
queries about ontology based knowledge graphs. Many graph databases support SPARQL as
their main query language or as option.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 17 of 30

4. Appendix A: Intent Manager Capability
Profile Model

4.1. Motivation and background

Intent management functions need to publish their capability profile. The intent manager
registry function is the receiver of this profile and it adds into its knowledge base. This chapter
proposes a model providing the vocabulary to define the intent manager capability profiles.

4.2. Notation and namespaces

Model Prefix Namespace Published
by

Intent
Manager
Capability
Profile

imcp https://www.tmforum.org/2020/07/IntentManagerCa
pabilityProfile *

TM Forum

Intent
Manageme
nt Ontology

imo https://www.tmforum.org/2020/07/IntentManagmen
tOntology *

TM Forum

Intent
Interface
Ontology

iio https://www.tmforum.org/2020/07/IntentInterfaceO
ntology *

TM Forum

W3C RDF
version 1.1

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# W3C

W3C RDF
Schema 1.1

rdfs http://www.w3.org/2000/01/rdf-schema# W3C

XML
Schema

xsd http://www.w3.org/2001/XMLSchema# W3C

Example
namespace

ex http://example.com/IntentModeling n/a

*: Proposed IRI to show the concept. It might be different when the model is published.

This model is referred to Intent Manager Capability Profile and "imcp:" is used as namespace
prefix in this document.

The model is based on the RDF/RDFS modelling family. It uses the general ontology of intent
management as well as the intent interface ontology.

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

https://www.tmforum.org/2020/07/IntentCommonModel

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

http://www.w3.org/2001/XMLSchema

http://example.com/intent

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 18 of 30

4.3. Principles and vocabulary overview

Intent management functions differ with respect to the domain they manage, but also
regarding their capabilities. They might support a different set of intent extension models,
serialization formats and intent interface procedures. This model defines vocabulary for
expressing these aspects of an intent manager capability and thus allow to formulate an intent
manager capability profile.

Figure 4.1: Overview of classes and properties

4.3.1. Intent manager address and contact information

Allows specifying how to contact the instance of the intent management function the profile is
about. This is used for addressing of messages on the intent interface towards this instance.
The string can for example contain the IRI that is representing the intent manager instance.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 19 of 30

4.3.2. Intent Management Scope

This property allows to define the intent management scopes this intent manager is
responsible for. Usually there is one scope per intent manager, but it is allowed to define
multiple scopes if the responsibility of this instance of the intent manager extents to all of
them.

The scope Identifier usually implies a domain specific implementation of the intent manager.
Further differentiation of scopes is possible if the domain is further partition with multiple
instances of intent management. This can for example be geographic partitioning if the
network is divided into separately operated regions. The exact vocabulary for different types
and dimensions of scope differentiation will be studied through use cases and operator
feedback. It is left undefined in the model for now.

4.3.3. Intent LSM role

An intent manager has the capability to take the role of an intent owner, intent handler or
both. An intent handler that only takes the owner role usually a top level source of intent. It
would be associated with user portals or management functions that define requirements, but
are themselves not intent aware. This management function does not implement the role of
intent handler and it states this in its capability profile.

4.3.4. Supported notation format

Intent and intent reports are knowledge graphs in the form of an ontology. For sending them
over the intent interface these graphs need to be serialized. Multiple notation formats are
available for this, for example TURTLE, RDF/XML or JSON-LD. The intent manager states its
support for notation formats in its capability profile. It can further differentiate by supported
version of the notation format.

4.3.5. Supported interface procedures

The intent interface defines four sets of procedures:

• The SET/REMOVE/REPORT interface procedure. One version of this procedure is
mandatory to support.

• The JUDGE/PREFERENCE interface procedure

• The PROBE/ESTIMATE interface procedure

• The BEST/PROPOSAL interface procedure

The intent manager capability model allows to specify which of them is supported. Options are
defined in the intent interface ontology [ig1253c]. Further procedures might be introduced
later and would then be reflected here.

The model allows specifying which versions of the interface procedures are supported. In this
respect it is sensible to also specify the mandatory SET/REMOVE/REPORT procedure and state
which exact version are supported.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 20 of 30

4.3.6. Supported Models

This defines the models that can be used in intent and intent reports and would be understood
by the intent manager. This implicitly defines the model federation that is possible to use with
the intent manger.

It is possible to define models that are considered fully supported with the
imp:supportedModels property and then define exceptions with the
imp:notSupportedModelArtifact property.

Alternatively it is possible to mention a model as partially supported with the
imp:partiallySupportedModels property. This requires that all model artifacts that are
supported must be explicitly mentioned with the imp:supportedModelArtifact property.

It is further possible to state separately if a model and its artifacts are supported by the intent
manger when it has the role of intent owner or intent handler. This means some models are
only supported in intents that are received and other only in intents that the intent manager
creates and sends to other intent managers for handling.

Model artifacts that can be explicitly supported or not refers to the entire vocabulary specified
by the model. Typical examples are classes, properties and individuals defined in the model.

4.4. Vocabulary specification

This chapter defines the classes, instances and properties of the intent manager capability
model.

Please note that the formulation of capability profiles uses vocabulary defined in these models
in combination with definitions from the intent management ontology [ig1253] and the intent
interface ontology [ig1253C].

4.4.1. Classes

Class: imcp:IntentManagerProfile
Definition: An object of class imp:IntentManagerProfile represents the capability

description profile of intent management function
Instance
of:

rdfs:Class

Class: imcp:IntentManagemetScope
Definition: Describes the responsibility scope of an intent management function
Instance of: rdfs:Class

4.4.2. Instances

The following instances of imcp:IntentManagmentScope are defined. This list is not final or
complete. It demonstrates how intent manager responsibility scopes can be enumerated

State Individual Description
imcp:ScopeSliceManagment The scope of an intent management function that

is responsible for slice management
imcp:ScopeTransport The scope of an intent management function that

is responsible for transport management

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 21 of 30

State Individual Description
imcp:ScopeRadio The scope of an intent management function that

is responsible for radio managment
imcp:ScopeContractNegotiation The scope of an intent management function that

is responsible for automated negotiation of
contracts and SLA

imcp:ScopeOrderManagement The scope of an intent management function that
is responsible for automated ordering

imcp:ScopeRegulatoryPolicies The scope of an intent management function that
is responsible for translating regulatory and legal
requirements into intent

imcp:ScopeOperatorPolicies The scope of an intent management function that
is responsible for translating operator business
policies into intent

imcp:ScopeService The scope of an intent managment function that is
responsible for service orchestration and
assurance

... ...

4.4.3. Properties

Property: imcp:canTakeLCMrole
Definition: Refers to a model that issupported
Instance of: rdf:property
Domain: imcp:IntentManagerProfile
Range: imo:intentLCMrole

Property: imcp:hasIntentManagerProfile
Definition: The property icm:ownerAddress allows to assign the IRI/URI of an

intent owner to an icm:Owner object. This specifies the address that
can be used for sending intent reports

Instance
of:

rdf:property

Domain: imo:IntentManager
Range: imcp:IntentManagerProfile

Property: imcp:hasIntentManagmentScope
Definition: Refers to a model that issupported
Instance of: rdf:property
Domain: imcp:IntentManagerProfile
Range: imcp:IntentManagementScope

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 22 of 30

Property: imcp:hasScopeDifferentiation
Definition: allows assigning further differentiation of scopes.
Instance of: rdf:property
Domain: imcp:IntentManagement
Range: rdf:Resource

Property: imcp:interfaceVersion
Definition: Specifies the version of an interface procedure
Instance of: rdf:property
Domain: imcp:InterfaceProcedure
Range: imcp:IntentExtensionModel

Property: imcp:managerAddress
Definition: The property imcp:managerAddress allows to assign the IRI/URI of an

intent owner to an icm:Owner object. This specifies the address that
can be used for sending intent reports

Instance
of:

rdf:property

Domain: imo:IntentManager
Range: xsd:string

Property: imcp:notSupportedModelArtifact
Definition: Defines artifacts and objects specified within the models that are

explicitly not supported by the intent manager.
Instance
of:

rdf:property

Domain: imcp:IntentModel
Range: rdf:Resource

Property: imcp:partiallySupportedModel
Definition: Refers to a model that is supported for intent and intent report

expression.
The models are supported in handler as well as owner roles.
Artifacts in the mentioned model are assumed to be not supported
unless explicitly referred to using the imcp:supportedModelArtifact
property.

Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: imo:IntentModel

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 23 of 30

Property: imcp:partiallySupportedModelHander
Definition: Refers to a model that is supported for intent and intent report

expression.
This property means that these models can be used in intent that is
received from other intent managers, but they are not necessarily
supported in intent that is owned and send to others.
Artifacts in the mentioned model are assumed to be not supported
unless explicitly referred to using the imcp:supportedModelArtifact
property.

Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: imo:IntentModel

Property: imcp:partiallySupportedModelOwner
Definition: Refers to a model that is supported for intent and intent report

expression.
This property specifies that these models can be used in intent that is
sent to other intent managers for handling them, but they are not
necessarily supported in received intent.
Artifacts in the mentioned model are assumed to be not supported
unless explicitly referred to using the imcp:supportedModelArtifact
property.

Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: imo:IntentModel

Property: imcp:supportedInterfaceProcedure
Definition: Refers to a model that is supported for intent and intent report

expression
Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: iio:InterfaceProcedure

Property: imcp:supportedModel
Definition: Refers to a model that is supported for intent and intent report

expression.
The models are supported in handler as well as owner roles.
The mentioned model is assumed to be fully supported. Exceptions can
be defined using the imp:notSupportedModelArtifact property.

Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 24 of 30

Property: imcp:supportedModel
Range: imo:IntentModel

Property: imcp:supportedModelHandler
Definition: Refers to a model that is supported for intent and intent report

expression.
This property means that these models can be used in intent that is
received from other intent managers, but they are not necessarily
supported in intent that is owned and send to others.
The mentioned model is assumed to be fully supported. Exceptions can
be defined using the imp:notSupportedModelArtifact property.

Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: imo:IntentModel

Property: imcp:supportedModelOwner
Definition: Refers to a model that is supported for intent and intent report

expression in the role of intent Owner.
This property means that these models can be used in intent that is
sent to other intent managers for handling them, but they are not
necessarily supported in received intent.
The mentioned model is assumed to be fully supported. Exceptions can
be defined using the imp:notSupportedModelArtifact property.

Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: imo:IntentModel

Property: imcp:supportedModelArtifact
Definition: Defines, which artifacts in models that are explicitly supported by the

intent manager
Instance
of:

rdf:property

Domain: imcp:IntentModel
Range: rdf:Resource

Property: imcp:supportedNotation
Definition: Refers to a notation format that is supported to be used for serializing

the intent and intent report graphs
Instance
of:

rdf:property

Domain: imcp:IntentManagerProfile
Range: iio:NotationFormat

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 25 of 30

4.5. Model usage and examples

4.5.1. Typical Intent Manager Capability Profile

This example demonstrates a typical intent manager capability profile

ex:ExampleIntentManagerProfileXYZ
 a imp:IntentManagerProfile ;

 imcp:managerAddress
"https://www.operator.com/AutonomousNetwork/Core/SliceManagment/IntentMan
ager/" ;

 imcp:hasIntentManagementScope
 [a imcp:ScopeSliceManagment ;
 imcp:hasScopeDifferentiation
 [ope:intentManagerRegion ope:NetworkRegionNorthEast ,
 ope:NetworkRegionNorthWest
] ;
] ;

 imcp:canTakeLCMrole imo:intentOwner, imo:intentHandler ;

 imcp:supportedNotation
 [a iio:TURTLEnotation ;
 imcp:notationVersion "1.0" ;
] ,
 [iio:RDFXMLnotation ,
 imcp:notationVersion "1.0" ;
 imcp:notationVersion "1.0" ;
] ;

 imcp:supportedInterfaceProcedure
 [a iio:SetProcedure ;
 imcp:interfaceVersion "1.0" ;
 imcp:interfaceVersion "1.1" ;
],
 [a iio:JudgeProcedure ;
 imcp:interfaceVersion "1.0" ;
],
 [a iio:BestProcedure ;
 imcp:interfaceVersion "1.0" ;
] ;

 imcp:supportedModels
 [a imo:Model ;
 imo:modelReference "http://www.w3.org/1999/02/22-rdf-syntax-ns#" ;
] ,
 [a imo:Model ;
 imo:modelReference "http://www.w3.org/2000/01/rdf-schema#" ;
] ,
 [a imo:IntentCommonModel ;
 imo:modelReference
"https://www.tmforum.org/2020/07/IntentCommonModel" ;
] ,

http://www.w3.org/1999/02/22-rdf-syntax-ns

http://www.w3.org/2000/01/rdf-schema

https://www.tmforum.org/2020/07/IntentCommonModel

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 26 of 30

 [a imo:IntentCommonModel ;
 imo:modelReference
"https://www.tmforum.org/2021/12/IntentCommonModel" ;
] ,
 [a imo:IntentExtensionModel ;
 imo:modelReference
"https://tmforum.org/IntentExtension/2021/12/IntentValidity" ;
] ,
 [a imo:IntentExtensionModel ;
 imo:modelReference
"https://tmforum.org/IntentExtension/2021/12/IntentTemporalValidity" ;
] ,
 [a imo:IntentExtensionModel ;
 imo:modelReference "http://www.w3.org/2006/time" ;
] ,
 [a imo:IntentExtensionModel ;
 imo:modelReference
"https://www.sdo2.com/SliceManagementIntent/2021/12/" ;
 imcp:notSupportedModelArtifact
"http://www.sdo2.com/SliceManagementIntent/2021/12/SliceLatency" ,

"http://www.sdo2.com/SliceManagementIntent/2021/12/SliceThroughput" ,
] ;

 imcp:partiallySupportedModels
 [a imo:IntentExtensionModel ;
 imo:modelReference "http://www.sdo1.org/Metrics/Version2" ;
 imcp:supportedModelArtifact
"http://www.sdo1.org/Metrics/Version2/UserExperienceKPI/Latency" ,

"http://www.sdo1.org/Metrics/Version2/UserExperienceKPI/Throughput" ,

"http://www.sdo1.org/Metrics/Version2/SliceKPI/Latency" ,

"http://www.sdo1.org/Metrics/Version2/SliceKPI/Troughput" ;
] .

This intent manager capability profile example defines the capability details of an instance of
an intent management function that can be reached through the URI specified by the
imp:managerAddress property. This is the URI used as destination address for all operations on
intent interface.

The intent manager capability profile then defines the responsibility scope of this intent
manager. In this example the intent manager has the responsibility for intent about slice
management.

This instance of the intent management function states that it can take the roles of intent
owner as well as intent handler.

https://www.tmforum.org/2020/07/IntentCommonModel

https://tmforum.org/Intent

https://tmforum.org/Intent

http://www.w3.org/2006/time

https://tmforum.org/Intent

http://www.w3.org/2006/time

http://www.w3.org/2006/time

http://www.w3.org/2006/time

http://www.w3.org/2006/time

http://www.w3.org/2006/time

http://www.w3.org/2006/time

http://www.w3.org/2006/time

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 27 of 30

It supports intent and intent reports being transmitted using TURTLE, RDF/XML and JSON as
notation format of the intent and intent report ontology graphs.

This intent manger supports the optional interface procedures JUDGE/PREFERENCE as well as
BEST/PROPOSAL.

The intent manager capability profile then uses the imp:supportedModel and
imp:partiallySupportedModel properties to list all models that can be used to formulate intent
and intent reports so that the intent manager understands the vocabulary and semantics. In
this respect imp:supportedModel specifies that listed model is fully supported unless
exceptions are explicitly specified. This is done for the Slice Management Intent model by
SDO2. The model is fully supported except Slice Latency and Slice Throughput KPIs.

This intent manager supports RDF and RDFS as the base models. It also supports an intent
common model. The capability profile contains two distinct intent common models. These are
different versions of the TM Forum intent common model.

The imcp:partiallySupportedModels property list models that are by default not supported and
all supported artifacts defined in these models needs to be explicitly listed using an
imcp:supportedModelArtifact property. In this example the model defined by SDO1 is a
collection of KPI. From all defined KPI only the four explicitly mentioned are supported by this
intent manager.

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 28 of 30

5. Appendix B: Abbreviations and acronyms
ANF Autonomous Networks Framework
BSS Business Support System
DSL Domain Specific Language
IETF Internet Engineering Task Force
IoT Internet of Things
IRI Internationalized Resource Identifier
ISO International Organization for Standardization
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
KPI Key Performance Indicator
MnF Management Function
MnS Management Service
MOF Meta Object Facility
OCL Object Constraints Language
OMG Object Management Group
OWL Web Ontology Language
RDF Resource Description Framework
RDFS RDF Schema
RACI Responsible, Accountable, Consulted, Informed
RAN Radio Access Network
SDO Standards Defining Organization
SKOS Simple Knowledge Organization System
SHACL Shapes Constraint Language
SHEX Shape Expression Language
SPARQL Protocol And RDF Query Language
SQL Structured Query Language
TURTLE Terse RDF Triple Language
URI Uniform Resource Identifier
W3C World Wide Web Consortium
XMI Metadata Interchange
XML eXtensible Markup Language
YAML Yet Another Markup Language

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 29 of 30

6. Appendix C: References
[ig1235A] Intent Modeling v1.1.0

[ig1235B] Intent Extension and Information models v1.0.0

[ig1235C] Intent Life cycle management and Interface v.1.1.0

[ig1235D] Intent Manager Scope and Capability Management v1.0.0

[jsonld] JSON-LD 1.1, W3C Recommendation, 16 July 2020, https://www.w3.org/TR/2020/REC-
json-ld11-20200716/

[rdf] RDF 1.1 Concepts and Abstract Syntax, W3C, https://www.w3.org/TR/rdf11-concepts/

[rdfjson] RDF 1.1 JSON Alternate Serialization (RDF/JSON), W3C Working Group Note, 07
November 2013, https://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

[rdfprim] W3C, RDF Primer, https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

[rdfs] W3C, RDF Schema 1.1, W3C Recommendation 25 February 2014,
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

[rdfxml] RDF 1.1 XML Syntax, W3C Recommendation, 25 February 2014,
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

[sparql] SPARQL 1.1 Overview, W3C Recommendation 21 March 2013,
https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

[turtle] W3C, RDF 1.1 Turtle, Terse RDF Triple Language, W3C Recommendation, 25 February
2014, https://www.w3.org/TR/2014/REC-turtle-20140225/

https://www.w3.org/TR/2020/REC-json-ld11-20200716/

https://www.w3.org/TR/2020/REC-json-ld11-20200716/

https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/TR/2013/NOTE-rdf-json-20131107/

https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

https://www.w3.org/TR/2014/REC-rdf-schema-20140225/

https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/

https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/

https://www.w3.org/TR/2014/REC-turtle-20140225/

 IG1253D Intent Manager Capability Profiles v1.0.0

© TM Forum 2021. All Rights Reserved. Page 30 of 30

7. Administrative Appendix

7.1. Document History

7.1.1. Version History

Version Number Date Modified Modified by: Description of changes
1.0.0 26-Nov-2021 Alan Pope Initial Release

7.1.2. Release History

Release Status Date Modified Modified by: Description of changes
Pre-production 26-Nov-2021 Alan Pope Final edits prior to publication

7.2. Acknowledgments

7.2.1. Guide Lead & Author

Member Title Company
Jörg Niemöller Expert of Analytics and Customer Experience Ericsson

7.2.2. Main Contributors

Member Title Company
Jörg Niemöller Expert of Analytics and Customer

Experience
Ericsson

Kevin McDonnell Senior Director, Intelligent Automation Huawei
James O'Sullivan Product Director, Intelligent Automation Huawei
Dave Milham Chief Architect TM Forum
Vinay Devadatta Practice Head (Innovation & Industry

Relations)
Wipro
Technologies

Azahar Machwe OSS Automation BT Group plc
Wang Lei Systems Expert Huawei
Tayeb Ben
Meriem

Senior Standardization Manager (OSS) Orange

Leonid Mokrushin Principle Researcher Ericsson

7.2.3. Additional Inputs

Member Title Company
Lester Thomas Chief IT Systems Architect Vodafone

Group
Ankur Goyal Lead Consultant Infosys
Emmanuel A.
Otchere

Chief Technical ExpertVP, Standards & Industry
Development

Huawei

Min He Chief Architect Futurewei

			Notice

			Table of Contents

			List of Figures

			Executive Summary

			Introduction

			1. Intent Management Scopes

			1.1. Governance of Intent Management Scopes

			1.2. Collection of Intent Management Scopes

			1.2.1. In Business Operation Exemplar

			1.2.2. In Service Operation Exemplar

			1.2.3. In Resource Operation Exemplar

			2. Intent Manager Capability

			3. Intent Manager Registry

			3.1. Registration of intent managers

			3.2. Discovery of intent manager

			4. Appendix A: Intent Manager Capability Profile Model

			4.1. Motivation and background

			4.2. Notation and namespaces

			4.3. Principles and vocabulary overview

			4.3.1. Intent manager address and contact information

			4.3.2. Intent Management Scope

			4.3.3. Intent LSM role

			4.3.4. Supported notation format

			4.3.5. Supported interface procedures

			4.3.6. Supported Models

			4.4. Vocabulary specification

			4.4.1. Classes

			4.4.2. Instances

			4.4.3. Properties

			4.5. Model usage and examples

			4.5.1. Typical Intent Manager Capability Profile

			5. Appendix B: Abbreviations and acronyms

			6. Appendix C: References

			7. Administrative Appendix

			7.1. Document History

			7.1.1. Version History

			7.1.2. Release History

			7.2. Acknowledgments

			7.2.1. Guide Lead & Author

			7.2.2. Main Contributors

			7.2.3. Additional Inputs

image1.png

