Page 1

3GPP TSG-SA5 Meeting #138-e
S5-214099
Online, 23rd Aug 2021, - 31st Aug 2021
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	32.160
	CR
	0022
	rev
	-
	Current version:
	17.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Rel-17 CR 32.160 Change format for NRM stage 3 definition rules from JSON to YAML

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	SA5

	
	

	Work item code:
	REST_SS, TEI17
	
	Date:
	2021-08-12

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier

release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
…
Rel-15
(Release 15)
Rel-16
(Release 16)
Rel-17
(Release 17)
Rel-18
(Release 18)

	
	

	Reason for change:
	OpenAPI definitions are specified in YAML format. However, the mapping rules from stage 2 to stage 3 use JSON

	
	

	Summary of change:
	The JSON format is replaced by YAML format.

	
	

	Consequences if not approved:
	There would be an inconsistency between formats used for the OpenAPI definitions and the mapping rules.

	
	

	Clauses affected:
	6.1.1, 6.1.2, 6.1.3, 6.1.4, 6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.10, 6.1.11.2, 6.1.11.3, 6.1.11.6, 6.1.11.8

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

	First modification

6.1
Mappings from stage 2 artefacts to stage 3 JSON schema

6.1.1
Usage of JSON schema

JSON schema is used to describe a set of valid schema documents sent over the wire in HTTP request and response messages of the ProvMnS. JSON schema does not describe the concrete implementation of the NRM on the producer.
Definitions are written in YAML.
6.1.2
Concrete NRM classes
A NRM class (managed object class) is represented by a JSON object. The properties of the JSON object are the NRM class attributes and the name contained NRM classes.

	YAML schema
	YAML document example

	type: object

properties: {}

	{
}

In the following example the class contains an "attributeA" of type "string" and an "attributeB" of type "number".

	YAML schema
	YAML document example

	type: object

properties:

 attributeA:

 type: string

 attributeB:

 type: number

	attributeA: ABC

attributeB: 45

The JSON object representing the class instance is preceded by a key equal to the class name.

In the following example the class name is "classA". Attributes are omitted for the sake of simplicity.

	YAML schema
	YAML document example

	type: object

properties:

 classA:

 type: object

 properties: {}

	classA: {}

Multiple managed object instances of the same class are represented using a JSON array, where each item of the array is a JSON object with a managed object class instance representation.

	YAML schema
	YAML document example

	type: object

properties:

 ClassA:

 type: array

 items:

 type: object

 properties: {}

	ClassA:

 - {}

 - {}

 - {}

	
	

	

	

6.1.3
Abstract classes
Abstract classes shall be defined in a "definitions" object and referenced in the schema of the concrete class using the "$ref" keyword.

In the following example the abstract class can be instantiated zero or one time.
	YAML schema
	YAML document example

	definitions:

 ClassA-Abstract:

 type: object

 properties: {}

type: object

properties:

 ClassA:

 $ref: '#/definitions/ClassA-Abstract'

	ClassA: {}

In the following example the abstract class can be instantiated zero or more times.

	YAML schema
	YAML document example

	definitions:

 ClassA-Abstract:

 type: object

 properties: {}

type: object

properties:

 ClassA:

 type: array

 items:

 $ref: '#/definitions/ClassA-Abstract'

	ClassA:

 - {}

 - {}

 - {}

Abstract classes can be defined as well in separate files. Assume a file with the name "myDefs.json" includes the "definitions" object with the definition of "ClassA-Abstract".

	YAML schema
	YAML document example

	definitions:

 ClassA-Abstract:

 type: object

 properties: {}

	

The definition of "ClassA-Abstract" is then referenced like

	YAML schema
	YAML document example

	type: object

properties:

 ClassA:

 type: array

 items:

 $ref: 'myDefs.json#/definitions/ClassA-Abstract'

	ClassA:

 - {}

 - {}

 - {}

6.1.4
Name containment

Name contained NRM class instances are modeled as property of the containing class. The name of the property is the class name. The value is an array with manged object class representations of that class. Cardinality of the name containment relationship is specified using the "minItems" and "maxItems" keywords.

If the maximum number of items is unbounded, the "maxItems" keyword shall be omitted. If the minimum number of items is 0, the "minItems" keyword can be omitted.

The contained class shall not be listed as required property. This allows omitting the property representing the contained class instances completely in a JSON document instead of having an empty array.

In the following example an instance of "classA" name contains 1…1000 instances of "classB".

	YAML schema
	YAML document example

	type: object

properties:

 ClassA:

 type: array

 items:

 type: object

 properties:

 ClassB:

 type: array

 minItems: 1

 maxItems: 1000

 items:

 type: object

 properties: {}

	ClassA:

 - ClassB:

 - {}

 - {}

Managed objects class instances of more than one class can be name contained.

	YAML schema
	YAML document example

	type: object

properties:

 ClassA:

 type: array

 items:

 type: object

 properties:

 ClassB:

 type: array

 items:

 type: object

 properties: {}

 ClassC:

 type: array

 items:

 type: object

 properties: {}

	ClassA:

 - ClassB:

 - {}

 - {}

 - ClassC:

 - {}

 - {}

 - {}

The contained managed object classes may be defined as abstract classes first, and then referenced.

	YAML schema
	YAML document example

	definitions:

 ClassB-SingleAbstract:

 type: object

 properties: {}

 ClassC-SingleAbstract:

 type: object

 properties: {}

type: object

properties:

 ClassA:

 type: array

 items:

 type: object

 properties:

 ClassB:

 type: array

 items:

 $ref: '#/definitions/ClassB-SingleAbstract'

 ClassC:

 type: array

 items:

 $ref: '#/definitions/ClassC-SingleAbstract'

	ClassA:

 - ClassB:

 - {}

 - {}

 - ClassC:

 - {}

 - {}

 - {}

or, when the abstract class is defined as an array, then

	YAML schema
	YAML document example

	definitions:

 ClassB-MultipleAbstract:

 type: array

 items:

 type: object

 properties: {}

 ClassC-MultipleAbstract:

 type: array

 items:

 type: object

 properties: {}

type: object

properties:

 ClassA:

 type: array

 items:

 type: object

 properties:

 ClassB:

 $ref: '#/definitions/ClassB-MultipleAbstract'

 ClassC:

 $ref: '#/definitions/ClassC-MultipleAbstract'

	ClassA:

 - ClassB:

 - {}

 - {}

 - ClassC:

 - {}

 - {}

 - {}

6.1.5
Recursive name containment

Classes may name contain themselves. This shall be modeled in JSON schema with recursion. Recursion requires using a "definitions" object with the definition of an abstract class.

In the following example each instance of "classA" contains zero or one instance of "classA".

	YAML schema
	YAML document example

	definitions:

 ClassA-Abstract:

 type: object

 properties:

 classA:

 $ref: '#/definitions/ClassA-Abstract'

type: object

properties:

 ClassA:

 $ref: '#/definitions/ClassA-Abstract'

	ClassA:

 ClassA:

 ClassA: {}

In the following example each instance of "classA" contains zero or more instances of "classA".

	YAML schema
	YAML document example

	definitions:

 ClassA-MultipleAbstract:

 type: array

 items:

 type: object

 properties:

 classA:

 $ref: '#/definitions/ClassA-MultipleAbstract'

type: object

properties:

 ClassA:

 $ref: '#/definitions/ClassA-MultipleAbstract'

	ClassA:

 - ClassA:

 - {}

 - {}

 - ClassA:

 - ClassA:

 - {}

6.1.6
Inheritance

JSON schema does not have the concept of inheritance. Inheritance can be emulated by the composition of schemas with the "allOf" keyword.

In the following example the attribute "attrB" is added to the attribute "attrA" of "classA-Abstract" to construct "ClassB".

	YAML schema
	YAML document example

	definitions:

 ClassA-Abstract:

 type: object

 properties:

 attrA:

 type: string

type: object

properties:

 ClassB:

 type: array

 items:

 allOf:

 - $ref: '#/definitions/ClassA-Abstract'

 - type: object

 properties:

 attrB:

 type: number

	ClassB:

 - attrA: ABC

 attrB: 5

 - attrA: DEF

 attrB: 4

 - attrA: GHI

 attrB: 23

The other possibility is to specify the inherited attribute directly along with the added attributes, thus having no inheritenace or any emulation thereof in NRM stage 3 definitions.

6.1.7
NRM class naming attribute "id"

The naming attribute "id" is mapped to a required property of the class object, where the key is "id" and the type is "string".

	YAML schema
	YAML document example

	type: object

properties:

 ClassA:

 type: array

 items:

 type: object

 properties:

 id:

 type: string

 required:

 - id

	ClassA:

 - id: '1'

 - id: '2'

 - id: '3'

6.1.8
NRM class attributes

NRM class attributes other than the naming attribute "id" shall be carried as properties in an "attributes" object.

	YAML schema
	YAML document example

	type: object

properties:

 classA:

 type: array

 items:

 type: object

 properties:

 id:

 type: string

 attributes:

 type: object

 properties: {}

 required:

 - id

	classA:

 - id: '1'

 attributes: {}

 - id: '2'

 attributes: {}

 - id: '3'

 attributes: {}

The class attributes are name/value pairs (properties) of the "attributes" object.

6.1.9
Vendor specific extensions

Vendor-specific attributes shall be added to standardized JSON schemas using the mechanism in clause 6.1.6 "Inheritance".
6.1.10
Attribute support qualifier

The attribute support qualifier is defined in clause 6 of TS 32.156 [3]. This qualifier specifies a requirement for the MnS producer.

Attributes may or may not be present in a JSON document carried in a HTTP request or response message, no matter what their support qualifier in the NRM is. For this reason, no qualification is required for attributes in the JSON schema for NRMs. By default, the properties defined by the "properties" keyword are not required and can be omitted in a document instance.

However, some attributes like the "id" naming attribute shall be always present when a managed object class instance is carried in a HTTP request or response. These attributes shall be listed as array items in the value of the "required" keyword.

	YAML schema
	YAML document example

	type: object

properties:

 classA:

 type: array

 items:

 type: object

 properties:

 id:

 type: string
 required:

 - id

	classA:

 - id: '1'

 - id: '2'

 - id: '3'

6.1.11
Attribute properties

6.1.11.1
Introduction

The attribute properties are defined in clause 5.2.1.1 of TS 32.156 [3]. They reflect properties of the attributes exhibited by the MnS producer. Their purpose is not to specify requirements for the attribute when transferred over the wire. For this reason, care should be taken when mapping attribute properties to JSON schema keywords.

6.1.11.2
Attribute property "multiplicity"

Attributes of scalar type with multiplicity equal to "1" are mapped to a name/value pair whose value is either a number, a string or one of the literal names false, null or true.

Attributes of scalar type with nultiplicity bigger than "1" are mapped to a name/value pair whose value is a JSON array, and the array items are either a number, a string or one of the literal names false, null or true.

Attributes of structured type with multiplicity equal to "1" are mapped to a single name/value pair whose value is a JSON object, whose properties are described by the structured data type.

Attributes of structured type with multiplicity greater than "1" are mapped to a name/value pair whose value is a JSON array, and the items are JSON objects, whose properties are described by the structured data type.

6.1.11.3
Attribute property "isUnique"

The semantics of his attribute property is mapped to the "uniqueItems" keyword with a value set to true.

properties:

 flower:

 type: array

 uniqueItems: true

 items:

 type: string

6.1.11.4
Attribute property "isOrdered"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

6.1.11.5
Attribute property "defaultValue"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

Note:
The OpenApi Specification [14] defines the "default" keyword. This default value represents what would be assumed by the consumer of the input as the value of the schema if a value is not provided in the consumed JSON instance document. The sematics of default in the OpenApi Specification [14] is hence different from the semantics of default in TS 32.156 [3].

6.1.11.6
Attribute property "isNullable"

The semantics of this attribute property is mapped to the "nullable" keyword with a value set to true.

Example:

properties:

 flower:

 type: string

 nullable: true

Note:
The "nullable" keyword is defined only in the OpenApi Specification [14]. JSON schema as defined in [15], [16], [17] does not specify this keyword.

6.1.11.7
Attribute property "isInvariant"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

6.1.11.8
Attribute property "isReadable" and "isWritable"

The semantics of these properties are mapped to the "readOnly" and "writeOnly" keywords with the values set according to the following table. The default value of the "readOnly" and "writeOnly" keywords is boolean "false".

	Stage 2 statement
	Stage 2 semantic
	Stage 3 statements
	Stage 3 semantic

	isReadable=True (default)

isWritable=True (default)
	Attribute can be read.

Attribute can be written.
	readOnly=False (default)

writeOnly=False (default)
	Attribute can be read.

Attribute can be written.

	isReadable=True (default) isWritable=False
	Attribute can be read.

Attribute cannot be written.
	readOnly=True

writeOnly=False (default)
	Attribute can be read.

Attribute cannot be written.

	isReadable=False isWritable=True (default)
	Attribute cannot be read.

Attribute can be written.
	readOnly=False (default)

writeOnly=True
	Attribute cannot be read.

Attribute can be written.

	isReadable=False isWritable=False
	Attribute cannot be read.

Attribute cannot be written.
	readOnly=True

writeOnly=True
	Attribute cannot be read.

Attribute cannot be written.

If "writeOnly" for an attribute has a value of boolean "true", it indicates that the attribute shall never be present in instance documents sent by the MnS producer to the MnS consumer.

If "readOnly" for an attribute has a value of boolean "true", it indicates that the attribute shall never be present in instance documents sent by the the MnS consumer to the MnS producer.

Example:

properties:

 flower:

 type: string

 readOnly: true

 writeOnly: false

6.1.11.9
Attribute property "isNotifyable"

This attribute property is a requirement for the MnS producer and not mapped to any JSON schema keyword.

6.1.11.10
Attribute property "allowedValues"

Allowed values for "string" are specified using the "minLength", "maxLength" and "pattern" keywords.

Allowed values for "number" and "integer" are specified using the "multipleOf", "maximum", "exclusiveMaximum", "minimum" and "exclusiveMinimum" keywords.

Allowed values of any type can be restricted by using the "enum" and "const" keywords.
	End of modifications

