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Machine learning in future networks including IMT-2020: use cases 

 

Summary 

This Supplement describes the use cases of machine learning in future networks including IMT-2020. 

For each use case description, along with the benefits of the use case, the most relevant possible 

requirements related to the use case are provided. Classification of the use cases into categories is also 

provided.  
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Draft new Supplement 55 to ITU-T Y.3170-series (former ITU-T Y.ML-

IMT2020-Use-Cases) 

 

Machine learning in future networks including IMT-2020: use cases 

1 Scope 

This Supplement analyses the use cases for machine learning in future networks including IMT-2020 

and presents them in a unified format. The Supplement provides use cases descriptions and indicates the 

basic set of possible requirements for each use case. The use cases are divided into categories.  

2 References  

The following references contain provisions which, through reference in this text, constitute provisions 

of this Supplement. At the time of publication, the editions indicated were valid. All supplements and 

other references are subject to revision; all users of this Supplement are therefore encouraged to 

investigate the possibility of applying the most recent edition of the supplements and other references 

listed below. A list of the currently valid ITU-T Recommendations and supplements is regularly 

published. 

[ITU-T Y.3100]  ITU T Recommendation Y.3100 (2017), “Terms and definitions for IMT-2020 

network” 

[ITU-T Y.3104]  ITU T Recommendation Y.3104 (2018), “Architecture of the IMT-2020 network” 

[ITU-T Y.3110]  ITU T Recommendation Y.3110 (2017), “IMT-2020 network management and 

orchestration requirements” 

[ITU-T Y.3111]  ITU T Recommendation Y.3111 (2017), “IMT-2020 network management and 

orchestration framework”   

[ITU-T Y.3172]  ITU-T Recommendation Y.3172 (2019), “Architectural framework for machine 

learning in future networks including IMT-2020”   

3 Definitions 

3.1 Terms defined elsewhere 

This Supplement uses the following terms defined elsewhere: 

3.1.1  machine learning (ML) [ITU-T Y.3172]: processes that enable computational systems to 

understand data and gain knowledge from it without necessarily being explicitly programmed. 

 NOTE 1 – Definition adapted from [b-ETSI GR ENI 004]. 

 NOTE 2 – Supervised machine learning and unsupervised machine learning are two examples of 

machine learning types.  

3.1.2 machine learning pipeline [ITU-T Y.3172]: a set of logical nodes, each with specific 

functionalities that can be combined to form a machine learning application in a 

telecommunication network. 

 NOTE 1 – The nodes of a machine learning pipeline are entities that are managed in a standard 

manner and can be hosted in a variety of network functions [ITU-T Y.3100]. 

3.2 Terms defined in this Supplement 

This Supplement defines the following terms: 

3.2.1 base-ML model: machine learning model which is not trained with data sets. 
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3.2.2 machine learning output: policies or configurations to be applied in the network, based on the 

output from the machine learning model.  

 NOTE - The target of machine learning output may be functions in the network. Such 

application of machine learning output may be based on the use case requirements and controlled 

by network operator policies. 

3.2.3  training pipeline: machine learning pipeline which is used for training machine learning 

models. 

4 Abbreviations and acronyms 

This Supplement uses the following abbreviations: 

 

1DCNN One-Dimensional Convolutional Neural Network 

2DCNN Two-Dimensional Convolutional Neural Network 

AI           Artificial Intelligence 

AN          Access Network 

API  Application Programming Interface 

AR  Augmented Reality 

ARIMA Autoregressive Integrated Moving Average  

ASN       Abstract Syntax Notation 

BH  Back-Haul 

BLER  Block Error Rate 

BS   Base Station  

BTS   Base Transceiver Station  

CAP  Common Alerting Protocol 

CAPEX     Capital Expense  

CAT-M Category M 

CDM   Caching Decision Module  

CDR  Call Detail Record 

CE   Customer Experience 

CEP   Complex Event Processing 

CN  Core Network 

CNN  Convolutional Neural Networks  

CLSTMs Convolution Long Short-Term Memory 

CPU  Central Processing Unit 

CQI  Channel Quality Indicator 

CSP  Communication Service Provider 

CU  Central Unit 

DCNN  Deep Convolutional Neural Network 

DL  Deep Learning 

DN  Data Network 
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DNN         Deep Neural Network 

DPI  Deep Packet Inspection 

DRB  Dedicated Radio Bearer 

DU  Distributed Unit 

E2E  End-to-End 

eMBB  enhanced Multimedia BroadBand 

EPC  Evolved Packet Core 

E-RAB E-UTRAN Radio Access Bearer 

ETAs   Estimated Time of Arrivals 

FH  Front-Haul 

FLR  Frame Loss Rate 

gNB  (Next) Generation Node B 

GNSS  Global Navigation Satellite System 

GPM   Global Predictor Module 

GPS  Global Positioning System 

GPU  Graphical Processor Unit 

HSDPA High Speed Downlink Packet Access 

HTTP   Hypertext Transfer Protocol 

ICT           Information and communications technology (ICT) 

IMEI   International Mobile Equipment Identifier 

IoT  Internet of Things 

ISP  Internet Service Provider 

KPI  Key Performance Indicator 

LPM   Local Predictor Module  

LSTM  Long Short-Term Memory 

LTE  Long Term Evolution 

MAC  Medium Access Control 

MANO     Management and Orchestration 

MCS   Modulation and Coding Scheme 

MDAF  Management Data Analytics Function 

MEC  Multi-access Edge Computing 

MH  Mid-Haul 

MIMO  Multiple Input Multiple Output 

ML  Machine Learning 

MML   Man-Machine Language 

mMTC  massive MTC 

MPP   Mobility Pattern Prediction  

MTC  Machine Type Communication 
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NFV  Network Functions Virtualisation 

NFVI  NFV Infrastructure 

NGC  Next Generation Core 

NMS  Network Management System 

NR  New Radio 

mIoT        massive IoT 

OAM        Operation and Maintenance 

OLLA   Out Loop Link Adaptation 

ONAP      Open Network Automation Platform 

OSS  Operational Support System 

PDCP  Packet Data Convergence Protocol 

PER   Packet Error Rate  

P-GW  Packet GateWay 

PMEC   Personalized Mobile Edge Caching  

PMI  Precoding Matrix Indicator 

PRB  Physical Resource Block 

QCI  QoS Class Identifier 

QoE   Quality of Experience 

QoS   Quality of Service 

RA   Resource Allocation 

RAN   Radio Access Network 

RAT  Radio Access Technology 

RB  Resource Block 

RCA   Root Cause Analysis 

RI  Rank Indicator 

RNN  Recurrent Neural Networks 

RRC  Radio Resource Control 

RRM-NS  Radio Resource Management for Network Slicing  

RSRP   Reference Signal Received Power 

RSRQ   Reference Signal Received Quality  

RSSI   Received Signal Strength Indicator 

RTWP  Received Total Wide band Power 

RU  Radio Unit 

SBA        Server Based Architecture 

SDN   Software-Defined Networking  

SDNC  Software-Defined Networking Controller 

SD-WAN Software-Defined Networking in a Wide Area Network 

SIM  Subscriber Information Module 
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SINR  Signal to Interference plus Noise Ratio 

SFC  Service Function Chaining 

SLA         Service Level Agreement 

SOHO   Soft Handover 

SON   Self-Organizing Network  

SRM   Slicing RA Master 

TAC  Tracking Area Code 

TAI  Tracking Area Identifier 

TCO  Total Cost of Ownership 

TCP   Transmission Control Protocol  

TN  Transport Network 

TPM        Trusted Platform Module 

UE  User Equipment 

UPF  User Plane Function 

URLLC Ultra Reliable and Low Latency Communications  

VIM  Virtualised Infrastructure Manager 

VLAN  Virtual Local Area Network 

VNF  Virtualised Network Function 

VNFM  Virtual Network Function Manager 

VoIP  Voice over Internet Protocol 

VR  Virtual Reality 

XSD       XML Schema Definition 

 

5 Conventions 

In this Supplement, possible requirements which are derived from a given use case, are classified as 

follows: 

The keywords "it is critical" indicate a possible requirement which would be necessary to be fulfilled (e.g. 

by an implementation) and enabled to provide the benefits of the use case. 

The keywords "it is expected" indicate a possible requirement which would be important but not 

absolutely necessary to be fulfilled (e.g. by an implementation). Thus, this possible requirement would 

not need to be enabled to provide complete benefits of the use case. 

The keywords "it is of added value" indicate a possible requirement which would be optional to be fulfilled 

(e.g. by an implementation), without implying any sense of importance regarding its fulfilment. Thus, this 

possible requirement would not need to be enabled to provide complete benefits of the use case.   

6 Use cases and their requirements  

This clause describes the use cases. The use cases are classified into five categories as below. For each 

use case, the requirements are further classified into those for data collection, data storage and 

processing, and application of ML output. 
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6.1 Network slice and other network service related use cases 

This category of use cases is related to creation or management of network slices (e.g. resource 

management for network slices). Similarly, the use cases related to creation or management of network 

services have also been classified into this category. 

6.1.1 Cognitive heterogeneous networks and ML-based SON 

6.1.1.1 Use case description 

As described in [ITU-T Y.3111], IMT-2020 network provides network services to support diverse 

requirements, by using network functions instantiated as appropriate. Current networks are flexible and rely 

a lot on automation and virtualisation, for instance self-organizing networks (SONs). Requirements on 

future networks will not only be high data rate and low latency, but the networks themselves should be 

smart and intelligent to keep all aspects of a telecommunication company continuously and optimally 

connected: users, services and machines. This requires the intervention of artificial intelligence and 

machine learning concepts and algorithms. 

The existing common SON solution defined by the 3GPP [b-3GPP-32500] covers three main aspects: 

self-configuration, self-optimisation and self-healing. Cognitive heterogeneous networks are built on 

artificial intelligence technologies and allow the networks to be more aware about network problems, user 

behaviours, environmental aspects, etc.  

Self-configuration includes plug-and-play configuration of newly deployed radio access nodes, where the 

access nodes configure their identity, transmission frequency and power, leading to faster cell planning 

and rollout. Functions for self-optimisation include optimisation of coverage, capacity, handover and 

interference. Self-healing includes features like automatic detection and removal of failures and automatic 

adjustment of parameters. 

However, the first generation of SON solutions is facing limitations in the performance they could achieve 

since they do not utilize machine learning algorithms. A ML-based SON solution monitors network alarms 

and key performance indicators (KPIs), and takes proper action to clear alarms, enhance network KPIs or 

give network design recommendations without human intervention. 

6.1.1.2 Use case requirements 

6.1.1.2.1. Use case requirements related to data collection 

 

Critical requirements 

It is critical that ML-enabled networks support SON framework for global network optimization including 

the following: 

● Different radio access network technologies; 

● Multi-vendor environment;  

● All network aspects including radio access network (RAN), core network (CN) and transport 

network (TN) related functions. 

Expected requirements 

It is expected that ML-enabled networks support the integration of probing and monitoring systems 

connected to the network elements in order to get accurate results for transport KPIs (e.g. frame loss rate 

(FLR), delay and jitter).   

It is expected that ML-enabled networks support SON framework which is connected to a centralized 

performance monitoring system to collect and consolidate data from all network management systems 

(NMSs) and probes. 
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It is expected that ML-enabled networks support SON framework which takes all aspects of management 

and operation of the network into account and provides a solution for the global network optimization 

problem.  

It is expected that ML-enabled networks support the collection of the following RAN data: 

● Geographical location of UE 

● Measurement report for radio condition per UE and/or access node 

● Resources allocated per UE and/or access node 

● Connection signalling events per UE and/or access node 

● Traffic type classified per UE and/or access node 

● Service type classified per UE and/or access node, e.g. ultra-reliable and low latency 

communications (URLLC), massive machine type communications (mMTC), enhanced mobile 

broadband (eMBB) [ITU-T Y.3111] 

● Cell and/or access node resources utilization 

● Cell and/or access node KPIs, e.g. KPIs related to accessibility, drops, throughput, power. 

It is expected that ML-enabled networks support the collection of the following CN data: 

● Core network KPIs, e.g. KPIs related to success rates, failure rates and causes; 

● Core traffic figures, e.g. figures about traffic aggregated per service, traffic insights (about used 

applications), sessions per service, signalling per radio access technology (RAT), signalling of 

charging; 

● Network utilization KPIs, i.e. utilization KPIs of relevant network entities such as access nodes, 

links; 

● Call detail records (CDRs) and log files that can include customers’ IP addresses, services and 

location. 

It is expected that ML-enabled networks support the collection of the following TN data: 

● Transport utilization; 

● Transport failures; 

● Transport failure rate; 

● Transport bandwidth. 

 

6.1.1.2.2. Use case requirements related to data storage and processing 

Critical requirements 

It is critical that ML-enabled networks support a centralized orchestration node, whose main function will 

be for actions which need an end-to-end and higher level view. 

It is critical that ML-enabled networks support distributed orchestration nodes whose main function is to 

support fast and latency sensitive functions. 

Expected requirements 

It is expected that ML-enabled networks support network slices which span across multiple domains.  

It is expected that ML-enabled networks support all types of network resources including software defined 

and hardware resources. 

It is expected that ML-enabled networks support ML training in the centralized orchestration node and 

sending the trained model frequently to the distributed orchestration nodes. 
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Added value requirements 

It is of added value that ML-enabled networks support API-based interfaces for the exchange of data and 

control messages related to the use case. 

NOTE 1 – API-based interfaces may be used between centralized and distributed orchestration nodes. 

NOTE 2 – API-based interfaces may be RESTful. 

6.1.1.2.3. Use case requirements related to application of ML output 

Critical requirements 

It is critical that ML-enabled networks support SON framework enhanced with machine learning and 

intelligent algorithms. 

It is critical that ML-enabled networks support both centralized and distributed orchestration nodes that 

have a privilege to modify network parameters and setting automatically, and then generate logs and 

reports for the network operator. 

It is critical that ML-enabled networks allow allocation of resources from different access network nodes 

and provide dynamic adjustments of resource allocation parameters to achieve gains in coverage, capacity, 

and quality of service.  

It is critical that ML-enabled networks support handling of node resources such as dynamic adjustment of 

transmit power level and dynamic turn on/off of the embedded node resources, in order to optimize 

connection and Quality of Service (QoS) performance. 

Expected requirements 

It is expected that ML-enabled networks support the following SON functionalities in the network: 

● For fully automated functions, SON has a privilege to modify network parameters and setting 

directly. 

● For computer-aided functions, SON generates scripts and recommendations for their execution. 

6.1.2 Radio resource management for network slicing (RRM-NS) 

6.1.2.1 Use case description 

In today’s networks, the radio resource allocation is based on per flow or per radio bearer QoS profile. 

However, such an approach is not efficient to provide the service quality guarantee and resource isolation 

needed by network slicing, thus, leading to over-reservation and hence under-utilization of resources. One 

of the major challenges with future networks and deployment of network slicing is providing performance 

guarantee in terms of minimum dedicated bandwidth with high reliability, while ensuring efficient 

utilization of the scarce radio resources. 

6.1.2.2 Use case requirements 

6.1.2.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support continuous collection of data to update the prediction 

models in order to improve in real-time the accuracy and effectiveness of the prediction models.  

Expected requirements 

It is expected that ML-enabled networks support usage of historical data and analysis of network slice 

behaviour and radio resource utilization patterns for high accuracy prediction of the network slice resource  

requirements. 

It is expected that ML-enabled networks support collection of measurement data including:  
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● Network slice (per cell): 

- KPIs, including per network slice uplink /downlink physical resource block (PRB) [b-3GPP 

36.321] usage, and others as indicated in network slice level objectives (e.g. latency). 

● UE: 

- Location context, e.g. global navigation satellite system (GNSS), cell [b-3GPP 36.305]; 

- Mobility context, e.g. cell information history; 

- Per network slice per QoS/dedicated data radio bearer (DRB) throughput; 

- Reference signal received power (RSRP) [b-3GPP 36.214], reference signal received quality 

(RSRQ) [b-3GPP 36.214] , received signal strength indicator (RSSI) [b-3GPP 36.214], signal-

to-interference-plus-noise ratio (SINR) [b-3GPP 36.214]; 

- Beam state information, , channel quality indicator (CQI) [b-3GPP 36.213] [b-3GPP 38.214], 

modulation and coding scheme (MCS) [b-3GPP 36.213] [b-3GPP 38.214]; 

● Cell: 

- Position estimates, e.g. GNSS; 

- KPIs. 

● Core Network: 

- UE communication pattern; 

- UE mobility trajectory. 

It is expected that ML-enabled networks support the collection of the following context information data: 

● Network state data: 

- Identification information, e.g., for cell identification, beam identification, cell tracking area 

code (TAC) [b-3GPP 23.003]; 

- Cell status query data; 

- List of network slices supported in the cell; 

- Real-time network performance data; 

- Network slice specific radio network configuration (e.g. cell level, network slice level). 

● User state data, e.g. UE identifier, various logs, KPIs; 

● Network slice level objectives, network slice profiles (e.g. target user name, latency, throughput, 

availability, reliability). 

Added value requirements 

It is of added value that ML-enabled networks support simulated data generated to further improve the 

training of ML models.  

NOTE - Simulated data may be used for instance to learn rare events, and before general deployment of 

network slices. 

It is of added value that ML-enabled networks support the collection of the following data: 

 network slice level performance measurement parameters and alarm data;  

 cell status query, user mobility and radio channel conditions data;  

 user service request, user QoS and user data monitoring. 

6.1.2.2.2. Use case requirements related to data storage and processing 

Expected requirements 
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It is expected that ML-enabled networks support analysis of network slicing requirements and radio 

network conditions, and fulfilment of the requirements of each network slice while achieving optimal 

radio resource utilization. 

6.1.2.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks support prediction, in real-time, of the network slice radio resource 

requirements and optimal radio resource allocation per network slice to optimize the mobile network 

operation.  

NOTE – Services enabled by RRM-NS include real-time predictive network slice performance monitoring 

and resource planning, real-time predictive network slice traffic increase/decrease and network slice 

provisioning, and real-time deployment of new network slices. 

It is critical that ML-enabled networks support algorithms which predict per network slice and per cell 

radio resource requirements and required allocation trajectory.  

It is critical that ML-enabled networks execute the network slice resource allocation plan, generate man-

machine language (MML) commands for communication with the access network (AN) nodes, other 

elements of the core network (CN) and network managers, e.g., operational support system (OSS).   

Expected requirements 

It is expected that ML-enabled networks support NMSs which are involved in: 

 Data collection, including network slice level and cell level data collection; 

 Model training;  

 Non real-time network slice related policies and configuration. 

It is expected that ML-enabled networks support ANs and/or near real-time RAN control nodes, which 

support the following functions: 

● Data collection;  

● Near real-time network slice radio resource scheduler. 

It is expected that ML-enabled networks support AN with a ML-based dynamic radio resource scheduler 

function. 

Added value requirements 

It is of added value that ML-enabled networks support ML algorithms to predict per network slice 

performance and to generate network slice planning and optimization strategies. 

6.1.3 End-to-end network operation automation - Service design 

6.1.3.1 Use case description 

Vertical industry services imply a wide range of service requirements [ITU-T Y.3111]. Network 

configurations to satisfy these service requirements have many variations. For example, high-throughput 

broadband network is necessary to satisfy the service requirements of remote diagnostic service and low-

latency network configuration is needed to satisfy the needs of robotic surgery.  

Therefore, it will be a challenging task to make agile and appropriate decisions regarding the configuration 

of critical services. The re-designing of networks, if done manually, is time-consuming. ML may provide 

solutions for agile service design and automated network design by automatically translating service 

requirements of use cases to network requirements. ML can also provide automated, scalable, customized 

solutions for network (re)design. This can shorten service delivery time.  

Network slicing is one approach to satisfy the diverse service requirements of vertical industries. As 

mentioned in [ITU-T Y.3111], the request from network slice customer to create a network slice includes 

the specific catalogue of service requirements on network slice, e.g., service type (eMBB, mIoT, URLLC, 
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etc.), network slice priority, network slice sharing option. The template for network slice provisioning is 

provided by the IMT-2020 service provider as a form of service requirement catalogue through its service 

portal. 

6.1.3.2 Use case requirements 

6.1.3.2.1. Use case requirements related to data collection 

None 

6.1.3.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks possess the capability of automatically translating service 

requirements of the use cases to network requirements for network deployment conforming to network 

specification documents (e.g., data model). 

It is critical that ML-enabled networks support data models used to specify service requirements of use 

cases including characteristics of logical networks (i.e. characteristics of a logical representations of the 

networks). 

NOTE – Characteristics of a logical network may include the connectivity between various nodes of the 

logical network.  

6.1.3.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks possess the capability to efficiently integrate automated network 

configuration methods to fulfil the requirements of IMT-2020 systems.  

It is critical that ML-enabled networks support APIs which are exposed towards the service users and 

which support service requirements from service users. 

It is critical that ML-enabled networks support automatic composition of logical network requirements 

from service requirements. 

It is critical that ML-enabled networks support APIs which are exposed towards the network providers 

and which notify network providers of logical network requirements. 

It is critical that ML-enabled networks support functions which translate logical network requirements 

into physical network deployment specifications. 

6.1.4 End-to-end network operation automation - Network resource adaptation  

6.1.4.1 Use case description 

Network resource adaptation is necessary for maintaining QoS requirements of various application 

services offered via IMT-2020 network slices. Here, resource adaptation refers to the process of 

dynamically increasing or decreasing resources (e.g., CPU, storage, memory of nodes or bandwidth of 

links) allocated to a network slice so that QoS requirements are always met despite fluctuation in the 

workload or sudden changes in network capacity (e.g., due to interferences or link/node failures).  In a 

network slice, network functions (NFs) can be arranged in service function chaining (SFC) [b-ITU-T 

Y.2242] to process network traffic for offering the intended communication service. 

The QoS requirements of services offered in various network slices may differ, e.g. QoS requirements of 

eMBB and URLLC services offered in different network slices are different. Some services (e.g., 

autonomous driving) require very stringent QoS requirements, while other services (e.g. best effort social 

networking services) may have tolerable ranges of QoS. Network resource adaptation mechanism 
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dynamically monitors the performance and resource utilization of all network slices and 

increases/decreases resources of a network slice (assigned to NFs) in the case of changes in network 

conditions to meet the QoS requirements.  

ML-based scaling for network resource adaptation provides an effective approach to meet the diverse QoS 

requirements of various services offered in different network slices. This involves regular monitoring and 

analysis of performance data, time-varying workload, resource utilization and available resources. Based 

on these, intelligent decisions for resource arbitration can be made to appropriately allocate the available 

resources of given node or link to the network slices so that each network slice can satisfy the required 

level of QoS. In case all resources have already been allocated to the network slices, the intelligence 

decision addresses if some resources can be taken from some network slices without hampering their QoS 

and allocated to the network slice which requires stringent QoS to be maintained. It also addresses the 

case where an NF requiring more resources can be migrated from its current node to a new node.  

Thus, ML based scaling techniques for resource adaptation can be employed for both purposes of 

enhancing QoS satisfaction and achieving agile operation of resource control functions. These ML 

techniques can be applied as follows: 

1. For dynamic resource arbitration among services being hosted in each network node, ML 

techniques are applied to determine services that require resource adjustment, and to determine 

the required amount of resources to be added or removed to them. 

2. For NF migration from one network node to another along an already-established service function 

path, ML techniques are applied to determine the candidate nodes for the migration of the NF from 

its current node. 

3. For resource reconfiguration including change of network topologies, ML techniques are applied 

to determine the new network topologies and new order of NF placement for all service function 

chains in the network. 

6.1.4.2 Use case requirements 

6.1.4.2.1. Use case requirements related to data collection 

Expected requirements 

It is expected that ML-enabled networks support the collection of the following data for agile closed-loop 

operation: 

● Failure status information obtained from monitoring systems in the underlying network; 

● Resource feedback information from controllers or orchestration nodes in the underlying network; 

● Status information of resources related to network services, e.g. computational resources such as 

CPU, memory and storage for network functions, including identification and configuration 

information; 

● Status information of network infrastructure, e.g. network resources such as physical switch and 

link, including identification and configuration information. 

6.1.4.2.2. Use case requirements related to data storage and processing 

Critical requirements 

It is critical that ML-enabled networks possess the capability to continuously meet diverse levels 

of QoS requirements for  various types of services. 

It is critical that ML-enabled networks possess the capability of controlling resources of the NFV 

infrastructure in an agile and closed-loop operation manner to adapt the network resources 

according to the dynamically changing environment. 
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6.1.4.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks produce the following ML outputs (predicted and/or inferred):  

● Future CPU utilization associated with each NF; 

● Optimal allocation of computational resources. 

It is critical that ML-enabled networks support the following interfaces in order to effectively utilize ML 

output: 

● Interfaces between the controller and underlay network infrastructure to realize a computational 

resource adaptation mechanism (including resource arbitration and NF migration) continuously 

meeting diverse QoS requirements of various types of services; 

● Interfaces between the controller and underlay network infrastructure to realize agile closed-loop 

resource control operations adapting the infrastructure to the dynamically changing environment. 

 

6.1.5 End-to-end network operation automation - Logical network design and deployment 

6.1.5.1 Use case description 

Services such as software-defined networking in a wide area network (SD-WAN) services are bringing 

many advantages to customers, who can deploy and customize their logical network in a flexible and easy 

manner. Main motivation to automate logical network design and deployment is to mitigate operator’s 

tasks when customers want flexible customization in short delivery time. This design and deployment 

should be performed in a declarative manner based on design intent, or network specification produced 

during the service design phase, to help operators reduce frequent template/script updates. It has to be 

noted that this automation could also be used for ML pipeline design and deployment. 

During this logical network design and deployment phase, “logical network designer” takes design intent 

as an input and outputs design result, which is given to a “workflow generator” to generate executable 

workflows needed to (re)configure network infrastructure. Workflows are executed by a set of “executors”, 

which would include machine learning function orchestrator [ITU-T Y.3172], NFV orchestrator [b-ETSI-

NFV-MANO], virtualized infrastructure manager [b-ETSI-NFV-MANO], provisioning scripts, service 

orchestrator component [b-ONAP] or other tools used to deploy logical networks. 

The design of logical networks can be automated if network operators employ their own pre-defined 

templates or scripts, but this approach would significantly limit flexibility in customization. ML gives the 

possibility to automate the design of flexible logical networks. One possible use case of ML is an 

appropriate selection of templates or scripts, where operators pre-design a number of templates/scripts to 

allow different kinds of customization. ML based algorithm would evaluate them according to customer 

requirements and select the one which maximizes end user satisfaction. 

Another use case of ML is more flexible design automation. Every network design is essentially a 

combination of logical network components (e.g. links, nodes, virtualised network functions (VNFs)), 

their deployment location at physical infrastructure, and a set of configuration parameters. But as the 

number of such combinations can become quite huge, searching for the best combination could take quite 

a long time. ML, using either supervised learning or reinforcement learning, helps to realize this search in 

real-time.  

6.1.5.2 Use case requirements 

6.1.5.2.1. Use case requirements related to data collection 

None 
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6.1.5.2.2. Use case requirements related to data storage and processing 

None 

6.1.5.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks possess the capability to allow a “logical network designer” to 

accept network requirements in a declarative form, as Design Intent, which provides logical network 

descriptions with functional and non-functional requirements, and to output logical network design results, 

which are deployable on a physical network infrastructure.   

It is critical that ML-enabled networks possess the capability to generate executable workflows to safely 

configure and reconfigure the underlay network infrastructure. 

It is critical that ML-enabled networks possess the capability to execute generated workflows by sending 

commands or configurations to the underlay network infrastructure, or its control/management entity, to 

deploy the desired logical networks. 

Expected requirements 

It is expected that ML-enabled networks support the capability to design logical network inputs and 

outputs in a machine readable format. 

NOTE 1 – An example of a machine readable format is OASIS TOSCA [b-OASIS-TOSCA]. 

It is expected that ML-enabled networks support mechanisms for design intent which provide the ability 

to describe logical networks including their functional/non-functional characteristics: 

● in an abstracted way to easily express customers intent; 

● in a declarative way; 

● in machine readable format. 

It is expected that ML-enabled networks support network design capabilities to produce logical network 

descriptions with concrete design information: 

● in a concrete manner to be deployable on physical infrastructure without any ambiguities; 

● in a declarative manner; 

● in machine readable format. 

NOTE 2 – Examples of concrete design information include components, mapping to physical nodes, 

configuration parameters. 

It is expected that ML-enabled networks support deployment workflows which include a sequence of 

commands and configurations to deploy designed logical networks in a procedural way. 

It is expected that ML-enabled networks support underlay network infrastructure which allows the 

deployment of designed logical networks using the following aspects: 

● Underlay network infrastructure is virtualized so that logical components in designed logical 

networks can be deployed; 

● Underlay network infrastructure supports APIs to accept commands or configurations generated 

by design and deployment entities; 

● Underlay network infrastructure may include orchestrators to configure multiple components of 

the infrastructure; 

● Underlay network infrastructure may support infrastructure controllers, e.g. OpenStack [b-

OpenStack] or Kubernetes [b-Kubernetes], to manage computing resources which are needed to 

deploy logical network components. 
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6.1.6 End-to-end network operation automation - Fault detection and recovery  

6.1.6.1 Use case description 

Automated closed loop operation has become a top priority for network operators to manage and maintain 

stable IMT-2020 networks. To achieve closed loop automation on IMT-2020 networks, ML is expected 

to support fault management such as predictive detection and root cause analysis, and automated recovery 

such as decision making of the recovery procedure.  

Firstly, the management system should be automated to the extent possible, to promptly detect failures in 

network functions virtualisation (NFV) environments. However, a network service involving a collection 

of virtualised network functions (VNFs) could cause unexpected behaviour even though each component 

works properly. In such cases where there is a collection of VNF software components, the number of 

software bugs in the code itself also increases, and thus detection of failures with unexpected behaviours 

gets even more difficult. Network operators want to promptly detect such failures, which may cause 

increasingly unstable behaviours before the process escalates into critical failure. Hence, it is worth 

tackling the above problems with the power of ML in order to process  huge volumes of various types of 

management data (e.g. alarm, performance data, operation logs, and network topology).  

Root cause analysis is also important to identify the failure types and locations, and properly convey that 

failure type and location mapping information to the automation function. However, this task is complex 

and takes considerable time as the NFV systems consist of a large number of hardware and software 

components. In order to address this problem, ML can be applied to identify the root cause of  failures 

based on previous experience obtained from actual or test environments. 

Continuous automated improvement of the fault recovery process is also difficult and time-consuming. 

Generally, the sustainability of an automated system depends on the implementation of the pre-defined 

workflows dealing with several types of events. Although NFV systems have the potential to simplify 

fault detection and recovery processes, in reality it is not likely to support all types of events, e.g. 

unexpected failures, and hence exceptional manual operations are still needed. Therefore, reducing the 

exceptional conditions by continuous improvement of the workflows is also an expected role of ML. 

6.1.6.2 Use case requirements 

6.1.6.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support the following:  

● Collection of performance data on real-time basis; 

● Common topology information model and configuration model to easily understand network 

topology for root cause analysis (RCA); 

● Generation of training data using testing environments to obtain enough training data. 

Expected requirements 

It is expected that the following data is used for predictive detection: 

● Performance data related to network function (NFs) (e.g., CPU utilization, memory utilization, 

disk I/O etc.) described in a common data format; 

● Performance data related to NFV infrastructure (NFVI) (e.g., CPU utilization, memory utilization, 

disk I/O etc.) described in a common data format; 

● Traffic information (e.g., traffic volume, discard counter error counter etc.) described in a common 

data format. 

It is expected that ML-enabled networks support collection of the following data for root cause analysis: 

● Alarm information generated by NFs and NFVI; 
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● Topology and configuration information described in a common data format; 

● Historical knowledge data described in common data format. 

It is expected that ML-enabled networks support collection of the following data for continuous automated 

improvement of fault recovery process: 

● RCA results collected in a common data format. 

6.1.6.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks possess the capability to detect faults of several types.  

It is critical that ML-enabled networks possess the capability to promptly analyse the root cause of failures 

based on past experience obtained from actual or test environments. 

It is critical that ML-enabled networks possess the capability to automatically select optimal recovery 

actions, and continuously improve the automated workflows. 

Expected requirements 

It is expected that ML-enabled networks possess the capability to proactively detect impending failures.  

6.1.6.2.3. Use case requirements related to application of ML output 

Expected requirements 

It is expected that ML-enabled networks support APIs for fault recovery functionalities, defining the 

recovery tasks. 

6.1.7 Application-specific network slicing through in-network machine learning 

6.1.7.1 Use case description 

Network slicing has been considered as one of the most significant technologies for IMT-2020 networks, 

where multiple network slices that support different categories of services with different QoS 

requirements are supposed to be deployed in the same physical infrastructure. However, how to effectively 

identify and classify applications in real-time is still an open issue especially in the RAN context. 

Contextual information regarding the data from the UE (e.g. application to which the data belongs and 

device which generated the data) is hidden from the network functions. Conventionally, there are several 

ways to achieve application identification and classification, e.g., packet header marking, and deep packet 

inspection (DPI) to detect signature per application from packet payloads. However, packet header 

marking fails to identify the scope of applications while DPI is becoming harder due to the fact that 

application specific information conveyed in payload is  often encrypted. 

In order to handle the above issues, a mechanism for an application-specific network slicing, utilizing in-

network ML is proposed. This mechanism aims to apply application-specific radio resource scheduling in 

RAN, QoS control and various network functions on a per application and per device basis in CN.  

6.1.7.2 Use case requirements 

6.1.7.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support a number of customized UEs used to generate training data.  

NOTE- Customization may include generation of packets tagged with the information about the 

application payload and specific application in the data network (DN) to handle these tagged packets. 
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6.1.7.2.2. Use case requirements related to data storage and processing 

None. 

6.1.7.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks support base stations with application-specific resource allocation 

mechanisms based on the identified application information and management policies. 

Expected requirements 

It is expected that ML-enabled networks apply ML decisions on a per flow basis and extract the useful 

features in a train of packets contained in a given flow, without looking into the payload of packets of that 

flow. 

NOTE- To protect users' privacy, the flow parameters mentioned in [b-ITU-T Y.1540], i.e. source host 

address (SRC), destination host address (DST), class of service, and session identification, can be utilized 

as flow features without looking into the payload of packets. 

It is expected that ML-enabled networks support identification of the application at the UPF [ITU-T 

Y.3104], and classification of the uplink packets from UE to the MEC system [b-ETSI MEC001] for 

application-specific processing. 

It is expected that ML-enabled networks support tagging of downlink packets from MEC system [b-ETSI 

MEC001] with the identified application name before transmitting them to the base stations.  

NOTE 1 – Base stations can apply application-specific resource scheduling based on the received attached 

application name. 

It is expected that ML-enabled networks support UPF which has a feature extraction and a classifier 

updating capabilities for executing, training AI models, and has traffic classification and tagging functions 

utilizing trained deep neural network (DNN) models. 

It is expected that ML-enabled networks support MEC which applies application-specific data processing. 

NOTE 2 – Concerning application-specific MEC optimization, packets from UEs are classified to 

different network slices (e.g., VLANs) and sent to the MEC system. In each network slice, application 

specific optimisation policies may be applied, e.g. HTTP caching service for web browsing, video 

transcoding service for video streaming, and bandwidth control for tethering traffic in separated network 

slices. 

6.1.8 Smart traffic mirror – an ML-assisted network service 

6.1.8.1 Use case description 

A smart traffic mirror is intended to prevent traffic accidents by installing a video camera which is assisted 

with ML capabilities in order to detect and monitor vehicles or pedestrians in an area where accidents 

might occur, such as a blind intersection or a blind curve. This use case, utilizes the expected low-latency 

characteristic of IMT-2020 networks. Very short response times are important for such control 

applications (e.g. factory control, automated driving), where short communication turnaround times are 

essential.  

In this use case, ML can extract the useful knowledge from the imputed information and execute useful 

action with this knowledge. Concerning knowledge acquisition, it is important to perform all processing 

quickly enough after the occurrence of an event, to prevent the accident and notify the potentially impacted 

vehicle (s) or pedestrians. Since it is important to complete this process in a short period of time, 

performing functions such as moving image processing at the edge becomes critical to support the use 

case. For this use case, executing processing operations in a centralized computing platform rather than 

at the edge implies to carefully consider the delays required for transferring the large amount of video 

information to that centralized computing platform. 
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6.1.8.2 Use case requirements 

6.1.8.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support knowledge acquisition to extract useful knowledge from 

collected information.  

Expected requirements 

It is expected that ML-enabled networks support knowledge acquisition which is executed as a capability 

outside the network or inside a network. 

It is expected that ML-enabled networks support improving (or retraining) knowledge based on only a 

part of the collected real time data. 

6.1.8.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support capabilities that are provided in underlying networks to 

perform knowledge execution based on extracted knowledge. 

It is critical that ML-enabled networks support short turnaround time to turn the input information into 

the action taken by the knowledge execution. 

Added value requirements 

It is of added value that ML-enabled networks support deployment of knowledge acquisition and 

execution in a distributed manner, especially knowledge execution in edge computing platforms. 

6.1.8.2.3. Use case requirements related to application of ML output 

None. 

6.1.9 ML-based end-to-end network slicing for 5G  

6.1.9.1 Use case description 

The current process for resource allocation (RA) is mainly based on QoS provisioning techniques. These 

QoS guarantees are usually given at the access layer level. With the targeted E2E network slicing concept, 

a customer is granted a guaranteed part of the network resources usable across all network levels, 

including the radio access, transport and core networks. This offers service consistency in terms of latency 

and delay for critical applications such as autonomous driving, remote surgeries.  

ML is envisioned to play a key role in a number of IMT-2020 networks, e.g., clustering services to allocate 

network slices accordingly, service classification and possibly prioritization for minimum QoS guarantees, 

predictive user allocation/re-allocation to network slices based on the users’ activity history and the 

system dynamics. This use case describes a mechanism which monitors the traffic from the UE and 

determines the best RA based on ML.  

6.1.9.2 Use case requirements 

6.1.9.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support end to end orchestration functionality which collects all 

network data, counters and KPIs. 

Expected requirements 
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It is expected that ML-enabled networks support the integration of active probing monitoring systems 

connected to the network elements in order to get accurate results for transport KPIs. 

NOTE – Examples of transport KPIs include frame or packet loss ratio, delay and jitter. 

It is expected that ML-enabled networks support collection of the following inputs for the network slicing 

resource allocation capability including a list of counters and KPIs, collected from the network nodes 

working in the network slice at the radio access, transport, and core network levels.  

It is expected that ML-enabled networks support the collection of following Radio Access Network data: 

● UE Location information  

● Measurement report for radio condition per UE/access node; 

● Resources allocated per UE/access node; 

● Connection signalling events per UE/access node; 

● Traffic type classified per UE/access node; 

● Service type classified per UE/access node, e.g.  URLLC, mMTC and eMBB service types; 

● Cell/access node resources utilization; 

● Cell/access node KPIs (accessibility KPIs, drops, throughput, power). 

It is expected that ML-enabled networks support collection of the following data from CN: 

● Core network KPIs, e.g. KPIs related to success rate, failure rates and causes; 

● Core traffic figures, e.g. figures about traffic aggregated per service, traffic insights on used 

applications), sessions per service, signalling per RAT, signalling of charging; 

● Network utilization KPIs, e.g. KPIs of relevant entities (e.g. nodes, links); 

● CDRs and log files that can include customers’ IP addresses, services and location. 

It is expected that ML-enabled networks support the collection of the following transport network data: 

● Transport utilization; 

● Transport failures; 

● Transport failure rate; 

● Transport bandwidth. 

6.1.9.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support network slice resource allocation functionality which 

addresses the following:  

● deciding the suitable level of resources for each service type. 

● using the model, enhancing its accuracy via testing it on diverse datasets and studying its 

performance. 

NOTE 1 – Deciding on the suitable level of resources for each service type can be done using clustering 

techniques in the unsupervised machine-learning paradigm. The decision also involves training the model 

to choose the best resources. 

Expected requirements 

It is expected that ML-enabled networks support end to end orchestrator which continuously optimizes 

entire network slices including all associated resources such as access, transport and core network 

resources.  
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It is expected that ML-enabled networks support decentralized execution of the resource allocation is with 

some functionality delegated to the network edge for latency considerations and saving core-computing 

resources.  

NOTE 2 – With network slicing, the user may have a new service identifier (linked to their ID) per service, 

which identifies the network slice the user is connected to. This would be very useful in use cases such as 

quantifying the user load per network slice for traffic monitoring and offloading decisions or efficiently 

managing the network slice resources.  

 

Added value requirements 

It is of added value that ML-enabled networks support the network slicing resource allocation output 

which is a specific range of dynamically changeable resource parameters allocated to each node in 

network slices.  

6.1.9.2.3. Use case requirements related to application of ML output 

None. 

6.1.10 ML-based utility maximisation of sliced backhauls 

6.1.10.1 Use case description 

Future networks including IMT-2020 networks will serve applications with very distinct performance 

requirements: ultra-high definition video streaming and immersive applications (AR/VR) demanding high 

throughput; delay sensitive applications (e.g. autonomous vehicles); IoT services (e.g. smart metering) 

with best-effort policies.  

Network slicing enables such diverse services to be logically separated while sharing the physical 

infrastructure. However, finding optimal allocation of airtime resources to individual network slices, so 

as to maximise their utilities with agile decision making is non-trivial.  

Deep learning can tackle complexity of solving arbitrary combinations of utility functions. In particular, 

by employing stacks of convolutional blocks, it is possible to learn the relationships between traffic 

demands and optimal flow rate allocations. Once trained, such algorithms could make close-to-optimal 

inferences within milliseconds.  

6.1.10.2 Use case requirements 

6.1.10.2.1.Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support collection of detailed measurements of per service demand 

at network entry points so that machine learning driven resource allocation algorithms can maximise the 

utility of multi-service backhaul networks.  

It is critical that ML-enabled networks support dedicated measurement infrastructure deployment at AN 

level.  

NOTE 1 – The deployment may require hardware upgrades or software updates in the network.  

It is critical that ML-enabled networks support measurement granularity which is adjusted depending on 

the delay sensitivities of each application.  

NOTE 2 – Measurement granularity adjustment may result in large volumes of meta data to be stored at 

the network entry point, e.g. gNB [b-3GPP 38.401] level. Based on this information, a neural network can 

be trained centrally and optimal allocations signalled back to each hop along relevant paths. 
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It is critical that ML-enabled networks support data collection at each network entry point (e.g. gNB) 

which comprises a node identifier, flow identifier, type of services, KPI needed, and information about 

the capacity available on the link to the next hop.  

It is critical that ML-enabled networks support algorithms responsible for airtime allocation on a per 

backhaul link basis also has precise knowledge of the routing topology.  

NOTE 3 – Knowledge of the routing topology includes information about what flows share which links 

and what capacity constraints arise as a result of this. 

Expected requirements 

It is expected that ML-enabled networks support for each uplink and/or downlink flow in the backhaul, 

the collection of the following information: 

● Identifier of the network entry point (e.g. gNB); 

● Flow path within the backhaul (i.e. sequence of traversed nodes); 

● Flow type, e.g. video, AR/VR, best-effort data; 

● Target KPIs, i.e. KPIs about delay, throughput, packet loss rate. 

It is expected that ML-enabled networks support monitoring of flow demand at all times and their storage 

along with timestamp summaries, both for training and inferences. 

It is expected that ML-enabled networks support a centralized node involved in decision making which 

also gathers information about: 

● backhaul topology; 

● link capacities; 

● eventual scheduling conflicts.  

6.1.10.2.2.Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support neural network models employed for the purpose of utility 

maximisation that are retrained on a per-deployment basis.  

NOTE – Optimal allocation of resources depends on the particularities of a given topology. 

It is critical that ML-enabled networks support a centralised node, e.g. GW responsible for allocating 

resources, i.e. how much airtime should be allotted to each flow on each wireless link along the path taken, 

which is provisioned with appropriate GPU hardware, so as to facilitate rapid training and inference. 

Expected requirements 

It is expected that ML-enabled networks support measurements per service that are obtained through 

signalling or estimated based on historical data. 

It is expected that ML-enabled networks support extensive storage and parallel computing capabilities 

(GPUs) that are supported at CN. 

6.1.10.2.3.Use case requirements related to application of ML output 

None. 

6.1.11 Energy efficient trusted multi-tenancy in IMT-2020 cross-haul 

6.1.11.1 Use case description 
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IMT-2020 networks promise to deliver per user capacity along with minimum latency while ensuring 

flexible network control and orchestration. More specifically, these networks aim to serve diverse traffic 

profiles including enhanced mobile broadband (eMBB), massive machine type communications (mMTC) 

and ultra-reliable latency communications (URLLC). These services require to revisit air interfaces with 

cost-efficient coordinated management and operation of the network. This includes network components 

at access, transport, and core. To provide these services, describes a cross-haul architecture that enables 

common control and data planes to achieve integration of front-haul (FH) and back-haul (BH). The 

architecture offers benefits of homogeneous, flexible, and automated interconnection of radio, access, and 

core network with the help of open interfaces.  This also contributes to several cost-efficient system 

optimizations. To realize these features, the cross-haul architecture relies on software-defined networking 

(SDN) and network functions virtualisation (NFV), where the former enables dynamic control, 

management, and configuration, while the later decouples network functions from underlying physical 

infrastructure. 

The described cross-haul architecture can support diverse functionalities including multi-tenancy, service 

prediction, and resource optimization. Multi-tenancy has the potential to host multiple operators over a 

cross-haul infrastructure, where virtual resources are mapped to a substrate infrastructure. The cross-haul 

is capable of sharing BH and FH resources to host multi-tenancy. A multi-tenant network can host multiple 

operators resulting in maximum utilization of cross-haul resources while minimizing cost overhead, e.g., 

spare physical resources can be leased to virtual operators. This additional leasing of resources to virtual 

operators may cut down the overall capital expenses (CAPEX) and operational expenses (OPEX) for both 

the cross-haul owners and network operators while ensuring high availability services to end users. 

It is essential that the cross-haul multi-tenancy provides service level agreements (SLAs) to offer the 

services to tenant with the help of a virtual network, e.g., virtual routers and switches.  

Based on SLAs, network owners enable flexible network slice provisioning to meet individual tenant 

requirements. Virtual network slicing offers optimal utilization of physical resources by scaling virtual 

resources up and down based on dynamic traffic loads in the network.  

However, to be successful, implementations of multi-tenancy based on cross-haul have to use 

tenant/operator-aware switching devices and unified data plane. These may be used with essential 

optimizations on certain network segments to improve the overall network efficiency. 

It has been revealed in a report by 5G PPP security workgroup that IMT-2020 requires novel security 

capabilities in addition to meeting heterogeneous business requirements. The implementation of future 

networks including IMT-2020 will use innovative network infrastructure and services, e.g., autonomous 

vehicles and smart factories to support multi-tenant and multi-stakeholder scenarios. It is critical that 

these scenarios use appropriate security and trust strategies as part of network infrastructure. This is one 

of the major challenges which should be taken into consideration as most of the current trust models 

from the state-of-the-art are applicable within a single administrative domain only. Further, adversarial 

ML-enabled security threats with high heterogeneity of data sources makes it critical for ML-enablers to 

adapt secure business models, e.g., isolation of multi-tenancy and slicing across the cyber-physical 

networks. 

6.1.11.2 Use case requirements 

6.1.11.2.1.Use case requirements related to data collection  

Critical requirements  

It is critical that ML-enabled networks support multi-tenancy and classifies traffic in real-time.  

It is critical that ML-enabled networks support multi-tenancy along with situational awareness of the 

environment which implies gathering information from the monitored environment.  

Expected requirements 

It is expected that ML-enabled networks support data collection to acquire the operational environment 

data.  
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NOTE 1 – The set of activities may comprise of appropriate knowledge representation and reasoning 

strategy to fetch, manage, and process operational and factual knowledge. 

It is expected that ML-enabled networks collects the following information across the network for each 

network slice:  

● Throughput; 

● Congestion; 

● Transmission delays; 

● Availability;  

● Risk level;  

● Registered events. 

NOTE 2 – Sensors and external data repositories may act as critical sources of factual knowledge. 

6.1.11.2.2.Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support model learning and adaptation to dynamic traffic loads to 

allocate virtual resources/network slices. 

It is critical that ML-enabled networks support the representation of network information in such a way 

that it can be input to the ML models.   

NOTE 1 – This representation may need data pre-processing, normalization, aggregation/fusion, 

verification, prioritization, and reconstruction.  

It is critical that ML-enabled networks support calibration of lightweight ML algorithms at the mid-haul 

(MH) to filter security threats.  

It is critical that ML-enabled networks are equipped with self-awareness, self-healing, self-optimization, 

and self-protection capabilities.  

NOTE 2 – This is ensured with the help of lightweight ML models which can detect, predict, and react to 

security threats and ensure trust to tenants hosted by an infrastructure owner.  

It is critical that ML-enabled networks support counter measures to cloud-level threats at the tenant-level.  

NOTE 3 – This will help to assure trust offered by the ML-enabled multi-tenancy at the tenant level. These 

threats can propagate to cloud and may compromise its overall security posture. 

It is critical that ML-enabled networks support management of the underlying infrastructure. 

It is critical that ML-enabled networks support assembling of virtual resources into a virtual topology.  

It is critical that ML-enabled networks maintain and configure a virtual network over the virtual topology 

according to the requirements of a service provider. 

It is critical that ML-enabled networks support the allocation of resources to train/retrain the machine 

learning models. 

It is critical that ML-enabled networks support dedicated physical infrastructure that is allocated with 

computing resources and virtualization capabilities to deploy ML mechanisms. 

It is critical that ML-enabled networks support specific SLAs for multi-tenancy that are technology 

independent. 

Expected requirements 

It is expected that ML-enabled networks support pre-processing that produces a specific event-related 

correlation.  
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NOTE 4 – Case-based/attribute-based reasoning may be considered to find dependencies between events 

and resource-vectors. 

It is expected that ML-enabled networks support a reinforcement learning-based ML model in the FH to 

enable adaptation to heterogeneous data sources.   

NOTE 5 – These lightweight ML algorithms will facilitate context-aware recalibration based on self-

decisions operating on resource-constrained systems to enable feasible deployment at the FH. 

It is expected that ML-enabled networks support reinforcement learning-based ML model which is 

monitored and controlled by optimization functionalities to adapt its operation under unforeseen 

events/threats.  

NOTE 6 – These functionalities should be able to dynamically acquire and validate the consequences of 

decision making with the help of operational knowledge.  

It is expected that ML-enabled networks support efficient on-boarded security and energy policies 

complemented with situational awareness to take appropriate resource allocation decisions for each tenant. 

It is expected that ML-enabled networks support a flexible data model along with the intent for an 

appropriate data collection. 

It is expected that ML-enabled networks support security mechanisms that comply with the trust model 

and energy-saving policies needed by different actors from IMT-2020 networks. 

Added value requirements 

It is of added value that ML-enabled networks support augmentation of ML models with a closed loop 

system, where expected key performance indicators (KPIs) can be assessed and appropriate corrective 

tactics can be taken.  

NOTE 7 – These tactics may include modification of statistical models, data pre-processing rules and 

inference rules, and recalibration of heuristics. 

It is of added value that ML-enabled networks support flow-level security driven by authorization/privacy 

policies at the edge in real-time.  

6.1.11.2.3.Use case requirements related to application of ML output  

Critical requirements  

It is critical that ML-enabled networks support ensure that different tenants are guaranteed appropriate 

quality of service (QoS) or quality of experience (QoE) requirements according to corresponding SLAs.  

It is critical that ML-enabled networks support allocation of virtual resources to different tenants 

according to SLAs with appropriate configurations while ensuring appropriate isolation.  

It is critical that ML-enabled networks support implementing adaptive machine learning mechanisms or 

ML models, e.g., reinforcement learning, deep learning, or hybrid instantiated at the BH.  

NOTE 1 – This will essentially aid to countermeasure decisions with considerations to future events, 

threats, its replicas, and possible propagation holes in a multi-stakeholder multi-tenant environment.  

It is critical that ML-enabled networks support ML model, e.g., supervised learning, reinforcement 

learning, or hybrid to enforce contextual adaptation of trust models.  

NOTE 2 – This will ensure timely detection of virtual network function (VNF) anomalies and will prevent 

the propagation of threats. 

It is critical that ML-enabled networks support lightweight ML models, to entail energy-efficient security 

measures. 

NOTE 3 – ML models such as convolutional neural networks (CNN) can be used to enable trust by 

enforcing appropriate levels of security and trust, thus enabling trusted execution environment (TEE) [b-

TEE Management]. To achieve this, ML-enabled trust mechanisms can be deployed at mid-haul and back-

haul. E.g. an ML-enabled virtual dynamic root of trust for measurement (DRTM) can be deployed at the 
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mid-haul to execute trust-related functions. An ML-enabled trusted platform module (TPM) can be 

deployed at the backhaul to ensure trust management. 

Expected requirements 

It is expected that ML-enabled networks support appropriate ML mechanisms for efficient cross-haul 

resource orchestration, i.e., to provide resource orchestration at the FH, BH, and mid-haul at the tenant 

level. 

It is expected that ML-enabled networks support ML models that provide anticipatory responses as actions 

according to future expected events, and evolution, and propagation of discovered threats.  

It is expected that ML-enabled networks support ML mechanisms to facilitate concurrent and seamless 

allocation of virtual resources to the tenants dynamically without any service disruption to virtual network 

operators (VNOs). 

NOTE 4 – Virtual domains should be isolated across tenants where each VNO is able to specify its 

addressing space, deploy network operating system of its own choice, along with their own virtual 

topology. 

It is expected that ML-enabled networks support ML mechanisms to audit data integrity of each network 

slice, e.g., for resilience and VNF anomaly detection.  

Added value requirements 

It is of added value that ML-enabled networks support continuous and collaborative decision-making 

process to offer a service in a multi-stakeholder scenario. 

It is of added value that the ML-enabled networks overcome the limitations of classic multi-tenant 

architecture alternatives by offering an energy-efficient and trusted execution environment. 

6.1.12 Network slice SLA assurance based on ML 

6.1.12.1 Use case description 

In the era of future networks including IMT-2020 networks, networks can be offered as a service and there 

will be a new demand for industry sectors (e.g. factories, stadiums, public transportation places, airports, 

power plants) to be connected to the network. Different service characteristics need to be offered and 

assured accordingly. The offer is realized by different network slices with different properties e.g. number 

of served customers, network performance, network availability, service experience. Assurance of the 

network slices is needed to justify the business model of price differentiation on a per network slice 

baseline. So a significant part of the operator’s network slice offer will be to ensure the network slice 

assurance, e.g. per network slice: 

● Number of served subscribers;  

● Service KPIs’ measurements, which may be summarized to a QoE vector or QoE score; 

● Guarantee levels and measurement thresholds.  

The network slice operator needs to constantly measure SLA relevant (service) KPIs from RAN, CN, 

Transport or combinations thereof and take (immediate) action in case the agreed conditions for the 

network slice are not fulfilled. It is important that the solution for SLA assurance be made cost effective 

by increasing the level of automation in reconfiguration of the network. 

6.1.12.2 Use case requirements 

6.1.12.2.1.Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support SLA management procedures that utilize continuous 

collection of large amounts of traffic data or measurements provided by OAM tooling.  
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NOTE 1 –Collected data is needed for calculation of the service measurements (KPIs) which indicate the 

level of assurance for the network slice.  

It is critical that ML-enabled networks have SLA measurement systems that are connected to the data 

collection framework.  

NOTE 2 – Data may be collected from interconnection between the SBA nodes and used by a network 

data analytics function. An example of network data analytics function is the 3GPP MDAF [b-3GPP 

28.533].  

It is critical that ML-enabled networks support SLA management functionalities that collect the 

measurements and provide an execution environment for the trained ML model. 

6.1.12.2.2.Use case requirements related to data storage and processing 

None. 

6.1.12.2.3.Use case requirements related to application of ML output 

None. 

6.1.13 Service management for smart cities 

6.1.13.1 Use case description 

Smart cities will integrate heterogeneous services to the operator’s array of verticals. Usage of standard 

mechanisms for the management of machine learning functions will allow operators and regulators to 

seamlessly integrate ML based services into the main array of service offerings for smart cities. 

6.1.13.2 Use case requirements  

6.1.13.2.1.Use case requirements related to data collection  

Critical requirements  

It is critical that ML-enabled networks support inputs from all traffic categories and existing services 

provide input to the ML services offered by the operator.  

NOTE 1 – For example, mIoT, URLLC and eMBB types of traffic may be analysed using the ML 

capabilities hosted in the operator's network. This will allow the operator to take full advantage of IMT-

2020 features and provide analytic services on top of it. 

It is critical that ML-enabled networks support data from verticals being used across network slices to not 

only optimize per network slice behaviour, but also cross-slice pollination of smart behaviour in the 

network.  

NOTE 2 – This may require interoperable transfer of knowledge from one operator to another. 

NOTE 3 – For example, data from network slices may be used for resource allocation in the network slices 

but across verticals like in smart city use cases. 

6.1.13.2.2.Use case requirements related to data storage and processing 

None. 

6.1.13.2.3.Use case requirements related to application of ML output 

None. 
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6.1.14 Automated testing of services 

6.1.14.1 Use case description 

An open testbed is a must for testing advanced services in IMT-2020, including ML enabled network 

services and mechanisms in the IMT-2020 network. This will enable interoperability of ML enabled 

network services and allow transparent standards development and regulation.  

6.1.14.2 Use case requirements 

6.1.14.2.1.Use case requirements related to data collection  

None. 

6.1.14.2.2.Use case requirements related to data storage and processing 

None. 

6.1.14.2.3.Use case requirements related to application of ML output  

Critical requirements  

It is critical that ML-enabled networks expose interoperable and open testing interfaces and monitoring 

interfaces.  

NOTE 1 – Service definition should allow automated testing of ML enabled network services in a 

standalone environment without affecting the operator KPIs. 

It is critical that ML-enabled networks support management of ML enabled network services and data 

compliant with network operator policies.  

NOTE 2 – The compliance should be verified in a standalone environment before deploying ML enabled 

network services in the general availability network. 

 

6.2 User plane-related use cases 

This category of use cases is related to user plane of the network. The use cases which belong to this 

category may use the user plane in different manners, for example as a source of data or sink for 

configurations (e.g. traffic classification). 

6.2.1 Traffic classification 

6.2.1.1 Use case description 

Future networks including IMT-2020 networks transport traffic for heterogeneous services and 

applications with different QoS and QoE requirements. There is a growing trend towards encrypted traffic 

in mobile networks. To provide efficient management of network resources, which are tailored to specific 

traffic types, it is necessary to have efficient and accurate traffic classification methods. This may involve 

obtaining useful profiling information from the traffic data of the UE. 

ML-based traffic classification aims at classifying large amounts of network traffic  in a real-time manner. 

This ML-based classification overcomes the limitations of classical solutions, such as port-based methods 

and deep-packet inspection [b-ITU-T Y.2774]. ML-based traffic classification is used to enable the 

treatment of different services or applications according to their QoS or QoE requirements. It also provides 

key profiling information to operators for e.g. personalized advertising. 
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6.2.1.2 Use case requirements 

6.2.1.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support continuous collection of a large amount of traffic data and 

learning the patterns of the collected data to build traffic classification models.  

It is critical that ML-enabled networks collect real-time traffic data and labels it according to the 

application and protocol type.  

It is critical that ML-enabled networks utilize the following input data: 

 Transport-layer payload of the first few bytes after the PDU session establishment; 

 Protocol fields of the first few packets after the PDU session establishment. 

It is critical that ML-enabled networks normalize all the collected data before being input into the model, 

irrespective of the ML model being used.  

NOTE 1 – Input data formats may be different depending on the ML models being used. For example, 

one-dimensional convolutional neural network (1DCNN) and long short-term memory (LSTM) ML 

models require a one-dimensional sequence of the form 1*784, while two-dimensional convolutional 

neural network (2DCNN) model requires a two-dimensional matrix of the form 28*28.    

It is critical that ML-enabled networks support analysis based on the traffic packets that are unencrypted.  

NOTE 2 -– In an autonomous system, the traffic packets may be decrypted using a decryption key obtained 

via key exchange mechanisms, depending on the network operator policies and agreement with 

application provider.  

It is critical that ML-enabled networks support the collection of training and collected training samples 

are counted by category and labelled.  

It is critical that ML-enabled networks support the collection of user specific data which follows 

applicable regulations and network operator policies. 

Expected requirements 

It is expected that ML-enabled networks support as part of data collection for ML-based traffic 

classification, the payloads from layers above the transport layer are extracted in the form of bytes and 

used as input data used for analytics. 

NOTE 3 – The extracted data may be stored in the form of matrices or sequences in a database. 

It is expected that ML-enabled networks support information from different OSI layers in the user traffic 

data, in the input data used for analytics. 

NOTE 4 – For example, the information included in the input for analytics may include transport layer 

payload and header fields.  

It is expected that the ML-enabled networks use diversified traffic categories as input data for analytics. 

It is expected that ML-enabled networks are utilized to balance the traffic categories as unbalanced 

categories distribution may affect the performance of the ML model. 

NOTE 5 – Over-sampling or under-sampling may be used as balancing mechanisms. 

 

6.2.1.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support real-time flexible classification methods. 
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NOTE 1 – In this context, ML algorithms can be used, such as convolutional neural networks (CNNs), 

recurrent neural networks (RNNs) or their hybrid combinations. To classify real-time traffic data, a ML 

algorithm, during its training phase, automatically extracts relevant features for traffic classification 

without expert intervention. Then, based on the trained ML model, the classification method can 

intelligently classify services or applications from real-time traffic data.  

It is critical that ML-enabled networks support monitoring capabilities to view in real-time, the status of 

data, collectors, packets, and flows, as well as to obtain high-level network analytics.  

NOTE 2 –These monitoring capabilities allow network administrators (e.g. using a web client) to control 

the quality and accuracy of the ML-based traffic classification.  

It is critical that ML-enabled networks support retraining the ML model after the update of datasets. 

It is critical that ML-enabled networks support storage of the collected data in a database.  

It is critical that ML-enabled networks store traffic data that is refined to align the input requirements of 

the dataset for the ML training in the ML pipeline. 

NOTE 3 –Refined traffic data sets can be used for training ML models. It is critical that ML-enabled 

networks support mechanisms so that overall efficiency in network performance can be achieved in real-

time. 

It is critical that ML-enabled networks follow applicable regulations and network operator policies for 

storage and processing of user specific data. 

 

Expected requirements 

It is expected that ML-enabled networks support storage of data used for analytics.   

It is expected that ML-enabled networks support classification of traffic data into different categories on 

the basis of application types.   

NOTE 5 – Examples of application types are chat, email, streaming, peer-to-peer, voice over IP and file 

transfer. 

It is expected that ML-enabled networks support trade-off of computation vs. level of information by 

using the first few bytes of the payload as input data. 

It is expected that ML-enabled networks support distributed machine learning [b-FED-LEARN], with 

different ML models using separate sub-training datasets to train the base ML models.  

It is expected that ML-enabled networks support measurement of ML models performance.  

NOTE 6 – Accuracy, precision and recall are examples of performance measurements of the ML models. 

It is expected that ML-enabled networks support the optimization of ML model parameters, based on the 

type of inference and data types, improvement of the ML model performance and reduction of training 

time.  

NOTE 7 – Batch-size, epochs, learning rate and regularization parameters are examples of ML model 

parameters. These parameters may vary based on type of inference and data types.  

It is expected that ML-enabled networks support selection of the ML model for traffic classification 

considering the characteristics of the traffic data and the metadata associated with the ML model. 

NOTE 8 – As an example of the selection, to discover the horizontal and vertical connections of input 

data, 1DCNN, 2DCNN and LSTM models are selected as the base-ML models.  

It is expected that ML-enabled networks support customization of specific ML model configurations 

according to use case specific requirements.  

NOTE 9 – Examples of configuration parameters include the type of operating system being used, the 

size of memory, the type of CPU, the type of specific processors like GPU, the type of machine learning 

library being used. 
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It is expected that ML-enabled networks use machine learning techniques to intelligently classify large 

amounts of traffic carried over the network.  

It is expected that ML-enabled networks support learning a pattern from the collected traffic data to build 

the traffic classification model. 

Added value requirements 

It is of added value that ML-enabled networks support the traffic classification in real-time.  

6.2.1.2.3. Use case requirements related to application of ML output 

Added value requirements 

It is of added value that ML-enabled networks support pluggable deployment methods for enabling ML-

based traffic classification in the network.  

It is of added value that ML-enabled networks support planning and design of network services using 

historical data of classified traffic at different points of the network. 

It is of added value that ML-enabled networks support network devices enhanced with ML-based traffic 

classification capabilities. 

6.2.2 Long-term traffic forecasting 

6.2.2.1 Use case description 

The annual mobile traffic consumption will exceed half a zettabyte by 2021. To meet the stringent 

performance requirements of emerging applications such as augmented/virtual reality, assisted living 

robotics, and autonomous vehicles, mechanisms such as precision traffic engineering and demand-aware 

allocation of cellular network resources are essential.  

It is important that accurate traffic forecasting capabilities are available to fulfil these tasks. Accurate 

traffic forecasting is however challenging to implement and relies on specialized equipment, e.g. probes. 

Deploying these is expensive and involves storing locally massive amounts of logs that later have to be 

transferred for non-trivial post processing and analysis. Timely and exact mobile traffic forecasting is 

further complicated by the complex spatiotemporal patterns of user demand that arise due to user mobility.  

Machine learning based traffic forecasting can overcome these challenges and significantly outperform 

traditional predictive modelling techniques, e.g. auto regressive integrated and moving average (ARIMA) 

and exponential smoothing), which ignore important spatial correlations associated with user movement, 

only work well in estimating trends, and cannot be used for network-wide forecasting. By exploiting the 

exceptional feature extraction abilities of deep learning, structures such as 3D-CNNs  (which work across 

space and time) and Convolutional LSTMs (that are good at processing sequential data, while also 

capturing spatial relationships) can be used for precision long-term network-wide mobile traffic 

forecasting, only relying on limited observations. 

6.2.2.2 Use case requirements 

6.2.2.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks collect traffic consumption data at base station level, for a 

sufficiently long duration.  

NOTE 1 – This will ensure ML-based traffic forecasting algorithms can be trained with high accuracy.  

It is critical that ML-enabled networks support dedicated measurements infrastructure at the AN level.  

NOTE 2 – The deployment of this dedicated infrastructure may require hardware and/or software 

upgrades or updates. 
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6.2.2.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support geographical location tagging of the collected data, i.e. the 

traffic consumption summaries collected periodically are accompanied by information about the 

geographical coordinates of the base station from where these measurements originate.  

It is critical that ML-enabled networks provision sufficient storage in the core network. 

NOTE 1- Storage may be provisioned at gateway level where inferences will be made.  

Expected requirements 

It is expected that ML-enabled networks provision parallel computing capabilities (e.g., GPUs) in the core 

network. 

It is expected that ML-enabled networks forecast future data at base station level, (and not at per user and 

per service level) aligned with privacy guidelines. 

It is expected that ML-enabled networks support streaming of measurements collected at different edge 

locations to a central location where traffic forecast can be performed.  

NOTE 2- Gateways are examples of central location and AN is example of edge location. 

NOTE 3 – This means there is no significant computational overhead at the edge locations for this use 

case.  

It is expected that ML-enabled networks support bulk data storage and neural network model training 

where parallel processing resources are available. 

It is expected that ML-enabled networks collect timing information (start and end of observation period) 

and geographical coordinates of the collecting entity along with measurements.  

It is expected that ML-enabled networks support additional storage capabilities at AN level in order to 

store and transfer measurements to a central location e.g. CN. 

NOTE 4 – Additional storage is useful when the overheads incurrent with measurements transfer to a 

central location are considered unmanageable. 

Added value requirements 

It is of added value that ML-enabled networks support the following information as input for the forecast: 

● cell identification; 

● number of antennas; 

● average number of connected users over each observation interval. 

6.2.2.2.3. Use case requirements related to application of ML output 

Expected requirements 

It is expected that ML-enabled networks use ML models that, once trained, will only work with episodic 

observations of the traffic demand.  

NOTE 1 – The episodic observations are represented using meta-data as summaries sampled, e.g. every 

5-10 minutes.  

It is expected that ML-enabled networks support the sending of traffic forecasts to the edge of the network, 

e.g. gNB, so that agile resource allocation mechanisms can be executed at the edge. 

Added value requirements 

It is of added value that ML-enabled networks use neural network architectures that generalize well to 

different network deployments.  
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NOTE 2 – An example of generalization is a ML model which is trained at city scale and deployed in 

rural settings. It is important that validation of ML output across different cities is performed. This will 

also indicate whether further data collection is needed for model retraining. 

6.2.3 Emergency services based on ML 

6.2.3.1 Use case description 

Telecommunications can play a crucial role during emergency cases of natural hazards, earthquakes, 

cyclones, floods, tsunamis, volcanic eruptions, and fires. Machine learning can have a critical role in 

disaster risk reduction and management, through the following proposed steps:  

 Detection: detection can be triggered through different methods, for example by IoT sensors, 

cameras, people alerts or warning alerts from authority. 

 Analysis: ML based analysis is done on images captured by cameras in different spots or uploaded 

manually by people. Information coming from different sources is correlated in order to validate 

the emergency situation. Analysis is done for finding optimum rescue route and transport routes 

for rescued users to get to safety zones. 

 Warning: warning messages and notifications are sent to people on specific location based on the 

severity and impacted area. 

NOTE - This use case uses the following deployments of application servers for emergency services in 

the network: 

 Centralized application server: application function hosting coordination of emergency services 

for users in the network, in a centralized location e.g. CN or central cloud. It handles all inputs 

from different locations in order to process and train ML models in a centralized manner. 

 Edge application server: application function hosting coordination of emergency services for users 

in the network, in an edge location e.g. AN or edge cloud. 

 

6.2.3.2 Use case requirements 

6.2.3.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support emergency services that integrate different detection 

facilities in order to unify ways of communicating between such capabilities and avoid interoperability 

problems. 

NOTE 1 – Examples of detection facilities include IoT sensors, building management systems, cameras, 

people alerts or authority warning alerts. 

Expected requirements 

It is expected that ML-enabled networks support the common alerting protocol (CAP) [b-OASIS-CAP] 

which is used for exchanging all-hazard emergency alerts and public warnings over different kinds of 

networks.  

NOTE 2 – CAP provides an open, non-proprietary digital message format for various types of alerts and 

notifications. It allows a consistent warning message to be disseminated simultaneously over many 

different warning systems, thus increasing warning effectiveness while simplifying the warning task. 

CAP also facilitates the detection of emerging patterns in local warnings of various kinds, such as might 

indicate an undetected hazard or hostile act. CAP also provides a template for effective warning 

messages based on best practices identified in academic research and real-world experience. 

NOTE 3 – CAP 1.2 [b-ITU-T X.1303 bis], technically equivalent to the OASIS Common Alerting 

Protocol v.1.2, provides an XSD specification and an equivalent ASN.1 specification (that permits a 

compact binary encoding) and allows the use of ASN.1 as well as XSD tools for the generation and 
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processing of CAP messages. This Recommendation enables existing systems, to more readily encode, 

transport and decode CAP messages. 

It is expected that ML-enabled networks support collection of the following data:  

● UE measurement data, e.g. UE location information; 

● Users’ contribution data, e.g. text, image or video; 

● Other data, e.g. external network detection information. 

 

Added value requirements 

It is of added value that ML-enabled networks support the methods of communication as interface for the 

external network elements in the detection phase in the order of priority: 

NOTE- the following technologies may be used as interface for the external network elements: 

a) CAT-M channel with a higher QoS for emergency sensors/IoT devices;  

b) Normal CAT-M channel for E-health sensors (optionally for personal health alerts); 

c) A higher QoS connection for warning applications from the UE;  

d) Other types of internet connection e.g. IMT-2020 – which is neither emergency, nor health alert nor a 

warning. 

 

6.2.3.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks use machine learning techniques in the analysis of the following: 

● Image processing for emergency images from different streams (public cameras, users’ 

contributions, etc.) and comparison to previously reported incidents and known emergencies (fires, 

floods, etc.);    

● Correlation of the information collected from IoT sensors, building warning systems alarms, and 

other geographically collocated sensors in order to manage incident severity;  

● Analysis for the collected movement routes of rescued users to get to safety zones, in order to 

recommend the best route to get to safety or recommend alternative routes.  

Expected requirements 

It is expected that ML-enabled networks support signalling that gives highest priority for emergency IoT 

devices to communicate directly to the centralized application server without the need of CN signalling.  

It is expected that ML-enabled networks support the following in the radio network:  

● New downlink radio channel or higher quality for existing channel to broadcast or multicast based 

on location;  

● New uplink radio channel or higher quality for existing channel for uploading user input regarding 

the emergency;  

● New uplink and downlink radio channel for IoT and external systems communication towards ML 

model or higher quality for existing channel. 

 

Added value requirements 

It is of added value that ML-enabled networks support edge application server that works as a standalone 

server in case connection to CN is down during emergency situations. 
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NOTE 1 – Change in signalling is needed in order for IoT device to communicate directly to the edge 

application server without the need to include CN signalling in this scenario.  

It is of added value that ML-enabled networks use a separate communication channel (than the one used 

towards the CN) to connect the IoT device directly to the peer side (e.g., edge application server).  

NOTE 2 – This architecture is more robust in case of catastrophic incidents but requires major changes to 

the network and signalling flows.  

NOTE 3 – Edge application servers will eliminate all unnecessary information and communicate only – 

for example- the training sequence to the centralized application server. Edge application server can work 

also on standalone mode in case the link to centralised application server is down. 

It is of added value that ML-enabled networks support breakout of emergency data to ML models at the 

edge application server directly without including CN nodes. 

NOTE 4- CN communication can be limited to only the authentication and initial connection 

establishment phase.  

NOTE 5- The local routing of emergency data to ML model is value-add only in case emergency server 

is not hosted in cloud. In case it is hosted in cloud, emergency data needs to be routed to the cloud. 

6.2.3.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks support broadcasting of warning messages on a separate channel 

with a higher QoS class identifier (QCI) to have a higher priority. 

It is critical that ML-enabled networks support the warning messages that are location-based and include 

text, image, video and navigation information. 

Expected requirements 

It is expected that ML-enabled networks support warning channels that are available even in case the link 

between edge application server and centralized application servers or between edge application servers 

are down.  

It is expected that ML-enabled networks support a common application server that is connected to all 

external network elements for detection via APIs and also connected directly to UEs. 

It is expected that ML-enabled networks support edge application servers that are connected to 

communication networks through standard APIs. 

NOTE 1 – It is possible to use an optional radio channel specified for this purpose. Edge application 

servers are also connected close to access network in order to act standalone in case connection to 

centralized application server is down.  Centralized application server is handling machine learning and 

enhanced prediction collected from other edge application servers. 

Added value requirements 

It is of added value that ML-enabled networks support location-based local news content based entirely 

on auto-generated machine learning news.   

NOTE 2 – The generated content may be a mix of the captured images of the event (e.g. local highlights, 

road blocking incidents, accidents, etc.) and the content generated automatically based on machine 

learning analysis of the situation constructed on information collected from the data sources e.g. detection 

cameras, IoT, sensors.  

6.3 Application-related use cases 

This category of use cases is related to the applications running on the network, e.g. using application data 

for machine learning in the network. 
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6.3.1 AN-assisted transmission control protocol window optimization 

6.3.1.1 Use case description 

The radio condition of a mobile network fluctuates in the order of milliseconds and may occasionally 

result in packet losses even without network congestion. However, the application data rate is adjusted on 

a larger timescale in the order of seconds and tends to attribute packet loss to network overloading and 

congestion. As a result, there is a misalignment between the RAN and the application, which may lead to 

non-effective usage of available radio resources and a degraded user experience.  

The proposed AN-assisted TCP [b-IETF RFC793] window optimization is used to inform the applications 

about the radio air-interface channel status in real-time. This allows the applications to adjust their 

transmission data rate. Specifically, the TCP window size can be optimized to better match the radio 

channel variations, based on information provided by AN. 

NOTE – Examples of information provided by AN may be buffer size in the base station, load of the base 

station (BS), the link throughput and packet error rate (PER). 

ML-based TCP window optimization may offer an effective solution to solve the misalignment between 

the AN and the applications by matching the TCP window and the wireless channel condition. This will 

significantly improve system throughput and buffer utilization. 

6.3.1.2 Use case requirements 

6.3.1.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support collection and use of real time data for AN-assisted TCP 

window optimization.  

NOTE – The real-time data includes but is not limited to MAC layer data [b-3GPP 38.321], PDCP layer 

data [b-3GPP 38.323], MAC data rate, PDCP buffer size, BS load, number of active UEs, service type 

and service status, and application data.  

6.3.1.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support TCP window prediction that utilizes: 

● Service type and status data fed back to the access network from the core network; 

● ML prediction model which runs per UE;    

● Caching and/or processing and/or database in access network for storage of intermediate and/or 

final output from the ML models; 

● Training real-time predictions model hosted in access network;  

● Real-time data collection;   

● Real-time predictions;         

● Calibration of ML models.    

Expected requirements 

It is expected that ML-enabled networks support a supervised learning based model that is trained offline 

for TCP window prediction. 

6.3.1.2.3. Use case requirements related to application of ML output 

Critical requirements  
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It is critical that ML-enabled networks support output data that includes TCP window decision model and 

TCP packet transmission rate. 

 

6.3.2 Retention and storage intelligence function 

6.3.2.1 Use case description 

Several use cases in IMT-2020 require massive data collection and processing at various nodes in the 

network architecture. Most of this data is stored in or near real-time processing engines and therefore these 

storages are going to have very limited capacity and need to clear the memory quickly. 

Conventional methods and approaches for data clean up or retention cannot be used in IMT-2020, since 

most of the use-cases are dependent upon historical data and the futuristic decisions need to be made based 

on some relationship among datasets. Hence, many fixed rules cannot be applied, and intelligence needs 

to be derived from the data itself, which is based on properties associated with the data. Dynamic rules 

regarding retention need to be formulated based on historical learnings, storage and the context. 

Data at various network nodes, stored particularly at edge, require dynamic retention and storage solutions, 

so that the overall network and system architecture can efficiently manage storage, comply with all 

regulations and provide all relevant insights to run IMT-2020 use cases with all data dependencies handled 

in a transparent fashion.           

6.3.2.2 Use case requirements 

6.3.2.2.1. Use case requirements related to data collection 

Expected requirements 

It is expected that ML-enabled networks use the following data from the CN nodes for analysis: 

● Fault and performance data; 

● Service quality/DPI and sensor data; 

● Network parameters and service KPIs; 

● Service usage data; 

● Reference data from external sources, e.g., business specific, legal specific, and geographic 

specific data. 

6.3.2.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support data retention policies at granular level in compliance with 

all regulations and privacy laws.  

It is critical that ML-enabled networks support policy rules for data sharing with external agencies and 

other communication service providers are defined. 

It is critical that ML-enabled networks support on-demand queries around data deletion or archiving and 

to have the capability to find alternative mechanism in real-time to avoid undesired data archiving or 

prevent loss of current data. 

It is critical that ML-enabled networks support time sensitivity analysis of storage to make sure that it is 

proactively performing data clean-up to support any storage requirement scenario.  

NOTE 1 – For example, random weather change or storm may trigger significant MTC data.  

It is critical that ML-enabled networks are able to perform location sensitivity analysis of storage including 

hierarchical storage analysis from edge to core.  
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It is critical that ML-enabled networks support data predictability.  

NOTE 2 – If data is highly predictable then that can be easily deleted and/or archived.  

It is critical that ML-enabled networks support analysis of data relations so that proactive decisions on 

data archiving/deletion can be performed. 

NOTE 3 – For example, in snowfall in a particular location, all installed weather sensors will start 

reporting sudden fall in temperature. Most of these sensors will have informative data and that can be 

ignored, whereas a sensor reporting data from an operating ambulance in that area may be important. 

Though the data coming from medical devices need to always be preserved, it is important that ML-

enabled networks have the ability to identify which data can be deleted from storage in case of application 

of priority in service data preservation.  

It is critical that ML-enabled networks support standard mechanisms for data retention and storage 

management so that interoperability can be established and learning can be transferred from one CSP to 

another. 

NOTE 4 – The transfer of learning can be achieved using transfer or model parameters such as weights. 

Data will go through various analytical lifecycles depending upon scenario and data type.  

Expected requirements 

It is expected that ML-enabled networks classify data based on characteristics such as service impact, user 

impact, regulatory impact and future influence basis. 

6.3.2.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks support rules and data processing at all levels so that best and 

optimal decision around data use, storage and state transition can be taken. 

NOTE 1 – The levels include application/service, network and radio levels.  

It is critical that ML-enabled networks take decisions at all levels with some control at the higher level in 

the hierarchy.   

NOTE 2 –- For example, access node having rule delegation from core network, therefore different or 

similar rules regarding data processing and analytics will be applied at all levels of the network 

architecture. 

It is critical that ML-enabled networks support national and/or regional regulations, e.g. those on security 

and privacy, along with the use case requirements.  

Expected requirements 

It is expected that ML-enabled networks use the intelligence derived from the data to dynamically tune 

the policies and/or processing rules.  

NOTE 3 – The above mentioned tuning may be controlled by a network node at a higher level in the 

hierarchy. 

It is expected that ML-enabled networks support data processing based on static policies and/or 

dynamically assigned policy/business rules based on the dynamic network conditions. 

6.3.3 Data-driven architecture for ML at the edge  

6.3.3.1 Use case description  

The complexity associated with future networks including IMT-2020 networks requires new paradigms 

for network management and orchestration. The usage of machine learning (ML) and artificial intelligence 

(AI) techniques to perform autonomous operations in cellular networks has been widely studied in recent 

years. This trend is coupled with the application of big-data analytics that leverage the huge amount of 
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monitoring data generated in mobile networks to provide more insights on the behaviour of networks at 

scale.  

It is important for mobile networks to support data-driven approaches to self-organize the network, 

achieve cost savings, but also to offer new services to the end users. For example, the prediction of the 

number of users in a base station can be used to optimize the performance of the network in a number of 

different ways: it can enable predictive load-balancing, bearer pre-configuration, scaling of RAN 

resources, sleeping periods for base stations, and so on. Moreover, by exploiting the knowledge on the 

mobility pattern of users, it is possible to understand hidden structures in the network and, for example, 

cluster together base stations which are visited by users with similar mobility patterns, to reduce the 

control plane latency. 

In terms of new services to the end users, network operators can exploit the prediction to offer novel 

services to the end users. For example, consider a vehicle that has to travel from point A to point B in an 

area covered by cellular service. While on the journey, the passengers may want to participate in a 

conference call, or, if not driving, surf the web or stream multimedia content. Therefore, given the choice 

of multiple routes with similar estimated time of arrivals (ETAs), the passengers may prefer to choose an 

itinerary with a slightly higher ETA but with a better network performance, because, for example, the 

itinerary crosses an area with a better coverage, or with fewer users. This becomes particularly relevant 

in view of the envisioned transition to an autonomous driving future, in which active driving might not be 

required and working or getting entertained in the car will become a common trend. In order to address 

this need, cellular network operators can exploit ML/AI architectures and the prediction of the number of 

active users in the cells to offer anticipatory services to the end users and inform them on which is the 

best route for their journey. 

6.3.3.2 Use case requirements  

6.3.3.2.1. Use case requirements related to data collection 

Expected requirements 

It is expected that ML-enabled networks perform the operations of collecting and processing real time 

network generated data, in order to maximize the integration of ML pipelines and networking elements.  

It is expected that ML-enabled networks support ML architecture that collects the data generated by the 

network. 

NOTE – The data will be used to perform analytics and extract relevant metrics. 

6.3.3.2.2. Use case requirements related to data storage and processing 

Expected requirements 

It is expected that the ML-enabled networks support input of the collected data to intelligent algorithms 

for network control and new services offerings to the users. 

Added value requirements 

It is of added value that ML-enabled networks are able to process data without losing awareness of the 

spatial information that is introduced by user mobility. 

NOTE- The knowledge of spatial information improves the performance of ML algorithms for the use 

cases.  

It is of added value that ML-enabled networks support RAN controllers, deployed at the edge, that are 

associated with a cluster of base stations, and host ML functionalities that use spatial information 

correlation.  

6.3.3.2.3. Use case requirements related to application of ML output 

Expected requirements 
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It is expected that ML-enabled networks support network controller, placed in the operator’s cloud, that 

orchestrates the operations of the RAN controllers based on the ML output. 

6.4 Signalling or management related use cases 

This category of use cases uses either information from signalling messages as input, or uses signalling 

messages to control the behaviour of network functions or interface with management plane, e.g. it uses 

an interface with NMS to configure NFs. 

6.4.1 ML-based mobility pattern prediction  

6.4.1.1 Use case description 

Many next-generation applications and mobile network optimization schemes require knowledge of 

mobility pattern of mobile users. Mobility pattern prediction (MPP) based on ML is a method to predict 

mobile users’ trajectory and their service pattern usage, from available network data and user data, as well 

as context information. ML-based MPP schemes allow for an optimized mobile network with adaptive 

real-time network configuration including (but not limited to): proactive resource allocation, improved 

handovers, predictive caching, and advanced energy saving schemes. Furthermore, MPP will enable 

several new applications, such as adaptive public transportation solutions, adaptive streetlights, smart 

home heating systems, location-based advertisement etc. These new mobile network applications require 

an automatic real-time prediction of the users’ mobility and service pattern. In this use case, the focus is 

on using ML methods to predict future trajectories of individual users (which could be used to predict the 

future condition of the mobile network). 

Compared to current model-based prediction methods, a data-driven MPP approach using ML will 

increase intelligence of the system and significantly improve prediction results in terms of performance 

and accuracy. Consequently, the improved prediction results allow for the implementation and 

provisioning of better (autonomous, real-time etc.) applications and services.  

Such services include personalized mobile edge caching (PMEC), which adopts a flexible and distributed 

computing and storage capabilities to provide ultimate QoE and personalized service access for next 

generation user-centric network. PMEC is able to solve the problems of the existing edge caching such as 

limited sink location, limited application scenarios, limited service range and limited operational 

capability. A solution could be based on a two-tier deep learning based caching architecture for MEC. At 

a lower layer, the local predictor module (LPM) collects and analyses hourly user requests from one base 

station, while at the upper layer, the global predictor module (GPM) for network-wide analysis and 

prediction of each day is based on the preliminary process of each LPM using a deep learning technique. 

In order to determine which content should be placed in the cache appliances, the caching decision module 

(CDM) is designed to integrate the results from LPM and GPM. 

Another application based on MPP is handover optimization, where two conflicting objectives are 

pursued: minimizing the unnecessary handovers and minimizing the likelihood of dropped calls. 

Compared to LTE network, the handover management for 5G network is much more complicated and 

with much more stringent requirements, namely almost “zero” latency handover and consistent user 

experience. The ML model can be trained based on the history information such as reference signal 

received power/quality (RSRP/RSRQ) in handover, network load, throughput, interruption time, as well 

as the awareness and prediction of UE position, moving direction, speed, etc. 

It should be emphasized that ML can also be used to enhance or facilitate existing (model-based) 

approaches to the MPP problem. In fact, purely data-driven approaches might not be suitable for robust 

real-time MPP applications, in which case it might be necessary to use hybrid ML methods that include 

an additional context information in form of e.g. models, constraints etc. 

MPP will provide the possibility for predicting the condition of the future network by analysing users' 

behaviour patterns. In order to improve the accuracy and effectiveness of the prediction model in real-

time, MPP collects training data continuously to update the prediction models accordingly.  
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MPP consists of three main functionalities: data collection, strategy and execution. The data collection 

functionality is responsible for real-time collection of network performance data, cell status query, 

sleep/wake-up instruction, context data, and other current network interaction functions. The core 

algorithm achieves the user trajectory prediction in the strategy functionality. The execution functionality 

is to generate man-machine language (MML) and communicate with the base transceiver stations (BTSs), 

other elements of the core network and managers such as VNF managers (VNFMs), SDN controllers 

(SDNCs).    

6.4.1.2 Use case requirements 

6.4.1.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks collect position estimates (e.g., GNSS data, cell identifier, tracking 

area identifier) for mobility pattern prediction. 

It is critical that ML-enabled networks collect real-time network performance data to support network 

performance optimization. 

It is critical that ML-enabled networks support collection of the following data:                              

● Measurement data, such as position estimates. 

NOTE 1 – Examples of measurement data include GNSS data, RSRP, timing advance, beam state 

information.                  

● Context information data, which include network state data and user state data.   

NOTE 2 – Examples of context information data include UE identifier, various logs, KPIs and 

environmental information (e.g. maps). For the network state data, various identification 

information at AN (e.g., cell identifier, beam identifier), configuration information (e.g. number 

of antennas), cell status query data and real-time network performance data should be included.             

Expected requirements 

It is expected that ML-enabled networks support collection of network measurements, e.g., RSRP to 

support network performance optimization (e.g. handover optimization) based on mobility pattern 

prediction. 

It is expected that ML-enabled networks are able to utilize different data sets collected from different 

network nodes.         

Added value requirements 

It is of added value that ML-enabled networks support collection of environmental information (e.g. maps) 

for mobility pattern prediction. 

It is of added value that that ML-enabled networks support enhanced training of ML models, for instance 

to learn rare events, by generating simulated data.                             

6.4.1.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that that ML-enabled networks support core network with a database to store collected data 

and possibly store predictions which may be applicable long-term.  

NOTE 1 – The stored predictions may be provided to other consumers in the future. 

It is critical that ML-enabled networks support long-term prediction in the core network which aims to 

predict large-scale activity and UE mobility at a coarse level. 

It is critical that ML-enabled networks support databases to store collected data at AN. 
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It is critical that ML-enabled networks support short-term predictions which aim to predict user group 

activity and UE mobility at a finer level at AN. 

It is critical that ML-enabled networks support databases to cache simulation data or sensor data at 

application functions. 

It is critical that ML-enabled networks support real-time prediction which aims to predict user activity at 

application functions. 

Expected requirements 

It is expected that ML-enabled networks support offline databases and ML model training during network 

planning and design phase. 

It is expected that ML-enabled networks support online data collection and online predictions during 

network deployment phase. 

It is expected that ML-enabled networks support online model calibration and network management 

during network operation and management phase. 

It is expected that ML-enabled networks are able to make predictions at different time granularity, such 

as real-time predictions (user activity), short-term predictions (user group activity) and long-term 

predictions (large-scale activity).                

It is expected that ML-enabled networks support different MPP models at different domains. 

NOTE 2 – Examples of MPP models include UE-level ML model related to application and service levels, 

network-element-level ML model (e.g., CU, DU) in access network and network-level ML model (e.g., 

CN, NMS) in core network.     

Added value requirements 

It is of added value that ML-enabled networks use new data sets to calibrate the MPP model and apply 

the MPP model to network management.     

6.4.1.2.3. Use case requirements related to application of ML output 

 

Added value requirements 

It is of added value that ML-enabled networks enhance different network levels [ITU-T Y.3172] with 

ML-based MPP capabilities. 

NOTE 1 – MEC deployments at various levels of the network may be examples. MEC deployment at the 

core network may include implementation of global prediction with LSTM model and data from MEC at 

the access network. MEC at the access network may include collecting and analysing the hourly user 

requests from one base station and executing caching decision and caching the video data. 

It is expected that ML-enabled networks support the following ML capabilities as part of ML output: 

● Classification: A ML capability to separate input data into predefined groups. 

NOTE 2 – The objective of this ML output capability is closely related to supervised learning.  

● Clustering: A ML capability to separate input data into some non-predefined groups. 

NOTE 3 – The objective of this ML output capability is closely related to unsupervised learning. 

● Prediction: A ML capability to forecast the occurrence of predefined phenomena. 

NOTE 4 – The objective of this ML output capability is focusing on future phenomena. 

● Inference: A ML capability to reach a certain conclusion with input data. 
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6.4.2 Load balance and cell splitting/merging 

6.4.2.1 Use case description 

The mobile network traffic is rapidly increasing and more micro base stations are needed to meet the 

requirement of high capacity. The coordination between macro and micro base stations is one of the most 

important ways to deal with high traffic load. In particular, tidal effects of UEs require adequate 

approaches to deal with a large number of people gathering for instance in a stadium, on a square for a 

special event, a shopping street etc. There are two main techniques to cope with this problem: load balance 

among cells and cell splitting and/or merging. 

The currently existing load balance algorithms are only able to switch a few UEs to another cell in a short 

period of time. The performance of the load balance mechanisms yields a poor performance, since network 

optimization engineers need to modify manually the network parameters to balance UEs among different 

cells.  

In order to meet the requirements due to the rapid traffic increase, cell splitting is another solution without 

deploying new physical network device. A cell can be split into two or more cells to increase the network 

capacity. On the other hand, cell merging leads to reduced operating expenses for situations with low 

traffic demands.  

Based on the analysis and learning of a large amount of data, an algorithm will be trained to describe when 

to execute cell splitting or merging to improve the quality of service and energy efficiency. 

6.4.2.2 Use case requirements 

6.4.2.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support load balancing schemes which consider automatically the 

current number of UEs and the traffic speed of the UEs, and schedules UEs among different cells for a 

guaranteed QoE. 

Expected requirements 

It is expected that ML-enabled networks support collection of the following measurement data for load 

balancing and cell split/merge schemes: 

● Number of UEs in the current cell and the neighbouring cells; 

● RB utilization of current cell and neighbouring cells; 

● PDCP [b-3GPP 38.323] package number of current cell and neighbouring cell; 

● Number of RRC [b-3GPP 38.331] connection requests in current cell and neighbouring cells; 

● Active radio bearer number of current cell and neighbouring cells. 

6.4.2.2.2. Use case requirements related to data storage and processing 

Expected requirements 

It is expected that ML-enabled networks support schemes for load balancing which use a ML model to 

predict the load.  

It is expected that ML-enabled networks support, based on the prediction result on the load, ML models 

which indicate a feasible map between UEs and cells with the specific measurement data reported from 

the cells.  

Added value requirements 

It is of added value that ML-enabled networks support the deployment of ML functionalities in NMS so 

that load balancing among cells or cell splitting/merging can be achieved.  
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6.4.2.2.3. Use case requirements related to application of ML output 

Expected requirements  

It is expected that ML-enabled networks apply the output generated from the ML model to the NMS. 

It is expected that ML-enabled networks apply the output from the ML model to the NMS to balance the 

UEs connected to the base stations. 

It is expected that ML-enabled networks support different ML models for cell splitting concerning load 

prediction and cell status analysis.  

It is expected that ML-enabled networks enable, based on the prediction result, the NMS to decide whether 

to perform cell splitting/merging and select a set of configuration parameters for the splitting/merging 

process.  

6.4.3 ML-based QoE optimization 

6.4.3.1 Use case description 

Traditional network planning and optimization methods rely on optimization of KPIs to improve service 

quality. However, multimedia services and emerging forms of content are increasingly complex and 

diverse, and the network performance related to QoS cannot necessarily meet the needs of network users. 

Moreover, the requirements of different users, services and contents are widely divergent in terms of QoS.  

QoE is used to measure the user's evaluation of the performance of communication services and reflects 

the true level of user satisfaction and subjective feelings with different network services. QoE depends on 

QoS, and is one of the main optimization objectives of mobile networks providing complex services.  

ML-based QoE may optimize the network configuration to maximize the QoE score for all network users 

while meeting the network capacity and service requirements.  

6.4.3.2 Use case requirements 

6.4.3.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support privacy and security mechanisms to limit the use and 

accessibility for authorized usage regarding collection of data that relate to specific users. 

It is critical that ML-enabled networks input different types of data from various parts of the network to 

the ML functionalities, including network status measurement data and QoS/QoE feedback data. 

Expected requirements  

It is expected that ML-enabled networks use KPIs such as bandwidth, bit rate and cache size as input to 

the ML model.  

It is expected that ML-enabled networks use real-time network states and perceived service quality.  

NOTE – Since some of the QoS/QoE feedback information may not be available, the ML model needs to 

handle incomplete input data. 

It is expected that ML-enabled networks carry out accurate network measurements and recording of raw 

network status samples, as well as data processing to remove protocol dependent features.  

It is expected that ML-enabled networks are capable of handling network status data changes at a high 

rate and extracting data at a high rate. 

It is expected that ML-enabled networks support collection of the following measurement data:  

● Bandwidth; 

● Cache size; 
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● Bit rate; 

● User experience:  

- Re-buffering time; 

- Staying time (duration of the user session); 

- Blockage frequency (data blockage). 

It is expected that ML-enabled networks support the following QoS/QoE feedback data: 

● Re-buffering time; 

● Staying time; 

● Blockage frequency (data blockage); 

● Latency; 

● Jitter. 

6.4.3.2.2. Use case requirements related to data storage and processing 

 

Added value requirements 

It is of added value that ML-enabled networks store data alongside the obtained KPIs in a network status 

database.  

6.4.3.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks support mechanisms to decide the granularity of configuration 

according to the abstraction level of information or data model in the level of network in which the ML 

output is applied.  

It is critical that ML-enabled networks support the deployment of ML functionalities in different parts of 

the network. 

NOTE – For example, ML models may be deployed at core network functions. 

It is critical that ML-enabled networks enable interface between machine learning functionalities and 

network functions at multiple levels of the network.  

NOTE- Examples of levels in the network are edge network and core network. 

It is critical that ML-enabled networks enable stable and proactive network optimization. 

Expected requirements  

It is expected that ML-enabled networks support a global constrained optimization for network 

configuration considering the QoE model and the behaviour model of the services. 

It is expected that ML-enabled networks provide QoE scores under various service requirements as output 

of ML models. 

Added value requirements 

It is of added value that ML-enabled networks support optimization functionalities by the use of 

reinforcement learning mechanisms where prediction and feedback based learning models are employed.  



- 48 - 

SG13-TD224/PLEN 

6.4.4 ML-based network management for Industry 4.0 

6.4.4.1 Use case description 

Industrial IoT is one of the main drivers for the transition into the next industrial revolution, known as 

Industry 4.0. In industrial IoT processes are automated using connected intelligent devices which share 

data and provide interfaces enabling remote management. Meeting the stringent requirements of industrial 

IoT is becoming more and more challenging in the face of the added complexity of smart manufacturing 

and in the presence of diverse communication technologies. Additionally, the amount of data being 

produced is increasing exponentially year over year and will become increasingly difficult to support and 

manage with traditional approaches. 

Use of machine learning enables dynamic and continuous management of the industrial IoT network’s 

operational behaviour based on environmental observations and manufacturing patterns, resulting in 

optimized operation. Machine learning is expected to be an integral part of the solution for network and 

data management in smart manufacturing. 

Industrial IoT networks are unique in their high standards and requirements when it comes to reliability, 

availability, security and determinism requirements they need to satisfy.   

6.4.4.2 Use case requirements 

6.4.4.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support data formats and protocols which enable interoperability 

among IoT devices from different manufacturers.  

It is critical that ML-enabled networks support data security and protection.  

NOTE 1- For example, industrial plants may have specific data which needs to be protected.  

Expected requirements  

It is expected that ML-enabled networks support network planning capabilities that incorporate the 

overhead imposed by data collection. 

It is expected that ML-enabled networks act upon real-time events from industrial plants with minimal 

turnaround time.  

NOTE 2– This imposes stringent timing requirements on data collection, ML processing and delivery of 

the output to the network.  Depending on the scenario, the latency requirements for communication, 

processing and responses can vary from multiple seconds to a few milliseconds. 

It is expected that ML-enabled networks support collection of the following data: 

● Measurement data:  

- Signal strength;  

- Packet loss rate; 

- Spreading factor/multiplier; 

- Modulation, coding, spatial streams/ antenna usage. 

● Context information data: 

- Network state data: 

▪ Topology routes, mesh instances; 

▪ Traffic flows; 

- Environmental information.  
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● Planning data: 

- Production requirements; 

- Resource availability;  

- Production timelines. 

● Collection of information at various levels of the network (operational data); 

● Collection and transport of planning data to the data processing logic. 

6.4.4.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks use ML algorithms that meet the accuracy, latency, and functional 

requirements of the specific use cases. 

Expected requirements  

It is expected that ML-enabled networks support a resilient framework in processing events from/to  

industrial plants so that any failures in the framework does not impact the management of the IoT devices. 

It is expected that ML-enabled networks support a data processing logic which takes planning and 

operational data as input and creates forecasting models for the generation of an optimal network 

configuration.  

It is expected that ML-enabled networks support processing of information at various levels of the network 

(operational data). 

6.4.4.2.3. Use case requirements related to application of ML output 

Critical requirements  

It is critical that ML-enabled networks support IoT devices with interfaces that enable 

setting/monitoring/measuring of device parameters and network related functions. 

NOTE 1 – This includes physical and link layer interfaces, network formation/routing interfaces, power 

and device state interfaces.  

It is critical that ML-enabled networks support IoT devices with protocols and interfaces to control various 

network management functions. 

NOTE 2 – Examples of  network management functions include schedule delivery, network resource 

allocation and gateway association information.  

Expected requirements  

It is expected that ML-enabled networks support dynamic network configuration in real time or near real 

time based on the output of the data processing logic. 

 

6.4.5 ML-based correlations between transport KPIs and radio KPIs  

6.4.5.1 Use case description 

In future networks including IMT-2020 networks, the correlation between transport KPIs and radio KPIs 

using ML techniques over the collected historical data is needed. The ML output formulates the relation 

between the selected KPIs in both domains in order to be able to optimize their thresholds. 

The transport network performance is measured against some KPIs, e.g. frame loss ratio (FLR), delay and 

jitter), with different thresholds for each KPI according to the radio services running. For example,  FLR 

threshold for 2G voice traffic is different than FLR threshold for 4G background traffic.  
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Accordingly, it is necessary to intelligently analyse the complex relations between the KPIs in both 

domains in order to have a descriptive mapping that defines the exact correlation between them. This is 

used for better understanding of impact on radio services due to changes that happen in transmission KPIs. 

NOTE – The output of the analysis may include accurate thresholds and criteria to be used in the planning 

and design phase, and optimization proposals for the operation and management phase.  

6.4.5.2 Use case requirements 

6.4.5.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that that ML-enabled networks support the correlation of the transport KPIs and radio KPIs 

to continuously collect the performance measurements at different layers of transport and radio domains. 

It is critical that ML-enabled networks support NMSs connected to network elements from different 

vendors in the transport and radio domains to continuously collect the performance data.  

Expected requirements  

It is expected that ML-enabled networks support collection of raw data with variable granularity. 

NOTE 1 – The granularity could be 5min or less (i.e. the timer generates a value every 5min or less to 

catch near real time results). 

It is expected that ML-enabled networks support the integration of probing and monitoring systems 

connected to the network elements in order to get accurate results for transport KPIs. 

It is expected that ML-enabled networks support performance monitoring systems, collecting and 

consolidating the data from all NMSs and active probes. 

It is expected that ML-enabled networks support collection of the following transport network topology 

data: 

● Number of traversed microwaves in hops till fibre termination; 

● Travelled fibre distance; 

● Sectional representation of cascading sites. 

 

It is expected that ML-enabled networks support the collection of the following transport measurements 

data: 

● End-to-end latency; 

● End-to-end jitter; 

● End-to-end packet drops; 

● Sectional capacity; 

● Sectional utilization; 

● Sectional buffer size. 

 

It is expected that ML-enabled networks support collection of the following radio measurement data: 

 

● Time advance and propagation delay; 

● RRC attempts; 

● U RSSI and RTWP; 
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● SOHO indicator; 

● Utilization power; 

● Utilization CE and RB; 

● Latency, packet loss and Iub related counters; 

● CQI; 

● Number of users; 

● Throughput; 

● Data volume uplink and downlink;  

● Voice traffic; 

● HSDPA drop rate. 

 

NOTE 2 – The above measurement data summary represents data readily available and stored for network 

performance monitoring, usually stored on a hourly basis for multiple weeks’ time period.  

Added value requirements 

It is of added value that ML-enabled networks support higher frequency data readings (e.g., 5 min, 1 min) 

and storage for longer time periods in order to give more accurate observations and results. 

It is of added value that ML-enabled networks support collection of real customer experience 

measurements from application specific readings (e.g. web browsing, video streaming, VoIP, online 

gaming, VR/AR).  

NOTE 3 – This data may be retrieved from crowd sourcing applications, or region-specific drive tests. 

6.4.5.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support analytics functionalities which handle consolidated data 

and derive correlations between the various input data.  

Expected requirements  

It is expected that ML-enabled networks support a big data-capable analytics platform to manage the big 

volume of data collected over long periods with low granularity. 

6.4.5.2.3. Use case requirements related to application of ML output 

None. 

6.4.6 ML-based end-to-end network management  

6.4.6.1 Use case description 

Network slicing in future networks including IMT-2020 enables operators to build virtual end-to-end 

networks tailored to various application requirements. Network slices are usually implemented over 

various network domains such as radio access, transport, and core networks. Hence, end-to-end network 

management becomes more critical and tight interworking is necessary to guarantee user throughput and 

low latency.  

However, most providers have separate management planes for their network domains, such as IP 

(access/core), transport (access/core/), IT (cloud computing platforms), and network functions 

(DU/RUs/EPC/NGC [b-3GPP 23.501]). Since the management planes still rely on human operators, this 

increases total cost of ownership (TCO). With separate management environments, different operators 
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should communicate with each other to identify the root cause of the failure and fix it together. However, 

most operators are only interested in their own domains and stick to their operation procedures, while 

there is a need to perform combined root cause analysis. Hence, providers should consider a unified end-

to-end network management system covering all domains. This system should be based on matured ML 

technologies instead of the current human-oriented operation environment. 

The new management architecture needs to have big data capabilities to collect performance data, events, 

and alarms occurred from all involved domains. Then, the root cause analysis (RCA) on top of the 

platform detects automatically failures, processed by ML without human intervention. The automatic 

RCA services can be realized with ML such as complex event processing. With the large amount of 

performance data, failure prediction services are also feasible. 

6.4.6.2 Use case requirements  

6.4.6.2.1. Use case requirements related to data collection 

Expected requirements  

It is expected that ML-enabled networks use the following information for big data capabilities: 

● Information about alarm and event data; 

● Information about inventory and topology data; 

● Normalized format for the data; 

● Storage duration and deletion cycle; 

● Storage type (distributed or centralized). 

It is expected that ML-enabled networks use the following information for end-to-end network 

management: 

● Service request information, e.g. about bandwidth, service type; 

● Information about network resource, e.g. available, required; 

● Path characteristics, e.g. packet-based or circuit-based, physical or virtual; 

● Topology information, e.g. intra-domain, inter-domain; 

● Connection information between domains. 

6.4.6.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks support the use of a common information model to manipulate data 

of the objects which are managed in different network management and operation systems. 

It is critical that ML-enabled networks support the use of a common data model to achieve the 

compatibility of data obtained across related network management and operation systems. 

 

Added value requirements 

It is of added value that ML-enabled networks are capable of deriving the timing threshold needed by 

services or applications based on the following: 

 prediction time consumed by ML capabilities; 

 required time to carry ML information between ML capabilities and service components; 

 time to take action using ML information. 
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6.4.6.2.3. Use case requirements related to application of ML output 

None. 

6.4.7 ML-aided channel modelling and channel prediction 

6.4.7.1 Use case description 

With future networks including IMT-2020, it is envisioned to have various deployment scenarios and 

frequency bands, as well as new physical layer techniques, such as millimetre wave and massive MIMO. 

It is well acknowledged that wireless propagation measurement and channel modelling are fundamental 

to the success of any wireless system design and evaluation. Meanwhile, accurate and timely channel 

prediction dictates how well the physical layer techniques can achieve the optimal transmission capacity. 

Innovative methods in the big data and ML domain are expected to help in the challenging research of 

wireless channel modelling and channel prediction for future networks including IMT-2020. Channel 

modelling requires huge amounts of channel data in various propagation environments and frequency 

bands; meanwhile, channel prediction has very stringent latency and accuracy requirement.  

This use case is divided into two parts: one is building a channel model that is purely based on neural 

networks through supervised learning which can capture the underlying relations between the physical 

environment (e.g. 3D environmental data, scatters/reflectors, propagation mechanism) and the resulting 

channel impulse response (from measurement campaign or real network channel estimation data); the 

other is to use historic and user-specific channel data to predict the future channel response in real-time, 

which will potentially assist physical layer processes such as channel coding and modulation and reducing 

the need for pilot/preamble transmission.  

6.4.7.2 Use case requirements  

6.4.7.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support collection of a large amount of scenario-specific channel 

measurements.  

NOTE 1 – The collected data could be channel impulse response from measurement campaign or real 

channel estimations from the live RAN. “Scenario-specific” means that the measurements are performed 

for various frequency bands across 0-100GHz, multiple antenna elements at both the RAN and UE, 

different propagation environments (e.g. urban macro, urban micro, rural, high-speed train, and indoor). 

It is critical that ML-enabled networks record the actual propagation environment during measurement is 

recorded. 

It is critical that ML-enabled networks record the system configuration for the measurement setup. 

NOTE 2 – System configuration may include for instance, the antenna pattern and configuration, MIMO 

mode, operating frequency, transmit power, bandwidth, sampling rate, thermal noise level, waveform used.  

It is critical that ML-enabled networks support the collection of UE and BS location information, e.g., 

GNSS or channel information inferred distance and angular information. 

It is critical that ML-enabled networks support collection of system configuration information for the 

measurement equipment or the BS and UE configuration, e.g., antennas, MIMO mode, frequency band, 

transmit power, bandwidth. 

It is critical that that ML-enabled networks support the implementation of ML-based channel modelling 

which meets the necessary latency and accuracy requirements to estimate, transfer, receive and store 

channel information across the network and data centre. 

Added value requirements 

It is of added value that ML-enabled networks support the prediction of UE location and mobility. 
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It is of added value that ML-enabled networks support standard data formats for environmental data, 

which enable information sharing and promote joint research between different organizations.  

NOTE 3 –Examples of environmental data include 3D map of the propagation environment, transmitter 

and receiver location, identified reflectors and scatters, material EM properties and surface roughness.  

6.4.7.2.2. Use case requirements related to data storage and processing 

Critical requirements  

It is critical that ML-enabled networks use ML models with clear input and output definitions.  

NOTE – Based on the input and output definitions, chaining of ML models can be performed to make a 

unified channel modelling process.   

It is critical that ML-enabled networks support the storage of UE-specific channel impulse responses 

estimated by the BS or reported by the UE along with time stamps. 

It is critical that ML-enabled networks support protocols enabling the trained models to be subscribed, 

distributed and maintained. 

It is critical that ML-enabled networks are able to handle time-series data and data with different 

dimensions, and meet the latency and accuracy requirements. 

It is critical that ML-enabled networks support close-loop monitoring of the ML model performance, and 

are able to fall back to existing channel estimation mechanisms [b-3GPP-36211]. 

Expected requirements  

It is expected that ML-enabled networks support federated learning and distributed learning to distribute 

the computational load across processing nodes.  

Added value requirements 

It is of added value that ML-enabled networks store channel data and categorize them according to certain 

attributes, such as environment, frequency and purpose.  

It is of added value that ML-enabled networks use ML mechanisms to accomplish different tasks in the 

channel modelling process, such as clustering and feature extraction and classification, as ML sub-models.  

It is of added value that ML-enabled networks support dedicated protocols for data handling. 

It is of added value that ML-enabled networks support ML models with a standard interface to the physical 

layer processes for collecting the data for channel modelling and applying the output of the ML processing. 

 

6.4.7.2.3. Use case requirements related to application of ML output 

None. 

6.4.8 ML-based link adaptation optimization 

6.4.8.1 Use case description 

In cellular communication systems, the quality of the signal received by a UE depends on the channel 

quality from the serving cell, the level of interference from other cells, and the noise level. To maximize 

the throughput while maintaining target reliability on wireless communication channels, link adaptation 

is introduced to adjust the transmission parameters such as modulation and coding scheme (MCS) [b-

3GPP 36.213] [b-3GPP 38.214] which determines the transmit block size of each stream, as well as MIMO 

transmission rank (number of spatial data streams for each user) and precoding to match the variation of 

channel conditions. 
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The state of the art link adaptation mechanism relies on the CQI [b-3GPP 36.213] [b-3GPP 38.214] 

feedback from the UE. Using predefined look-up-tables for various link quality metrics, the proper MCS 

would be found. To further enhance the performance, out loop link adaptation (OLLA) is also introduced 

to modify the MCS based on the link feedback.  However, the CQI feedback is usually out of date and 

cannot capture the inter-subcarrier and multiuser/multi-layer interference in the actual downlink 

transmission, which leads to mismatch between the CQI feedback and the actual CQI for downlink data, 

in addition, it is hard to measure accurately the link quality. Link adaptation in 5G with large numbers of 

antennas and channels is further challenging due to the high channel state information (CSI) dimension, 

which makes even harder to find the proper mapping tables between link qualities and link adaptation 

parameters. OLLA is perfect for full buffer services but it is hard to converge for service with small burst 

and fast variation channel conditions. All the above-mentioned issues lead to performance degradation. 

ML-based link adaptation scheme is desired to enhance the performance by using the historical channel 

condition data and the corresponding KPIs to find the optimized MCS and rank.  

6.4.8.2 Use case requirements 

6.4.8.2.1. Use case requirements related to data collection 

Expected requirements  

It is expected that ML-enabled networks support collection of the following layer 1 (L1) UE level 

feedback data: 

 CQI; 

 Rank indicator (RI); 

 Pre-coding matrix indicator (PMI); 

 Hybrid Automatic Repeat reQuest (HARQ) acknowledgements/negative acknowledgements; 

 Downlink RSRP measurement. 

It is expected that ML-enabled networks support collection of the following L1 BS measurement data: 

 MIMO pre-coder; 

 Uplink RSRP measurement; 

 CQI/PMI/RI feedback delay; 

 Estimated Doppler frequency offset.  

It is expected that ML-enabled networks support collection of the following layer 2 (L2) BS measurement 

data: 

 PRB usage ratio; 

 Scheduled MCS; 

 Scheduled rank; 

 Number of users; 

 Interference from neighbour cell. 

It is expected that ML-enabled networks support collection of above mentioned data regarding L1 UE 

level feedback, L1 and L2 BS measurement for model training. 

6.4.8.2.2. Use case requirements related to data storage and processing 

Expected requirements  

It is expected that ML-enabled networks support the learning of relationship between empirical 

observations of the CSI related values and their associated ACK/NACK flows including their relationship 

with BLER.  

It is expected that ML-enabled networks support the deployment and update of the trained model into BS 

scheduler. 
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It is expected that ML-enabled networks support a BS scheduler which supports the ML model output and 

executes the MCS and RI selection policy based on the ML output. 

6.4.8.2.3. Use case requirements related to application of ML output 

None. 

6.5 Security related use cases 

This category of use cases is related to the security aspects of the network. 

6.5.1 Combating use of counterfeit ICT devices – ML assisted network service 

6.5.1.1 Use case description 

This service is expected to identify cloned IMEIs where the ML capability is utilised in the radio access 

part of the network and the core network. From the radio access part of the network, several device 

characteristics like number of antennas and MIMO are available and in the core network these attributes 

as per the IMEI/model are available. ML capability can be used to identify the cloned IMEI using this 

information and can be deployed in the edge network nodes to prevent such mobiles from accessing the 

network. 

6.5.1.2 Use case requirements 

6.5.1.2.1. Use case requirements related to data collection  

Critical requirements  

It is critical that ML-enabled networks support cloned IMEI detection capability which continuously 

collects and classifies the traffic data in terms of capabilities associated with the IMEI.  

NOTE – Classified data can be matched against the capabilities associated with the IMEI available in the 

core network. 

6.5.1.2.2. Use case requirements related to data storage and processing 

None. 

6.5.1.2.3. Use case requirements related to application of ML output  

Critical requirements  

It is critical that ML-enabled networks support the continuous updating of information gained from the 

classification in the edge nodes for faster action against cloned IMEI devices. 

6.5.2 ML based identification of illegal exchanges using SIM boxes 

6.5.2.1 Use case description 

Use of SIM boxes as illegal exchanges is a serious issue which causes heavy losses to the government and 

to the telecommunication service providers and also causes problems concerning law enforcement. To 

identify and stop such communications effectively, it is necessary to have an efficient and accurate method 

to identify such traffic. 

ML based identification of illegal exchanges using SIM boxes collects traffic data and classifies the real 

time traffic as from an illegal SIM exchange or not and conveys the information to an appropriate node 

for further action. This ensures that such traffic does not pass through the network. 
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6.5.2.2 Use case requirements 

6.5.2.2.1. Use case requirements related to data collection 

Critical requirements  

It is critical that ML-enabled networks support continuous collection of real time data and learning of 

collected data patterns to build traffic model for traffic from illegal exchanges, including patterns for 

identifying VoIP traffic from illegal exchanges.  

 

6.5.2.2.2. Use case requirements related to data storage and processing 

None. 

6.5.2.2.3. Use case requirements related to application of ML output  

Critical requirements  

It is critical that ML-enabled networks, on the basis of classification according to the traffic model for 

traffic from illegal exchanges, support the sending of appropriate information to operator configured 

authorities. 
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