3GPP TSG-SA5 Meeting #127
S5-196470
Sophia Antipolis, France 14-18 October 2019

Revision of S5-19xxxx
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	32.156
	CR
	0035
	rev
	-
	Current version:
	16.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

A

	

	Title:

	Add passedById and other updates

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S5

	
	

	Work item code:
	TEI16
	
	Date:
	2019-10-07

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	The example passedById is missing from attribute properties table.
The use of empty attribute compartents in the UML diagrams is inconsistent.

The presentation of the choice stereo type is incorrect.

Remove <<choice>> example that is not needed

To clarify use of role name

	
	

	Summary of change:
	The example passedById is added to attribute properties table.

The examples given in UML diagrams are in some cases shown with attribtue compartments and in some cases without attribute compartments. The empty attribute compartments have been removed for consistency.
The presentation of the choice stereo type is corrected

<<choice>> example has been removed

Clarification on removal of role name added

	
	

	Consequences if not approved:
	The attribute properties table is incomplete.
The presentation of the UML diagrams is inconsistent.
The presentation of the choice stereo type is incorrect.

The use of role name may be unclear

	
	

	Clauses affected:
	5.2.1.1, 5.2.1.2, 5.2.2.2, 5.2.2.4, 5.2.8.1, 5.2.9, 5.2.10.2, 5.3.6.2, 5.4.3.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

First change
5.2.1
Attribute

5.2.1.1
Description

It is a typed element representing a property of a class. See 10.2.5 Property of [1].

An element that is typed implies that the element can only refer to a constrained set of values.

See 10.1.4 Type of [1] for more information on type.

See 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type information to an element.

The following table captures the properties of this modelled element.

Table 5.2.1.1-1: Attribute properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
	Any

	isOrdered
	For a multi-valued multiplicity; this specifies if the values of this attribute instance are sequentially ordered. See subclause 7.3.44 and its Table 7.1 of [2].
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are unique (i.e., no duplicate attribute values). See subclause 7.3.44 and its Table 7.1 of [2].
	True (default), False

	isReadable
	Specifies that this attribute can be read by the manager.
	True (default), False

	isWritable
	Specifies that this attribute can be written by the manager under the conditions specified in Annex B.
	True, False (default)

	type
	Refers to a predefined (see subclause 5.4.3) or user defined data type (see section 5.3.4). See also subclause 7.3.44 of [2], inherited from StructuralFeature.
	NA

	isInvariant
	Attribute value is set at object creation time and cannot be changed under the conditions specified in Annex B.
	True, False (default)

	allowedValues
	Identifies the values the attribute can have.
	Dependent on type

	isNotifyable
	Identifies if a notification shall be sent in case of a value change (see Note 1, Note 2).
	True (default), False

	defaultValue
	Identifies a value at specification time that is used at object creation time under conditions defined in Annex B.
	No value (default) or a value that is dependent on allowedValues

	multiplicity
	Defines the number of values the attribute can simultaneously have. See subclause 7.3.44 of [2]; inherited from StructuralFeature.
	See 5.2.8 Default is 1

	isNullable
	Identifies if an attribute can carry no information. The implied meaning of carrying “no information” is context sensitive and is not defined in this Model Repertoire.
	True, False (default)

	passedById
	See Table 5.2.9.1-1: passedById property

	True, False (default)

	supportQualifier
	Identifies the required support of the attribute. See also subclause 6.
	M, O (default), CM, CO, C

NOTE 1: Whether a client/manager can receive the notification depends on a) if the client/manager has subscribed or registered for reception of such notification and b) if a notification mechanism is supported.

NOTE 2: If the attribute is a role-attribute and its property passedById is ‘False’, then changes in the navigable association target end instance shall not trigger a notification.

First change
5.2.1.2
Example

This example shows three attributes, i.e., a, b and c, listed in the attribute (the second) compartment of the class Xyz.

[image: image1.png]fanformationoblectclass»]
Xz

Figure 5.2.1.2-1: Attribute notation

5.2.1.3
Name style

An attribute name shall use the LCC style.

Well Known Abbreviation (WKA) is treated as a word if used in a name. However, WKA shall be used as is (its letter case cannot be changed) except when it is the first word of a name; and if so, its first letter must be in lower case.

First change
5.2.2
Association relationship

5.2.2.1
Description

It shows a relationship between two classes and describes the reasons for the relationship and the rules that might govern that relationship.

It has ends. Its end, the association end(s), specifies the role that the object at one end of a relationship performs. Each end of a relationship has properties that specify the role (see 5.2.9), multiplicity (see 5.2.8), visibility and navigability (see the arrow symbol used in Figure 5.2.2.2-2: Unidirectional association relationship notation) and may have constraints. Note that visibility shall not be used in models based on this Repertoire (see bullet 3 of 5.2).

See 7.3.3 Association of [2].

Three examples below show a binary association between two model elements. The association can include the possibility of relating a model element to itself.

The first example (Figure 5.2.2.2-1) shows a bi-directional navigable association in that each model element has a pointer to the other. The second example (Figure 5.2.2.2-2) shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element has a pointer to the target model element and not vice-versa. The third example (Figure 5.2.2.2-3) shows a bi-directional non-navigable association in that each model element does not have a pointer to the other; i.e., such associations are just for illustration purposes.

5.2.2.2
Example

An association shall have an indication of cardinality (see 5.2.8).

It shall, except the case of non-navigable association, have an indication of the role name (see 5.2.9). The model element involved in an association is said to be “playing a role” in that association. The role has a name such as aClass in the first example below. Note that the use of "+" character in front of the role name, indicating visibility, is optional.

[image: image3.png][anformationobjectclass»]
Aclass

[anformationobjectclass»]
BClass

Figure 5.2.2.2-1: Bidirectional association relationship notation
[image: image5.png][anformationobjectclass»]
Classg

Folass 0.1

[anformationobjectclass»]
Classg

Figure 5.2.2.2-2: Unidirectional association relationship notation
[image: image7.png][anformationobjectClass»] 1 *_[anformationobjectClass»]
Class10 Class11

Figure 5.2.2.2-3: Non-navigable association relationship notation

Note that some tools do not use arrows in the UML graphical representation for bidirectional associations. Therefore, absence of the two arrows is not an indication of a non-navigable association between the two Information Object Class involved; but the absence of the attributes related to role in the two Information Object Class involved is
5.2.2.3
Name style

An Association can have a name. Use of Association name is optional. Its name style is LCC style.

A role name shall use the LCC style.
NOTE:
The role name needs not resemble the class name.
First change
5.2.4
Composite aggregation association relationship

5.2.4.1
Description

A composite aggregation association is a strong form of aggregation that requires a part instance be included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as well.

A composite aggregation shall contain a description of its use.

See 7.3.3 Association (from Kernel) of [2].

5.2.4.2
Example

A filled diamond attached to the end of a relationship is used to indicate a composite aggregation. The diamond is attached to the class that is the composite. The composite association shall have an indication of cardinality at each end of the relationship (see 5.2.8).

[image: image8.png][anformationObjectclass»]
ManagedElement

“nformationObjectClass»
ManagedElementPropertyset

FmanagedelementProperySet 0.7

Figure 5.2.4.2-1: Composite aggregation association relationship notation

5.2.4.3
Name style

An Association can have a name. Use of Association name is optional. Its name style is LCC.

First change
5.2.8
Multiplicity, a.k.a. cardinality in relationships

5.2.8.1
Description

 “A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable cardinalities for an instantiation of this element…“, an extract from 7.3.32 MultiplicityElement of [2].

Table 5.2.8.1-1: Multiplicity-string definitions

	Multiplicity
	Explanation

	1
	Attribute has one attribute value.

	m
	Attribute has m attribute values.

	0..1
	Attribute has zero or one attribute value.

	0..*
	Attribute has zero or more attribute values.

	*
	Attribute has zero or more attribute values.

	1..*
	Attribute has at least one attribute value.

	m..n
	Attribute has at least m but no more than n attribute values.

The use of "0..n" is not recommended although it has the same meaning as " 0..* " and " *".

The use of a standalone symbol zero (0) is not allowed.

5.2.8.2
Example

This example shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is one to many. One Class1 instance is associated with zero or more Class2 instances. Other valid examples can show the “many to many” relationship.

[image: image10.png][anformationobjectclass»]
Classl

Folassz

[anformationobjectclass»]
Class2

Figure 5.2.8.2-1: Cardinality notation

The cardinality zero is not used to indicate the IOC’s so-called “transient state” characteristic. For example, it is not used to indicate that the instance is not yet created but it is in the process of being created. The cardinality zero will not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs. All IOCs defined are considered to have such inherent “transient state” characteristics.

The following table shows some valid examples of multiplicity.

Table 5.2.8.2-1: Multiplicity-string examples

	Multiplicity
	Explanation

	1
	Attribute has exactly one attribute value.

	5
	Attribute has exactly 5 attribute values.

	0..1
	Attribute has zero or one attribute value.

	0..*
	Attribute has zero or more attribute values.

	1..*
	Attribute has at least one attribute value.

	4..12
	Attribute has at least 4 but no more than 12 attribute values.

5.2.8.3
Name style
It has no name so there is no name style.

First change
5.2.9
Role

5.2.9.1
Description

It indicates navigation, from one class to another class, involved in an association relationship. A role is named. The direction of navigation is to the class attached to the end of the association relationship with (or near) the role name.

The use of role name in the graphical representation is optional for bidirectional and unidirectional association relationship notations (see Figure 5.2.2.2-1: Bidirectional association relationship notation and Figure 5.2.2.2-2: Unidirectional association relationship notation). Role name shall not be used in non-navigable association relationship notation (see Figure 5.2.2.2-3: Non-navigable association relationship notation).

A role at the navigable end of a relationship becomes (or is mapped into) an attribute (called role-attribute) in the source class of the relationship. Therefore, roles have the same behaviour (or properties) as attributes. See Table 5.2.1.1-1: Attribute properties.
To avoid clutter in UML diagram, the role names can be removed.
The role-attribute shall have all properties defined for attributes in subclause 5.2.1 Attribute and in addition the following property

Table 5.2.9.1-1: passedById property

	Property name
	Description
	Legal values

	passedById
	If True, the role-attribute (navigable association source end) contains a DN of the navigable association target end instance.

If False, the role-attribute contains (a copy of) the whole target end instance (e.g. X). If X has a role-attribute whose “passedById==False”, then the subject role-attribute contains (a copy of) X’s target end instance as well.

The above rule is applied repeatedly for all occurrences of “passedById==False”. This application can result in a collection of instances where no ordering can be implied and no instances are duplicated.

Use of “passedById==False” supports the efficient access of target end instances from a source end instance. The mechanism by which such access is achieved is operation model design specific (e.g. not related to resource model design).

	True (default), False

:

5.2.9.2
Example

This example shows that a Person (say instance John) is associated with a Company (say whose DN is “Company=XYZ”). We navigate the association by using the opposite association-end such that John’s Person.company would hold the DN, i.e. "Company=XYZ".

[image: image11.png][anformationobjectclass»]
Company

< Foompany

[anformationobjectclass»]
Person

Figure 5.2.9.2-1: Role notation

5.2.9.3
Name style

A role has a name. Use a noun for the name. The name style follows the attribute name style; see subclause 5.2.1.3.

First change
5.2.10.2
Example

The figure below shows a ServerObjectClass instance that has relation(s) to multiple instances of a class from the choice of ClientObjectCLass_Alternative1, ClientObjectClass_Alternative2 or ClientObjectCLass_Alternative3.
[image: image13.png][nformationObjectclass:
ServerObjectClass

+elientObjectClass * “FelientObjectClass * +elientObjectClass *

nformationObjectClass»
ClientobjectClass_Afternativel

nformationObjectClass» nformationObjectClass»
ClientobjectClass_Alternative2 ClientobjectClass_Alternative3

Figure 5.2.10.2-1: {xor} notation

5.2.10.3
Name style

It has no name so there is no name style.
First change
5.3.6
<<choice>>
5.3.6.1
Description

The «choice» stereotype represents one of a set of classes (when used as an information model element) or one of a set of data types (when used as an operation model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor} constraint (see 5.2.10).

5.3.6.2
Example
Sometimes the specific kind of class cannot be determined at model specification time. In order to support such scenario, the specification is done by listing all possible classes.

The following diagram lists 3 possible classes. It also shows a «choice » named SubstituteObjectClass. This scenario indicates that only one of the three related «InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass, Alternative3ObjectClass shall be realised.

The «choice» stereotype represents one of a set of classes when used as an information model element.
[image: image14.png]+alternativel 1

«choice»

substituteobjectClass

1 +alternative2

1 +alternatives

[anformationObjectclass»]
Alternativel ObjectClass

[anformationObjectclass»]
Alternative20bjectClass

fanformationObjectclass»]
Alternative3objectClass

Figure 5.3.6.2-1: Information model element example using «choice» notation
Sometimes the specific kind of data type cannot be determined at model specification time. In order to support such scenario, the specification is done by listing all possible data types.

The following diagram lists 2 possible data types. It also shows a «choice» named ProbableCause. This scenario indicates that only one of the two «dataType» named IntegerProbableCause, StringProbableCause shall be realised.

The «choice» stereotype represents one of a set of data types when used as an operations model element.

[image: image16.png]«choice»
Probablecause

“probableCausel 1 “probableCause3

<dataTyper “dataTyper
IntegerProbableCause StringProbableCause

probableCause :_Integer probableCause : String

Figure 5.3.6.2-2: Operations model element example using «choice» notation

5.3.6.3
Name style
For <<choice>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

First change
5.4.3
Predefined data types

5.4.3.1
Description

It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by this specification and not by the user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The latter is defined in 5.3.4 <<dataType>> and 5.3.5 <<enumeration>>.

The following table lists the UML data types selected for use as predefined data type.

Table 5.4.3.1-1: UML defined data types
	Name
	Description and reference

	Boolean
	See Boolean type of [7].

	Integer
	See Integer type of [7].

	String
	See PrintableString type of [7].

The following table lists data types that are defined by this repertoire.

Table 5.4.3.1-2: Non-UML defined data types

	Name
	Description and reference

	AttributeValuePair
	This data type defines an attribute name and the attribute’s value.

	BitString
	This data type is defined by Bit string of subclause 3 and subclause G.2.5 of [7].

	DateTime
	This data type is defined by GeneralizedTime of [7].

	DN
	This data type defines the DN (see Distinguished Name of [3]) of an object. It contains a sequence of one or more name components. The “initial sub-sequence” (note 1) of a DN is also a DN of an object.
Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” of this DN is composed of the 1st, 2nd and 3rd components.

	External
	This data type is defined by another organization.

	Real
	This data type is defined by Real type of [7]

5.4.3.2
Example

[image: image18.png][anformationobjectclass»]
Classl

identifier : DN
SourceTime : DateTime
measurementValue : Real
suspectflag : Boolean

Figure 5.4.3.2-1: Predefined data types usage

Note: Use of this is optional. Uses of other means, to specify Predefined data types, are allowed.

5.4.3.3
Name style

It shall use the UCC style.

First change
