Page 1

3GPP TSG-SA3 Meeting #90
S3-180226
Gothenburg (Sweden), 22 - 26 January 2018
	CR-Form-v11.2.1

	CHANGE REQUEST

	

	
	33.180
	CR
	0049
	rev
	-
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	[eMCSEC] Addition of indicators on the use of Security Gateways

	
	

	Source to WG:
	NCSC

	Source to TSG:
	S3

	
	

	Work item code:
	eMCSec
	
	Date:
	2017-01-15

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Use of an MC Security Gateway breaks the end-to-end media encryption properties of the MC System. Hence the use of the MC Security Gateway denotes a significant modification to the security of a communication and hence needs to be indicated to MC clients and the GMS.

	
	

	Summary of change:
	This contribution adds an indicator in two places to notify the use of a MC Security Gateway. A flag is added to the KMS Certificate and to the GMK’s key paratemers.

	
	

	Consequences if not approved:
	Both clients and the GMS would not be aware of the use of a MC Security Gateway.

	
	

	Clauses affected:
	5.7.2, 7.2.2, 7.3.3.3, D.3.2.2, D.5.3.1, E.6.9

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*********************Start of change 1****************************
5.7.2
Security procedures for GMK provisioning

This procedure uses a MIKEY payload to distribute a GMK from the GMS to the MC UEs within the group. The payload is transported as part of the 'Notify group configuration request' message defined in clause 10.1.2.7 of 3GPP TS 23.280 [36].

Figure 5.7.2-1 shows the security procedures for creating a security association for a group.

[image: image1.emf]MC UEGroup Management Server1. Notify group Configuration request(MIKEY payload)2. Notify group Configuration response0. Provisioning of identity-specific key material0. Provisioning of identity-specific key material

Figure 5.7.2-1: Security configuration for groups

A description of the procedures depicted in figure 5.7.2-1 follows. For clarity, figure 10.1.5.3-2 in clause 10.1.5.3 of 3GPP TS 23.280 [36] is referenced.

0)
Prior to beginning this procedure the MC client shall be provisioned with identity-specific key material by a MC KMS as described in clause 5.3. The GMS shall also be securely provisioned with identity-specific key material for an identity that is authorized to create groups.

1)
The GMS shall send a MIKEY payload to MC clients within the group within a 'Notify group configuration request' message. The message shall encapsulate a GMK for the group. The payload shall be encrypted to the user identity (MCX service user ID) associated to the MC client and shall be signed by the GMS. The message shall also provide the GUK-ID. Parameters associated with the GMK shall be encrypted using the GMK, and sent in the MIKEY payload together with the encapsulated GMK. This process is shown in Figure 5.2.4-1.

2)
On receipt of a MIKEY message, the MC client shall check the signature on the payload, verify that the GMS is authorized to create groups, extract the GMK, GUK-ID and GMK-ID and check that the GMK-ID is not a duplicate for an existing GMK. The MC client shall also extract the group identity, activation time and text from the encapsulated associated parameters in the payload using the GMK, and check that decryption is successful. This process is shown in Figure 5.2.4-2. Should any of these checks fail, an error shall be returned to the GMS. Upon successful receipt and processing, the MC UE shall store the GMK, GMK-ID and GUK-ID and respond to the GMS with a 'Notify group configuration response' message.

To revoke a security context, the group management server repeats the above steps with the Status field of the GMK parameters indicating that the GMK has been revoked.

It is possible that an MC user in the group may be represented by an MC Security Gateway (as defined in Annex XX), rather than using full end-to-end security. In this case, the user’s KMS Certificate will have the ‘IsSecurityGateway’ attribute set to ‘true’ (see clause D.3.2.2). Should any client in the group be represented by an MC Security Gateway, the GMS shall indicate to all users that the GMK is shared with an MC Security Gateway. This is achieved by setting the ‘Security Gateway’ bit in the ‘Status’ field of the GMK’s key parameters (see clause E.6.9).

Should an MC client receive a GMK with the ‘Security Gateway’ bit set, the initiating MC client shall warn the MC user that an MC Security Gateway is in use during the group’s coummications.
*********************Start of change 1****************************
7.2.2
Security procedures (on-network)

The following private communication security procedures provide a mechanism for establishing a security context as part of the Private Call Request sent from the initiating UE to the terminating UE.

3GPP TS 23.379 [2] describes manual and automatic commencement for private MCPTT communications in both a single MC system and across multiple MC systems, while 3GPP TS 23.281 [37] describes manual and automatic commencement for private MCVideo communications within a single MC system.

Securing of on-network private MCPTT or MCVideo communications is summarized in the following sub clauses and applies to the aforementioned MCPTT and MCVideo private call use cases.
The private call setup message used to establish these security procedures may be pre-generated to increase the efficiency of the communication. Additionally, the MC UE may attach a second SAKKE component which encrypts the PCK to the initiating user (in addition to the terminating user) for use in the ‘SAKKE-to-self’ procedure.
The security procedure for an on-network MCPTT or MCVideo private call within a single MC system is summarized in figure 7.2.2-1, The security procedure for securing an on-network MCPTT private call between multiple MC systems is summarized in figure 7.2.2-2. The intent of these on-network security procedures is to transfer a PCK and PCK-ID to the terminating UE in order to provide end-to-end security of the media.

[image: image2.emf]MC UE (initiating)MCX ServerPrimary DomainMedia (encrypted UE to UE using PCK)2. Further Session Setup SignallingGenerate PCKExtract PCKMC UE (terminating)1. Private Call Request (containing encapsulated PCK) 0. Registration0. Registration

Figure 7.2.2-1: Private call security procedure for on-network PCK distribution for single domain

The procedure in figure 7.2.2-1 is now described step-by-step.

0.
Prior to beginning this procedure it is assumed that the MC UEs have an authenticated MC user and that the MC UEs have been provisioned with key material associated with a user's MC service ID by a KMS as described in clause 5.3.

1.
The initiating MC UE generates the PCK and sends a private call request to the terminating MC UE. The message is sent to the primary MC server of the initiating UE where it is forwarded to the intended receipient UE. Within this message includes an SDP offer which contains a MIKEY-SAKKE I_MESSAGEs as defined in IETF RFC 6509 [11]. The I_MESSAGE encapsulates the PCK for the terminating MC user, encrypting the key to the UID of the terminating user (derived from the user's URI). The I_MESSAGE also contains an identifier for the PCK (PCK-ID). The I_MESSAGE is signed using (the key associated with) the initiating user's UID.

2.
Further session signalling occurs as defined in 3GPP TS 23.379 [2] for MCPTT and 3GPP TS 23.281 [39] for MCVideo.

[image: image3.emf]MC UE (initiating)MCX ServerPrimary Domain1. Private Call Request (containing encapsulated PCK) Partner DomainMedia (encrypted UE to UE using PCK)2. Further Session Setup SignallingGenerate PCKExtract PCKMC UE (terminating)MCX Server0. Registration0. Registration

Figure 7.2.2-2: Private call security procedure for on-network PCK distribution between multiple domains

The procedure in figure 7.2.2-2 is now described step-by-step.

0.
Prior to beginning this procedure it is assumed that the MC UEs have an authenticated MC user and that the MC UEs have been provisioned with key material associated with a user's MC service ID by a KMS as described in clause 5.3.

1.
The initiating MC UE generates the PCK and sends a private call request addressed to the terminating MC UE. The message is first routed to the primary MC server of the initiating UE. The primary MC server routes the private call request to the partner server (home of the intended receipient UE), which is then routed to the receipient UE. The private call request message includes an SDP offer which contains a MIKEY-SAKKE I_MESSAGE as defined in IETF RFC 6509 [11]. The I_MESSAGE encapsulates the PCK for the terminating MC user, encrypting the key to the UID of the terminating user (derived from the user's URI). The I_MESSAGE also contains an identifier for the PCK (PCK-ID). The I_MESSAGE is signed using (the key associated with) the initiating user's UID.
2.
Further session signalling occurs as defined in 3GPP TS 23.379 [2].
It is possible that the terminating MC client may be represented by an MC Security Gateway (as defined in Annex XX), rather than using full end-to-end security. In this case, the user’s KMS Certificate will have the ‘IsSecurityGateway’ attribute set to ‘true’ (see clause D.3.2.2). Should the terminating client be represented by an MC Security Gateway, the initiating MC client shall warn the MC user that an MC Security Gateway is in use during the private call.
With the PCK and PCK-ID shared between the initiating and terminating users, the media communicated between the UEs may be end-to-end protected using the PCK.

*********************Start of change 1****************************
7.3.3.3
Group regrouping security procedure (involving multiple MC domains)

The MCPTT group regroup security procedure (shown below in figure 7.3.3.3-1) involves multiple MC users from multiple MC domains and is an integrated component of the MCPTT group regrouping procedure described in clause 10.2.4.2 of 3GPP TS 23.280 [36].

[image: image4.emf]MCPTT server (Partner)MCPTT server(Primary)Group management client(Primary group members)15.Group regroup confirmation response1.Group regroup request Group management clientGroup management server 1Group management server 22.Authorization check based on group policy and check whether group1 is a temporary group4.Check whether group2 is a temporary group3.Group regroup request 5.Group regroup responseGroup management client(Partner group members)12.Group regroup notify9.Group regroup notify6.Create and store temporary group related information11.Notify the affiliated users14.Notify the affiliated users7.Group regroup notification8.Group regroup notification response10.Group regroup notify response13.Group regroup notify response

Figure 7.3.3.3-1: Group regroup security procedure (multiple MC domains)
Prior to beginning the procedure, the MC UEs, primary GMS and partner GMS are provisioned by a KMS as described in clause 5.3.

1-5:
These steps are as defined in clause 10.2.4.2 of 3GPP TS 23.280 [36].

6:
To create the security context for the temporary group, the primary GMS creates a new GMK and GMK-ID for the temporary group along with other group related information.

7,8:
The primary GMS notifies the partner GMS of the group regroup operation. The primary GMS includes a Group Key Transport payload following the procedures in clause 5.7, treating the partner GMS as another user within the group. Accordingly, the payload encrypts the new GMK to the identity of the partner GMS and is signed using the identity of the primary GMS. The GUK-ID is derived using the User Salt generated from the partner GMS's URI.
9,10:
These steps are as defined in clause 10.2.4.2 of 3GPP TS 23.280 [36].
11:
The partner GMS extracts the GMK and GMK-ID from the notification. The partner GMS then notifies the affiliated users within the partner MC domain. The partner GMS re-encrypts the GMK to the identity of the affiliated users in the partner system, generates new GUK-IDs for each user and signs using its identity (the identity of the partner GMS) following the procedure in clause 5.7.

12,13:
These steps are as defined in clause 10.2.4.2 of 3GPP TS 23.280 [36].
14:
The primary GMS notifies the affiliated users within its own MC domain. The primary GMS includes a Group Key Transport payload including a GMK and GUK-ID following the procedures in clause 5.7. The GMK is encrypted to the identity of the MC user and is signed using the identity of the primary GMS.
15:

This step is as defined in clause 10.2.4.2 of 3GPP TS 23.280 [36].

It is possible that a partner GMS may be represented by an MC Security Gateway (as defined in Annex XX), rather than using full end-to-end security. In this case, the partner GMS’s KMS Certificate will have the ‘IsSecurityGateway’ attribute set to ‘true’ (see clause D.3.2.2). Should a partner GMS be represented by an MC Security Gateway, the primary GMS shall indicate to all group users and partner GMS(s) that the GMK is shared with an MC Security Gateway. This is achieved by setting the ‘Security Gateway’ bit in the ‘Status’ field of the GMK’s key parameters (see clause E.6.9).
*********************Start of change 1****************************
D.3.2.2
Fields

The KMS Certificate shall be within a XML tag named "KmsCertificate". This type shall have the following subfields.

Table D.3.2.2-1: Contents of a KMS Certificate
	Name
	Description

	Version
	(Attribute) The version number of the certificate type ('1.2.0' or '1.1.0').

	Role
	(Attribute) This shall indicate whether the certificate is a "Root" or "External" certificate.

	CertUri
	(Optional) The URI of the Certificate (this object).

	KmsUri
	The URI of the KMS which issued the Certificate.

	Issuer
	(Optional) String describing the issuing entity.

	ValidFrom
	(Optional) Date from which the Certificate may be used.

	ValidTo
	(Optional) Date at which the Certificate expires.

	Revoked
	(Optional) A Boolean value defining whether a Certificate has been revoked.

	UserIDFormat
	Shall contain the value '2', indicating that the generation mechanism defined in clause F.2.1 shall be used.

	UserKeyPeriod
	The number of seconds that each user key issued by this KMS should be used (e.g. '2419200').

	UserKeyOffset
	The offset in seconds from 0h on 1st Jan 1900 that the segmentation of key periods starts (e.g. '0').

	PubEncKey
	The SAKKE Public Key, "Z_T", as defined in [10]. This is an OCTET STRING encoding of an elliptic curve point.

	PubAuthKey
	The ECCSI Public Key, "KPAK" as defined in [9]. This is an OCTET STRING encoding of an elliptic curve point.

	ParameterSet
	(Optional) The choice of parameter set used for SAKKE and ECCSI (e.g. '1').

	KmsDomainList
	(Optional) List of domains associated with the certificate.

	IsSecurityGateway
	(Optional Attribute) Is ‘true’ if the KMS Certificate corresponds to a pseudo-KMS within a MC Security Gateway. If present, the version number of the certificate shall be '1.2.0'.

*********************Start of change 1****************************
D.3.5.1
Base XML schema

This clause contains the base XML schema (without the security extension) for KMS responses. This will validate Version '1.1.0' or '1.2.0' certificates:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns = "TOBEDEFINED" targetNamespace = "TOBEDEFINED" elementFormDefault = "qualified" version = "1.0">

 <xsd:import namespace = "http://www.w3.org/2000/09/xmldsig#" schemaLocation = "xmldsig-core-schema.xsd"/>

 <xsd:element type = "KmsResponseType" name = "KmsResponse"/>

 <xsd:complexType name = "KmsResponseType">

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:anyURI" name = "UserUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:dateTime" name = "Time" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "KmsId" minOccurs = "0" maxOccurs = "1"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 <xsd:element type = "xsd:anyURI" name = "ClientReqUrl" maxOccurs = "1"/>

 <xsd:element name = "KmsMessage" maxOccurs = "1" minOccurs = "0">

 <xsd:complexType>

 <xsd:choice maxOccurs = "1" minOccurs = "0">

 <xsd:element type = "KmsInitType" name = "KmsInit"/>

 <xsd:element type = "KmsKeyProvType" name = "KmsKeyProv"/>

 <xsd:element type = "KmsCertCacheType" name = "KmsCertCache"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:choice>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element type = "ErrorType" name = "KmsError" minOccurs = "0" maxOccurs = "1"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string" fixed="1.0.0"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "ErrorType">

 <xsd:sequence>

 <xsd:element type = "xsd:integer" name = "ErrorCode" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "ErrorMsg" maxOccurs = "1"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KmsInitType">

 <xsd:sequence>

 <xsd:choice maxOccurs = "1">

 <xsd:element type = "SignedKmsCertificateType" name = "SignedKmsCertificate"/>

 <xsd:element type = "KmsCertificateType" name = "KmsCertificate"/>

 </xsd:choice>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KmsKeyProvType">

 <xsd:sequence>

 <xsd:element type = "KmsKeySetType" name = "KmsKeySet" minOccurs = "0" maxOccurs = "unbounded"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string" fixed="1.0.0"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KmsCertCacheType">

 <xsd:sequence>

 <xsd:choice maxOccurs = "unbounded" minOccurs = "0">

 <xsd:element type = "SignedKmsCertificateType" name = "SignedKmsCertificate"/>

 <xsd:element type = "KmsCertificateType" name = "KmsCertificate"/>

 </xsd:choice>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string" fixed="1.0.0"/>

 <xsd:attribute name = "CacheNum" type = "xsd:integer"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:element name = "SignedKmsCertificate" type = "SignedKmsCertificateType"/>

 <xsd:complexType name = "SignedKmsCertificateType">

 <xsd:sequence>

 <xsd:element name = "KmsCertificate" type = "KmsCertificateType"/>

 <xsd:element ref = "ds:Signature" minOccurs = "0"/>

 </xsd:sequence>

<xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:element name = "KmsCertificate" type = "KmsCertificateType"/>

 <xsd:complexType name = "KmsCertificateType">

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:anyURI" name = "CertUri" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "Issuer" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:dateTime" name = "ValidFrom" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:dateTime" name = "ValidTo" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:boolean" name = "Revoked" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "UserIdFormat" maxOccurs = "1"/>

 <xsd:element type = "xsd:integer" name = "UserKeyPeriod" maxOccurs = "1"/>

 <xsd:element type = "xsd:integer" name = "UserKeyOffset" maxOccurs = "1"/>

 <xsd:element type = "xsd:hexBinary" name = "PubEncKey" maxOccurs = "1"/>

 <xsd:element type = "xsd:hexBinary" name = "PubAuthKey" maxOccurs = "1"/>

 <xsd:element type = "xsd:integer" name = "ParameterSet" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element name = "KmsDomainList" maxOccurs = "1" minOccurs = "0">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsDomain" maxOccurs = "unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>
 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:attribute name = "Role" type = "RoleType"/>

<xsd:attribute name = "IsSecurityGateway" type = "xsd:boolean" use="optional"/>
 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:simpleType name = "RoleType">

 <xsd:restriction base = "xsd:string">

 <xsd:enumeration value = "Root"/>

 <xsd:enumeration value = "External"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:element name = "KmsKeySet" type = "KmsKeySetType"/>

 <xsd:complexType name = "KmsKeySetType">

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:anyURI" name = "CertUri" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "Issuer" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:anyURI" name = "UserUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "UserID" maxOccurs = "1"/>

 <xsd:element type = "xsd:dateTime" name = "ValidFrom" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:dateTime" name = "ValidTo" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:integer" name = "KeyPeriodNo" maxOccurs = "1"/>

 <xsd:element type = "xsd:boolean" name = "Revoked" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "KeyContentType" name = "UserDecryptKey" maxOccurs = "1"/>

 <xsd:element type = "KeyContentType" name = "UserSigningKeySSK" maxOccurs = "1"/>

 <xsd:element type = "KeyContentType" name = "UserPubTokenPVT" maxOccurs = "1"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string" fixed = "1.1.0"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KeyContentType">

 <xsd:simpleContent>

 <xsd:extension base="xsd:hexBinary">

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

*********************Start of change 1****************************
E.6.9
Status

The 'Status' element shall determine the current status of the key. It shall be 4 octets in length. The following values are defined in Table E.6.9-1.

Table E.6.9-1: Key status bit field
	Bit (LSB first)
	Bit purpose
	‘0’ meaning
	‘1’ meaning

	0
	Key Revokation
	Key is revoked (may not be used)
	Not revoked.

	1
	Security Gateway
	Key has not been shared with a Security Gateway
	Key shared with a Security Gateway

Undefined bits shall be ignored.

_1576992649.vsd
text

MC UE
(initiating)

MCX Server

Primary Domain

Media (encrypted UE to UE using PCK)

2. Further Session Setup Signalling

Generate PCK

Extract PCK

MC UE (terminating)

1. Private Call Request
(containing encapsulated PCK)

0. Registration

0. Registration

_1576992650.vsd
text

MC UE
(initiating)

MCX Server

Primary Domain

1. Private Call Request
(containing encapsulated PCK)

Partner Domain

Media (encrypted UE to UE using PCK)

2. Further Session Setup Signalling

Generate PCK

Extract PCK

MC UE (terminating)

MCX Server

0. Registration

0. Registration

MC UE
Group Management Server

1. Notify group Configuration request
(MIKEY payload)
2. Notify group Configuration response
0. Provisioning of identity-specific key material
0. Provisioning of identity-specific key material

_1576992150.vsd
MCPTT server (Partner)

MCPTT server
(Primary)

Group management client
(Primary group members)

15.Group regroup confirmation response

