Page 1

3GPP TSG-SA4 Meeting #85
S4-151172
Kobe, Japan, 24-28 August, 2015

revision of S4-151124
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	26.346
	CR
	0497
	rev
	2
	Current version:
	13.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Partial File Handling

	
	

	Source to WG:
	Qualcomm Incorporated, Expway

	Source to TSG:
	S4

	
	

	Work item code:
	eDASH
	
	Date:
	2015-08-27

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	In certain circumstances files in MBMS are only partially received, This is for example the case when DASH media segments are distributed over MBMS when the FEC recovery fails and file repair is not applied due to real-time constraints. There may be other examples or circumstances as well. A well defined format to deliver partial files to user agents enables an interoperable implementation to provide improved user experience.

	
	

	Summary of change:
	The following changes are applied:
· FDT signaling is provided in order to signal byte positions at which a file can be accessed,

· Details of partial file handling are defined including the conditions when such files can be provided, a capability signaling by the application as well as the message format when HTTP is used as transport protocols

· Examples are provided to the usage in the context for DASH-over-MBMS

	
	

	Consequences if not approved:
	Relevant information available in the MBMS client may not be provided to the application, e.g. the DASH client, which may impact user experience.

	
	

	Clauses affected:
	3.1, 7.2.9, 7.2.10.1, 7.2.10.2, 7.9 (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

FIRST CHANGE:
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply:
Application content component: An individual content component of an MBMS User Service, such as a video or audio media stream, or a non-real-time file, delivered by an MBMS transport session, and is available to and can be used by the MBMS application.
Broadcast session: See 3GPP TS 22.146 [2].

Forward Error Correction (FEC): in the context of MBMS, a FEC mechanism is used at the application layer to allow MBMS receivers to recover lost SDUs
FLUTE channel: equivalent to an ALC/LCT channel
An ALC/LCT channel is defined by the combination of a sender and an address associated with the channel by the sender (RFC 3926 [9]).

Frame-packed stereoscopic 3D video: a video consisting of two views in which both views were packed into a single stream before compression.
Multicast joining: See 3GPP TS 22.146 [2].
Multicast session: See 3GPP TS 22.146 [2].
Multimedia Broadcast/Multicast Service (MBMS): See 3GPP TS 22.146 [2].
MBMS application: The application which resides in or interfaces with the UE, and which defines an end-user service by using one or more application content components of an MBMS User Service.
MBMS over a Single Frequency Network: See 3GPP TS 25.346 [5]
MBMS User Service: The transport-level service, comprising one or more application content components, delivered by the MBMS bearer service across one or more Broadcast and/or Multicast sessions. The application content components of the MBMS User Service, in part or in whole, are provided to the MBMS application.

See 3GPP TS 22.246 [3].

MBMS user service discovery/announcement: user service discovery refers to methods for the UE to obtain the list of available MBMS user services along with information on the user service and the user service announcement refers to methods for the MBMS service provider to make the list of available MBMS user services along with information on the user service available to the UE
MBMS user service initiation: UE mechanisms to setup the reception of MBMS user service data
The initiation procedure takes place after the discovery of the MBMS user service
MBMS delivery method: mechanism used by a MBMS user service to deliver content
An MBMS delivery method uses MBMS bearers in delivering content and may make use of associated procedures.

MBMS download delivery method: delivery of discrete objects (e.g. files) by means of a MBMS download session
MBMS streaming delivery method: delivery of continuous media (e.g. real-time video) by means of a MBMS streaming session
MBMS download session: time, protocols and protocol state (i.e. parameters) which define sender and receiver configuration for the download of content files
MBMS streaming session: time, protocols and protocol state (i.e. parameters) which define sender and receiver configuration for the streaming of content

Partial-File-Accept Request: HTTP GET request that includes a partial-accept header in the HTTP request header
RTP Session: The RTP and RTCP traffic sent to a specific IP multicast address and port pair (one port each for RTP and RTCP) during the time period the session is specified to exist. An RTP session is used to transport a single media type (e.g. audio, video, or text). An RTP session may contain several different streams of RTP packets using different SSRCs.

Stereoscopic 3D video: a video bitstream consisting of two views.

Unicast Bearer Service: Synonymously used as the term “UMTS Bearer Services with interactive and/or streaming traffic classes”.
SECOND CHANGE:
7.2.9
Signalling of Parameters with FDT Instances

The extended FLUTE FDT instance schema defined in clause 7.2.10.1 (based on the one in RFC 3926 [9]) shall be used. In addition, the following applies to both the session level information and all files of a FLUTE session.

The inclusion of these FDT Instance data elements is mandatory according to the FLUTE specification:
· Content-Location (URI of a file).
· TOI (Transport Object Identifier of a file instance).
· Expires (expiry data for the FDT Instance).

For MBMS operation, the UE shall not use a received FDT Instance to interpret packets received beyond the expiration time of the FDT Instance.
NOTE 1: This requirement is strengthened for MBMS compared to RFC 3926 [9], where it is mentioned that “the receiver SHOULD NOT use a received FDT Instance to interpret packets received beyond the expiration time of the FDT Instance.”

NOTE 2: It is expected that a TOI value may be reused after the highest expiry time of the FDT instances containing that TOI value.

NOTE 3: Since the expiry time corresponds to the end of transmission, A UE can either clean up its memory in case not sufficient symbols are received, or perform file repair if enabled in the system, or make partial file delivery available to the application (e.g. see clause 7.2.3 in TR 26.946 [110]).

Additionally, the inclusion of these FDT Instance data elements is mandatory. Note the following elements are optional in the FDT schema to stay aligned with the IETF RFC defined schema:

· Content-Length (source file length in bytes).
· Content-Type (content MIME type).
· FEC Encoding ID.

Other FEC Object Transmission Information specified by the FEC scheme in use:

NOTE: The FEC Object Transmission Information elements used are dependent on the FEC scheme, as indicated by the FEC Encoding ID.
· FEC-OTI-Maximum-Source-Block-Length.
· FEC-OTI-Encoding-Symbol-Length.
· FEC-OTI-Max-Number-of-Encoding-Symbols.

· FEC-OTI-Scheme-Specific-Info.

NOTE 1:
RFC 3926 [9] describes which part or parts of an FDT Instance may be used to provide these data elements.

These optional FDT Instance data elements may or may not be included for FLUTE in MBMS:

· Complete (the signalling that an FDT Instance provides a complete, and subsequently unmodifiable, set of file parameters for a FLUTE session may or may not be performed according to this method).

· Content-Encoding.
· Content-MD5: represents a digest of the transport object. The file server should indicate the MD5 hash value whenever multiple versions of the file are anticipated for the download session.

· IndependentUnitPositions: represents a list of byte position in the file, at which the handler assigned to the Content-Type for the file may access the file.
NOTE 2:
The values for each of the above data elements are calculated or discovered by the FLUTE sender.
The FEC-OTI-Scheme-Specific-Info FDT Instance data element contains information specific to the FEC scheme indicated by the FEC Encoding ID encoded using base64.
THIRD CHANGE:
7.2.10.1
Extended FLUTE FDT Schema

The below XML Schema shall be use for the FDT Instance.

This schema extends the schema defined in clause 7.2.10.3 by importing the 3GPP extensions specified in clauses 7.2.10.2, 7.2.10.5, 7.2.14 and 7.2.15. The various schema file names are as follows:

· Schema in clause 7.2.10.1: FLUTE-FDT-3GPP-Main.xsd
· Schema in clause 7.2.10.2: FLUTE-FDT-3GPP-2005-Extensions.xsd
· Schema in clause 7.2.10.5: FLUTE-FDT-3GPP-2007-Extensions.xsd

· Schema in clause 7.2.14:
FLUTE-FDT-3GPP-2008-Extensions.xsd

· Schema in clause 7.2.15:
FLUTE-FDT-3GPP-2009-Extensions.xsd
· Schema in clause 7.2.10.2:
FLUTE-FDT-3GPP-2012-Extensions.xsd
· Schema in clause 7.2.10.2:
FLUTE-FDT-3GPP-2015-Extensions.xsd
· Schema in clause J.2:

schema-version.xsd
In this version of the specification the network shall set the schemaVersion element, defined as a child of FDT-Instance element, to 3.

The schema version attribute (part of the schema instruction) shall be included in the UE schema and the network schema.

Note:
The value of the schemaVersion element and version attribute is intended to be increased by 1 in every future releases where new element(s) or attribute(s) are added.

When a UE receives an instantiation of an FDT compliant to this schema, it shall determine the schema version required to parse the instantiation as follows:

· If the UE supports one or more versions of the FDT schema with the schema version attribute, then the UE shall use the schema that has the highest schema version attribute value that is equal to or less than the value in the received schemaVersion element;

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:IETF:metadata:2005:FLUTE:FDT"

xmlns:fl="urn:IETF:metadata:2005:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:mbms2005="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"

xmlns:mbms2007="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"

xmlns:mbms2008="urn:3GPP:metadata:2008:MBMS:FLUTE:FDT_ext"

xmlns:mbms2009="urn:3GPP:metadata:2009:MBMS:FLUTE:FDT_ext"

xmlns:mbms2012="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"
 xmlns:mbms2015="urn:3GPP:metadata:2015:MBMS:FLUTE:FDT"

xmlns:sv="urn:3gpp:metadata:2009:MBMS:schemaVersion"

targetNamespace="urn:IETF:metadata:2005:FLUTE:FDT"

elementFormDefault="qualified"

version="3">

<xs:import namespace="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"

schemaLocation="FLUTE-FDT-3GPP-2005-Extensions.xsd"/>

<xs:import namespace="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"

schemaLocation="FLUTE-FDT-3GPP-2007-Extensions.xsd"/>

<xs:import namespace="urn:3GPP:metadata:2008:MBMS:FLUTE:FDT_ext"

schemaLocation="FLUTE-FDT-3GPP-2008-Extensions.xsd"/>

<xs:import namespace="urn:3GPP:metadata:2009:MBMS:FLUTE:FDT_ext"

schemaLocation="FLUTE-FDT-3GPP-2009-Extensions.xsd"/>

<xs:import namespace="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

schemaLocation="FLUTE-FDT-3GPP-2012-Extensions.xsd"/>

<xs:import namespace="urn:3GPP:metadata:2015:MBMS:FLUTE:FDT"

schemaLocation="FLUTE-FDT-3GPP-2015-Extensions.xsd"/>

<xs:import namespace="urn:3gpp:metadata:2009:MBMS:schemaVersion"

schemaLocation="schema-version.xsd"/>

<xs:element name="FDT-Instance" type="FDT-InstanceType"/>

<xs:complexType name="FDT-InstanceType">

<xs:sequence>

<xs:element name="File" type="FileType" maxOccurs="unbounded"/>

<xs:element ref="sv:schemaVersion"/>

<xs:element ref="mbms2012:Base-URL-1" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="mbms2012:Base-URL-2" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="sv:delimiter"/>

<xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Group" type="mbms2005:groupIdType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="MBMS-Session-Identity-Expiry" type="mbms2005:MBMS-Session-Identity-Expiry-Type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Expires" type="xs:string" use="required"/>

<xs:attribute name="Complete" type="xs:boolean" use="optional"/>

<xs:attribute name="Content-Type" type="xs:string" use="optional"/>

<xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>

<xs:attribute ref="mbms2008:FullFDT" use="optional" default="false"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>

<xs:complexType name="FileType">

<xs:sequence>

<xs:element ref="mbms2007:Cache-Control" minOccurs="0"/>

<xs:element ref="sv:delimiter"/>

<xs:element ref="mbms2012:Alternate-Content-Location-1" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="mbms2012:Alternate-Content-Location-2" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="sv:delimiter"/>

<xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Group" type="mbms2005:groupIdType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="MBMS-Session-Identity" type="mbms2005:MBMS-Session-Identity-Type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Content-Location" type="xs:anyURI" use="required"/>

<xs:attribute name="TOI" type="xs:positiveInteger" use="required"/>

<xs:attribute name="Content-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="Transfer-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="Content-Type" type="xs:string" use="optional"/>

<xs:attribute name="Content-Encoding" type="xs:string" use="optional"/>

<xs:attribute name="Content-MD5" type="xs:base64Binary" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Encoding-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-FEC-Instance-ID" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Maximum-Source-Block-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Encoding-Symbol-Length" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Max-Number-of-Encoding-Symbols" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="FEC-OTI-Scheme-Specific-Info" type="xs:base64Binary" use="optional"/>

<xs:attribute ref="mbms2009:Decryption-KEY-URI" use="optional"/>

<xs:attribute ref="mbms2012:FEC-Redundancy-Level" use="optional"/>

<xs:attribute ref="mbms2015:IndependentUnitPositions" use="optional"/>

<xs:anyAttribute processContents="skip"/>

</xs:complexType>
</xs:schema>

FOURTH CHANGE:
7.2.10.2
3GPP FDT Extension Type Schema

The extension of the IETF FLUTE FDT schema is done using the following schema definition:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:3GPP:metadata:2005:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:complexType name="MBMS-Session-Identity-Expiry-Type">

<xs:simpleContent>

<xs:extension base="MBMS-Session-Identity-Type">

<xs:attribute name="value" type="xs:unsignedInt" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="MBMS-Session-Identity-Type">

<xs:restriction base="xs:unsignedByte"/>

</xs:simpleType>

<xs:simpleType name="groupIdType">

<xs:restriction base="xs:string"></xs:restriction>

</xs:simpleType>

</xs:schema>
The Release 11 extension of the FLUTE FDT schema is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

targetNamespace="urn:3GPP:metadata:2012:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:element name="Alternate-Content-Location-1" type="Alternative-Content-LocationType"/>

<xs:element name="Alternate-Content-Location-2" type="Alternative-Content-LocationType"/>

<xs:complexType name="Alternative-Content-LocationType">

<xs:sequence>

<xs:element name="Alternate-Content-Location" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="Availability-Time" type="xs:dateTime"/>

</xs:complexType>

<xs:element name="Base-URL-1" type="xs:anyURI"/>

<xs:element name="Base-URL-2" type="xs:anyURI"/>

 <xs:attribute name="FEC-Redundancy-Level" type="xs:unsignedInt"/>
</xs:schema>
The Release 13 extension of the FLUTE FDT schema is as follows:
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2015:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:3GPP:metadata:2015:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:attribute name=" IndependentUnitPositions" type="IndependentUnitPositionsType"/>

<xs:simpleType name="IndependentUnitPositionsType">

<xs:list itemType="xs:unsignedLong"/>

</xs:simpleType>
</xs:schema>
FIFTH CHANGE:
7.9
Partial File handling

7.9.1
General
Files may be lost entirely or partially during the transmission and the MBMS Client may not be able to recover the lost files. This clause provides recommended procedures for handling partial files in the MBMS client.

A partial file is defined as follows:

· an FDT Instance is received that contains a File entry with a specific TOI.

· the object associated to the TOI was not recovered by any recovery procedure (FEC, file repair, etc.). The MBMS client determines that a file will not be recovered. A file is not recovered if the starting time of the ADPD as defined in 9.3.2 is reached for that file and if present, the file repair for that file has not succeeded,
The partial file is the collection of all FDT Instance data that is assigned to the file, i.e.

· Content-Location (URI of a file).
· Content-Length (source file length in bytes)
· Content-Type (content MIME type)
as well as all received bytes including their position in the original file. In addition, the mbms2015:IndependentUnitPositions attribute may be present.

If the application supports the handling of partial files, then the MBMS client should provide the partial file to the application including the position of all received bytes. The partial file handling capability information from the application to the MBMS client as well as the handing of the partial file data is generally out of scope of this specification.

However, if the application communicates with the MBMS client using HTTP methods then

· the application may signal the capability to handle partial files for using a partial-file-accept request as defined in clause 7.9.2.1,

· the MBMS client should respond. If it responds it shall use the HTTP Request Response format as defined in clause 7.9.2.2 and shall include all received bytes in the response.

· appropriate examples in the context of DASH over MBMS is provided in clause 7.9.2.3.

Independent units are defined in clause 7.9.3. The MBMS client may also support handling of independent units. If an MBMS client supports handling of independent units, it shall also support partial file handling.

7.9.2
Partial File Handling with HTTP GET Method
7.9.2.1
Partial-File-Accept Request

An application using HTTP GET requests to retrieve files may include in the GET request, the ‘Accept’ request header as defined in RFC 7231 [4], along with a new 3GPP-defined media type ‘application/3gpp-partial’.
By providing this header and issueing such a partial-file-accept request, the application signals that is capable to receive partial file responses as defined in clause 7.9.2.2.

An example of the use of such Accept header is:

Accept: */*, application/3gpp-partial
In this example, the application indicates that it will accept all media types in the response, as well as the specific “incomplete” type designated by application/3gpp-partial.
7.9.2.2

HTTP Request Response Format for Partial Files
If the MBMS client receives a regular HTTP GET request that includes an the ‘Accept’ request along with media type ‘application/3gpp-partial’ ,i.e. a partial-file-accept request, and the MBMS client has received a partial file with at least one byte, then the MBMS client may respond with a partial file response defined as follows:

· The response code shall be set to 200 OK

· The Content-Type header shall be set to application/3gpp-partial.
· The message body is a multipart message body shall be exactly the same format as the multipart/byteranges media type as described in RFC 7233 [5], Annex A. The multipart/byteranges media type includes one or more body parts, each with its own Content-Type and Content-Range fields as the means to convey the byte range(s) of the partial file being returned. Each Content-Type header shall be set to the value of the Content-Type provided in the FDT Instance for this file. An extension header may be added 3gpp-access-position providing a byte position at which the handler of assigned to the Content-Type of the file may access the file. The value may be created from the mbms2015: IndependentUnitPositions, if present.
· A cache directive should be included in the response to prevent any intermediate proxies from storing an incomplete file and serving it to another application. Example for such cache directive are "Cache-Control: max-age=0" or "Cache-Control: no-cache"
If the MBMS client receives a partial-file-accept request, and the MBMS client has received a partial file with no bytes (i.e. only the FDT Instance describing the file metadata is received), then the MBMS client may respond with a partial file response defined as follows:

· The response code shall be set to 416 Requested Range Not Satisfiable
· The Content-Type header shall be set to the value of the Content-Type provided in the FDT Instance for this file.

· The Content-Range shall be set to bytes */Content-Length with Content-Length the value of the attribute Content-Length provided in the FDT Instance for this file.
7.9.2.3
Example Client and Server Implementation for DASH-over-MBMS

As an example, assume the Media Segment of interest is identified by the URL: “http://www.example.com/Period-2012-08-04T08-45-00/rep-xyz12345/seg-777.3gp”. In addition, the Client is willing to receive the incomplete portion of the Segment (777) available at the Server when the request is received. The DASH Client sends the partial-accept request as follows:
GET
/Period-2015-08-04T08-45-00/rep-xyz12345/seg-777.3gp
HTTP/1.1

Host: www.example.com

…

Accept: */*, application/3gpp-partial

Assume that the server receives the above GET request for Segment 777, and it has the following sets of byte ranges of the requested Segment of size 256000 bytes at the time it receives the request: 0-19999, 50000-85000, 105500-199888, and 201515-229566. Due to the presence of the specific Accept header in the request, the server will return the partial Segment via the 200 response, by indicating the same content type for the message body as indicated in the request (i.e., application/3gpp-partial), but whereby the message body is constructed identically to the multipart/byteranges format. In addition, the response header Cache-Control: no-cache may be included in the response to prevent downstream caching of the message. The server’s response in this case is shown below:
HTTP/1.1 200 OK

Date: Tue, 04 Aug 2015 08:45:05 GMT

…
Content-Length: 172441
Content-Type: application/3gpp-partial; boundary=SEPARATION_STRING

Cache-Control: no-cache

--SEPARATION_STRING

Content-Type: video.3gpp; codecs=avc1.64001E, mp4a.40.2

Content-Range: bytes 0-19999

...<the first range>...

-- SEPARATION_STRING

Content-type: video.3gpp; codecs=avc1.64001E, mp4a.40.2
Content-range: bytes 50000-79999

...<the second range>…

-- SEPARATION_STRING

Content-type: video.3gpp; codecs=avc1.64001E, mp4a.40.2
Content-range: bytes 105500-199888

...<the third range>…

-- SEPARATION_STRING

Content-type: video.3gpp; codecs=avc1.64001E, mp4a.40.2
Content-range: bytes 201515-229566

...<the fourth range>…

-- SEPARATION_STRING

As an extension to the example, assume that the first byte range is lost as well and FDT Instance contains an mbms2015:IndependentUnitPositions attribute with value "0 60000 80000 110000":

The server’s response in this case is shown below:
HTTP/1.1 200 OK

Date: Tue, 04 Aug 2015 08:45:05 GMT

…
Content-Length: 172441
Content-Type: application/3gpp-partial; boundary=SEPARATION_STRING

Cache-Control: no-cache

-- SEPARATION_STRING

Content-type: video.3gpp; codecs=avc1.64001E, mp4a.40.2
Content-range: bytes 55000-79999

3gpp-access-position: 60000

...<the second range>…

-- SEPARATION_STRING

Content-type: video.3gpp; codecs=avc1.64001E, mp4a.40.2
Content-range: bytes 105500-199888

3gpp-access-position: 110000

...<the third range>…

-- SEPARATION_STRING

Content-type: video.3gpp; codecs=avc1.64001E, mp4a.40.2
Content-range: bytes 201515-229566

...<the fourth range>…

-- SEPARATION_STRING

7.9.3
Signaling Independent Units

7.9.3.1
Introduction

Independent Units may be signalled in the File entry of an FDT Instance using the attribute mbms2015: IndependentUnitPositions. The FDT Instance signaling is defined in clause 7.9.3.2.

MBMS clients that support partial file handling may also support the handling of independent units. The details of handling independent units are provided in clause 7.9.2.

7.9.3.2
FDT Instance Signaling

Independent units represent a non-empty list of byte locations, each of which is the location of the first byte of an independent unit.
An independent unit is the chunk of bytes between 2 consecutive entries in the IndependentUnitPositions list, except for the last independent unit which ranges from the last entry in the list to the end of the file.

The position of an independent Unit is the byte position in the file, at which the handler assigned to the Content-Type for the file may access the file.
If independent units are signaled in the FDT Instance, the following restrictrions apply:
· The attribute mbms2015: IndependentUnitPositions shall not be used in combination with the use of the Content-Encoding.
· The generation of the IndependentUnitPositions values is out of the scope this specification.
