Page 1

3GPP TSG-SA5 (Telecom Management)
S5-093724
Meeting SA5#68, 9- 13 November, Shanghai, China
revision of S5-09xyzw
	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	32.603
	CR
	0019
	(

rev
	-
	(

Current version:
	8.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Use the inherited ManagedGenericIRP methods

	
	

	Source to WG:
(

	Ericsson

	Source to TSG:
(

	SA5

	
	

	Work item code:
(

	OAM9
	
	Date: (

	13/11/2009

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-9

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	This SS uses its own management methods and has not adopted the use of the later defined generic management methods.

	
	

	Summary of change:
(

	Remove its own defined methods and reuse the ones defined in ManagedGenericIRP

	
	

	Consequences if
(

not approved:
	It defines its own methods and does not use the commonly defined methods in ManagedGenericIRP that leads to functionalities duplication in implementation.

	
	

	Clauses affected:
(

	6.2, Annex A

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

	1st Modified Section

6
Mapping

6.1
General mappings

The IS parameter name managedObjectInstance is mapped into DN.

Attributes modelling associations as defined in the NRM (here also called "reference attributes") are in this SS mapped to attributes. The names of the reference attributes in the NRM are mapped to the corresponding attribute names in the MOC. When the cardinality for an association is 0..1 or 1..1 the datatype for the reference attribute is defined as an MOReference. The value of an MO reference contains the distinguished name of the associated MO. When the cardinality for an association allows more than one referred MO, the reference attribute will be of type MOReferenceSet, which contains a sequence of MO references.

If a reference attribute is changed, an AttributeValueChange notification (see TS 32.663 [11]) is emitted.

6.2
Operation mapping

The Basic CM IRP: IS (see 3GPP TS 32.602 [4]) defines semantics of operation visible across the Basic Configuration Management IRP. Table 1 indicates mapping of these operations to their equivalents defined in this SS.

Table 1: Mapping from IS Operation to SS equivalents

	IS Operation

(3GPP TS 32.602 [4])
	SS Method
	Qualifier

	getMoAttributes
	BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basic_cm_informations
	M

	getContainment
	BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basic_cm_informations
	O

	
	
	

	cancelOperation
	BasicCmInformationIterator::destroy
	O

	createMo
	BasicCmIrpOperations::create_managed_object
	O

	deleteMo
	BasicCmIrpOperations::delete_managed_objects

DeleteResultIterator::next_basic_cm_informations
DeleteResultIterator::next_delete_errors
	O

	setMoAttributes
	BasicCmIrpOperations::modify_managed_objects

ModifyResultIterator::next_basic_cm_informations
ModifyResultIterator::next_modification_errors
	O

	
	
	

	
	
	

	

6.3
Operation parameter mapping

The Basic CM IRP: IS (see 3GPP TS 32.602 [4]) defines semantics of parameters carried in operations across the Basic Configuration Management IRP. Tables 2 through 8 indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMoAttributes when called with ResultContents set to NAMES_AND_ATTRIBUTES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 2: Mapping from IS getMoAttributes parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	invokeIdentifier
	- (No equivalence)
	-

	invokeIdentifierOut
	Return value of type BasicCmInformationIterator
	M

	baseObjectInstance
	GenericIRPManagementConstDefs::DN base_object
	M

	scope
	SearchControl search_control (SearchControl.type and SearchControl.level)
	M

	filter
	SearchControl search_control (SearchControl.filter)
	M

	attributeListIn
	AttributeNameSet requested_attributes
	M

	managedObjectClass
managedObjectInstance
attributeListOut
	Return value of type BasicCmInformationIterator - parameter out ResultSet fetched_elements of method next_basic_cm_informations
	M

	status
	Exceptions:

FindManagedObjects,
GenericIRPManagementSystem::InvalidParameter,
UndefinedMOException,
IllegalDNFormatException,
UndefinedScopeException,
IllegalScopeTypeException,
IllegalScopeLevelException,
IllegalFilterFormatException,
FilterComplexityLimit
	M

The SS operation find_managed_objects is equivalent to the IS operation getContainment when called with ResultContents set to NAMES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 3: Mapping from IS getContainment parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	invokeIdentifier
	- (No equivalence)
	-

	invokeIdentifierOut
	Return value of type BasicCmInformationIterator
	M

	baseObjectInstance
	GenericIRPManagementConstDefs::DN base_object
	M

	scope
	SearchControl search_control (SearchControl.type and SearchControl.level)
	O

	Not specified in IS
	SearchControl search_control (SearchControl.filter)
	M

	containment
	Return value of type BasicCmInformationIterator - parameter out ResultSet fetched_elements of method next_basic_cm_informations
	M

	status
	Exceptions:

FindManagedObjects,
GenericIRPManagementSystem::OperationNotSupported,

GenericIRPManagementSystem::ParameterNotSupported,
GenericIRPManagementSystem::InvalidParameter,
GenericIRPManagementSystem::ValueNotSupported,
UndefinedMOException,
IllegalDNFormatException,
UndefinedScopeException,
IllegalScopeTypeException,
IllegalScopeLevelException,
IllegalFilterFormatException,
FilterComplexityLimit
	M

Table 4: Void
	IS Operation parameter
	SS Method parameter
	Qualifier

	
	
	

	
	

	

Table 5: Mapping from IS cancelOperation parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	invokeIdentifier
	- (Not applicable, the BasicCmInformationIterator instance identifies the ongoing operation)
	M

	status
	Exceptions:

GenericIRPManagementSystem::OperationNotSupported,

DestroyException
	M

Table 6: Mapping from IS createMo parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	managedObjectClass
managedObjectInstance
	GenericIRPManagementConstDefs::DN object_name
	M

	referenceObjectInstance
	GenericIRPManagementConstDefs::DN reference_object
	O

	attributeListIn
attributeListOut
	GenericIRPManagementConstDefs::MoAttributeSet attributes
	M

	status
	AttributeErrorSeq attribute_errors

Exceptions:

CreateManagedObject,
GenericIRPManagementSystem::OperationNotSupported,
GenericIRPManagementSystem::ParameterNotSupported,
GenericIRPManagementSystem::InvalidParameter,
UndefinedMOException,
IllegalDNFormatException,
DuplicateMO,
CreateNotAllowed,
ObjectClassMismatch,

NoSuchObjectClass,

ParentObjectDoesNotExist
	M

Table 7: Mapping from IS deleteMo parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	baseObjectInstance
	GenericIRPManagementConstDefs::DN base_object
	M

	scope
	SearchControl search_control (SearchControl.type and SearchControl.level)
	M

	filter
	SearchControl search_control (SearchControl.filter)
	M

	deletionList
	Return value of type DeleteResultIterator - parameter out ResultSet fetched_elements of method next_basic_cm_informations
	M

	status
	Return value of type DeleteResultIterator - parameter out DeleteErrorSeq fetched_delete_errors of method next_delete_errors

Exceptions:

DeleteManagedObjects,
GenericIRPManagementSystem::OperationNotSupported,
GenericIRPManagementSystem::InvalidParameter,
UndefinedMoException,
IllegalDNFormatException,
UndefinedScopeException,
IllegalScopeTypeException,
IllegalScopeLevelException,
IllegalFilterFormatException,
FilterComplexityLimit
	M

Table 8: Mapping from IS setMoAttributes parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	baseObjectInstance
	GenericIRPManagementConstDefs::DN base_object
	M

	scope
	SearchControl search_control (SearchControl.type and SearchControl.level)
	M

	filter
	SearchControl search_control (SearchControl.filter)
	M

	modificationList
	AttributeModificationSet modifications
	M

	modificationListOut
	Return value of type ModifyResultIterator - parameter out ResultSet fetched_elements of method next_basic_cm_informations
	M

	status
	Return value of type ModifyResultIterator - parameter out ModifyAttributeErrorsSeq fetched_modify_errors of method next_modify_errors
Exceptions:

ModifyManagedObjects,
GenericIRPManagementSystem::OperationNotSupported,
GenericIRPManagementSystem::InvalidParameter,
UndefinedMoException,
IllegalDNFormatException,
UndefinedScopeException,
IllegalScopeTypeException,
IllegalScopeLevelException,
IllegalFilterFormatException,
FilterComplexityLimit
	M

Table 9: Void
	IS Operation parameter
	SS Method parameter
	Qualifier

	
	
	

	
	
	

	
	

	

Table 10: Void
	IS Operation parameter
	SS Method parameter
	Qualifier

	
	
	

	
	
	

	
	

	

	2nd Modified Section

Annex A (normative):
CORBA IDL, Access Protocol

A.1
IDL specification (file name "BasicCMIRPConstDefs.idl")

//File: BasicCMIRPConstDefs.idl

#ifndef _BASIC_CM_IRP_CONST_DEFS_IDL_

#define _BASIC_CM_IRP_CONST_DEFS_IDL_

#include <GenericIRPManagementConstDefs.idl>
// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BasicCMIRPConstDefs

This module contains commonly used definitions for BasicCMIRP.

==

*/

module BasicCMIRPConstDefs

{

 /**

 * Defines the name of a Managed Object Class

 */

 typedef string MOClass;

 /**

 *

 * In this version the only allowed filter value is "TRUE" i.e. a filter that

 * matches everything.

 */

 typedef string Filter;

 /**

 * ResultContents is used to tell how much information to get back

 * from the find_managed_objects operation.

 *

 * NAMES: Used to get only Distinguished Name

 * for MOs.

 * The name contains both the MO class

 * and the names of all superior objects in the naming

 * tree.

 *

 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus

 * MO attributes (all or selected).

 */

 enum ResultContents

 {

 NAMES,

 NAMES_AND_ATTRIBUTES

 };

 /**

 * ScopeType defines the kind of scope to use in a search

 * together with SearchControl.level, in a SearchControl value.

 *

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * BASE_ONLY: level ignored, just return the base object.

 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * BASE_SUBTREE: return the base object and all of its subordinates

 * down to and including the nth level.

 * BASE_ALL: level ignored, return the base object and all of it's

 * subordinates.

 */

 enum ScopeType

 {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /**

 * SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field), level 0 means the "baseObject",

 * level 1 means baseobject including its sub-ordinates etc..

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field contains the filter expression.

 * The string "TRUE" indicates "no filter",

 * i.e. a filter that matches everything.

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 Filter filter_;

 ResultContents contents;

 };

 struct Result

 {

 GenericIRPManagementConstDefs::DN mo;

 GenericIRPManagementConstDefs::MOAttributeSet attributes;

 };

 typedef sequence <Result> ResultSet;

 /**

 * AttributeErrorCategory defines the categories of errors, related to

 * attributes, that can occur during creation or modification of MOs.

 *

 * NO_SUCH_ATTRIBUTE: The specified attribute does not exist.

 * INVALID_ATTRIBUTE_VALUE: The specified attribute value is not valid.

 * MISSING_ATTRIBUTE_VALUE: An attribute value is required but none was

 * provided and no default value is defined for the attribute.

 * INVALID_MODIFY_OPERATOR: The specified modify operator is not valid

 * (e.g. operator ADD_VALUES applied to a non multi-valued attribute

 * or operator SET_TO_DEFAULT applied where no default value is defined).

 * MODIFY_NOT_ALLOWED: The modification of the attribute is not allowed.

 * MODIFY_FAILED: The modification failed because of an unspecified reason.

 */

 enum AttributeErrorCategory

 {

 NO_SUCH_ATTRIBUTE,

 INVALID_ATTRIBUTE_VALUE,

 MISSING_ATTRIBUTE_VALUE,

 INVALID_MODIFY_OPERATOR,

 MODIFY_NOT_ALLOWED,

 MODIFY_FAILED

 };

 /**

 * DeleteErrorCategory defines the categories of errors that can occur

 * during deletion of MOs.

 *

 * SUBORDINATE_OBJECT: The MO cannot be deleted due to subordinate MOs.

 * DELETE_NOT_ALLOWED: The deletion of the MO is not allowed.

 * DELETE_FAILED: The deletion failed because of an unspecified reason.

 */

 enum DeleteErrorCategory

 {

 SUBORDINATE_OBJECT,

 DELETE_NOT_ALLOWED,

 DELETE_FAILED

 };

 /**

 * AttributeError represents an error, related to an attribute, that occured

 * during creation or modification of MOs.

 * It contains:

 * - the name of the indicted attribute ("name" field),

 * - the category of the error ("error" field),

 * - optionally, the indicted attribute value ("value" field),

 * - optionally, additional details on the error ("reason" field).

 */

 struct AttributeError

 {

 GenericIRPManagementConstDefs::MOAttributeName name;

 AttributeErrorCategory error;

 GenericIRPManagementConstDefs::MOAttributeValue value;

 string reason;

 };

 typedef sequence <AttributeError> AttributeErrorSeq;

 /**

 * DeleteError represents an error that occured during deletion of MOs.

 * It contains:

 * - the distinguished name of the indicted MO ("object_name" field),

 * - the category of the error ("error" field),

 * - optionally, additional details on the error ("reason" field).

 */

 struct DeleteError

 {

 GenericIRPManagementConstDefs::DN object_name;

 DeleteErrorCategory error;

 string reason;

 };

 typedef sequence <DeleteError> DeleteErrorSeq;

 /**

 * ModifyAttributeErrors represents errors that occured during

 * modification of attributes of a MO.

 * It contains:

 * - the distinguished name of the indicted MO ("object_name" field),

 * - a sequence containing the attribute errors ("errors" field).

 */

 struct ModifyAttributeErrors

 {

 GenericIRPManagementConstDefs::DN object_name;

 AttributeErrorSeq errors;

 };

 typedef sequence <ModifyAttributeErrors> ModifyAttributeErrorsSeq;

 /**

 * ModifyOperator defines the way in which an attribute value is to be

 * applied to an attribute in a modification of MO attributes.

 *

 * REPLACE: replace the current value with the provided value

 * ADD_VALUES: for a multi-valued attribute, add the provided values to the

 * current list of values

 * REMOVE_VALUES: for a multi-valued attribute, remove the provided values

 * from the current list of values

 * SET_TO_DEFAULT: set the attribute to its default value

 */

 enum ModifyOperator

 {

 REPLACE,

 ADD_VALUES,

 REMOVE_VALUES,

 SET_TO_DEFAULT

 };

 /**

 * AttributeModification defines an attribute value and the way it is to

 * be applied to an attribute in a modification of MO attributes.

 * It contains:

 * - the name of the attribute to modify ("name" field),

 * - the value to apply to this attribute ("value" field),

 * - the way the attribute value is to be applied to the attribute

 * ("operator" field).

 */

 struct AttributeModification

 {

 GenericIRPManagementConstDefs::MOAttributeName name;

 GenericIRPManagementConstDefs::MOAttributeValue value;

 ModifyOperator operator;

 };

 typedef sequence <AttributeModification> AttributeModificationSet;

};

#endif // _BASIC_CM_IRP_CONST_DEFS_IDL_

A.2
IDL specification (file name "BasicCMIRPSystem.idl")

//File: BasicCMIRPSystem.idl

#ifndef _BASIC_CM_IRP_SYSTEM_IDL_

#define _BASIC_CM_IRP_SYSTEM_IDL_

#include <GenericIRPManagementSystem.idl>
#include <GenericIRPManagementConstDefs.idl>

#include <BasicCMIRPConstDefs.idl>
// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem

{

 exception IllegalFilterFormatException {

 string reason;

 };

 exception IllegalDNFormatException {

 string reason;

 };

 exception IllegalScopeTypeException {

 string reason;

 };

 exception IllegalScopeLevelException {

 string reason;

 };

 exception UndefinedMOException {

 string reason;

 };

 exception UndefinedScopeException {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };

 exception DuplicateMO {};

 exception CreateNotAllowed {};

 exception ObjectClassMismatch {};

 exception NoSuchObjectClass {

 BasicCMIRPConstDefs::MOClass objectClass;

 };

 exception ParentObjectDoesNotExist {};

 /**

 * System otherwise fails to complete the operation. System can provide

 * reason to qualify the exception. The semantics carried in reason

 * is outside the scope of this IRP.

 */

 exception NextBasicCmInformations { string reason; };

 exception NextDeleteErrors { string reason; };

 exception NextModifyErrors { string reason; };

 exception DestroyException { string reason; };

 exception GetBasicCmIRPVersion { string reason; };

 exception GetBasicCmIRPOperationProfile { string reason; };

 exception GetBasicCmIRPNotificationProfile { string reason; };

 exception FindManagedObjects { string reason; };

 exception CreateManagedObject { string reason; };

 exception DeleteManagedObjects { string reason; };

 exception ModifyManagedObjects { string reason; };

 /**

 The BasicCmInformationIterator is used to iterate through a snapshot of

 Managed Object Information when IRPManager invokes find_managed_objects.

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface BasicCmInformationIterator

 {

 /**

 This method returns between 1 and "how_many" Managed Object information.

 The IRPAgent may return less than "how_many" items even if there are

 more items to return. "how_many" must be non-zero. Return TRUE if there

 may be more Managed Object information to return. Return FALSE if there

 are no more Managed Object information to be returned.

 If FALSE is returned, the IRPAgent will automatically destroy the

 iterator.

 @parm how_many how many elements to return in the "fetched_elements" out

 parameter.

 @parm fetched_elements the elements.

 @returns A boolean indicating if any elements are returned.

 "fetched_elements" is empty when the BasicCmInformationIterator is

 empty.

 */

 boolean next_basic_cm_informations (

 in unsigned short how_many,

 out BasicCMIRPConstDefs::ResultSet fetched_elements

)

 raises (

 NextBasicCmInformations,

 GenericIRPManagementSystem::InvalidParameter,

 GenericIRPManagementSystem::OperationNotSupported);

 /**

 This method destroys the iterator.

 */

 void destroy ()

 raises (

 DestroyException,

 GenericIRPManagementSystem::OperationNotSupported);

 }; // end of BasicCmInformationIterator

 /**

 The DeleteResultIterator is used to iterate through the list of deleted MOs

 when IRPManager invokes method "delete_managed_objects".

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface DeleteResultIterator : BasicCmInformationIterator

 {

 /**

 Inherited method "next_basic_cm_informations" has the same behaviour as

 for interface BasicCmInformationIterator, except that:

 - The Managed Object information returned in parameter

 "fetched_elements" contains only the DNs of the deleted MOs

 (no attributes are returned).

 - If FALSE is returned, the IRPAgent will not automatically destroy the

 iterator.

 */

 /**

 This method returns between 0 and "how_many" deletion errors. The

 IRPAgent may return less than "how_many" items even if there are more

 items to return. "how_many" must be non-zero. Return TRUE if there are

 more deletion errors to return. Return FALSE if there are no more

 deletion errors to be returned.

 If FALSE is returned and last call to inherited method

 "next_basic_cm_informations" also returned FALSE (i.e. no more Managed

 Object information to be returned), the IRPAgent will automatically

 destroy the iterator.

 @parm how_many: how many deletion errors to return in the

 "fetched_delete_errors" out parameter.

 @parm fetched_delete_errors: the deletion errors.

 @returns: a boolean indicating if any deletion errors are returned.

 */

 boolean next_delete_errors (

 in unsigned short how_many,

 out BasicCMIRPConstDefs::DeleteErrorSeq fetched_delete_errors

)

 raises (

 NextDeleteErrors,

 GenericIRPManagementSystem::InvalidParameter);

 }; // end of DeleteResultIterator

 /**

 The ModifyResultIterator is used to iterate through the list of modified

 MOs when IRPManager invokes method "modify_managed_objects".

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface ModifyResultIterator : BasicCmInformationIterator

 {

 /**

 Inherited method "next_basic_cm_informations" has the same behaviour as

 for interface BasicCmInformationIterator, except that:

 - The Managed Object information returned in parameter

 "fetched_elements" contains DNs and attributes of the modified MOs.

 - If FALSE is returned, the IRPAgent will not automatically destroy the

 iterator.

 */

 /**

 This method returns between 0 and "how_many" modification errors. The

 IRPAgent may return less than "how_many" items even if there are more

 items to return. "how_many" must be non-zero. Return TRUE if there are

 more modification errors to return. Return FALSE if there are no more

 modification errors to be returned.

 If FALSE is returned and last call to inherited method

 "next_basic_cm_informations" also returned FALSE (i.e. no more Managed

 Object information to be returned), the IRPAgent will automatically

 destroy the iterator.

 @parm how_many: how many modification errors to return in the

 "fetched_modify_errors" out parameter.

 @parm fetched_modify_errors: the modification errors.

 @returns: a boolean indicating if any modification errors are returned.

 */

 boolean next_modification_errors (

 in unsigned short how_many,

 out BasicCMIRPConstDefs::ModifyAttributeErrorsSeq

 fetched_modify_errors

)

 raises (

 NextModifyErrors,

 GenericIRPManagementSystem::InvalidParameter);

 }; // end of ModifyResultIterator

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations : GenericIRPManagementSystem::

 GenericIRPManagement

 {

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * The result BasicCmInformationIterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 * For the special case when no managed objects are matched in

 * find_managed_objects, the BasicCmInformationIterator will be returned.

 * Executing the next_basicCmInformations in the

 * BasicCmInformationIterator will return FALSE for

 * completion.

 *

 * @parm base_object The start MO in the containment tree.

 * @parm search_control the SearchControl to use.

 * @parm requested_attributes defines which attributes to get.

 * If this parameter is empty (""), all attributes shall

 * be returned. In this version this is the only supported semantics.

 * Note that this argument is only

 * relevant if ResultContents in the search control is

 * specifed to NAMES_AND_ATTRIBUTES.

 *

 * @raises GenericIRPManagementSystem::ValueNotSupported if a valid but

 * unsupported parameter value is passed. E.g. the contents

 * field in the searchcontrol parameter contains the value NAMES and

 * the optional getContainment IS operation is not supported.

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises FilterComplexityLimit if the filter syntax is correct,

 * but the filter is too complex to be processed by the IRPAgent.

 * @see SearchControl

 * @see BasicCmInformationIterator

 */

 BasicCmInformationIterator find_managed_objects(

 in GenericIRPManagementConstDefs::::DN base_object,

 in BasicCMIRPConstDefs::SearchControl search_control,

 in BasicCMIRPConstDefs::AttributeNameSet requested_attributes)

 raises (

 FindManagedObjects,

 GenericIRPManagementSystem::ParameterNotSupported,

 GenericIRPManagementSystem::InvalidParameter,

 GenericIRPManagementSystem::ValueNotSupported,

 GenericIRPManagementSystem::OperationNotSupported,

 UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 /**

 * Performs the creation of a MO instance in the MIB maintained

 * by the IRPAgent.

 *

 * @parm object_name: the distinguished name of the MO to create.

 * @parm reference_object: the distinguished name of a reference MO.

 * @parm attributes: in input, initial attribute values for the MO to

 * create; in output, actual attribute values of the created MO.

 * @parm attribute_errors: errors, related to attributes, that caused the

 * creation of the MO to fail.

 *

 * @raises GenericIRPManagementSystem::OperationNotSupported: The operation

 * is not supported.

 * @raises GenericIRPManagementSystem::ParameterNotSupported: An optional

 * parameter is not supported.

 * @raises GenericIRPManagementSystem::InvalidParameter: An invalid

 * parameter value has been provided.

 * @raises UndefinedMOException: The MO does not exist.

 * @raises IllegalDNFormatException: The DN syntax string is malformed.

 * @raises DuplicateMO: A MO already exist with the same DN as the one

 * to create.

 * @raises CreateNotAllowed: The creation of the MO is not allowed.

 * @raises ObjectClassMismatch: The object class of the MO to create does

 * not match with the object class of the provided reference MO.

 * @raises NoSuchObjectClass: The class of the object to create is not

 * recognized.

 * @raises ParentObjectDoesNotExist: The parent MO instance of the

 * ManagedEntity specified to be created does not exist.

 */

 void create_managed_object (

 in GenericIRPManagementConstDefs::::DN object_name,

 in GenericIRPManagementConstDefs::::DN reference_object,

 inout GenericIRPManagementConstDefs::::MOAttributeSet attributes,

 out BasicCMIRPConstDefs::AttributeErrorSeq attribute_errors

)

 raises (

 CreateManagedObject,

 GenericIRPManagementSystem::OperationNotSupported,

 GenericIRPManagementSystem::ParameterNotSupported,

 GenericIRPManagementSystem::InvalidParameter,

 UndefinedMOException,

 IllegalDNFormatException,

 DuplicateMO,

 CreateNotAllowed,

 ObjectClassMismatch,

 NoSuchObjectClass,

 ParentObjectDoesNotExist);

 /**

 * Performs the deletion of one or more MO instances from the MIB

 * maintained by the IRPAgent, using a SearchControl to control the

 * instances to be deleted.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * All matched MOs will be deleted by this operation.

 * The returned DeleteResultIterator is used to retrieve the DNs of the

 * MOs deleted and the errors that may have occurred preventing deletion

 * of some MOs.

 * For the special case when no managed objects are matched in

 * delete_managed_objects, the DeleteResultIterator will be returned.

 * Executing the next_basicCmInformations in the DeleteResultIterator

 * will return FALSE for completion.

 *

 * @parm base_object: the start MO in the containment tree.

 * @parm search_control: the SearchControl to use; field "contents" has no

 * meaning here and shall be ignored.

 * @returns: a DeleteResultIterator (see above).

 *

 * @raises GenericIRPManagementSystem::OperationNotSupported: The operation

 * is not supported.

 * @raises GenericIRPManagementSystem::InvalidParameter: An invalid

 * parameter value has been provided.

 * @raises UndefinedMOException: The MO does not exist.

 * @raises IllegalDNFormatException: The DN syntax string is malformed.

 * @raises IllegalScopeTypeException: The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException: The scope level is negative (<0).

 * @raises IllegalFilterFormatException: The filter string is malformed.

 * @raises FilterComplexityLimit: The filter syntax is correct,

 * but the filter is too complex to be processed by the IRPAgent.

 */

 DeleteResultIterator delete_managed_objects (

 in GenericIRPManagementConstDefs::::DN base_object,

 in BasicCMIRPConstDefs::SearchControl search_control

)

 raises (

 DeleteManagedObjects,

 GenericIRPManagementSystem::OperationNotSupported,

 GenericIRPManagementSystem::InvalidParameter,

 UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 /**

 * Performs the modification of MO attributes. One or more MOs attributes

 * may be modified according to a SearchControl.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * All matched MOs will have their attributes modified by this operation.

 * The returned ModifyResultIterator is used to retrieve the DNs of the

 * modified MOs together with the values of the modified attributes, and

 * the errors that may have occurred preventing modification of some

 * attributes.

 * For the special case when no managed objects are matched in

 * modify_managed_objects, the ModifyResultIterator will be returned.

 * Executing the next_basicCmInformations in the ModifyResultIterator

 * will return FALSE for completion.

 *

 * @parm base_object: the start MO in the containment tree.

 * @parm search_control: the SearchControl to use; field "contents" has no

 * meaning here and shall be ignored.

 * @parm modifications: the values for the attributes to modify and

 * the way those values are to be applied to the attributes.

 * @returns: a ModifyResultIterator (see above).

 *

 * @raises GenericIRPManagementSystem::OperationNotSupported: The operation

 * is not supported

 * @raises GenericIRPManagementSystem::InvalidParameter: An invalid

 * parameter value has been provided

 * @raises UndefinedMOException: The MO does not exist.

 * @raises IllegalDNFormatException: The DN syntax string is malformed.

 * @raises IllegalScopeTypeException: The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException: The scope level is negative (<0).

 * @raises IllegalFilterFormatException: The filter string is malformed.

 * @raises FilterComplexityLimit: The filter syntax is correct,

 * but the filter is too complex to be processed by the IRPAgent.

 */

 ModifyResultIterator modify_managed_objects (

 in GenericIRPManagementConstDefs::::DN base_object,

 in BasicCMIRPConstDefs::SearchControl search_control,

 in BasicCMIRPConstDefs::AttributeModificationSet modifications

)

 raises (

 ModifyManagedObjects,

 GenericIRPManagementSystem::OperationNotSupported,

 GenericIRPManagementSystem::InvalidParameter,

 UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 };

};

#endif // _BASIC_CM_IRP_SYSTEM_IDL_

	End of Modified Section

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

