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*************************** begin change ****************************

1
Scope

The present document provides guidelines on the interworking of the Generic Authentication Architecture (GAA) and the Liberty Alliance architecture. The document studies the details of possible interworking methods between the Liberty Alliance Identity Federation Framework (ID-FF), the Identity Web Services Framework (ID-WSF), the Security Assertion Markup Language (SAML) and a component of GAA called the Generic Bootstrapping Architecture (GBA). This document only applies if Liberty Alliance and GBA or SAML and GBA are used in combination.

********************** begin next change ****************************

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply (origin of term if GAA or LAP):

AS
Authentication Service (as defined by LAP)
BSF
Bootstrapping Server Function (GAA)
B-TID
Bootstrapping Transaction Identifier (GAA)
DS 
Discovery Service (as defined by LAP)
FQDN
Fully Qualified Domain Name

GAA
Generic Authentication Architecture

GBA
Generic Bootstrapping Architecture (GAA)
GSID
GAA Service Identifier (GAA)
GUSS
GBA User Security Settings (GAA)
HSS
Home Subscriber Server

ID-FF
Identity Federation Framework (as defined by LAP)
ID-SIS
Identity Service Interface Specification (as defined by LAP)
IdP
Identity Provider (as defined by LAP)
ID-WSF
Identity Web Services Framework (as defined by LAP)
LAP
Liberty Alliance Project

LECP
Liberty-Enabled Client or Proxy (as defined by LAP)
LUAD
Liberty-Enabled User Agent or Device (as defined by LAP)
NAF
Network Application Function (GAA)
PAOS
Reversed HTTP binding for SOAP (as defined by LAP)
SAML
Security Assertion Markup Language

SASL
Simple Authentication and Security Layer 
SOAP
Simple Object Access Protocol

SP 
Service Provider

SSO
Single Sign-On

SSOS
SSO Service

UE
User Equipment

UID
User Identifier

USS
User Security Setting

WSC
Web Service Consumer (as defined by LAP)
WSP
Web Service Provider (as defined by LAP)
********************** begin next change ****************************

4.2
Architectural Description – Use of GBA within ID-FF / ID-WSF

This clause describes the GAA and ID-FF / SAML / ID-WSF architecture. The GAA system consists of UE, BSF, NAF, and HSS (and Zn-Proxy dependent on configuration) as described in TS 33.220 [1].

In the Liberty Alliance the following system entities exist: Principal (shown as UE in the figures), IdP, DS, SP, and the roles WSC, and WSP. Typical Liberty Alliance network models are shown for ID-FF in Figure 4.2.-1 and for ID-WSF in 4.2.-2. 
SAML works with very similar concepts as ID-FF. As SAMLv2.0 [11] was specified with ID-FF 1.2 taken as an input, SAMLv2.0 is a superset of ID-FF 1.2 and SAMLv1.1 with some relatively small differences (mostly extensions). The related system entities are: UA, SP and IdP (User Agent, Service Provider and Identity Provider, respectively). For this strong similarity, no separate discussion on SAML is given in this section.
************ Editor’s note: no more change in this section ***************
********************** begin next change ****************************

4.2.1 
Architecture for collocation of NAF with Liberty Alliance Authentication Function

Interworking of GAA and LAP/SAML applies only to the authentication used within LAP/SAML. Thus the machinery provided by GAA is a natural extension to a Liberty Alliance ID-FF Identity Provider (IdP), a SAML Identity Provider (IdP) or a Liberty Alliance ID-WSF Authentication Service (AS). The following sub-clauses handle the LAP/SAML IdP and the LAP AS cases separately.

NOTE: 
Interworking of GAA and Liberty Alliance or SAML is independent of any other deployment of ID-FF, SAML or ID-WSF. Only the type of communication between UE and the network element responsible for authentication is relevant.

If the subscriber’s home operator does not host the NAF described hereinafter, then the architecture also includes a Zn-Proxy as described in TS 33.220 [1].

********************** begin next change ****************************

4.3.3
SSO scenario: ID-FF with <AuthnResponse> transfer

4.3.3.1
HTTPS with conventional TLS

In this scenario the UE is not LAP aware. All protocol elements are taken from within ID Federation Framework [7] and complemented by the GAA-specific details from [2]. First the steps are outlined that are needed when utilizing HTTPS deploying conventional TLS [24] according to [2], clause 5.3:

1)
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP Request. This request shall contain the GBA-based authentication support indication (cf. step 3), as this is required for the redirection of the request according to step 3.

2)
On receipt of the HTTP request from UE, the SP obtains the identity provider and sends a redirect HTTP Response with <lib:AuthnRequest> to UE. The means by which the identity provider address is obtained is implementation-dependent and up to the service provider.

3)
The UE in turn contacts the IdP under the URL given in the Location header field and the UE must access the NAF/IdP URL with an HTTP Request with <lib:AuthnRequest> information [12].


The UE shall indicate to the NAF/IdP that GBA-based authentication is supported by adding a constant string  to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of clause 5.3 of TS 33.222 [2]. 

If a bootstrapped security association between UE and IdP exists, then UE and IdP/NAF share the keys to protect reference point Ua and  the UE possesses all necessary data to perform HTTP Digest Authentication from previous messages. In this case step 3 is combined with the request in step 5, and step 4 is omitted.

4)
As the IdP is collocated with the NAF, the HTTP Digest authentication is conducted in the accordance to 3GPP TS 33.222 [2] and a HTTP response with Unauthorized status and WWW-Authenticate header field is sent to the UE. The method and details of this authentication are defined by TS 33.222 [2] and not in [7].


If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the IdP, then the UE will execute a new bootstrapping procedure with the BSF. This is transparent to the SP.

5)
The UE returns the Authorization data, using the B-TID as a username and the Ks_(ext/int)_NAF as password to the IdP.  The UE may include further LAP related user data.


If the IdP is collocated with the NAF, then this happens as outlined in TS 33.222 [2]. The USS might contain Liberty specific information.

6)
The <lib:AuthnRequest> is processed. The IdP responds with an <lib:AuthnResponse> in the HTTP Response redirect URL [12]. The IdP may include further LAP-related data.

7)
The UE contacts the SP again using this URL and HTTP Request with <lib:AuthnResponse>.

8)
The SP answers with a HTTP Response.
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Figure 4.3-1: Message flow for SSO with <lib:AuthnResponse> and conventional TLS with GBA

NOTE 1:
As the IdP is collocated with the NAF i.e. Ua is chosen for authentication as outlined in TS 33.222 [2], then each request over Ua is authenticated by itself, as each request carries the full Authorization Header. There is no difference between first request and follow-up requests. 

NOTE 2:
LAP ID-FF specification [7] defines also a POST-based communication between UE and IdP besides a GET-based request with a query string. This is in conformance with TS33.222 [2], as there only a HTTP request is specified without any explicit method stated.

NOTE 3:
The SP may use the GBA-based authentication support indication received in step 1 to select an appropriate identity provider address.

4.3.3.2
HTTPS with PSK TLS

When HTTPS with PSK TLS according to TS 33.222 [2], clause 5.4, is utilized, then the steps are the following:

1)
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP Request. This request shall contain the GBA-based authentication support indication (cf. step 3 of clause 4.3.3.1), as the UE may be forced by the IdP/NAF to use conventional TLS, even if the UE offers the usage of PSK TLS.

2)
On receipt of the HTTP request from UE, the SP obtains the identity provider and sends a redirect HTTP Response with <lib:AuthnRequest> in the URL to the UE. The means by which the identity provider address is obtained is implementation-dependent and up to the service provider.

3)
The UE starts to set up a PSK TLS tunnel to the IdP/NAF as specified in clause 5.4 in TS 33.222 [2]. This is in preparation of sending the redirected request to the IdP/NAF (cf. step 4). During TLS tunnel setup the UE indicates possibility to use PSK TLS, and the IdP/NAF may select to use PSK TLS with GBA.


The UE recognizes from the TLS ciphersuite selected by IdP/NAF if the IdP/NAF will use PSK TLS.


 If a bootstrapped security association between UE and IdP/NAF exists, then UE and IdP/NAF share the keys to protect reference point Ua. Thus  the UE possesses all necessary data to set up the PSK TLS tunnel according to TS 33.222 [2] and the next step can be approached immediately without executing a bootstrapping procedure.


If no bootstrapped security association between UE and IdP/NAF exists, but the UE does contain a valid bootstrapping key Ks, then the UE establishes a PSK TLS tunnel with the IdP/NAF based on the related Ks_(ext)_NAF.


If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the IdP/NAF, then the UE will execute a new bootstrapping procedure with the BSF. This is transparent to the SP.
4)
The UE accesses the IdP/NAF URL with the HTTP GET Request with <lib:AuthnRequest> information [12] within the established PSK TLS tunnel.

5)
The IdP extracts the <lib:AuthnRequest>, processes it, uses the UE authentication done during the PSK TLS tunnel establishment, and sends a redirect HTTP Response to the UE, which redirects the UE back to the SP. The URL may contain a SAML artifact or a <lib:AuthnResponse>.

6)
The SP extracts the SAML artifact or the <lib:AuthnResponse>, processes it and answers with a HTTP Response.

7)
The SP answers with a HTTP Response.
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Figure 4.3-1a: Message flow for SSO with <lib:AuthnResponse> and usage of PSK TLS with GBA

NOTE:
The notes given in clause 4.3.3.1 are also applicable for usage of PSK TLS as defined in this clause.

4.3.4
SSO scenario: ID-FF with artifact transfer

This scenario is similar to the scenario given in clause 4.3.3, with the extension that the service provider is able to contact the IdP directly. 

NOTE:
As the basic message flow is the same for artifact and for <lib:AuthnResponse> usage, the same differences between usage of conventional TLS and PSK TLS as in clause 4.3.3 apply to this clause also. Message flows given in this clause refer to conventional TLS, Analogous usage of PSK TLS is also possible.

The IdP must support an additional interface to SP, to allow the SP retrieval of the authentication assertion. This interface is not completely separated from GBA, as this authentication information may include GBA related information, e.g. user identity, pseudonym and further information from GUSS, restrictions based on GBA, etc. 

1)
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP Request. This request shall contain the GBA-based authentication support indication (cf. step 3), as this is required for the redirection of the request according to step 3.

2)
On receipt of the HTTP request from UE, the SP obtains the identity provider and sends a redirect HTTP Response with <lib:AuthnRequest> to UE. The means by which the identity provider address is obtained is implementation-dependent and up to the service provider.

3)
The UE in turn contacts the IdP under the URL given in the Location header field and the UE must access the NAF/IdP URL with an HTTP Request with <lib:AuthnRequest> information [12]. 

The UE shall indicate to the NAF/IdP that GBA-based authentication is supported by adding a constant string  to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of clause 5.3 of TS 33.222 [2].

If a bootstrapped security association between UE and IdP/NAF exists, then UE and IdP/NAF share the keys to protect reference point Ua and the UE possesses all necessary data to perform HTTP Digest Authentication from previous messages. In this case step 3 is combined with the request in step 5, and step 4 is omitted.

4)
If the UE is not yet authenticated with the IdP, then the authentication has to take place here, as defined in TS 33.222 [2]. The method and details of this authentication are not defined by Liberty Alliance in [7].  The IdP sends a HTTP response with Unauthorized status to the UE as defined in TS 33.222 [2]. 

If there is no valid NAF specific key material in the NAF, or the freshness of the key material is not to the satisfaction of the NAF or IdP, then the bootstrapping procedure has to be performed as defined in TS33.220 [1]. This is transparent to the SP.

5)
The UE answers with a HTTP GET request with Authorization header field containing as a username the B-TID and as a password the Ks_(ext/int)_NAF. The UE may include further LAP related user data.

The IdP/NAF can request the credentials and related material, if it does not have it stored already. The received USS may contain further Liberty specific information.

6)
The IdP responds with a SAML artifact in the HTTP Response redirect URL [12]. The IdP may include further LAP related data.

7)
The UE contacts the SP again using this URL and HTTP Request with the SAML artifact. 

8)
The SP sends an HTTP Request with the SAML artifact to the IdP. The request contains a <samlp:Request> SOAP Request message to the identity provider’s SOAP endpoint, requesting the assertion by providing the SAML assertion artifact in the < samlp:AssertionArtifact> element as specified in [12]

9)
The IdP can now construct or find the requested assertion and responds with a <samlp:Response> SOAP Response message with the requested <saml:Assertion> or an status code as defined [13]. The IdP sends the authentication assertion that corresponds to the artifact.

10)
The SP processes the SOAP message with the <saml:Assertion> returned in the <samlp:Response>, verifies the signature on the <saml:Assertion> and processes the message as defined in [12] and then answers with a HTTP Response.

The SAML authentication assertion should have a lifetime equal to or less than the B-TID. The assertion should be stored together with the B-TID in the table described in clauses 4.3.1 and 4.3.2.
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Figure 4.3-2: Message flow for SSO with Artifact transfer and usage of GBA

4.3.5
SSO scenario: ID-WSF Authentication Service
In this scenario the UE is LAP enabled, i.e. a LUAD (Liberty enabled User Agent or Device as defined in Liberty ID-WSF Profiles for Liberty enabled User Agents and Devices specification [16]). The protocol elements used are taken from ID–WSF Authentication Service [8], and the interaction of UE with IdP comprises two consecutive protocol runs. The active LUAD client contacts the NAF/IdP first before accessing the service provided by the SP.

1.
The UE authenticates with the Authentication Service (AS) of the IdP and retrieves a security token, which entitles the UE to invoke some services.

2.
The UE invokes the Single-Sign-On Service (SSOS) of the IdP using the security token. In this step the UE receives the authentication assertion (authentication and authorisation information) to be used at the SP.

3.
The UE presents the authentication assertion to the SP acting as a WSP for web service access.

In case the WSP providing the web service to the user is part of the domain of the IdP operator, the LUAD client may also contact the WSP directly with the security token. In this case the SSOS contact may be left out.

Mapping of the three steps to GBA is done in the following way: 
-
The first step is mapped to the communication between user (LUAD) and AS as specified within LAP [8]. The authentication protocol is embedded in the SASL protocol as described in clause 4.2.1.2. The Ub run must be executed by the UE if necessary. This is not based on LAP protocols [6], [7] or [8], but only on GBA protocols [1].

-
The second and third steps are completely as defined in LAP (no connection to GBA). The only dependency on GBA is in the content of the SAML authentication assertion depending partly on GBA results (protocol parameters, e.g. execution time, and user-specific parameters, e.g. taken from USS). 

The following gives a message flow for the SSO scenario of the ID-WSF authentication service with response transfer. This can also applies when the SSOS also offers an ID-WSF authentication service, in which case the SSOS is collocated with the AS. 
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Figure 4.3-3: Message flow for ID-WSF AS and SSO with Response transfer and usage of GBA

1.
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP request. 

2.
On receipt of the HTTP request from the UE, the SP obtains the AS address and sends a redirect HTTP response to the UE. The HTTP response may or may not contain an <lib:AuthnRequest> header according to the application or deployment model. The means by which the AS’s address is obtained is implementation-dependent.

3.
The UE (LUAD-WSC) sends an HTTP request to the AS. The request contains a soap-bound <SASLRequest> header, where the "mechanism" parameter is filled with a list of one-or-more client-supported SASL mechanism names. 
The UE shall indicate to the NAF/AS that GBA-based authentication is supported by adding a constant string to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of clause 5.3 of TS 33.222[2]. 
If a bootstrapped security association between UE and NAF/AS exists, then UE and NAF/AS share the keys to protect reference point Ua and the UE may perform a subsequent authentication procedure if the SASL profile allows. In this case step 3 is combined with the request in step 6, and step 4 and step 5 are omitted.

4
The AS sends a HTTP response to the UE. The response contains a soap-bound <SASLResponse> header, where the "serverMechanism" parameter is filled with a selected SASL mechanism name (i.e. DIGEST authentication) from the client-supported SASL mechanism list and in this case the <SASLResponse> header also contains a <digest-challenge> parameter. The method and details of this parameter are compliant to RFC2831.

5
If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the AS, then the UE will execute a new bootstrapping procedure with the BSF and obtain a shared key Ks_(ext/int)_NAF. This is transparent to the SP.

6
The UE re-sends a HTTP request to the AS. The request contains a soap-bound <SASLRequest> header, where the "mechanism" parameter is filled with the returned SASL mechanism in step 4 and in this case the <SASLRequest> header also contains a <digest-response> parameter, where the authorization data is computed using the B-TID as a username and the Ks_(ext/int)_NAF as the password. The method and details of this parameter are compliant to RFC2831. The UE may include further LAP related user data.

7
As the AS is collocated with the NAF, the AS requests Ks_(ext/int)_NAF and other materials from the BSF using the Zn interface if they are not available yet. 

8
The AS processes the <digest-response> parameter in the <SASLRequest> header. Then the AS responds with a soap-bound <SASLResponse> header in the HTTP Response. The <SASLResponse> header contains an ID-WSF EPR (EndpointReference) parameter which refers to the SSOS instance and the Service type URI is set according to [8] to identify the ID-WSF SSOS. The <SASLResponse> header also contains some necessary credentials for the UE to invoke the SSOS. The AS may include further LAP-related data.

9
The UE sends a HTTP request to the SSOS. The request contains a soap-bound <samlp2:AuthnRequest> header, where the ProtocolBinding attribute is set according to [8] to identify the SAML protocol binding to be used .The request also contains a <wsse:security> header which includes the returned credentials in step 8.The UE may have to construct the <samlp2:AuthnRequest> header by itself if it does not receive such a header in step 2 according to the application or deployment model. 

10
The <samlp2:AuthnRequest> is processed. The SSOS responds with an <samlp2: Response> header in the HTTP Response redirect URL [12]. The <samlp2: Response> header contains a <saml2:Assertion> parameter . The SSOS may include further LAP-related data.

11
The UE contacts the SP again using this URL and HTTP Request with <samlp2: Response >.

12
The SP answers with a HTTP Response.

NOTE:
If the IdP is co-hosted with the BSF, then the first step could be mapped to Ub reference point of GBA [4]. The second step could be mapped to Ua interface of GBA.

Despite having this formal analogy of executing two consecutive protocol runs required by both protocol worlds, it seems that a simple mapping is not possible. The syntax and semantic of the information elements transferred between GBA and LAP protocols differ substantially. This is one of the reasons, why clause 4.2.2 above states that , the ID-WSF IdP/BSF co-hosting scenario will not be elaborated further in this document. 

4.3.6
SSO scenario: SAMLv2.0 with <samlp:Response> transfer
4.3.6.1
HTTPS with TLS

This scenario is a version of the scenario in clause 4.3.3.1 with the difference that all protocol elements are taken from within SAMLv2.0 [11]. Hence all the steps described there apply here as well, after replacing <lib:AuthnRequest> with <samlp:AuthnRequest> and <lib:AuthnResponse> with <samlp:Response>. The steps are not repeated here, only an adapted version of Figure 4.3-1 is included.
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Figure 4.3-4: Message flow for SSO with <samlp:Response> and TLS with GBA
4.3.6.2
HTTPS with PSK TLS

This scenario is a version of the scenario in clause 4.3.3.2 with the difference that all protocol elements are taken from within SAMLv2.0 [11]. Hence all the steps described there apply here as well, after replacing <lib:AuthnRequest> with <samlp:AuthnRequest> and <lib:AuthnResponse> with <samlp:Response>. The steps are not repeated here, only an adapted version of Figure 4.3-1a is included.
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Figure 4.3-5: Message flow for SSO with <samlp:Response> and usage of PSK TLS with GBA

4.3.7
SSO scenario: SAMLv2.0 with artifact transfer (resolution)
This scenario is a version of the scenario in clause 4.3.4 with the difference that all protocol elements are taken from within SAMLv2.0 [11]. Hence all the steps described there apply here as well, after replacing <lib:AuthnRequest> with <samlp:AuthnRequest>. The steps are not repeated here, only the adapted version of Figure 4.3-2 is included.
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Figure 4.3-6: Message flow for SSO with Artifact resolution (SAMLv2.0) and usage of GBA
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