Page 1

TSG-SA WG3 (Security) #46
S3-070212
Beijing, PRC, 13 – 16 Feb 2007
Agenda Item: 6.13

	CR-Form-v9.3

	CHANGE REQUEST

	

	(

	33.980
	CR
	0015
	(

rev
	1
	(

Current version:
	7.3.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	SAMLv2.0 Integration to TR 33.980

	
	

	Source to WG:
(

	Nokia, Siemens Networks, Orange

	Source to TSG:
(

	TSG SA WG3

	
	

	Work item code:
(

	LibSec
	
	Date: (

	24/01/2007

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	The current version of the technical report does not describe how SAMLv2.0 and GBA interwork.

	
	

	Summary of change:
(

	SAMLv2.0 details are added to relevants parts of the technical report.

	
	

	Consequences if
(

not approved:
	SAMLv2.0 details are missing from the technical report.

	
	

	Clauses affected:
(

	1, 3.2, 4.2, 4.2.1, 4.3.3, 4.3.3.1 (also Figure 4.3-1), 4.3.3.2 (also Figure 4.3-1a), 4.3.4 (also Figure 4.3-2), 4.3.5, 4.3.6 (new), 4.3.6.1 (new), 4.3.6.2 (new), 4.3.7 (new)

	
	

	
	Y
	N
	
	

	Other specs
(

	
	N
	 Other core specifications
(

	

	affected:
	
	N
	 Test specifications
	

	
	
	N
	 O&M Specifications
	

	
	

	Other comments:
(

	

*************************** begin change ****************************

1
Scope

The present document provides guidelines on the interworking of the Generic Authentication Architecture (GAA) and the Liberty Alliance architecture. The document studies the details of possible interworking methods between the Liberty Alliance Identity Federation Framework (ID-FF), the Identity Web Services Framework (ID-WSF), the Security Assertion Markup Language (SAML) and a component of GAA called the Generic Bootstrapping Architecture (GBA). This document only applies if Liberty Alliance and GBA or SAML and GBA are used in combination.

********************** begin next change ****************************

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply (origin of term if GAA or LAP):

AS
Authentication Service (as defined by LAP)
BSF
Bootstrapping Server Function (GAA)
B-TID
Bootstrapping Transaction Identifier (GAA)
DS
Discovery Service (as defined by LAP)
FQDN
Fully Qualified Domain Name

GAA
Generic Authentication Architecture

GBA
Generic Bootstrapping Architecture (GAA)
GSID
GAA Service Identifier (GAA)
GUSS
GBA User Security Settings (GAA)
HSS
Home Subscriber Server

ID-FF
Identity Federation Framework (as defined by LAP)
ID-SIS
Identity Service Interface Specification (as defined by LAP)
IdP
Identity Provider (as defined by LAP)
ID-WSF
Identity Web Services Framework (as defined by LAP)
LAP
Liberty Alliance Project

LECP
Liberty-Enabled Client or Proxy (as defined by LAP)
LUAD
Liberty-Enabled User Agent or Device (as defined by LAP)
NAF
Network Application Function (GAA)
PAOS
Reversed HTTP binding for SOAP (as defined by LAP)
SAML
Security Assertion Markup Language

SASL
Simple Authentication and Security Layer
SOAP
Simple Object Access Protocol

SP
Service Provider

SSO
Single Sign-On

SSOS
SSO Service

UE
User Equipment

UID
User Identifier

USS
User Security Setting

WSC
Web Service Consumer (as defined by LAP)
WSP
Web Service Provider (as defined by LAP)
********************** begin next change ****************************

4.2
Architectural Description – Use of GBA within ID-FF / ID-WSF

This clause describes the GAA and ID-FF / SAML / ID-WSF architecture. The GAA system consists of UE, BSF, NAF, and HSS (and Zn-Proxy dependent on configuration) as described in TS 33.220 [1].

In the Liberty Alliance the following system entities exist: Principal (shown as UE in the figures), IdP, DS, SP, and the roles WSC, and WSP. Typical Liberty Alliance network models are shown for ID-FF in Figure 4.2.-1 and for ID-WSF in 4.2.-2.
SAML works with very similar concepts as ID-FF. As SAMLv2.0 [11] was specified with ID-FF 1.2 taken as an input, SAMLv2.0 is a superset of ID-FF 1.2 and SAMLv1.1 with some relatively small differences (mostly extensions). The related system entities are: UA, SP and IdP (User Agent, Service Provider and Identity Provider, respectively). For this strong similarity, no separate discussion on SAML is given in this section.
************ Editor’s note: no more change in this section ***************
********************** begin next change ****************************

4.2.1
Architecture for collocation of NAF with Liberty Alliance Authentication Function

Interworking of GAA and LAP/SAML applies only to the authentication used within LAP/SAML. Thus the machinery provided by GAA is a natural extension to a Liberty Alliance ID-FF Identity Provider (IdP), a SAML Identity Provider (IdP) or a Liberty Alliance ID-WSF Authentication Service (AS). The following sub-clauses handle the LAP/SAML IdP and the LAP AS cases separately.

NOTE:
Interworking of GAA and Liberty Alliance or SAML is independent of any other deployment of ID-FF, SAML or ID-WSF. Only the type of communication between UE and the network element responsible for authentication is relevant.

If the subscriber’s home operator does not host the NAF described hereinafter, then the architecture also includes a Zn-Proxy as described in TS 33.220 [1].

********************** begin next change ****************************

4.3.3
SSO scenario: ID-FF with <AuthnResponse> transfer

4.3.3.1
HTTPS with conventional TLS

In this scenario the UE is not LAP aware. All protocol elements are taken from within ID Federation Framework [7] and complemented by the GAA-specific details from [2]. First the steps are outlined that are needed when utilizing HTTPS deploying conventional TLS [24] according to [2], clause 5.3:

1)
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP Request. This request shall contain the GBA-based authentication support indication (cf. step 3), as this is required for the redirection of the request according to step 3.

2)
On receipt of the HTTP request from UE, the SP obtains the identity provider and sends a redirect HTTP Response with <lib:AuthnRequest> to UE. The means by which the identity provider address is obtained is implementation-dependent and up to the service provider.

3)
The UE in turn contacts the IdP under the URL given in the Location header field and the UE must access the NAF/IdP URL with an HTTP Request with <lib:AuthnRequest> information [12].

The UE shall indicate to the NAF/IdP that GBA-based authentication is supported by adding a constant string to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of clause 5.3 of TS 33.222 [2].

If a bootstrapped security association between UE and IdP exists, then UE and IdP/NAF share the keys to protect reference point Ua and the UE possesses all necessary data to perform HTTP Digest Authentication from previous messages. In this case step 3 is combined with the request in step 5, and step 4 is omitted.

4)
As the IdP is collocated with the NAF, the HTTP Digest authentication is conducted in the accordance to 3GPP TS 33.222 [2] and a HTTP response with Unauthorized status and WWW-Authenticate header field is sent to the UE. The method and details of this authentication are defined by TS 33.222 [2] and not in [7].

If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the IdP, then the UE will execute a new bootstrapping procedure with the BSF. This is transparent to the SP.

5)
The UE returns the Authorization data, using the B-TID as a username and the Ks_(ext/int)_NAF as password to the IdP. The UE may include further LAP related user data.

If the IdP is collocated with the NAF, then this happens as outlined in TS 33.222 [2]. The USS might contain Liberty specific information.

6)
The <lib:AuthnRequest> is processed. The IdP responds with an <lib:AuthnResponse> in the HTTP Response redirect URL [12]. The IdP may include further LAP-related data.

7)
The UE contacts the SP again using this URL and HTTP Request with <lib:AuthnResponse>.

8)
The SP answers with a HTTP Response.

[image: image1.wmf]

1. HTTP Request

2. http Response with

<lib

:AuthnRequest>

4. HTTP Unauthorized

WWW

-

Authenticate

3. HTTP Request

with

<

lib:

AuthnRequest>

IdP

UE

Service

Provider

6. HTTP Response with

<

lib:

AuthnResponse>

Bootstrapping procedure, if no valid credentials available

7. HTTP Request

with

<

lib:

AuthnResponse>

8. HTTP Response

BSF

5. HTTP GET Authorization

B

-

TI

D / Ks_(ext/int)_NAF authentication

Request of credentials and

related material using Zn

interface, if not already in

NAF

Figure 4.3-1: Message flow for SSO with <lib:AuthnResponse> and conventional TLS with GBA

NOTE 1:
As the IdP is collocated with the NAF i.e. Ua is chosen for authentication as outlined in TS 33.222 [2], then each request over Ua is authenticated by itself, as each request carries the full Authorization Header. There is no difference between first request and follow-up requests.

NOTE 2:
LAP ID-FF specification [7] defines also a POST-based communication between UE and IdP besides a GET-based request with a query string. This is in conformance with TS33.222 [2], as there only a HTTP request is specified without any explicit method stated.

NOTE 3:
The SP may use the GBA-based authentication support indication received in step 1 to select an appropriate identity provider address.

4.3.3.2
HTTPS with PSK TLS

When HTTPS with PSK TLS according to TS 33.222 [2], clause 5.4, is utilized, then the steps are the following:

1)
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP Request. This request shall contain the GBA-based authentication support indication (cf. step 3 of clause 4.3.3.1), as the UE may be forced by the IdP/NAF to use conventional TLS, even if the UE offers the usage of PSK TLS.

2)
On receipt of the HTTP request from UE, the SP obtains the identity provider and sends a redirect HTTP Response with <lib:AuthnRequest> in the URL to the UE. The means by which the identity provider address is obtained is implementation-dependent and up to the service provider.

3)
The UE starts to set up a PSK TLS tunnel to the IdP/NAF as specified in clause 5.4 in TS 33.222 [2]. This is in preparation of sending the redirected request to the IdP/NAF (cf. step 4). During TLS tunnel setup the UE indicates possibility to use PSK TLS, and the IdP/NAF may select to use PSK TLS with GBA.

The UE recognizes from the TLS ciphersuite selected by IdP/NAF if the IdP/NAF will use PSK TLS.

 If a bootstrapped security association between UE and IdP/NAF exists, then UE and IdP/NAF share the keys to protect reference point Ua. Thus the UE possesses all necessary data to set up the PSK TLS tunnel according to TS 33.222 [2] and the next step can be approached immediately without executing a bootstrapping procedure.

If no bootstrapped security association between UE and IdP/NAF exists, but the UE does contain a valid bootstrapping key Ks, then the UE establishes a PSK TLS tunnel with the IdP/NAF based on the related Ks_(ext)_NAF.

If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the IdP/NAF, then the UE will execute a new bootstrapping procedure with the BSF. This is transparent to the SP.
4)
The UE accesses the IdP/NAF URL with the HTTP GET Request with <lib:AuthnRequest> information [12] within the established PSK TLS tunnel.

5)
The IdP extracts the <lib:AuthnRequest>, processes it, uses the UE authentication done during the PSK TLS tunnel establishment, and sends a redirect HTTP Response to the UE, which redirects the UE back to the SP. The URL may contain a SAML artifact or a <lib:AuthnResponse>.

6)
The SP extracts the SAML artifact or the <lib:AuthnResponse>, processes it and answers with a HTTP Response.

7)
The SP answers with a HTTP Response.

[image: image3.emf]

 1. HTTP Request

2. http Respons e with <lib:AuthnRequest>

IdP

UE Service Provider

5. HTTP Response with <lib:AuthnResponse>

3. Bootstrapping procedure, if no valid credentials available

5. Redirect to SP

7. HTTP Response

BSF

 4. HTTP GET Request with <lib:AuthnRequest>

3. Establishment of PSK TLS Tunnel

6. SP processes artifact or <lib:A uthnRespnse>

Figure 4.3-1a: Message flow for SSO with <lib:AuthnResponse> and usage of PSK TLS with GBA

NOTE:
The notes given in clause 4.3.3.1 are also applicable for usage of PSK TLS as defined in this clause.

4.3.4
SSO scenario: ID-FF with artifact transfer

This scenario is similar to the scenario given in clause 4.3.3, with the extension that the service provider is able to contact the IdP directly.

NOTE:
As the basic message flow is the same for artifact and for <lib:AuthnResponse> usage, the same differences between usage of conventional TLS and PSK TLS as in clause 4.3.3 apply to this clause also. Message flows given in this clause refer to conventional TLS, Analogous usage of PSK TLS is also possible.

The IdP must support an additional interface to SP, to allow the SP retrieval of the authentication assertion. This interface is not completely separated from GBA, as this authentication information may include GBA related information, e.g. user identity, pseudonym and further information from GUSS, restrictions based on GBA, etc.

1)
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP Request. This request shall contain the GBA-based authentication support indication (cf. step 3), as this is required for the redirection of the request according to step 3.

2)
On receipt of the HTTP request from UE, the SP obtains the identity provider and sends a redirect HTTP Response with <lib:AuthnRequest> to UE. The means by which the identity provider address is obtained is implementation-dependent and up to the service provider.

3)
The UE in turn contacts the IdP under the URL given in the Location header field and the UE must access the NAF/IdP URL with an HTTP Request with <lib:AuthnRequest> information [12].

The UE shall indicate to the NAF/IdP that GBA-based authentication is supported by adding a constant string to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of clause 5.3 of TS 33.222 [2].

If a bootstrapped security association between UE and IdP/NAF exists, then UE and IdP/NAF share the keys to protect reference point Ua and the UE possesses all necessary data to perform HTTP Digest Authentication from previous messages. In this case step 3 is combined with the request in step 5, and step 4 is omitted.

4)
If the UE is not yet authenticated with the IdP, then the authentication has to take place here, as defined in TS 33.222 [2]. The method and details of this authentication are not defined by Liberty Alliance in [7]. The IdP sends a HTTP response with Unauthorized status to the UE as defined in TS 33.222 [2].

If there is no valid NAF specific key material in the NAF, or the freshness of the key material is not to the satisfaction of the NAF or IdP, then the bootstrapping procedure has to be performed as defined in TS33.220 [1]. This is transparent to the SP.

5)
The UE answers with a HTTP GET request with Authorization header field containing as a username the B-TID and as a password the Ks_(ext/int)_NAF. The UE may include further LAP related user data.

The IdP/NAF can request the credentials and related material, if it does not have it stored already. The received USS may contain further Liberty specific information.

6)
The IdP responds with a SAML artifact in the HTTP Response redirect URL [12]. The IdP may include further LAP related data.

7)
The UE contacts the SP again using this URL and HTTP Request with the SAML artifact.

8)
The SP sends an HTTP Request with the SAML artifact to the IdP. The request contains a <samlp:Request> SOAP Request message to the identity provider’s SOAP endpoint, requesting the assertion by providing the SAML assertion artifact in the < samlp:AssertionArtifact> element as specified in [12]

9)
The IdP can now construct or find the requested assertion and responds with a <samlp:Response> SOAP Response message with the requested <saml:Assertion> or an status code as defined [13]. The IdP sends the authentication assertion that corresponds to the artifact.

10)
The SP processes the SOAP message with the <saml:Assertion> returned in the <samlp:Response>, verifies the signature on the <saml:Assertion> and processes the message as defined in [12] and then answers with a HTTP Response.

The SAML authentication assertion should have a lifetime equal to or less than the B-TID. The assertion should be stored together with the B-TID in the table described in clauses 4.3.1 and 4.3.2.

[image: image5.wmf]

1. HTTP Request

2. http Response with

<

lib:

AuthnRequest>

4. HTTP Unauthorized

WWW

-

Authenticate

3. HTTP Request

with

<

lib:

AuthnRequest>

IdP

UE

Service

Provider

6. HTTP Response

with Artifact()

Bootstrapping, if no valid credentials available

7. HTTP Request

with

Artifact()

10. HTTP Response

8. HTTP Request

with

Artifact() in SOAP

Request messag

e

9. HTTP Response with

Assertion in SOAP

Response message

BS

F

5. HTTP GET Authorization u

sing B

-

TID / Ks_(ext/int)_NAF authentication

Request of credentials and

related material using Zn

interface, if not already in

NAF

Figure 4.3-2: Message flow for SSO with Artifact transfer and usage of GBA

4.3.5
SSO scenario: ID-WSF Authentication Service
In this scenario the UE is LAP enabled, i.e. a LUAD (Liberty enabled User Agent or Device as defined in Liberty ID-WSF Profiles for Liberty enabled User Agents and Devices specification [16]). The protocol elements used are taken from ID–WSF Authentication Service [8], and the interaction of UE with IdP comprises two consecutive protocol runs. The active LUAD client contacts the NAF/IdP first before accessing the service provided by the SP.

1.
The UE authenticates with the Authentication Service (AS) of the IdP and retrieves a security token, which entitles the UE to invoke some services.

2.
The UE invokes the Single-Sign-On Service (SSOS) of the IdP using the security token. In this step the UE receives the authentication assertion (authentication and authorisation information) to be used at the SP.

3.
The UE presents the authentication assertion to the SP acting as a WSP for web service access.

In case the WSP providing the web service to the user is part of the domain of the IdP operator, the LUAD client may also contact the WSP directly with the security token. In this case the SSOS contact may be left out.

Mapping of the three steps to GBA is done in the following way:
-
The first step is mapped to the communication between user (LUAD) and AS as specified within LAP [8]. The authentication protocol is embedded in the SASL protocol as described in clause 4.2.1.2. The Ub run must be executed by the UE if necessary. This is not based on LAP protocols [6], [7] or [8], but only on GBA protocols [1].

-
The second and third steps are completely as defined in LAP (no connection to GBA). The only dependency on GBA is in the content of the SAML authentication assertion depending partly on GBA results (protocol parameters, e.g. execution time, and user-specific parameters, e.g. taken from USS).

The following gives a message flow for the SSO scenario of the ID-WSF authentication service with response transfer. This can also applies when the SSOS also offers an ID-WSF authentication service, in which case the SSOS is collocated with the AS.

[image: image6.emf]UE SP AS SSOS BSF HSS

1. HTTP Request

2. HTTP Response

 with

<AuthnRequest>

3. HTTP Request with <SASLRequest> in

SOAP Request message

4. HTTP Response with <digest-

challenge> in <SASLResponse> in SOAP

Response message

5. Bootstrapping, if no valid credentials available

6. HTTP Request with <digest-response>

in <SASLRequest> in

SOAP Request message using B-TID/

Ks_(ext/int)_NAF authentication

8. HTTP Response with <SASLResponse>

in SOAP Response message

9. HTTP Request with <AuthnRequest> in SOAP Request

message

7. Request of credentials and related

material using Zn interface, if not

already in AS/NAF

10. HTTP Response with <Response> in SOAP Response

message

11. HTTP Request

with

<Response>

12. HTTP Response

Figure 4.3-3: Message flow for ID-WSF AS and SSO with Response transfer and usage of GBA

1.
The UE contacts the SP to gain access to a service provided by the SP by sending an HTTP request.

2.
On receipt of the HTTP request from the UE, the SP obtains the AS address and sends a redirect HTTP response to the UE. The HTTP response may or may not contain an <lib:AuthnRequest> header according to the application or deployment model. The means by which the AS’s address is obtained is implementation-dependent.

3.
The UE (LUAD-WSC) sends an HTTP request to the AS. The request contains a soap-bound <SASLRequest> header, where the "mechanism" parameter is filled with a list of one-or-more client-supported SASL mechanism names.
The UE shall indicate to the NAF/AS that GBA-based authentication is supported by adding a constant string to the "User-Agent" HTTP header as a product token as specified in IETF RFC 2616 [12]. This constant string shall be set according to step 2 of clause 5.3 of TS 33.222[2].
If a bootstrapped security association between UE and NAF/AS exists, then UE and NAF/AS share the keys to protect reference point Ua and the UE may perform a subsequent authentication procedure if the SASL profile allows. In this case step 3 is combined with the request in step 6, and step 4 and step 5 are omitted.

4
The AS sends a HTTP response to the UE. The response contains a soap-bound <SASLResponse> header, where the "serverMechanism" parameter is filled with a selected SASL mechanism name (i.e. DIGEST authentication) from the client-supported SASL mechanism list and in this case the <SASLResponse> header also contains a <digest-challenge> parameter. The method and details of this parameter are compliant to RFC2831.

5
If the UE does not contain a valid bootstrapping session or the freshness of the key material is not sufficient for the AS, then the UE will execute a new bootstrapping procedure with the BSF and obtain a shared key Ks_(ext/int)_NAF. This is transparent to the SP.

6
The UE re-sends a HTTP request to the AS. The request contains a soap-bound <SASLRequest> header, where the "mechanism" parameter is filled with the returned SASL mechanism in step 4 and in this case the <SASLRequest> header also contains a <digest-response> parameter, where the authorization data is computed using the B-TID as a username and the Ks_(ext/int)_NAF as the password. The method and details of this parameter are compliant to RFC2831. The UE may include further LAP related user data.

7
As the AS is collocated with the NAF, the AS requests Ks_(ext/int)_NAF and other materials from the BSF using the Zn interface if they are not available yet.

8
The AS processes the <digest-response> parameter in the <SASLRequest> header. Then the AS responds with a soap-bound <SASLResponse> header in the HTTP Response. The <SASLResponse> header contains an ID-WSF EPR (EndpointReference) parameter which refers to the SSOS instance and the Service type URI is set according to [8] to identify the ID-WSF SSOS. The <SASLResponse> header also contains some necessary credentials for the UE to invoke the SSOS. The AS may include further LAP-related data.

9
The UE sends a HTTP request to the SSOS. The request contains a soap-bound <samlp2:AuthnRequest> header, where the ProtocolBinding attribute is set according to [8] to identify the SAML protocol binding to be used .The request also contains a <wsse:security> header which includes the returned credentials in step 8.The UE may have to construct the <samlp2:AuthnRequest> header by itself if it does not receive such a header in step 2 according to the application or deployment model.

10
The <samlp2:AuthnRequest> is processed. The SSOS responds with an <samlp2: Response> header in the HTTP Response redirect URL [12]. The <samlp2: Response> header contains a <saml2:Assertion> parameter . The SSOS may include further LAP-related data.

11
The UE contacts the SP again using this URL and HTTP Request with <samlp2: Response >.

12
The SP answers with a HTTP Response.

NOTE:
If the IdP is co-hosted with the BSF, then the first step could be mapped to Ub reference point of GBA [4]. The second step could be mapped to Ua interface of GBA.

Despite having this formal analogy of executing two consecutive protocol runs required by both protocol worlds, it seems that a simple mapping is not possible. The syntax and semantic of the information elements transferred between GBA and LAP protocols differ substantially. This is one of the reasons, why clause 4.2.2 above states that , the ID-WSF IdP/BSF co-hosting scenario will not be elaborated further in this document.

4.3.6
SSO scenario: SAMLv2.0 with <samlp:Response> transfer
4.3.6.1
HTTPS with TLS

This scenario is a version of the scenario in clause 4.3.3.1 with the difference that all protocol elements are taken from within SAMLv2.0 [11]. Hence all the steps described there apply here as well, after replacing <lib:AuthnRequest> with <samlp:AuthnRequest> and <lib:AuthnResponse> with <samlp:Response>. The steps are not repeated here, only an adapted version of Figure 4.3-1 is included.

[image: image7.wmf]

1. HTTP Request

2. http Response with

<

samlp:

Authn

Request

>

4. HTTP Unauthorized

WWW

-

Authenticate

3. HTTP Request

with

<

samlp:

AuthnRequest>

IdP

UE

Service

Provider

6. HTTP Response with

<

samlp:

Re

sponse>

Bootstrapping procedure, if no valid credentials available

7. HTTP Request

with

<

samlp:

Response>

8. HTTP Response

BSF

5. HTTP GET Authorization

B

-

TID / Ks_(ext/int)_NAF authentication

Request of credentials and

related material using Zn

interface, if not already in

NAF

Figure 4.3-4: Message flow for SSO with <samlp:Response> and TLS with GBA
4.3.6.2
HTTPS with PSK TLS

This scenario is a version of the scenario in clause 4.3.3.2 with the difference that all protocol elements are taken from within SAMLv2.0 [11]. Hence all the steps described there apply here as well, after replacing <lib:AuthnRequest> with <samlp:AuthnRequest> and <lib:AuthnResponse> with <samlp:Response>. The steps are not repeated here, only an adapted version of Figure 4.3-1a is included.

[image: image8.emf]

 1. HTTP Request

2. http Response w ith <samlp:AuthnRequest >

IdP

UE Service Provider

5. HTTP Response with < samlp:R esponse>

3. Bootstrapping procedure, if no valid credentials available

5. Redirect to SP

7. HTTP Response

BSF

 4. HTTP GET Request with < samlp: AuthnRequest>

3. Establishment of PSK TLS Tunnel

6. SP processes artifact or < samlp : Response>

Figure 4.3-5: Message flow for SSO with <samlp:Response> and usage of PSK TLS with GBA

4.3.7
SSO scenario: SAMLv2.0 with artifact transfer (resolution)
This scenario is a version of the scenario in clause 4.3.4 with the difference that all protocol elements are taken from within SAMLv2.0 [11]. Hence all the steps described there apply here as well, after replacing <lib:AuthnRequest> with <samlp:AuthnRequest>. The steps are not repeated here, only the adapted version of Figure 4.3-2 is included.

[image: image9.wmf]

1. HTTP Request

2. http Response with

<

samlp:

AuthnRequest>

4. HTTP Unauthorized

WWW

-

Authenticate

3. HTTP Request

with

<

samlp:

AuthnRequest>

IdP

UE

Service

Provider

6. HTTP Response

with Artifact()

Bootstrapping, if no valid credentials available

7. HTTP Request

with

Artifact()

10. HTTP Response

8. HTTP Request

with

Artifact() in SOAP

Request messag

e

9. HTTP Response with

Assertion in SOAP

Response message

BSF

5. HTTP GET Authorization u

sing B

-

TID / Ks_(ext/int)_NAF authentication

Request of credentials and

related material using Zn

interface, if not already in

NAF

Figure 4.3-6: Message flow for SSO with Artifact resolution (SAMLv2.0) and usage of GBA

************************* end change ****************************

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1231220475.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

5. HTTP GET Authorization using B-TID / Ks_(ext/int)_NAF authentication

Request of credentials and

related material using Zn

interface, if not already in NAF

6. HTTP Response with Artifact()

7. HTTP Request with Artifact()

8. HTTP Request with Artifact() in SOAP Request message

9. HTTP Response with Assertion in SOAP Response message

10. HTTP Response

Bootstrapping, if no valid credentials available

 4. HTTP Unauthorized

WWW-Authenticate

3. HTTP Request with <lib:AuthnRequest>

2. http Response with

<lib:AuthnRequest>

BSF

 1. HTTP Request

UE

Service Provider

IdP

_935227290.doc

_1231225574.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

6. SP processes artifact or <lib:AuthnRespnse>

5. Redirect to SP

5. HTTP Response with <lib:AuthnResponse>

 4. HTTP GET Request with <lib:AuthnRequest>

3. Establishment of PSK TLS Tunnel

3. Bootstrapping procedure, if no valid credentials available

7. HTTP Response

2. http Response with

<lib:AuthnRequest>

BSF

IdP

 1. HTTP Request

UE

Service Provider

_935227290.doc

_1231225294.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

6. SP processes artifact or <samlp:Response>

5. Redirect to SP

5. HTTP Response with <samlp:Response>

 4. HTTP GET Request with <samlp:AuthnRequest>

3. Establishment of PSK TLS Tunnel

3. Bootstrapping procedure, if no valid credentials available

7. HTTP Response

2. http Response with

<samlp:AuthnRequest>

BSF

IdP

 1. HTTP Request

UE

Service Provider

_935227290.doc

_1225265308.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

6. HTTP Response with < lib:AuthnResponse>

 5. HTTP GET Authorization

B-TID / Ks_(ext/int)_NAF authentication

Request of credentials and related material using Zn interface, if not already in NAF

7. HTTP Request with < lib:AuthnResponse>

8. HTTP Response

2. http Response with

<lib:AuthnRequest>

 4. HTTP Unauthorized

WWW-Authenticate

BSF

IdP

 1. HTTP Request

Bootstrapping procedure, if no valid credentials available

3. HTTP Request with < lib:AuthnRequest>

UE

Service Provider

_935227290.doc

_1225265602.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

7. HTTP Request with�<samlp:Response>

6. HTTP Response with�<samlp:Response>

3. HTTP Request with�<samlp:AuthnRequest>

 5. HTTP GET Authorization

B-TID / Ks_(ext/int)_NAF authentication

Request of credentials and related material using Zn interface, if not already in NAF

8. HTTP Response

2. http Response with

<samlp:AuthnRequest>

 4. HTTP Unauthorized

WWW-Authenticate

BSF

IdP

 1. HTTP Request

Bootstrapping procedure, if no valid credentials available

UE

Service Provider

_935227290.doc

_1225267529.doc
		

		DOCUMENTTYPE

		

		1 (1)

		

		

		

		

		TypeUnitOrDepartmentHere

		

		

		

		TypeYourNameHere

		TypeDateHere

		

		

3. HTTP Request with <samlp:AuthnRequest>

2. http Response with

<samlp:AuthnRequest>

5. HTTP GET Authorization using B-TID / Ks_(ext/int)_NAF authentication

Request of credentials and

related material using Zn

interface, if not already in NAF

6. HTTP Response with Artifact()

7. HTTP Request with Artifact()

8. HTTP Request with Artifact() in SOAP Request message

9. HTTP Response with Assertion in SOAP Response message

10. HTTP Response

Bootstrapping, if no valid credentials available

 4. HTTP Unauthorized

WWW-Authenticate

BSF

 1. HTTP Request

UE

Service Provider

IdP

_935227290.doc

_1204630744.vsd
UE�

SP�

AS�

SSOS�

BSF�

HSS�

�

1. HTTP Request
�

3. HTTP Request with <SASLRequest> in SOAP Request message �

2. HTTP Response
 with <AuthnRequest>�

4. HTTP Response with <digest-challenge> in <SASLResponse> in SOAP Response message �

5. Bootstrapping, if no valid credentials available
�

�

6. HTTP Request with <digest-response> in <SASLRequest> in
SOAP Request message using B-TID/Ks_(ext/int)_NAF authentication�

8. HTTP Response with <SASLResponse> in SOAP Response message �

9. HTTP Request with <AuthnRequest> in SOAP Request message
�

7. Request of credentials and related material using Zn interface, if not already in AS/NAF�

10. HTTP Response with <Response> in SOAP Response message
�

11. HTTP Request with
<Response>
�

12. HTTP Response
�

