
3GPP

Technical Specification Group Services and System Aspects TSGS#26(04)0806
Meeting #26, Athens, GREECE, 13 - 16 December 2004

Source: SA5 (Telecom Management)

Title: 2 Rel-6 CR 32.601/3 Basic CM IRP Requirements / CORBA SS

Document for: Approval

Agenda Item: 7.5.3

Doc1stevel Specific

a CR R Phase Subject Ca VersCu Doc2ndLev WorkitemsI
D

SP-040806 32.601 002 -- Rel-6 Add Signalling Transport Network (STN) NRM IRP in 32.601
BasicCM IRP Requirements

B 6.0.0 S5-049040 OAM-NIM

SP-040806 32.603 015 -- Rel-6 Align the IDL style in the CORBA SS with the IDL Style Guide in
32.150

F 6.1.0 S5-047125 OAM-NIM

3GPP TSG-SA5 (Telecom Management) S5-049040
Meeting #40, Sanya, CHINA, 15 - 19 November 2004

CR-Form-v7

CHANGE REQUEST

� 32.601 CR 002 � rev - � Current version: 6.0.0
�

For HELP on using this form, see bottom of this page or look at the pop-up text over the � symbols.

Proposed change affects: UICC apps� ME Radio Access Network X Core Network X

Title: � Add Signalling Transport Network (STN) NRM IRP in 32.601 BasicCM IRP

Requirements

Source: � SA5 (llrui@bupt.edu.cn; liyewen@chinamobile.com)

Work item code: � OAM-NIM Date: � 19/11/2004

Category: � B Release: � Rel-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: � Since Signalling Transport Network (STN) NRM IRP is introduced in R6, the

scope of NRM IRP which can use BasicCMIRP needs to be extended.

Summary of change: � BasicCMIRP should be extended to be applicable to new NRM model, such as

Signalling Transport Network (STN) NRM IRP.

Consequences if �
not approved:

Clauses affected: � 2, 4.1

 Y N
Other specs � X Other core specifications �
affected: X Test specifications
 X O&M Specifications

Other comments: �

Change in Clause 2

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document
(including a GSM document), a non-specific reference implicitly refers to the latest version of that document in
the same Release as the present document.

[1] 3GPP TS 32.101: "Telecommunication management; Principles and high level requirements".

[2] 3GPP TS 32.102: "Telecommunication management; Architecture".

[3] 3GPP TS 32.600: "Telecommunication management; Configuration Management (CM); Concept
and high-level requirements".

[4] 3GPP TS 32.622: "Telecommunication management; Configuration Management (CM); Generic
network resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[5] 3GPP TS 32.632: "Telecommunication management; Configuration Management (CM); Core
Network Resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[6] 3GPP TS 32.642: "Telecommunication management; Configuration Management (CM); UTRAN
network resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[7] 3GPP TS 32.652: "Telecommunication management; Configuration Management (CM); GERAN
network resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[8] 3GPP TS 32.742: "Telecommunication management; Configuration Management (CM);
Signalling Transport Network (STN) Interface Network Resource Model (NRM) Integration
Reference Point (IRP): Information Service (IS)".

End of Change in Clause 2

Change in Clause 4.1

4.1 General Requirements
This requirements specification defines requirements for the IS for this IRP. As such, capabilities specified here as
being required in the IS are not necessarily required in the product implementation. That which is required in the
product implementation will be specified in the IS itself.

The following general and high-level requirements shall apply for the present IRP:

A. IRP-related requirements in 3GPP TS 32.101 [1].

B. IRP-related requirements in 3GPP TS 32.102 [2].

C. IRP-related requirements in 3GPP TS 32.600 [3].

In addition to the above, the following more specific requirements shall apply:

CR page 3

1. The IS defined by this IRP shall enable an NM to operate on (access) any of the NRMs defined in [4], [5], [6],
and [7] and [8].

2. The IS defined by this IRP shall as far as possible be independent of any specific definitions of MOCs,
attributes etc. in the NRMs referred to in item 1.

3. The IS specified by this IRP shall assume that when this IRP is implemented that the Kernel CM IRP is also
implemented.

End of Change in Clause 4.1
End of the Document

3GPP

3GPP TSG-SA5 (Telecom Management) S5-047125
Meeting #40, Sanya, CHINA, 15 - 19 November 2004

CR-Form-v7

CHANGE REQUEST

� 32.603 CR 015 � rev - � Current version: 6.1.0
�

For HELP on using this form, see bottom of this page or look at the pop-up text over the � symbols.

Proposed change affects: UICC apps� ME Radio Access Network X Core Network X

Title: � Align the IDL style in the CORBA SS with the IDL Style Guide in 32.150

Source: � SA5 ZTE (huangsq@zte.com.cn, xiongkj@zte.com.cn)

Work item code: � OAM-NIM Date: � 19/11/2004

Category: � F Release: � Rel-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: � Add the mandatory exception operationNotSupported for optional operations in

BasicCMIRP. Align IDL style with IDL Style Guide.

Summary of change: � Add the mandatory exception operationNotSupported for optional operations in

BasicCMIRP. Align IDL style with IDL Style Guide.

Consequences if �
not approved:

BasicCMIRP can not throw the standard-defined exception when it does not
support the optional operations. This non-standard behaviour can confuse
IRPManager.

Clauses affected: � 6.3, Annex A

 Y N
Other specs � X Other core specifications �
affected: X Test specifications
 X O&M Specifications

Other comments: �

3GPP

6.3 Operation parameter mapping
The Basic CM IRP: IS (see 3GPP TS 32.602 [4]) defines semantics of parameters carried in operations across the Basic
Configuration Management IRP. Tables 2 through 8 indicate the mapping of these parameters, as per operation, to their
equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMoAttributes when called with
ResultContents set to NAMES_AND_ATTRIBUTES. Iterating the BasicCmInformationIterator is used to fetch the
result.

….

Change in Table 3

Table 3: Mapping from IS getContainment parameters to SS equivalents

IS Operation parameter SS Method parameter Qualifier
invokeIdentifier - (No equivalence) -
invokeIdentifierOut Return value of type BasicCmInformationIterator M
baseObjectInstance in DN baseObject M
scope in SearchControl searchControl (SearchControl.type and SearchControl.level) O
Not specified in IS in SearchControl searchControl (SearchControl.filter) M
containment Return value of type BasicCmInformationIterator - parameter out ResultSet

fetchedElements of method next_basicCmInformations
M

status Exceptions:
FindManagedObjects,
ManagedGenericIRPSystem::OperationNotSupported,
ManagedGenericIRPSystem::ParameterNotSupported,
ManagedGenericIRPSystem::InvalidParameter,
ManagedGenericIRPSystem::ValueNotSupported,
UndefinedMOException,
IllegalDNFormatException,
UndefinedScopeException,
IllegalScopeTypeException,
IllegalScopeLevelException,
IllegalFilterFormatException,
FilterComplexityLimit

M

End of change in Table 3

Change in Table 5

Table 5: Mapping from IS cancelOperation parameters to SS equivalents

IS Operation parameter SS Method parameter Qualifier
invokeIdentifier - (Not applicable, the BasicCmInformationIterator instance identifies the ongoing

operation)
M

status Exceptions:
ManagedGenericIRPSystem::OperationNotSupported,
DestroyException

M

End of change in Table 5

Change in A

3GPP

Annex A (normative):
CORBA IDL, Access Protocol
#ifndef BASICCMIRPSYSTEM_IDL
#define BASICCMIRPSYSTEM_IDL

#include "ManagedGenericIRPConstDefs.idl"
#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements
#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem
{

 /**
 * Defines the name of a Managed Object Class
 */
 typedef string MOClass;

 /**
 * The format of Distinguished Name (DN) is specified in 3GPP TS 32.300
 * "Name Conventions for Managed Objects".
 */
 typedef string DN;

 /**
 * Defines the name of an attribute of a Managed Object
 */
 typedef string MOAttributeName;

 /**
 * Defines the value of an attribute of a Managed Object in form of a CORBA
 * Any. Apart from basic datatypes already defined in CORBA, the allowed
 * attribute value types are defined in the AttributeTypes module.
 */
 typedef any MOAttributeValue;

 /**
 * This module adds datatype definitions for types
 * used in the NRM which are not basic datatypes defined
 * already in CORBA.
 */
 module AttributeTypes
 {

 /**
 * A set of strings.
 */
 typedef sequence<string> StringSet;

 };

 exception IllegalFilterFormatException {
 string reason;
 };

3GPP

 exception IllegalDNFormatException {
 string reason;
 };
 exception IllegalScopeTypeException {
 string reason;
 };
 exception IllegalScopeLevelException {
 string reason;
 };
 exception UndefinedMOException {
 string reason;
 };

 exception UndefinedScopeException {
 string reason;
 };

 exception FilterComplexityLimit {
 string reason;
 };

 exception DuplicateMO {};

 exception CreateNotAllowed {};

 exception ObjectClassMismatch {};

 exception NoSuchObjectClass {
 MOClass objectClass;
 };

 exception ParentObjectDoesNotExist {};

 /**
 * System otherwise fails to complete the operation. System can provide
 * reason to qualify the exception. The semantics carried in reason
 * is outside the scope of this IRP.
 */
 exception NextBasicCmInformations { string reason; };
 exception NextDeleteErrors { string reason; };
 exception NextModifyErrors { string reason; };
 exception DestroyException { string reason; };
 exception GetBasicCmIRPVersion { string reason; };
 exception GetBasicCmIRPOperationProfile { string reason; };
 exception GetBasicCmIRPNotificationProfile { string reason; };
 exception FindManagedObjects { string reason; };
 exception CreateManagedObject { string reason; };
 exception DeleteManagedObjects { string reason; };
 exception ModifyManagedObjects { string reason; };

 /**
 *
 * In this version the only allowed filter value is "TRUE" i.e. a filter that
 * matches everything.
 */
 typedef string FilterType;

 /**
 * ResultContents is used to tell how much information to get back
 * from the find_managed_objects operation.
 *
 * NAMES: Used to get only Distinguished Name

3GPP

 * for MOs.
 * The name contains both the MO class
 * and the names of all superior objects in the naming
 * tree.
 *
 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus
 * MO attributes (all or selected).
 */
 enum ResultContents
 {
 NAMES,
 NAMES_AND_ATTRIBUTES
 };

 /**
 * ScopeType defines the kind of scope to use in a search
 * together with SearchControl.level, in a SearchControl value.
 *
 * SearchControl.level is always >= 0. If a level is bigger than the
 * depth of the tree there will be no exceptions thrown.
 * BASE_ONLY: level ignored, just return the base object.
 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"
 * distance from the base object, where 0 is the base object.
 * BASE_SUBTREE: return the base object and all of its subordinates
 * down to and including the nth level.
 * BASE_ALL: level ignored, return the base object and all of it's
 * subordinates.
 */
 enum ScopeType
 {
 BASE_ONLY,
 BASE_NTH_LEVEL,
 BASE_SUBTREE,
 BASE_ALL
 };

 /**
 * SearchControl controls the find_managed_object search,
 * and contains:
 * the type of scope ("type" field),
 * the level of scope ("level" field), level 0 means the "baseObject",
 * level 1 means baseobject including its sub-ordinates etc..
 * the filter ("filter" field),
 * the result type ("contents" field).
 * The type, level and contents fields are all mandatory.
 * The filter field contains the filter expression.
 * The string "TRUE" indicates "no filter",
 * i.e. a filter that matches everything.
 */
 struct SearchControl
 {
 ScopeType type;
 unsigned long level;
 FilterType filter;
 ResultContents contents;
 };

 /**
 * Represents an attribute: "name" is the attribute name
 * and "value" is the attribute value.
 */
 struct MOAttribute
 {

3GPP

 MOAttributeName name;
 MOAttributeValue value;
 };

 typedef sequence<MOAttribute> MOAttributeSet;

 struct Result
 {
 DN mo;
 MOAttributeSet attributes;
 };

 typedef sequence<Result> ResultSet;

 /**
 * AttributeErrorCategory defines the categories of errors, related to
 * attributes, that can occur during creation or modification of MOs.
 *
 * NO_SUCH_ATTRIBUTE: The specified attribute does not exist.
 * INVALID_ATTRIBUTE_VALUE: The specified attribute value is not valid.
 * MISSING_ATTRIBUTE_VALUE: An attribute value is required but none was
 * provided and no default value is defined for the attribute.
 * INVALID_MODIFY_OPERATOR: The specified modify operator is not valid
 * (e.g. operator ADD_VALUES applied to a non multi-valued attribute
 * or operator SET_TO_DEFAULT applied where no default value is defined).
 * MODIFY_NOT_ALLOWED: The modification of the attribute is not allowed.
 * MODIFY_FAILED: The modification failed because of an unspecified reason.
 */
 enum AttributeErrorCategory
 {
 NO_SUCH_ATTRIBUTE,
 INVALID_ATTRIBUTE_VALUE,
 MISSING_ATTRIBUTE_VALUE,
 INVALID_MODIFY_OPERATOR,
 MODIFY_NOT_ALLOWED,
 MODIFY_FAILED
 };

 /**
 * DeleteErrorCategory defines the categories of errors that can occur
 * during deletion of MOs.
 *
 * SUBORDINATE_OBJECT: The MO cannot be deleted due to subordinate MOs.
 * DELETE_NOT_ALLOWED: The deletion of the MO is not allowed.
 * DELETE_FAILED: The deletion failed because of an unspecified reason.
 */
 enum DeleteErrorCategory
 {
 SUBORDINATE_OBJECT,
 DELETE_NOT_ALLOWED,
 DELETE_FAILED
 };

 /**
 * AttributeError represents an error, related to an attribute, that occured
 * during creation or modification of MOs.
 * It contains:
 * - the name of the indicted attribute ("name" field),

3GPP

 * - the category of the error ("error" field),
 * - optionally, the indicted attribute value ("value" field),
 * - optionally, additional details on the error ("reason" field).
 */
 struct AttributeError
 {
 MOAttributeName name;
 AttributeErrorCategory error;
 MOAttributeValue value;
 string reason;
 };

 typedef sequence<AttributeError> AttributeErrorSeq;

 /**
 * DeleteError represents an error that occured during deletion of MOs.
 * It contains:
 * - the distinguished name of the indicted MO ("objectName" field),
 * - the category of the error ("error" field),
 * - optionally, additional details on the error ("reason" field).
 */
 struct DeleteError
 {
 DN objectName;
 DeleteErrorCategory error;
 string reason;
 };

 typedef sequence<DeleteError> DeleteErrorSeq;

 /**
 * ModifyAttributeErrors represents errors that occured during
 * modification of attributes of a MO.
 * It contains:
 * - the distinguished name of the indicted MO ("objectName" field),
 * - a sequence containing the attribute errors ("errors" field).
 */
 struct ModifyAttributeErrors
 {
 DN objectName;
 AttributeErrorSeq errors;
 };

 typedef sequence<ModifyAttributeErrors> ModifyAttributeErrorsSeq;

 /**
 The BasicCmInformationIterator is used to iterate through a snapshot of
 Managed Object Information when IRPManager invokes find_managed_objects.
 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy
 operation is provided to handle the case where IRPManager wants to stop
 the iteration procedure before reaching the last iteration.
 */
 interface BasicCmInformationIterator
 {

 /**
 This method returns between 1 and "how_many" Managed Object information.
 The IRPAgent may return less than "how_many" items even if there are

3GPP

 more items to return. "how_many" must be non-zero. Return TRUE if there
 may be more Managed Object information to return. Return FALSE if there
 are no more Managed Object information to be returned.

 If FALSE is returned, the IRPAgent will automatically destroy the
 iterator.

 @parm how_many how many elements to return in the "fetchedElements" out
 parameter.
 @parm fetchedElements the elements.
 @returns A boolean indicating if any elements are returned.
 "fetchedElements" is empty when the BasicCmInformationIterator is
 empty.
 */

 boolean next_basicCmInformations (
 in unsigned short how_many,
 out ResultSet fetchedElements
)
 raises (NextBasicCmInformations,
 ManagedGenericIRPSystem::InvalidParameter);

 /**
 This method destroys the iterator.
 */

 void destroy ()
 raises (DestroyException);

 }; // end of BasicCmInformationIterator

 /**
 The DeleteResultIterator is used to iterate through the list of deleted MOs
 when IRPManager invokes method "delete_managed_objects".
 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy
 operation is provided to handle the case where IRPManager wants to stop
 the iteration procedure before reaching the last iteration.
 */
 interface DeleteResultIterator : BasicCmInformationIterator
 {

 /**
 Inherited method "next_basicCmInformations" has the same behaviour as
 for interface BasicCmInformationIterator, except that:
 - The Managed Object information returned in parameter
 "fetchedElements" contains only the DNs of the deleted MOs
 (no attributes are returned).
 - If FALSE is returned, the IRPAgent will not automatically destroy the
 iterator.
 */

 /**
 This method returns between 0 and "how_many" deletion errors. The
 IRPAgent may return less than "how_many" items even if there are more
 items to return. "how_many" must be non-zero. Return TRUE if there are
 more deletion errors to return. Return FALSE if there are no more
 deletion errors to be returned.

 If FALSE is returned and last call to inherited method
 "next_basicCmInformations" also returned FALSE (i.e. no more Managed

3GPP

 Object information to be returned), the IRPAgent will automatically
 destroy the iterator.

 @parm how_many: how many deletion errors to return in the
 "fetchedDeleteErrors" out parameter.
 @parm fetchedDeleteErrors: the deletion errors.
 @returns: a boolean indicating if any deletion errors are returned.
 */

 boolean next_deleteErrors (
 in unsigned short how_many,
 out DeleteErrorSeq fetchedDeleteErrors
)
 raises (NextDeleteErrors,
 ManagedGenericIRPSystem::InvalidParameter);

 }; // end of DeleteResultIterator

 /**
 The ModifyResultIterator is used to iterate through the list of modified
 MOs when IRPManager invokes method "modify_managed_objects".
 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy
 operation is provided to handle the case where IRPManager wants to stop
 the iteration procedure before reaching the last iteration.
 */
 interface ModifyResultIterator : BasicCmInformationIterator
 {

 /**
 Inherited method "next_basicCmInformations" has the same behaviour as
 for interface BasicCmInformationIterator, except that:
 - The Managed Object information returned in parameter
 "fetchedElements" contains DNs and attributes of the modified MOs.
 - If FALSE is returned, the IRPAgent will not automatically destroy the
 iterator.
 */

 /**
 This method returns between 0 and "how_many" modification errors. The
 IRPAgent may return less than "how_many" items even if there are more
 items to return. "how_many" must be non-zero. Return TRUE if there are
 more modification errors to return. Return FALSE if there are no more
 modification errors to be returned.

 If FALSE is returned and last call to inherited method
 "next_basicCmInformations" also returned FALSE (i.e. no more Managed
 Object information to be returned), the IRPAgent will automatically
 destroy the iterator.

 @parm how_many: how many modification errors to return in the
 "fetchedModifyErrors" out parameter.
 @parm fetchedModifyErrors: the modification errors.
 @returns: a boolean indicating if any modification errors are returned.
 */

 boolean next_modificationErrors (
 in unsigned short how_many,
 out ModifyAttributeErrorsSeq fetchedModifyErrors
)
 raises (NextModifyErrors,

3GPP

 ManagedGenericIRPSystem::InvalidParameter);

 }; // end of ModifyResultIterator

 typedef sequence<MOAttributeName> AttributeNameSet;

 /**
 * ModifyOperator defines the way in which an attribute value is to be
 * applied to an attribute in a modification of MO attributes.
 *
 * REPLACE: replace the current value with the provided value
 * ADD_VALUES: for a multi-valued attribute, add the provided values to the
 * current list of values
 * REMOVE_VALUES: for a multi-valued attribute, remove the provided values
 * from the current list of values
 * SET_TO_DEFAULT: set the attribute to its default value
 */
 enum ModifyOperator
 {
 REPLACE,
 ADD_VALUES,
 REMOVE_VALUES,
 SET_TO_DEFAULT
 };

 /**
 * AttributeModification defines an attribute value and the way it is to
 * be applied to an attribute in a modification of MO attributes.
 * It contains:
 * - the name of the attribute to modify ("name" field),
 * - the value to apply to this attribute ("value" field),
 * - the way the attribute value is to be applied to the attribute
 * ("operator" field).
 */
 struct AttributeModification
 {
 MOAttributeName name;
 MOAttributeValue value;
 ModifyOperator operator;
 };

 typedef sequence<AttributeModification> AttributeModificationSet;

 /**
 * The BasicCmIrpOperations interface.
 * Supports a number of Resource Model versions.
 */
 interface BasicCmIrpOperations
 {

 /**
 * Get the version(s) of the interface
 *
 * @raises GetBasicCmIRPVersion when the system for some reason
 * can not return the supported versions.
 * @returns all supported versions.
 */
 ManagedGenericIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()
 raises (GetBasicCmIRPVersion);

3GPP

 /**
 * Return the operation profile for a specific Basic CM IRP version.
 *
 * @raises GetBasicCmIRPOperationProfile when the system for some reason
 * cannot return the supported operations and parameters.
 * @returns the list of all supported operations and their supported
 * parameters for the specified version.
 */
 ManagedGenericIRPConstDefs::MethodList get_basicCm_IRP_operation_profile
 (
 in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version
)
 raises (GetBasicCmIRPOperationProfile,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter);

 /**
 * Return the notification profile for a specific Basic CM IRP version.
 *
 * @raises GetBasicCmIRPNotificationProfile when the system for some
 * reason cannot return the supported notifications and parameters.
 * @returns the list of all supported notifications and their supported
 * parameters for the specified version.
 */
 ManagedGenericIRPConstDefs::MethodList
 get_basicCm_IRP_notification_profile (
 in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version
)
 raises (GetBasicCmIRPNotificationProfile,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter);

 /**
 * Performs a containment search, using a SearchControl to
 * control the search and the returned results.
 *
 * All MOs in the scope constitute a set that the filter works on.
 * The result BasicCmInformationIterator contains all matched MOs,
 * with the amount of detail specified in the SearchControl.
 * For the special case when no managed objects are matched in
 * find_managed_objects, the BasicCmInformationIterator will be returned.
 * Executing the next_basicCmInformations in the
 * BasicCmInformationIterator will return FALSE for
 * completion.
 *
 * @parm baseObject The start MO in the containment tree.
 * @parm searchControl the SearchControl to use.
 * @parm requestedAttributes defines which attributes to get.
 * If this parameter is empty (""), all attributes shall
 * be returned. In this version this is the only supported semantics.
 * Note that this argument is only
 * relevant if ResultContents in the search control is
 * specifed to NAMES_AND_ATTRIBUTES.
 *
 *
 * @raises ManagedGenericIRPSystem::ValueNotSupported if a valid but
 * unsupported parameter value is passed. E.g. the contents
 * field in the searchcontrol parameter contains the value NAMES and
 * the optional getContainment IS operation is not supported.
 * @raises UndefinedMOException The MO does not exist.
 * @raises IllegalDNFormatException The dn syntax string is
 * malformed.

3GPP

 * @raises IllegalScopeTypeException The ScopeType in scope contains
 * an illegal value.
 * @raises IllegalScopeLevelException The scope level is negative
 * (<0).
 * @raises IllegalFilterFormatException The filter string is
 * malformed.
 * @raises FilterComplexityLimit if the filter syntax is correct,
 * but the filter is too complex to be processed by the IRP agent.
 * @see SearchControl
 * @see BasicCmInformationIterator
 */
 BasicCmInformationIterator find_managed_objects(in DN baseObject,
 in SearchControl searchControl,
 in AttributeNameSet requestedAttributes)
 raises (FindManagedObjects,
 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 ManagedGenericIRPSystem::ValueNotSupported,
 UndefinedMOException,
 IllegalDNFormatException,
 UndefinedScopeException,
 IllegalScopeTypeException,
 IllegalScopeLevelException,
 IllegalFilterFormatException,
 FilterComplexityLimit);

 /**
 * Performs the creation of a MO instance in the MIB maintained
 * by the IRPAgent.
 *
 * @parm objectName: the distinguished name of the MO to create.
 * @parm referenceObject: the distinguished name of a reference MO.
 * @parm attributes: in input, initial attribute values for the MO to
 * create; in output, actual attribute values of the created MO.
 * @parm attributeErrors: errors, related to attributes, that caused the
 * creation of the MO to fail.
 *
 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation
 * is not supported.
 * @raises ManagedGenericIRPSystem::ParameterNotSupported: An optional
 * parameter is not supported.
 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid
 * parameter value has been provided.
 * @raises UndefinedMOException: The MO does not exist.
 * @raises IllegalDNFormatException: The DN syntax string is malformed.
 * @raises DuplicateMO: A MO already exist with the same DN as the one
 * to create.
 * @raises CreateNotAllowed: The creation of the MO is not allowed.
 * @raises ObjectClassMismatch: The object class of the MO to create does
 * not match with the object class of the provided reference MO.
 * @raises NoSuchObjectClass: The class of the object to create is not
 * recognized.
 * @raises ParentObjectDoesNotExist: The parent MO instance of the
 * ManagedEntity specified to be created does not exist.
 */
 void create_managed_object (
 in DN objectName,
 in DN referenceObject,
 inout MOAttributeSet attributes,
 out AttributeErrorSeq attributeErrors
)
 raises (CreateManagedObject,
 ManagedGenericIRPSystem::OperationNotSupported,

3GPP

 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 UndefinedMOException,
 IllegalDNFormatException,
 DuplicateMO,
 CreateNotAllowed,
 ObjectClassMismatch,
 NoSuchObjectClass,
 ParentObjectDoesNotExist);

 /**
 * Performs the deletion of one or more MO instances from the MIB
 * maintained by the IRPAgent, using a SearchControl to control the
 * instances to be deleted.
 *
 * All MOs in the scope constitute a set that the filter works on.
 * All matched MOs will be deleted by this operation.
 * The returned DeleteResultIterator is used to retrieve the DNs of the
 * MOs deleted and the errors that may have occurred preventing deletion
 * of some MOs.
 * For the special case when no managed objects are matched in
 * delete_managed_objects, the DeleteResultIterator will be returned.
 * Executing the next_basicCmInformations in the DeleteResultIterator
 * will return FALSE for completion.
 *
 * @parm baseObject: the start MO in the containment tree.
 * @parm searchControl: the SearchControl to use; field "contents" has no
 * meaning here and shall be ignored.
 @returns: a DeleteResultIterator (see above).
 *
 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation
 * is not supported.
 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid
 * parameter value has been provided.
 * @raises UndefinedMOException: The MO does not exist.
 * @raises IllegalDNFormatException: The DN syntax string is malformed.
 * @raises IllegalScopeTypeException: The ScopeType in scope contains
 * an illegal value.
 * @raises IllegalScopeLevelException: The scope level is negative (<0).
 * @raises IllegalFilterFormatException: The filter string is malformed.
 * @raises FilterComplexityLimit: The filter syntax is correct,
 * but the filter is too complex to be processed by the IRPAgent.
 */
 DeleteResultIterator delete_managed_objects (
 in DN baseObject,
 in SearchControl searchControl
)
 raises (DeleteManagedObjects,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 UndefinedMOException,
 IllegalDNFormatException,
 UndefinedScopeException,
 IllegalScopeTypeException,
 IllegalScopeLevelException,
 IllegalFilterFormatException,
 FilterComplexityLimit);

 /**
 * Performs the modification of MO attributes. One or more MOs attributes
 * may be modified according to a SearchControl.
 *
 * All MOs in the scope constitute a set that the filter works on.

3GPP

 * All matched MOs will have their attributes modified by this operation.
 * The returned ModifyResultIterator is used to retrieve the DNs of the
 * modified MOs together with the values of the modified attributes, and
 * the errors that may have occurred preventing modification of some
 * attributes.
 * For the special case when no managed objects are matched in
 * modify_managed_objects, the ModifyResultIterator will be returned.
 * Executing the next_basicCmInformations in the ModifyResultIterator
 * will return FALSE for completion.
 *
 * @parm baseObject: the start MO in the containment tree.
 * @parm searchControl: the SearchControl to use; field "contents" has no
 meaning here and shall be ignored.
 * @parm modifications: the values for the attributes to modify and
 the way those values are to be applied to the attributes.
 @returns: a ModifyResultIterator (see above).
 *
 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation
 * is not supported
 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid
 * parameter value has been provided
 * @raises UndefinedMOException: The MO does not exist.
 * @raises IllegalDNFormatException: The DN syntax string is malformed.
 * @raises IllegalScopeTypeException: The ScopeType in scope contains
 * an illegal value.
 * @raises IllegalScopeLevelException: The scope level is negative (<0).
 * @raises IllegalFilterFormatException: The filter string is malformed.
 * @raises FilterComplexityLimit: The filter syntax is correct,
 * but the filter is too complex to be processed by the IRPAgent.
 */
 ModifyResultIterator modify_managed_objects (
 in DN baseObject,
 in SearchControl searchControl,
 in AttributeModificationSet modifications
)
 raises (ModifyManagedObjects,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 UndefinedMOException,
 IllegalDNFormatException,
 UndefinedScopeException,
 IllegalScopeTypeException,
 IllegalScopeLevelException,
 IllegalFilterFormatException,
 FilterComplexityLimit);

 };
};
#endif

Annex A (normative):
CORBA IDL, Access Protocol

A.1 IDL specification (file name "BasicCMIRPConstDefs.idl")
// File: BasicCMIRPConstDefs.idl

3GPP

#ifndef _BASICCMIRPCONSTDEFS_IDL_
#define _BASICCMIRPCONSTDEFS_IDL_

// This statement must appear after all include statements
#pragma prefix "3gppsa5.org"

/* ## Module: BasicCMIRPConstDefs
This module contains commonly used definitions for BasicCMIRP.
==
*/
module BasicCMIRPConstDefs
{

 /**
 * Defines the name of a Managed Object Class
 */
 typedef string MOClass;

 /**
 * The format of Distinguished Name (DN) is specified in 3GPP TS 32.300
 * "Name Conventions for Managed Objects".
 */
 typedef string DN;

 /**
 * Defines the name of an attribute of a Managed Object
 */
 typedef string MOAttributeName;

 /**
 * Defines the value of an attribute of a Managed Object in form of a CORBA
 * Any. Apart from basic datatypes already defined in CORBA, the allowed
 * attribute value types are defined in the AttributeTypes module.
 */
 typedef any MOAttributeValue;

 /**
 *
 * In this version the only allowed filter value is "TRUE" i.e. a filter that
 * matches everything.
 */
 typedef string FilterType;

 /**
 * ResultContents is used to tell how much information to get back
 * from the find_managed_objects operation.
 *
 * NAMES: Used to get only Distinguished Name
 * for MOs.
 * The name contains both the MO class
 * and the names of all superior objects in the naming
 * tree.
 *
 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus
 * MO attributes (all or selected).
 */
 enum ResultContents
 {
 NAMES,
 NAMES_AND_ATTRIBUTES
 };

3GPP

 /**
 * ScopeType defines the kind of scope to use in a search
 * together with SearchControl.level, in a SearchControl value.
 *
 * SearchControl.level is always >= 0. If a level is bigger than the
 * depth of the tree there will be no exceptions thrown.
 * BASE_ONLY: level ignored, just return the base object.
 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"
 * distance from the base object, where 0 is the base object.
 * BASE_SUBTREE: return the base object and all of its subordinates
 * down to and including the nth level.
 * BASE_ALL: level ignored, return the base object and all of it's
 * subordinates.
 */
 enum ScopeType
 {
 BASE_ONLY,
 BASE_NTH_LEVEL,
 BASE_SUBTREE,
 BASE_ALL
 };

 /**
 * SearchControl controls the find_managed_object search,
 * and contains:
 * the type of scope ("type" field),
 * the level of scope ("level" field), level 0 means the "baseObject",
 * level 1 means baseobject including its sub-ordinates etc..
 * the filter ("filter" field),
 * the result type ("contents" field).
 * The type, level and contents fields are all mandatory.
 * The filter field contains the filter expression.
 * The string "TRUE" indicates "no filter",
 * i.e. a filter that matches everything.
 */
 struct SearchControl
 {
 ScopeType type;
 unsigned long level;
 FilterType filter;
 ResultContents contents;
 };

 /**
 * Represents an attribute: "name" is the attribute name
 * and "value" is the attribute value.
 */
 struct MOAttribute
 {
 MOAttributeName name;
 MOAttributeValue value;
 };

 typedef sequence <MOAttribute> MOAttributeSet;

 struct Result
 {
 DN mo;
 MOAttributeSet attributes;
 };

 typedef sequence <Result> ResultSet;

3GPP

 /**
 * AttributeErrorCategory defines the categories of errors, related to
 * attributes, that can occur during creation or modification of MOs.
 *
 * NO_SUCH_ATTRIBUTE: The specified attribute does not exist.
 * INVALID_ATTRIBUTE_VALUE: The specified attribute value is not valid.
 * MISSING_ATTRIBUTE_VALUE: An attribute value is required but none was
 * provided and no default value is defined for the attribute.
 * INVALID_MODIFY_OPERATOR: The specified modify operator is not valid
 * (e.g. operator ADD_VALUES applied to a non multi-valued attribute
 * or operator SET_TO_DEFAULT applied where no default value is defined).
 * MODIFY_NOT_ALLOWED: The modification of the attribute is not allowed.
 * MODIFY_FAILED: The modification failed because of an unspecified reason.
 */
 enum AttributeErrorCategory
 {
 NO_SUCH_ATTRIBUTE,
 INVALID_ATTRIBUTE_VALUE,
 MISSING_ATTRIBUTE_VALUE,
 INVALID_MODIFY_OPERATOR,
 MODIFY_NOT_ALLOWED,
 MODIFY_FAILED
 };

 /**
 * DeleteErrorCategory defines the categories of errors that can occur
 * during deletion of MOs.
 *
 * SUBORDINATE_OBJECT: The MO cannot be deleted due to subordinate MOs.
 * DELETE_NOT_ALLOWED: The deletion of the MO is not allowed.
 * DELETE_FAILED: The deletion failed because of an unspecified reason.
 */
 enum DeleteErrorCategory
 {
 SUBORDINATE_OBJECT,
 DELETE_NOT_ALLOWED,
 DELETE_FAILED
 };

 /**
 * AttributeError represents an error, related to an attribute, that occured
 * during creation or modification of MOs.
 * It contains:
 * - the name of the indicted attribute ("name" field),
 * - the category of the error ("error" field),
 * - optionally, the indicted attribute value ("value" field),
 * - optionally, additional details on the error ("reason" field).
 */
 struct AttributeError
 {
 MOAttributeName name;
 AttributeErrorCategory error;
 MOAttributeValue value;
 string reason;
 };

 typedef sequence <AttributeError> AttributeErrorSeq;

 /**
 * DeleteError represents an error that occured during deletion of MOs.
 * It contains:
 * - the distinguished name of the indicted MO ("objectName" field),

3GPP

 * - the category of the error ("error" field),
 * - optionally, additional details on the error ("reason" field).
 */
 struct DeleteError
 {
 DN objectName;
 DeleteErrorCategory error;
 string reason;
 };

 typedef sequence <DeleteError> DeleteErrorSeq;

 /**
 * ModifyAttributeErrors represents errors that occured during
 * modification of attributes of a MO.
 * It contains:
 * - the distinguished name of the indicted MO ("objectName" field),
 * - a sequence containing the attribute errors ("errors" field).
 */
 struct ModifyAttributeErrors
 {
 DN objectName;
 AttributeErrorSeq errors;
 };

 typedef sequence <ModifyAttributeErrors> ModifyAttributeErrorsSeq;

 typedef sequence <MOAttributeName> AttributeNameSet;

 /**
 * ModifyOperator defines the way in which an attribute value is to be
 * applied to an attribute in a modification of MO attributes.
 *
 * REPLACE: replace the current value with the provided value
 * ADD_VALUES: for a multi-valued attribute, add the provided values to the
 * current list of values
 * REMOVE_VALUES: for a multi-valued attribute, remove the provided values
 * from the current list of values
 * SET_TO_DEFAULT: set the attribute to its default value
 */
 enum ModifyOperator
 {
 REPLACE,
 ADD_VALUES,
 REMOVE_VALUES,
 SET_TO_DEFAULT
 };

 /**
 * AttributeModification defines an attribute value and the way it is to
 * be applied to an attribute in a modification of MO attributes.
 * It contains:
 * - the name of the attribute to modify ("name" field),
 * - the value to apply to this attribute ("value" field),
 * - the way the attribute value is to be applied to the attribute
 * ("operator" field).
 */
 struct AttributeModification
 {
 MOAttributeName name;
 MOAttributeValue value;
 ModifyOperator operator;
 };

3GPP

 typedef sequence <AttributeModification> AttributeModificationSet;

};
#endif _BASICCMIRPCONSTDEFS_IDL_

A.2 IDL specification (file name "BasicCMIRPSystem.idl")
// File: BasicCMIRPSystem.idl

#ifndef _BASICCMIRPSYSTEM_IDL_
#define _BASICCMIRPSYSTEM_IDL_

#include "ManagedGenericIRPConstDefs.idl"
#include "ManagedGenericIRPSystem.idl"
#include "BasicCMIRPConstDefs.idl"

// This statement must appear after all include statements
#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem
{

 exception IllegalFilterFormatException {
 string reason;
 };
 exception IllegalDNFormatException {
 string reason;
 };
 exception IllegalScopeTypeException {
 string reason;
 };
 exception IllegalScopeLevelException {
 string reason;
 };
 exception UndefinedMOException {
 string reason;
 };

 exception UndefinedScopeException {
 string reason;
 };

 exception FilterComplexityLimit {
 string reason;
 };

 exception DuplicateMO {};

 exception CreateNotAllowed {};

 exception ObjectClassMismatch {};

 exception NoSuchObjectClass {
 BasicCMIRPConstDefs::MOClass objectClass;
 };

 exception ParentObjectDoesNotExist {};

 /**

3GPP

 * System otherwise fails to complete the operation. System can provide
 * reason to qualify the exception. The semantics carried in reason
 * is outside the scope of this IRP.
 */
 exception NextBasicCmInformations { string reason; };
 exception NextDeleteErrors { string reason; };
 exception NextModifyErrors { string reason; };
 exception DestroyException { string reason; };
 exception GetBasicCmIRPVersion { string reason; };
 exception GetBasicCmIRPOperationProfile { string reason; };
 exception GetBasicCmIRPNotificationProfile { string reason; };
 exception FindManagedObjects { string reason; };
 exception CreateManagedObject { string reason; };
 exception DeleteManagedObjects { string reason; };
 exception ModifyManagedObjects { string reason; };

 /**
 The BasicCmInformationIterator is used to iterate through a snapshot of
 Managed Object Information when IRPManager invokes find_managed_objects.
 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy
 operation is provided to handle the case where IRPManager wants to stop
 the iteration procedure before reaching the last iteration.
 */
 interface BasicCmInformationIterator
 {

 /**
 This method returns between 1 and "how_many" Managed Object information.
 The IRPAgent may return less than "how_many" items even if there are
 more items to return. "how_many" must be non-zero. Return TRUE if there
 may be more Managed Object information to return. Return FALSE if there
 are no more Managed Object information to be returned.

 If FALSE is returned, the IRPAgent will automatically destroy the
 iterator.

 @parm how_many how many elements to return in the "fetchedElements" out
 parameter.
 @parm fetchedElements the elements.
 @returns A boolean indicating if any elements are returned.
 "fetchedElements" is empty when the BasicCmInformationIterator is
 empty.
 */

 boolean next_basicCmInformations (
 in unsigned short how_many,
 out BasicCMIRPConstDefs::ResultSet fetchedElements
)
 raises (
 NextBasicCmInformations,
 ManagedGenericIRPSystem::InvalidParameter,
 ManagedGenericIRPSystem::OperationNotSupported);

 /**
 This method destroys the iterator.
 */

 void destroy ()
 raises (
 DestroyException,
 ManagedGenericIRPSystem::OperationNotSupported);

3GPP

 }; // end of BasicCmInformationIterator

 /**
 The DeleteResultIterator is used to iterate through the list of deleted MOs
 when IRPManager invokes method "delete_managed_objects".
 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy
 operation is provided to handle the case where IRPManager wants to stop
 the iteration procedure before reaching the last iteration.
 */
 interface DeleteResultIterator : BasicCmInformationIterator
 {

 /**
 Inherited method "next_basicCmInformations" has the same behaviour as
 for interface BasicCmInformationIterator, except that:
 - The Managed Object information returned in parameter
 "fetchedElements" contains only the DNs of the deleted MOs
 (no attributes are returned).
 - If FALSE is returned, the IRPAgent will not automatically destroy the
 iterator.
 */

 /**
 This method returns between 0 and "how_many" deletion errors. The
 IRPAgent may return less than "how_many" items even if there are more
 items to return. "how_many" must be non-zero. Return TRUE if there are
 more deletion errors to return. Return FALSE if there are no more
 deletion errors to be returned.

 If FALSE is returned and last call to inherited method
 "next_basicCmInformations" also returned FALSE (i.e. no more Managed
 Object information to be returned), the IRPAgent will automatically
 destroy the iterator.

 @parm how_many: how many deletion errors to return in the
 "fetchedDeleteErrors" out parameter.
 @parm fetchedDeleteErrors: the deletion errors.
 @returns: a boolean indicating if any deletion errors are returned.
 */

 boolean next_deleteErrors (
 in unsigned short how_many,
 out BasicCMIRPConstDefs::DeleteErrorSeq fetchedDeleteErrors
)
 raises (
 NextDeleteErrors,
 ManagedGenericIRPSystem::InvalidParameter);

 }; // end of DeleteResultIterator

 /**
 The ModifyResultIterator is used to iterate through the list of modified
 MOs when IRPManager invokes method "modify_managed_objects".
 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy
 operation is provided to handle the case where IRPManager wants to stop
 the iteration procedure before reaching the last iteration.

3GPP

 */
 interface ModifyResultIterator : BasicCmInformationIterator
 {

 /**
 Inherited method "next_basicCmInformations" has the same behaviour as
 for interface BasicCmInformationIterator, except that:
 - The Managed Object information returned in parameter
 "fetchedElements" contains DNs and attributes of the modified MOs.
 - If FALSE is returned, the IRPAgent will not automatically destroy the
 iterator.
 */

 /**
 This method returns between 0 and "how_many" modification errors. The
 IRPAgent may return less than "how_many" items even if there are more
 items to return. "how_many" must be non-zero. Return TRUE if there are
 more modification errors to return. Return FALSE if there are no more
 modification errors to be returned.

 If FALSE is returned and last call to inherited method
 "next_basicCmInformations" also returned FALSE (i.e. no more Managed
 Object information to be returned), the IRPAgent will automatically
 destroy the iterator.

 @parm how_many: how many modification errors to return in the
 "fetchedModifyErrors" out parameter.
 @parm fetchedModifyErrors: the modification errors.
 @returns: a boolean indicating if any modification errors are returned.
 */

 boolean next_modificationErrors (
 in unsigned short how_many,
 out BasicCMIRPConstDefs::ModifyAttributeErrorsSeq
 fetchedModifyErrors
)
 raises (
 NextModifyErrors,
 ManagedGenericIRPSystem::InvalidParameter);

 }; // end of ModifyResultIterator

 /**
 * The BasicCmIrpOperations interface.
 * Supports a number of Resource Model versions.
 */
 interface BasicCmIrpOperations
 {

 /**
 * Get the version(s) of the interface
 *
 * @raises GetBasicCmIRPVersion when the system for some reason
 * can not return the supported versions.
 * @returns all supported versions.
 */
 ManagedGenericIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()
 raises (GetBasicCmIRPVersion);

 /**
 * Return the operation profile for a specific Basic CM IRP version.
 *
 * @raises GetBasicCmIRPOperationProfile when the system for some reason

3GPP

 * cannot return the supported operations and parameters.
 * @returns the list of all supported operations and their supported
 * parameters for the specified version.
 */
 ManagedGenericIRPConstDefs::MethodList get_basicCm_IRP_operation_profile
 (
 in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version
)
 raises (
 GetBasicCmIRPOperationProfile,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter);

 /**
 * Return the notification profile for a specific Basic CM IRP version.
 *
 * @raises GetBasicCmIRPNotificationProfile when the system for some
 * reason cannot return the supported notifications and parameters.
 * @returns the list of all supported notifications and their supported
 * parameters for the specified version.
 */
 ManagedGenericIRPConstDefs::MethodList
 get_basicCm_IRP_notification_profile (
 in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version
)
 raises (
 GetBasicCmIRPNotificationProfile,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter);

 /**
 * Performs a containment search, using a SearchControl to
 * control the search and the returned results.
 *
 * All MOs in the scope constitute a set that the filter works on.
 * The result BasicCmInformationIterator contains all matched MOs,
 * with the amount of detail specified in the SearchControl.
 * For the special case when no managed objects are matched in
 * find_managed_objects, the BasicCmInformationIterator will be returned.
 * Executing the next_basicCmInformations in the
 * BasicCmInformationIterator will return FALSE for
 * completion.
 *
 * @parm baseObject The start MO in the containment tree.
 * @parm searchControl the SearchControl to use.
 * @parm requestedAttributes defines which attributes to get.
 * If this parameter is empty (""), all attributes shall
 * be returned. In this version this is the only supported semantics.
 * Note that this argument is only
 * relevant if ResultContents in the search control is
 * specifed to NAMES_AND_ATTRIBUTES.
 *
 *
 * @raises ManagedGenericIRPSystem::ValueNotSupported if a valid but
 * unsupported parameter value is passed. E.g. the contents
 * field in the searchcontrol parameter contains the value NAMES and
 * the optional getContainment IS operation is not supported.
 * @raises UndefinedMOException The MO does not exist.
 * @raises IllegalDNFormatException The dn syntax string is
 * malformed.
 * @raises IllegalScopeTypeException The ScopeType in scope contains
 * an illegal value.
 * @raises IllegalScopeLevelException The scope level is negative

3GPP

 * (<0).
 * @raises IllegalFilterFormatException The filter string is
 * malformed.
 * @raises FilterComplexityLimit if the filter syntax is correct,
 * but the filter is too complex to be processed by the IRP agent.
 * @see SearchControl
 * @see BasicCmInformationIterator
 */
 BasicCmInformationIterator find_managed_objects(
 in BasicCMIRPConstDefs::DN baseObject,
 in BasicCMIRPConstDefs::SearchControl searchControl,
 in BasicCMIRPConstDefs::AttributeNameSet requestedAttributes)
 raises (
 FindManagedObjects,
 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 ManagedGenericIRPSystem::ValueNotSupported,
 ManagedGenericIRPSystem::OperationNotSupported,
 UndefinedMOException,
 IllegalDNFormatException,
 UndefinedScopeException,
 IllegalScopeTypeException,
 IllegalScopeLevelException,
 IllegalFilterFormatException,
 FilterComplexityLimit);

 /**
 * Performs the creation of a MO instance in the MIB maintained
 * by the IRPAgent.
 *
 * @parm objectName: the distinguished name of the MO to create.
 * @parm referenceObject: the distinguished name of a reference MO.
 * @parm attributes: in input, initial attribute values for the MO to
 * create; in output, actual attribute values of the created MO.
 * @parm attributeErrors: errors, related to attributes, that caused the
 * creation of the MO to fail.
 *
 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation
 * is not supported.
 * @raises ManagedGenericIRPSystem::ParameterNotSupported: An optional
 * parameter is not supported.
 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid
 * parameter value has been provided.
 * @raises UndefinedMOException: The MO does not exist.
 * @raises IllegalDNFormatException: The DN syntax string is malformed.
 * @raises DuplicateMO: A MO already exist with the same DN as the one
 * to create.
 * @raises CreateNotAllowed: The creation of the MO is not allowed.
 * @raises ObjectClassMismatch: The object class of the MO to create does
 * not match with the object class of the provided reference MO.
 * @raises NoSuchObjectClass: The class of the object to create is not
 * recognized.
 * @raises ParentObjectDoesNotExist: The parent MO instance of the
 * ManagedEntity specified to be created does not exist.
 */
 void create_managed_object (
 in BasicCMIRPConstDefs::DN objectName,
 in BasicCMIRPConstDefs::DN referenceObject,
 inout BasicCMIRPConstDefs::MOAttributeSet attributes,
 out BasicCMIRPConstDefs::AttributeErrorSeq attributeErrors
)
 raises (
 CreateManagedObject,

3GPP

 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::ParameterNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 UndefinedMOException,
 IllegalDNFormatException,
 DuplicateMO,
 CreateNotAllowed,
 ObjectClassMismatch,
 NoSuchObjectClass,
 ParentObjectDoesNotExist);

 /**
 * Performs the deletion of one or more MO instances from the MIB
 * maintained by the IRPAgent, using a SearchControl to control the
 * instances to be deleted.
 *
 * All MOs in the scope constitute a set that the filter works on.
 * All matched MOs will be deleted by this operation.
 * The returned DeleteResultIterator is used to retrieve the DNs of the
 * MOs deleted and the errors that may have occurred preventing deletion
 * of some MOs.
 * For the special case when no managed objects are matched in
 * delete_managed_objects, the DeleteResultIterator will be returned.
 * Executing the next_basicCmInformations in the DeleteResultIterator
 * will return FALSE for completion.
 *
 * @parm baseObject: the start MO in the containment tree.
 * @parm searchControl: the SearchControl to use; field "contents" has no
 * meaning here and shall be ignored.
 @returns: a DeleteResultIterator (see above).
 *
 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation
 * is not supported.
 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid
 * parameter value has been provided.
 * @raises UndefinedMOException: The MO does not exist.
 * @raises IllegalDNFormatException: The DN syntax string is malformed.
 * @raises IllegalScopeTypeException: The ScopeType in scope contains
 * an illegal value.
 * @raises IllegalScopeLevelException: The scope level is negative (<0).
 * @raises IllegalFilterFormatException: The filter string is malformed.
 * @raises FilterComplexityLimit: The filter syntax is correct,
 * but the filter is too complex to be processed by the IRPAgent.
 */
 DeleteResultIterator delete_managed_objects (
 in BasicCMIRPConstDefs::DN baseObject,
 in BasicCMIRPConstDefs::SearchControl searchControl
)
 raises (
 DeleteManagedObjects,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 UndefinedMOException,
 IllegalDNFormatException,
 UndefinedScopeException,
 IllegalScopeTypeException,
 IllegalScopeLevelException,
 IllegalFilterFormatException,
 FilterComplexityLimit);

 /**
 * Performs the modification of MO attributes. One or more MOs attributes
 * may be modified according to a SearchControl.

3GPP

 *
 * All MOs in the scope constitute a set that the filter works on.
 * All matched MOs will have their attributes modified by this operation.
 * The returned ModifyResultIterator is used to retrieve the DNs of the
 * modified MOs together with the values of the modified attributes, and
 * the errors that may have occurred preventing modification of some
 * attributes.
 * For the special case when no managed objects are matched in
 * modify_managed_objects, the ModifyResultIterator will be returned.
 * Executing the next_basicCmInformations in the ModifyResultIterator
 * will return FALSE for completion.
 *
 * @parm baseObject: the start MO in the containment tree.
 * @parm searchControl: the SearchControl to use; field "contents" has no
 meaning here and shall be ignored.
 * @parm modifications: the values for the attributes to modify and
 the way those values are to be applied to the attributes.
 @returns: a ModifyResultIterator (see above).
 *
 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation
 * is not supported
 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid
 * parameter value has been provided
 * @raises UndefinedMOException: The MO does not exist.
 * @raises IllegalDNFormatException: The DN syntax string is malformed.
 * @raises IllegalScopeTypeException: The ScopeType in scope contains
 * an illegal value.
 * @raises IllegalScopeLevelException: The scope level is negative (<0).
 * @raises IllegalFilterFormatException: The filter string is malformed.
 * @raises FilterComplexityLimit: The filter syntax is correct,
 * but the filter is too complex to be processed by the IRPAgent.
 */
 ModifyResultIterator modify_managed_objects (
 in BasicCMIRPConstDefs::DN baseObject,
 in BasicCMIRPConstDefs::SearchControl searchControl,
 in BasicCMIRPConstDefs::AttributeModificationSet modifications
)
 raises (
 ModifyManagedObjects,
 ManagedGenericIRPSystem::OperationNotSupported,
 ManagedGenericIRPSystem::InvalidParameter,
 UndefinedMOException,
 IllegalDNFormatException,
 UndefinedScopeException,
 IllegalScopeTypeException,
 IllegalScopeLevelException,
 IllegalFilterFormatException,
 FilterComplexityLimit);

 };
};
#endif _BASICCMIRPSYSTEM_IDL_

End of change in Clauses A
End of document

	SP-040806.doc
	S5-049040 32601 China Mobile Add Signalling Transport Network (STN) NRM IRP in BasicCM IRP Req.doc
	S5-047125 ZTE CR 32603-610 BasicCMIRP CORBA SS.doc

