Technical Specification Group Services and System Aspects
TSGS#23(04)0071
Meeting #23, Phoenix, Arizona (USA)

15-18 March 2004

3GPP TSG-SA WG4 Meeting #30
S4-040036
Malaga, Spain, 23rd - 27th February 2004.

Source:
TSG SA WG4 (T-Systems)
Title:
PSS/MMS High Rate and AMR-WB+ and PSS/MMS Low Rate Audio Selection Test, Host Laboratory Report

Agenda item:
7.4.3
Document for:
APPROVAL

1 Introduction

This document reports about the processing of the audio material for the Low Rate and High Rate Audio Selection tests.

The whole processing was done parallel at the host lab (T-Systems) and at the mirror host lab (Audio Research Labs). Every step was cross checked between these two labs in order to get reliable results.

The main processing was done on a Windows PC with Intel Pentium 4 Processor and Cygwin 1.5.5-1. After some problems while running the AAC+ Codec on a Windows 2000 machine, Windows XP Professional was used for processing. Additional Tools were the AFsp Library [4] and the STL2000 Library [5]. The processing was done script based. Most of the scripts were provided by several organizations as described in the test plans. These scripts as well as the scripts which were produced by the host lab, are available on request and are not part of this report. Only those which are necessary to reproduce the results of processing are appended in the annex.

2 Low-Rate Test

2.1 Test Items

The test items were selected at the Selection Entity (France Telecom). In a first round of this selection process there were provided:

· 4 training items and

· 12 test items

In a second selection step the number of items was increased to a much higher value. Then, the total number of items was 62. The number of training items remains 4. These items are belonging to 4 different genres which are of interest for future applications:

· Music

· Speech

· Speech over Music

· Speech between Music

The exact description of the naming of the items can be found in the test plan [2] in Annex B-4.

A complete list of these 62 items as well as the exact assignment of the audio files to the several experiments can be found in Annex 1 .

2.2 Processing Systems

2.2.1 Coding conditions under test

2.2.1.1 aacPlus

· Encoder: Coding Technologies' aacPlus 3GPP Reference Encoder
Build Oct 30 2003, 17:50:34
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

· Decoder: Coding Technologies' aacPlus 3GPP Reference Decoder
Build Oct 30 2003, 17:57:00
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

2.2.1.2 AMRWB+

· Encoder: AMRWB+ Encoder for 3GPP PSS/MMS low-rate audio codec selection
Copyright 031030 Ericsson, Nokia, VoiceAge

· Decoder: AMRWB+ Decoder for 3GPP PSS/MMS low-rate audio codec selection
Copyright 031030 Ericsson, Nokia, VoiceAge

2.2.1.3 ct

· Encoder: Coding Technologies' proprietary 3GPP Reference Encoder
Build Oct 30 2003, 17:48:19
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

· Decoder: Coding Technologies' proprietary 3GPP Reference Decoder
Build Oct 30 2003, 17:54:37
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

2.2.2 Reference coding conditions

2.2.2.1 AAC

· Encoder: MPEG-4 Audio Encoder (build Aug 13 2003),
(C) 1997-2003 by Fraunhofer IIS‑A,
AudioLibDate: Aug 13 2003,
AudioLibVersion: 1.1

· Decoder: MPEG-4 Audio Decoder (build Aug 8 2003),
(C) 1997-2003 by Fraunhofer IIS-A

2.2.2.2 AMR-WB

· Encoder: AMR Wideband Codec 3GPP TS26.190 / ITU-T G.722.2, Aug 25, 2003. Version 5.8.0.

· Decoder: AMR Wideband Codec 3GPP TS26.190 / ITU-T G.722.2, Aug 25, 2003. Version 5.8.0.

2.2.3 Anchor conditions

2.2.3.1 Mono anchors

The mono anchors had to be low pass filtered with cutoff frequencies of 3.5 and 7 kHz. The script “anchor.sh”, which was provided by Coding Technologies was used for that purpose. The script can be found in the Annex 2.

2.2.3.2 Stereo anchors

In the experiments testing stereo signals three anchors will be used, low pass filtered and with reduced stereo image. The cutoff frequencies are the same as for mono tests 3.5 and 7.0 kHz.

2.3 Generation of error files

The error files were generated by using a tool which was provided by Ericsson. The tool was a shell script “genfer.csh“. The seed value was provided by ETSI and had a value of “171094“. In order to get individual error pattern files for each listener, the output file of the genfer.csh was processed with the “shiftcirc.csh” script which can be found in Annex 5.

2.4 Pre-processing

The clip silence utility was applied to all speech files in order to prevent unnecessary silence within the speech items. The “clip_silence.csh” script was provided by Ericsson.

For the mono experiments a mixing from stereo to mono was applied to all input files by invoking following command:

./anchor.sh -monoout ${CAT}48s.wav ${CAT}48m.wav

Sample rate conversion down to 16 kHz and 24 kHz for those codecs which require these lower input sampling rates i.e. the AMR codec.

./anchor.sh -monoout -fsout16 ${CAT}48s.wav ${CAT}16m.wav
./anchor.sh -monoout -fsout24 ${CAT}48s.wav ${CAT}24m.wav
./anchor.sh -fsout24 ${CAT}48s.wav ${CAT}24s.wav
2.5 Concatenation of material

Before main processing, all files for an experiment were concatenated to one big wav file. the order of the items within the several experiments was

· 4 training files in categorized order (m_, s_, sbm_, som_) followed by

· music files (m_) for sub-experiment a

· speech files (s_) for sub-experiment a

· speech between music files (sbm_) for sub-experiment a

· speech over music files (som_) for sub-experiment a

· music files (m_) for sub-experiment b

· speech files (s_) for sub-experiment b

· speech between music files (sbm_) for sub-experiment b

· speech over music files (som_) for sub-experiment b

· additional silence file with a length of 290 ms to provide buffer for codec delays.

All subcategories were arranged in alphabetical order of the filenames. As an example, the time file for Experiment A1 looks as follows:

m_vo_x_1_org.wav 960000

s_no_ft_9_org.wav 960002

sbm_fi_x_9_org.wav 960002

som_ot_x_9_org.wav 480002

m_ot_x_8_org.wav 960002

m_ot_x_a_org.wav 960002

m_po_x_5_org.wav 960002

m_po_x_7_org.wav 960002

s_cl_2t_3_org.wav 478080

s_cl_2t_4_org.wav 469440

s_no_2t_1_org.wav 478080

s_no_ft_1_org.wav 478080

sbm_js_x_1_org.wav 960002

sbm_ms_x_1_org.wav 960002

som_fi_x_4_org.wav 480002

som_ot_x_4_org.wav 480002

m_ot_x_9_org.wav 960002

m_ot_x_b.org.wav 960002

m_po_x_6_org.wav 960002

m_si_x_3_org.wav 960002

s_cl_2t_5_org.wav 465600

s_cl_mt_2_org.wav 454080

s_no_2t_2_org.wav 478080

s_no_ft_2_org.wav 478080

sbm_sj_x_1_org.wav 960002

sbm_sm_x_6_org.wav 960002

som_ot_x_5_org.wav 480002

som_ot_x_6_org.wav 480002

silence.wav 27838

The sampling rate for each concatenated file was 48 kHz, stereo. These files were used as input for the further processing steps. The input sampling rates and channel numbers for some codecs and mono experiments had to be changed. Therefore, also the “anchor.sh” script was used.

2.6 Main processing

2.6.1 Creation of anchors

The low frequency anchors were produced using the anchors.sh script. The processing for the mono sessions included:

· low pass filtering with cutoff frequencies of 3500 Hz and 7000 Hz.
./anchor.sh -lp3500 -monoout ${CAT}48s.wav ${CAT}_anchor_35_m.wav
./anchor.sh -lp7000 -monoout ${CAT}48s.wav ${CAT}_anchor_7_m.wav
For the stereo experiments 3 low pass filtered anchors were needed:

· 3.5 kHz Low pass, significantly reduced stereo image (12dB attenuated side channel)
./anchor.sh -lp3500 -s12 ${CAT}48s.wav ${CAT}_anchor_35_s12.wav
· 7.0 kHz Low pass, significantly reduced stereo image (12 dB attenuated side channel)
./anchor.sh -lp7000 -s12 ${CAT}48s.wav ${CAT}_anchor_7_s12.wav
· 7.0 kHz Low pass, slightly reduced stereo image (6 dB attenuated side channel)
./anchor.sh -lp7000 -s6 ${CAT}48s.wav ${CAT}_anchor_7_s6.wav
2.6.2 Coding of material

The coding for the several sub-experiments was done according the bitrates in the test plan [2].

	Exp.
	Operational mode
	Audio Material

	A1a
	14 kbps, mono, use case A (PSS)
	Set a

	A1b
	
	Set b

	A2a
	18 kbps, stereo, use case A (PSS)
	Set a

	A2b
	
	Set b

	A3a
	24 kbps, mono, use case A (PSS)
	Set a

	A3b
	
	Set b

	A4a
	24 kbps, stereo, use case A (PSS)
	Set a

	A4b
	
	Set b

	B1a
	14 kbps, mono, use case B (MMS),
16 kHz input and output sampling rate
	Set a

	B1b
	
	Set b

	B2a
	18 kbps, stereo, use case B (MMS)
	Set a

	B2b
	
	Set b

	B3a
	14 kbps, mono, use case A (PSS),
3% FER
	Set a

	B3b
	
	Set b

	B4a
	24 kbps, stereo, use case A (PSS),
3% FER
	Set a

	B4b
	
	Set b

Each codec was used as command line utility with file input and file output. After decoding, all files were upsampled to 48 kHz and attenuated to 0.93 by using the “upsamp48.sh” script, which can be found in Annex 3.

For each codec an individual script was used, which called the encoder, then the decoder and afterwards shifted the output signal in a way that the codec delay was removed.

In the following paragraphs only the important calls with relevant parameters are listed in order to enable better reading. Especially for sub-experiments B3 and B4 the loops were not included here, even though they were processed.

2.6.2.1 AAC

LBR-A1:

mp4EvalCmdl -v -b 14000 a1_all_cat48m.wav out_14m_a1.mp4

mp4dec -if out_14m_a1.mp4 -of out_14m_a1.wav

CopyAudio -l3254: out_14m_a1.wav dly_${MODE}.wav

LBR-A2

mp4EvalCmdl.exe -v -b 18000 a2_all_cat48s.wav out_18s_a2.mp4

mp4dec.exe -if out_18s_a2.mp4 -of out_18s_a2.wav

CopyAudio.exe -l3229: out_18s_a2.wav dly_${MODE}.wav

LBR-A3

mp4EvalCmdl -v -b 24000 a3_all_cat48m.wav out_24m_a3.mp4

mp4dec -if out_24m_a3.mp4 -of out_24m_a3.wav

CopyAudio -l3289: out_24m_a3.wav dly_${MODE}.wav

LBR-A4

mp4EvalCmdl -v -b 24000 a4_all_cat48s.wav out_24s_a4.mp4

mp4dec -if out_24s_a4.mp4 -of out_24s_a4.wav

CopyAudio -l3254: out_24s_a4.wav dly_${MODE}.wav

LBR-B1

mp4EvalCmdl -v -b 14000 b1_all_cat16m.wav out_14m_b1.mp4

mp4dec -if out_14m_b1.mp4 -of out_14m_b1.wav

CopyAudio -l3216: out_14m_b1.wav dly_${MODE}.wav

LBR-B2

mp4EvalCmdl -v -b 18000 preproc/b2_all_cat48s.wav out_18s_b2.mp4

mp4dec -if out_18s_b2.mp4 -of out_18s_b2.wav

CopyAudio -l3229: out_18s_b2.wav dly_${MODE}.wav

LBR-B3

mp4EvalCmdl -v -b 14000 b3_all_cat48m.wav out_14m_b3.mp4

mp4dec -if out_14m_b3.mp4 -of out_14m.wav –epf epf3_lab${i}_lis${j}_b3.epf

CopyAudio -l3254: out_14m.wav dly_lab${i}_lis${j}_${MODE}.wav

LBR-B4

mp4EvalCmdl -v -b 24000 b4_all_cat48s.wav out_24s_b4.mp4

mp4dec -if out_24s_b4.mp4 -of out_24s_b4.wav -epf epf3_lab${i}_lis${j}_b4.epf

CopyAudio -l3254: out_24s_b4.wav dly_lab${i}_lis${j}_${MODE}.wav

2.6.2.2 aacPlus

LBR-A1

aacPlusenc-if a1_all_cat48m.wav -of out_14m_a1.3gp -br 14000 -m

aacPlusdec out_14m_a1.3gp out_14m_a1.wav

CopyAudio-l4166: out_14m_a1.wav dly_${MODE}.wav

LBR-A2

aacPlusenc-if a2_all_cat48s.wav -of out_18s_a2.3gp -br 18000

aacPlusdec out_18s_a2.3gp out_18s_a2.wav

CopyAudio-l4168: out_18s_a2.wav dly_${MODE}.wav

LBR-A3

aacPlusenc-if a3_all_cat48m.wav -of out_24m_a3.3gp -br 24000 -m

aacPlusdec out_24m_a3.3gp out_24m_a3.wav

CopyAudio-l4166: out_24m_a3.wav dly_${MODE}.wav

LBR-A4

aacPlusenc-if a4_all_cat48s.wav -of out_24s_a4.3gp -br 24000

aacPlusdec out_24s_a4.3gp out_24s_a4.wav

CopyAudio-l4166: out_24s_a4.wav dly_${MODE}.wav

LBR-B1

aacPlusenc-if b1_all_cat16m.wav -of out_14m_b1.3gp -br 14000 -m

aacPlusdec out_14m_b1.3gp out_14m_b1.wav

CopyAudio-l2081: out_14m_b1.wav dly_${MODE}.wav

LBR-B2

aacPlusenc-if b2_all_cat48s.wav -of out_18s_b2.3gp -br 18000

aacPlusdec out_18s_b2.3gp out_18s_b2.wav

CopyAudio-l4168: out_18s_b2.wav dly_${MODE}.wav

LBR-B3

aacPlusenc-if preproc/b3_all_cat48m.wav -of out_14m_b3.3gp -br 14000 -m

aacPlusdec out_14m_b3.3gp out_14m.wav epf3_lab${i}_lis${j}_b3.epf

CopyAudio-l4166: out_14m.wav dly_lab${i}_lis${j}_${MODE}.wav

LBR-B4

aacPlusenc-if b4_all_cat48s.wav -of out_24s_b4.3gp -br 24000

aacPlusdec out_24s_b4.3gp out_24s_b4.wav epf3_lab${i}_lis${j}_b4.epf

CopyAudio-l4166: out_24s_b4.wav dly_lab${i}_lis${j}_${MODE}.wav

2.6.2.3 ct

LBR-A1

ctenc-if a1_all_cat48m.wav -of out_14m.3gp -br 14000 -m

ctdec../tmp/out_14m.3gp ../tmp/out_14m.wav

CopyAudio -l4166: out_14m.wav dly_${MODE}.wav

LBR-A2

ctenc-if preproc/a2_all_cat48s.wav -of out_18s.3gp -br 18000

ctdec out_18s.3gp out_18s.wav

CopyAudio -l5122: out_18s.wav dly_${MODE}.wav

LBR-A3

ctenc-if a3_all_cat48m.wav -of out_24m.3gp -br 24000 -m

ctdec out_24m.3gp out_24m.wav

CopyAudio -l4166: out_24m.wav dly_${MODE}.wav

LBR-A4

ctenc-if a4_all_cat48s.wav -of out_24s.3gp -br 24000

ctdec out_24s.3gp out_24s.wav

CopyAudio -l5122: out_24s.wav dly_${MODE}.wav

LBR-B1

ctenc-if b1_all_cat16m.wav -of out_14m_16kHz.3gp -br 14000 -m

ctdec out_14m_16kHz.3gp out_14m_16kHz.wav

CopyAudio -l2081: out_14m_16kHz.wav dly_${MODE}.wav

LBR-B2

ctenc-if b2_all_cat48s.wav -of out_18s.3gp -br 18000

ctdec out_18s.3gp out_18s.wav

CopyAudio -l5122: out_18s.wav dly_${MODE}.wav

LBR-B3

ctenc-if b3_all_cat48m.wav -of out_14m_FER3.3gp -br 14000 -m

ctdec out_14m_FER3.3gp out_14m_FER3.wav epf3_lab${i}_lis${j}_b3.epf

CopyAudio -l4166: out_14m_FER3.wav dly_lab${i}_lis${j}_${MODE}.wav

LBR-B4

ctenc-if b4_all_cat48s.wav -of out_24s_FER3.3gp -br 24000

ctdec out_24s_FER3.3gp out_24s_FER3.wav epf3_lab${i}_lis${j}_b4.epf

CopyAudio -l5122: out_24s_FER3.wav dly_lab${i}_lis${j}_${MODE}.wav

2.6.2.4 AMRWB+

LBR-A1

enc_wbplus-mode 14m -if a1_all_cat24m.wav -of out_14m_a1.wb+

dec_wbplus -mode 14m -fs 24000 -if out_14m_a1.wb+ -of out_14m_a1.wav

CopyAudio -l668: out_14m_a1.wav dly_${MODE}.wav

LBR-A2

enc_wbplus-mode 18s -if a2_all_cat24s.wav -of out_18s_a2.wb+

dec_wbplus -mode 18s -fs 24000 -if out_18s_a2.wb+ -of out_18s_a2.wav

CopyAudio -l885: out_18s_a2.wav dly_${MODE}.wav

LBR-A3

enc_wbplus -mode 24m -if a3_all_cat24m.wav -of out_24m_a3.wb+

dec_wbplus -mode 24m -fs 24000 -if out_24m_a3.wb+ -of out_24m_a3.wav

CopyAudio -l668: out_24m_a3.wav dly_${MODE}.wav

LBR-A4

enc_wbplus -mode 24s -if a4_all_cat24s.wav -of out_24s_a4.wb+

dec_wbplus -mode 24s -fs 24000 -if out_24s_a4.wb+ -of out_24s_a4.wav

CopyAudio -l885: out_24s_a4.wav dly_${MODE}.wav

LBR-B1

enc_wbplus -mode 14m_lc -if b1_all_cat16m.wav -of out_14m_b1.wb+

dec_wbplus -mode 14m -fs 16000 -if out_14m_b1.wb+ -of out_14m_b1.wav

CopyAudio -l445: out_14m_b1.wav dly_${MODE}.wav

LBR-B2

enc_wbplus -mode 18s_lc -if b2_all_cat24s.wav -of out_18s_b2.wb+

dec_wbplus -mode 18s -fs 24000 -if out_18s_b2.wb+ -of out_18s_b2.wav

CopyAudio -l885: out_18s_b2.wav dly_${MODE}.wav

LBR-B3

enc_wbplus -mode 14m -if preproc/b3_all_cat24m.wav -of out_14m_b3_clean.wb+

eid -mode 14m -if out_14m_b3_clean.wb+ -of out_14m_b3_fer3.wb+ -fer epf3_lab${i}_lis${j}_b3.epf

dec_wbplus -mode 14m -fs 24000 -if out_14m_b3_fer3.wb+ -of out_14m_b3_fer3.wav

CopyAudio -l668: out_14m_b3_fer3.wav dly_lab${i}_lis${j}_${MODE}.wav

LBR-B4

enc_wbplus -mode 24s -if b4_all_cat24s.wav -of out_24s_b4_clean.wb+

eid -mode 24s -if out_24s_b4_clean.wb+ -of out_24s_b4_fer3.wb+ -fer epf3_lab${i}_lis${j}_b4.epf

dec_wbplus -mode 24s -fs 24000 -if out_24s_b4_fer3.wb+ -of out_24s_b4_fer3.wav

CopyAudio -l885: out_24s_b4_fer3.wav dly_lab${i}_lis${j}_${MODE}.wav

2.6.2.5 AMR-WB

LBR-A1

CopyAudio -F noheader a1_all_cat16m.wav a1_raw.wav

filterP341 a1_raw.wav a1_flt.wav 320

coder 3 a1_flt.wav out_14m_a1.amr

decoder out_14m_a1.amr out_14m_a1.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_14m_a1.wav dly_${MODE}.wav

LBR-A2

CopyAudio -F noheader a2_all_cat16m.wav a2_raw.wav

filterP341 a2_raw.wav a2_flt.wav 320

coder 5 a2_flt.wav out_18m_a2.amr

decoder out_18m_a2.amr out_18m_a2.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_18m_a2.wav dly_${MODE}.wav

LBR-A3

CopyAudio -F noheader a3_all_cat16m.wav a3_raw.wav

filterP341 a3_raw.wav a3_flt.wav 320

coder 8 a3_flt.wav out_24m_a3.amr

decoder out_24m_a3.amr out_24m_a3.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_24m_a3.wav dly_${MODE}.wav

LBR-A4

CopyAudio -F noheader a4_all_cat16m.wav a4_raw.wav

filterP341 a4_raw.wav a4_flt.wav 320

coder 8 a4_flt.wav out_24m_a4.amr

decoder out_24m_a4.amr out_24m_a4.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_24m_a4.wav dly_${MODE}.wav

LBR-B1

CopyAudio -F noheader b1_all_cat16m.wav b1_raw.wav

filterP341 b1_raw.wav b1_flt.wav 320

coder 3 b1_flt.wav out_14m_b1.amr

decoder out_14m_b1.amr out_14m_b1.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_14m_b1.wav dly_${MODE}.wav

LBR-B2

CopyAudio -F noheader b2_all_cat16m.wav b2_raw.wav

filterP341 b2_raw.wav b2_flt.wav

coder 5 b2_flt.wav out_18m_b2.amr

decoder out_18m_b2.amr out_18m_b2.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_18m_b2.wav dly_${MODE}.wav

LBR-B3

CopyAudio -F noheader b3_all_cat16m.wav b3_raw.wav

filterP341 b3_raw.wav b3_flt.wav 320

coder -mime 3 b3_flt.wav out_14m_b3.amr

amr_mms_eid epf3_lab${i}_lis${j}_b3.epf out_14m_b3.amr out_14m_b3_temp.amr

decoder -mime out_14m_b3_temp.amr out_14m_b3.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_14m_b3.wav dly_lab${i}_lis${j}_${MODE}.wav

LBR-B4

CopyAudio -F noheader b4_all_cat16m.wav b4_raw.wav

filterP341 b4_raw.wav b4_flt.wav 320

coder -mime 8 b4_flt.wav out_24m_b4.amr

amr_mms_eid epf3_lab${i}_lis${j}_b4.epf out_24m_b4.amr out_24m_b4_temp.amr

decoder -mime out_24m_b4_temp.amr out_24m_b4.wav

CopyAudio -l390: -t noheader -P "integer16,0,16000,little-endian,1,default" -F WAVE out_24m_b4.wav dly_lab${i}_lis${j}_${MODE}.wav

2.6.3 Impaired channel processing

According the test plan, the impaired channel conditions for experiments B3 and B4 were simulated by applying error patterns to the bit streams during or before the decoding process. In the previous chapter this procedure (which is slightly different for the several codecs) can be seen. The error patterns were individual for each listener.

2.7 Post-processing

2.7.1 Up-sampling

The script “upsamp48.sh” was applied to all output files. This script performs

· Up-sampling to 48 kHz (if necessary)

· Conversion from Mono to Dual Mono (for the mono experiments)

· Level attenuation to a value of 0.93 for all files.

Because of the level attenuation, the open and hidden reference files were produced also by that script.

2.7.2 Split-up of processed material

The output files were split into separate files by using the “splitup.csh” tool which was provided by Ericsson. This script deconcatenates the files with smooth edges and makes the following simplification: treat stereo file as mono file and apply Hanning window of double length. The window size is 100ms=4800samples.

2.7.3 Blinding of Audio files

The blinding of the de-concatenated audio files was done in order to avoid identification of the files based on the filename. Only the open reference was to identify. All other versions of an item including the hidden reference and the anchors have been got a new filename where the condition was coded as “cond1“ to “cond9“.

The assignment of coding condition to the labels “cond1“ to “cond9“ was done different for each item. For that job the Host Lab created a script, which did the renaming process automatically. To resolve the blinding for later analysis, a log file was written for each experiment, that contains information about the renaming. These files were kept secret and provided only to the analysis lab.

2.7.4 Cross-Checks

The concatenated audio files, as well as the output files after the encoding/decoding process were checked by calculating the checksums for all audio files. These checksums were compared with the results of the mirror host lab and the codec proponents. Only, if there were no differences the processing was continued.

For calculation of the checksums the raw data of an audio file were used. For calculation a script was used, which was provided by the mirror host lab:

#!/bin/bash

case $# in

0) echo "usage: $0 wavfile(s)"; exit;;

esac

for i in $*

do

./Copyaudio.exe $i temp.raw 1>/dev/null 2>/dev/null

ckout=`cksum temp.raw`

echo $ckout | sed "{s'temp.raw'$i'}"

done

Some subjective spot checks were done for the single items after split-up process.

2.8 Generation of Session Files

The host lab has generated session files for all listeners at all test labs. These session files could be uses direct on the CRC-SEAQ MUSHRA software. The presentation order of the items was randomized as well as the assignment of the conditions to the buttons on the screen. The session file was a text file which could be easily adapted to other test systems. Here is an example for a training session file for CRC software:

[CRC-SEAQ]

Number of Trials:=4

Scale:=MUSHRA

[Trial 1]

Reference:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_opref.wav

Sample 1:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond6.wav

Sample 2:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond5.wav

Sample 3:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond4.wav

Sample 4:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond7.wav

Sample 5:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond2.wav

Sample 6:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond3.wav

Sample 7:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond8.wav

Sample 8:=c:\etsi2003\exp_A1_Training\sbm_fi_x_9_A1_cond1.wav

Sample 9:=

Sample 10:=

Sample 11:=

Sample 12:=

Trial Name:=Trial 1

Sample Rate:=48000

Channels:=2

BitDepth:=16

Byte Order:=Intel

[Trial 2]

Reference:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_opref.wav

Sample 1:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond1.wav

Sample 2:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond2.wav

Sample 3:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond3.wav

Sample 4:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond7.wav

Sample 5:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond4.wav

Sample 6:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond6.wav

Sample 7:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond8.wav

Sample 8:=c:\etsi2003\exp_A1_Training\s_no_ft_9_A1_cond5.wav

Sample 9:=

Sample 10:=

Sample 11:=

Sample 12:=

Trial Name:=Trial 2

Sample Rate:=48000

Channels:=2

BitDepth:=16

Byte Order:=Intel

[Trial 3]

Reference:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_opref.wav

Sample 1:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond6.wav

Sample 2:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond4.wav

Sample 3:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond8.wav

Sample 4:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond5.wav

Sample 5:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond7.wav

Sample 6:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond1.wav

Sample 7:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond2.wav

Sample 8:=c:\etsi2003\exp_A1_Training\m_vo_x_1_A1_cond3.wav

Sample 9:=

Sample 10:=

Sample 11:=

Sample 12:=

Trial Name:=Trial 3

Sample Rate:=48000

Channels:=2

BitDepth:=16

Byte Order:=Intel

[Trial 4]

Reference:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_opref.wav

Sample 1:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond2.wav

Sample 2:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond6.wav

Sample 3:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond1.wav

Sample 4:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond4.wav

Sample 5:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond5.wav

Sample 6:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond3.wav

Sample 7:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond8.wav

Sample 8:=c:\etsi2003\exp_A1_Training\som_ot_x_9_A1_cond7.wav

Sample 9:=

Sample 10:=

Sample 11:=

Sample 12:=

Trial Name:=Trial 4

Sample Rate:=48000

Channels:=2

BitDepth:=16

Byte Order:=Intel

The randomization in presentation order and the assignment of conditions to the buttons was done using a script, which can be found in the Annex.

2.9 Distribution of the Test files to the Listening Labs

The Files for the Listening Labs were distributed via FTP. The single sound files were zipped to a big file using WinZip without compression. Especially the Sessions B3, B4 and H3 have produced a big number of output files with an overall size of about 3 GB. Because of the 2GB limit in sending files via FTP, the zip-files were split into smaller 1 GB parts. These files could be reconstructed by using the cat command of Cygwin.

High-Rate Test

The processing for the high rate test was done in a very similar way as for the low rate test. The processing environment was the same, Cygwin on a Windows XP machine. Some of the processing steps were exactly the same as in the low rate test, which is indicated in the respective chapters.

2.10 Test Items

The items for the high rate test were selected by France Telecom. The item list consisted from 12 test and 4 additional training items:

	No
	Item
	Description

	1
	c_01
	classical

	2
	c_02
	classical

	3
	p01
	pop

	4
	p02
	pop

	5
	si_01
	single instrument

	6
	si_02
	single instrument

	7
	sm_01
	Speech with music

	8
	sm_02
	Speech with music

	9
	sp_01
	Speech

	10
	sp_02
	Speech

	11
	sp_03
	Speech

	12
	v_01
	Vocal Music

	13
	c_09
	Classical Music

	14
	p_09
	Pop Music

	15
	si_09
	Single Instrument

	16
	sp_09
	Speech

2.11 Processing Systems

2.11.1 Coding conditions under test

2.11.1.1 aacPlus

· Encoder: Coding Technologies' aacPlus 3GPP Reference Encoder
Build Oct 30 2003, 17:50:34
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

· Decoder: Coding Technologies' aacPlus 3GPP Reference Decoder
Build Oct 30 2003, 17:57:00
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

2.11.1.2 ct

· Encoder: Coding Technologies' proprietary 3GPP Reference Encoder
Build Oct 30 2003, 17:48:19
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

· Decoder: Coding Technologies' proprietary 3GPP Reference Decoder
Build Oct 30 2003, 17:54:3
(c) 2000 - 2003 Coding Technologies
(c) 1999 Fraunhofer Gesellschaft IIS-A

2.11.2 Reference coding conditions

2.11.2.1 AAC

· Encoder: MPEG-4 Audio Encoder (build Aug 13 2003)
(C) 1997-2003 by Fraunhofer IIS-A

· Decoder: MPEG-4 Audio Decoder (build Aug 8 2003)
(C) 1997-2003 by Fraunhofer IIS-A

2.11.2.2 RN

· Encoder: RealNetworks RealAudio8 low bitrate test executable,
Oct 14th, 2003

· Decoder:RealNetworks RealAudio8 low bitrate test executable,
Oct 14th, 2003

The coder.exe was used in encoder mode and afterwards in decoder mode. The bitstream file was checked in length to be sure that the average bitrate matches the requirements.

2.11.3 Anchor conditions

The two low pass filtered anchors have cutoff frequencies of 3.5 kHz and 7.0 kHz. They were produced using the “anchor.sh” script, which was provided by Ericsson.

2.11.4 Generation of error files

The error files were generated by using a tool which was provided by Ericsson. The tool was a shell script “genfer.csh“. The seed value was provided by ETSI and had a value of “171094“. In order to get individual error pattern files for each listener, the output file of the “genfer.csh” was processed with the “shiftcirc.csh” script.

./genfer.csh $SEED .01; cp ferpat_FER.01_SEED$SEED.dat ../ep/epf_1.epf

./genfer.csh $SEED .03; cp ferpat_FER.03_SEED$SEED.dat ../ep/epf_3.epf

2.12 Pre-processing

2.12.1 Sample rate conversions

For the sample rate conversions the anchor.sh script was used. For the Real Networks encoder, 22.05 kHz and 44.1 kHz sampling frequencies were required.

./resampaudio.exe -s 44100 ${CAT}48s.wav ${CAT}44s.wav

./resampaudio.exe -s 22050 ${CAT}48s.wav ${CAT}22s.wav

2.13 Concatenation of material

Before main processing, all files for an experiment were concatenated to one big wav file. the order of the items within the several experiments was

· 4 training files in alphabetical order followed by

· 12 test item files in alphabetical order

· additional silence file with a length of 290 ms to provide buffer for codec delays.

As an example, the time file for Experiment H1 looks as follows:

c_09_org.wav 931576

p_09_org.wav 960000

si_09_org.wav 934234

sp_09_org.wav 478852

c_01_org.wav 960002

c_02_org.wav 779004

p_01_org.wav 960002

p_02_org.wav 960002

si_01_org.wav 908738

si_02_org.wav 824948

sm_01_org.wav 831962

sm_02_org.wav 493482

sp_01_org.wav 960000

sp_02_org.wav 960002

sp_03_org.wav 480184

v_01_org.wav 940148

silence.wav 27838
The sampling rate for each concatenated file was 48 kHz, stereo. These files were used as input for the further processing steps. The input sampling rates for one of the reference codecs Therefore, the script “anchor.sh”, provided by Coding Technologies was used.

2.14 Main processing

2.14.1 Creation of anchors

The low frequency anchors were produced using the “anchors.sh” script. The processing for the was done by invoking the script with these parameters:

· low pass filtering with cutoff frequencies of 3500 Hz and 7000 Hz.
./anchor.sh -lp3500 ${CAT}48s.wav ${CAT}_anchor_35.wav
./anchor.sh -lp7000 ${CAT}48s.wav ${CAT}_anchor_7.wav
2.14.2 Coding of material

According the test plan, there were following bitrates to code:

	Exp.
	Operational mode
	#Codecs in test
	# reference codecs

	1
	32 kbps, stereo
	2 (use case B encoder)
	2, incl. RealAudio @ 32 kbit/s stereo

	2
	48 kbps, stereo
	2 (use case B encoder)
	2, incl. RealAudio @ 48 kbit/s stereo

	3
	32 kbps, stereo, 1% and 3% random frame loss
	4 (2 candidates at 2 frame loss rates each)
	2 (AAC-LC at 2 frame loss rates)

This was done using scripts which were calling the command line encoders and decoders as described in the following section.

2.14.2.1 AAC

mp4EvalCmdl.exe -b 32000 ${CAT}48s.wav ${aac_t}out_32.mp4

mp4dec.exe -if ${aac_t}out_32.mp4 -of ${aac_t}out_32.wav

CopyAudio -l3278: ${aac_t}out_32.wav ${aac}ref_1_32.wav

mp4EvalCmdl.exe -b 48000 ${CAT}48s.wav ${aac_t}out_48.mp4

mp4dec.exe -if ${aac_t}out_48.mp4 -of ${aac_t}out_48.wav

$CPY -l3442: ${aac_t}out_48.wav ${aac}ref_1_48.wav

2.14.2.2 aacPlus

aacPlusenc.exe -if ${CAT}48s.wav -of ${aacplus_t}out_32.3gp -br 32000

aacPlusdec.exe ${aacplus_t}out_32.3gp ${aacplus_t}out_32.wav

$CPY -l4166: ${aacplus_t}out_32.wav ${aacplus}cand_1_32.wav

aacPlusenc.exe -if ${CAT}48s.wav -of ${aacplus_t}out_48.3gp -br 48000

aacPlusdec.exe ${aacplus_t}out_48.3gp ${aacplus_t}out_48.wav

$CPY -l4166: ${aacplus_t}out_48.wav ${aacplus}cand_1_48.wav

2.14.2.3 ct

ctenc.exe -if ${CAT}48s.wav -of ${ct_t}out_32.3gp -br 32000

ctdec.exe ${ct_t}out_32.3gp ${ct_t}out_32.wav

$CPY -l5122: ${ct_t}out_32.wav ${ct}cand_2_32.wav

ctenc.exe -if ${CAT}48s.wav -of ${ct_t}out_48.3gp -br 48000

ctdec.exe ${ct_t}out_48.3gp ${ct_t}out_48.wav

$CPY -l4166: ${ct_t}out_48.wav ${ct}cand_2_48.wav

2.14.2.4 RealNetworks
coder -b 32 -e ${CAT}22s.wav ${real_t}out_32.bit

coder -b 32 -d ${real_t}out_32.bit ${real}ref_2_32.wav

coder -b 48 -e ${CAT}44s.wav ${real_t}out_48.bit

coder -b 48 -d ${real_t}out_48.bit ${real}ref_2_48.wav

For the Real Networks codec, there was no need for delay compensation, because the input and output files were time aligned.

2.14.3 Creation of anchors

Two low pass filtered anchors were produced by invoking the anchor script with these parameters:

./anchor.sh -lp3500 ${CAT}48s.wav ${CAT}_anchor_35.wav

./anchor.sh -lp7000 ${CAT}48s.wav ${CAT}_anchor_7.wav
2.14.4 Impaired channel processing

For processing the impaired versions of the signals, the following script sample was used, which produced individual audio files for each listener

for i in 3 6 #lab

do

for j in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #lis

do

aac @32 1%

mp4dec -if ${aac_t}out_32.mp4 -of ${aac_t}out_32.wav -epf

epf1_lab${i}_lis${j}_H3.epf

$CPY -l3278: ${aac_t}out_32.wav ${aac}ref_1_32.wav

aac+ @32 1%

aacPlusdec ${aacplus_t}out_32.3gp ${aacplus_t}out_32.wav

epf1_lab${i}_lis${j}_H3.epf

$CPY -l4166: ${aacplus_t}out_32.wav ${aacplus}cand_1_32.wav

ct @32 1%

ctdec ${ct_t}out_32.3gp ${ct_t}out_32.wav epf1_lab${i}_lis${j}_H3.epf

$CPY -l5122: ${ct_t}out_32.wav ${ct}cand_2_32.wav

aac @32 3%

mp4dec -if ${aac_t}out_32.mp4 -of ${aac_t}out_32.wav -epf

epf3_lab${i}_lis${j}_H3.epf

$CPY -l3278: ${aac_t}out_32.wav ${aac}ref_1_32.wav

aac+ @32 3%

aacPlusdec ${aacplus_t}out_32.3gp ${aacplus_t}out_32.wav

epf3_lab${i}_lis${j}_H3.epf

$CPY -l4166: ${aacplus_t}out_32.wav ${aacplus}cand_1_32.wav

ct @32 3%

ctdec ${ct_t}out_32.3gp ${ct_t}out_32.wav

epf3_lab${i}_lis${j}_H3.epf

$CPY -l5122: ${ct_t}out_32.wav ${ct}cand_2_32.wav

done

done

2.15 Post-processing

2.15.1 Up-sampling

The script upsamp48.sh was applied to all output files. This script performs

· Up-sampling to 48 kHz (if necessary)

· Level attenuation to a value of 0.93 for all files.

Because of the level attenuation, the open and hidden reference files were produced also by that script in order to get equal level for all versions of a signal.

2.15.2 Split-up of processed material

The output files were split into separate files by using the “splitup.csh” tool (can be found in Annex 5) which was provided by Ericsson. This script deconcatenates the files with smooth edges and makes the following simplification: treat stereo file as mono file and apply Hanning window of double length. The window size is 100ms=4800samples.

2.15.3 Blinding of Audio files

The blinding of the de-concatenated audio files was done in order to avoid identification of the files based on the filename. Only the open reference was to identify. All other versions of an item including the hidden reference and the anchors have been got a new filename where the condition was coded as “cond1“ to “cond9“.

The assignment of coding condition to the labels “cond1“ to “cond9“ was done different for each item. For that job the Host Lab created a script, which did the renaming process automatically. To resolve the blinding for later analysis, a log file was written for each experiment, that contains information about the renaming. These files were kept secret and provided only to the analysis lab.

2.15.4 Cross-Checks

see 2.7.4
2.16 Generation of Session Files

see 2.8
2.17 Distribution of the Test files to the Listening Labs

see 2.9
3 References

[1] 3GPP TDoc S4-030821 PSS/MMS High-Rate Audio Selection Test and Processing Plan Version 2.2.0

[2] 3GPP Tdoc S4-030824 AMR-WB+ and PSS/MMS Low-Rate Audio Selection Test and Processing Plan Version 2.2

[3] RECOMMENDATION ITU-R BS.1534, Method for the subjective assessment of intermediate quality level of coding systems

[4] AFsp version 7r1, Peter Kabal, Electrical & Computer Engineering, McGill University

[5] ITU T Recommendation G.191, Software tools for speech and audio coding standardization (STL2000)

Annex

4 Low Rate Items

	No.
	item
	genre

	1
	m_ch_x_1
	music, choir

	2
	m_cl_x_1
	music, classical

	3
	m_cl_x_2
	music, classical

	4
	m_ot_x_1
	music, other

	5
	m_ot_x_2
	music, other

	6
	m_ot_x_3
	music, other

	7
	m_ot_x_4
	music, other

	8
	m_ot_x_5
	music, other

	9
	m_ot_x_6
	music, other

	10
	m_ot_x_7
	music, other

	11
	m_ot_x_8
	music, other

	12
	m_ot_x_9
	music, other

	13
	m_ot_x_a
	music, other

	14
	m_ot_x_b
	music, other

	15
	m_po_x_1
	music, pop

	16
	m_po_x_2
	music, pop

	17
	m_po_x_3
	music, pop

	18
	m_po_x_4
	music, pop

	19
	m_po_x_5
	music, pop

	20
	m_po_x_6
	music, pop

	21
	m_po_x_7
	music, pop

	22
	m_si_x_1
	music, single instr.

	23
	m_si_x_2
	music, single instr.

	24
	m_si_x_3
	music, single instr.

	25
	sbm_js_x_1
	speech between music

	26
	sbm_js_x_2
	speech between music

	27
	sbm_ms_x_1
	speech between music

	28
	sbm_sj_x_1
	speech between music

	29
	sbm_sm_x_1
	speech between music

	30
	sbm_sm_x_2
	speech between music

	31
	sbm_sm_x_3
	speech between music

	32
	sbm_sm_x_4
	speech between music

	33
	sbm_sm_x_5
	speech between music

	34
	sbm_sm_x_6
	speech between music

	35
	som_ad_x_1
	speech over music

	36
	som_fi_x_1
	speech over music

	37
	som_fi_x_2
	speech over music

	38
	som_fi_x_3
	speech over music

	39
	som_fi_x_4
	speech over music

	40
	som_nt_x_1
	speech over music

	41
	som_ot_x_1
	speech over music

	42
	som_ot_x_2
	speech over music

	43
	som_ot_x_3
	speech over music

	44
	som_ot_x_4
	speech over music

	45
	som_ot_x_5
	speech over music

	46
	som_ot_x_6
	speech over music

	47
	s_cl_2t_1
	speech, clean

	48
	s_cl_2t_2
	speech, clean

	49
	s_cl_2t_3
	speech, clean

	50
	s_cl_2t_4
	speech, clean

	51
	s_cl_2t_5
	speech, clean

	52
	s_cl_ft_3
	speech, clean

	53
	s_cl_mt_1
	speech, clean

	54
	s_cl_mt_2
	speech, clean

	55
	s_no_2t_1
	speech, noisy

	56
	s_no_2t_2
	speech, noisy

	57
	s_no_2t_3
	speech, noisy

	58
	s_no_ft_1
	speech, noisy

	59
	s_no_ft_2
	speech, noisy

	60
	s_no_ft_3
	speech, noisy

	61
	s_no_ft_4
	speech, noisy

	62
	s_no_mt_1
	speech, noisy

5 Low Rate Items - Assignment to Experiments

Experiment A1

	SetA1a
	m_ot_x_8_org

m_ot_x_a_org

m_po_x_5_org

m_po_x_7_org
	Set A1b
	m_ot_x_9_org

m_ot_x_b.org

m_po_x_6_org

m_si_x_3_org

	
	s_cl_2t_4_org

s_cl_2t_3_org

s_no_2t_1_org

s_no_ft_1_org
	
	s_cl_2t_5_org

s_cl_mt_2_org

s_no_2t_2_org

s_no_ft_2_org

	
	sbm_js_x_1_org

sbm_ms_x_1_org
	
	sbm_sj_x_1_org

sbm_sm_x_6_org

	
	som_fi_x_4_org

som_ot_x_4_org
	
	som_ot_x_5_org

som_ot_x_6_org

Experiment A2

	Set A2a
	m_ot_x_4_org

m_ot_x_5_org

m_po_x_2_org

m_po_x_3_org
	SetA2 b
	m_ot_x_6_org

m_ot_x_7.org

m_po_x_4_org

m_si_x_2_org

	
	s_cl_2t_4_org

s_cl_ft_3_org

s_no_2t_3_org

s_no_mt_1_org
	
	s_cl_2t_5_org

s_cl_mt_2_org

s_no_ft_4_org

s_no_ft_3_org

	
	sbm_js_x_1_org

sbm_sm_x_4_org
	
	sbm_js_x_2_org

sbm_sm_x_5_org

	
	som_fi_x_3_org

som_ot_x_2_org
	
	som_ot_x_3_org

som_ad_x_1_org

Experiment A3

	SetA3 a
	m_ot_x_2_org

m_si_x_1_org

m_po_x_2_org

m_po_x_1_org
	SetA3 b
	m_ot_x_3_org

m_po_x_3.org

m_po_x_4_org

m_si_x_2_org

	
	s_cl_2t_1_org

s_cl_ft_3_org

s_no_2t_1_org

s_no_mt_1_org
	
	s_cl_2t_2_org

s_cl_mt_2_org

s_no_2t_2_org

s_no_ft_4_org

	
	sbm_ms_x_1_org

sbm_sm_x_2_org
	
	sbm_js_x_2_org

sbm_sm_x_5_org

	
	som_nt_x_1_org

som_ot_x_2_org
	
	som_ot_x_3_org

som_ot_x_1_org

Experiment A4

	SetA4 a
	m_ot_x_2_org

m_si_x_1_org

m_ch_x_1_org

m_po_x_1_org
	SetA4 b
	m_ot_x_3_org

m_ot_x_1.org

m_cl_x_1_org

m_cl_x_2_org

	
	s_cl_2t_1_org

s_no_2t_1_org

s_cl_mt_1_org

s_no_ft_2_org
	
	s_cl_2t_2_org

s_no_ft_1_org

s_no_2t_2_org

s_cl_2t_3_org

	
	sbm_ms_x_1_org

sbm_sm_x_2_org
	
	sbm_sm_x_1_org

sbm_sm_x_3_org

	
	som_nt_x_1_org

som_fi_x_1_org
	
	som_fi_x_2_org

som_ot_x_1_org

Experiment B1

	Set B1 a
	m_ch_x_1_org

m_cl_x_1_org

m_po_x_2_org

m_po_x_3_org
	SetB1 b
	m_po_x_5_org

m_po_x_6.org

m_po_x_4_org

m_si_x_2_org

	
	s_cl_2t_4_org

s_cl_ft_3_org

s_no_2t_2_org

s_no_ft_2_org
	
	s_cl_2t_2_org

s_cl_mt_1_org

s_no_2t_3_org

s_no_ft_4_org

	
	sbm_js_x_2_org

sbm_ms_x_1_org
	
	sbm_sj_x_1_org

sbm_sm_x_4_org

	
	som_ad_x_1_org

som_ot_x_4_org
	
	som_ot_x_2_org

som_ot_x_6_org

Experiment B2

	SetB2 a
	m_ot_x_1_org

m_ot_x_8_org

m_ot_x_a_org

m_cl_x_2_org
	SetB2 b
	m_ot_x_9_org

m_ot_x_b.org

m_cl_x_1_org

m_ch_x_1_org

	
	s_cl_2t_4_org

s_cl_2t_5_org

s_no_2t_3_org

s_no_ft_2_org
	
	s_cl_2t_3_org

s_cl_mt_1_org

s_no_ft_1_org

s_no_ft_3_org

	
	sbm_js_x_1_org

sbm_sm_x_4_org
	
	sbm_sm_x_1_org

sbm_sm_x_3_org

	
	som_fi_x_1_org

som_ot_x_5_org
	
	som_ot_x_6_org

som_fi_x_2_org

Experiment B3

	SetB3 a
	m_ot_x_1_org

m_ot_x_5_org

m_ot_x_7_org

m_cl_x_1_org
	SetB3 b
	m_ot_x_4_org

m_ot_x_6.org

m_ch_x_1_org

m_cl_x_2_org

	
	s_cl_2t_1_org

s_cl_2t_3_org

s_no_2t_3_org

s_no_ft_4_org
	
	s_cl_2t_2_org

s_cl_mt_1_org

s_no_ft_3_org

s_no_mt_1_org

	
	sbm_ms_x_1_org

sbm_js_x_2_org
	
	sbm_js_x_1_org

sbm_sm_x_1_org

	
	som_ad_x_1_org

som_fi_x_2_org
	
	som_fi_x_3_org

som_fi_x_1_org

Experiment B4

	SetB4 a
	m_ot_x_4_org

m_ot_x_8_org

m_po_x_2_org

m_po_x_7_org
	SetB4 b
	m_ot_x_5_org

m_ot_x_9.org

m_po_x_3_org

m_si_x_3_org

	
	s_cl_2t_1_org

s_cl_2t_5_org

s_no_2t_1_org

s_no_ft_3_org
	
	s_cl_2t_3_org

s_cl_mt_2_org

s_no_ft_1_org

s_no_mt_1_org

	
	sbm_js_x_2_org

sbm_sm_x_2_org
	
	sbm_sm_x_1_org

sbm_sm_x_6_org

	
	som_ot_x_5_org

som_fi_x_3_org
	
	som_fi_x_4_org

som_ot_x_3_org

Script Anchor.sh

#!/bin/bash

#

anchor.sh according to Section 8 of S4-030677_AMRWB+TestPlan_v0.8.doc

HP20031103 20031104

#

RES=./ResampAudio.exe

CPY=./CopyAudio.exe

INF=./InfoAudio.exe

TMPFILE=anchor_tmp_file.wav

if [$# -lt 2]; then

 echo "usage: `basename $0` [-lp<cut-off>] [-s<stereo_degree>] [-fsout[16|24]] [-monoout] <infile.wav> <outfile> "

 echo ""

 exit

fi

echo $*

INARG=$(($# - 1))

OUTARG=$#

INFILE="${!INARG}"

OUTFILE="${!OUTARG}"

OUTEXT=${OUTFILE:(-4):4}

CUTOFF=0

STEREO=0

OUTFS=0

OUTMONO=0

for ((I=1 ; I<$#-1 ; I++)) ; do

 OPT=${!I}

 if [[${OPT:0:3} == "-lp"]] ; then

 CUTOFF=${OPT:3}

 elif [[${OPT:0:2} == "-s"]] ; then

 STEREO=${OPT:2}

 elif [[$OPT == "-fsout24"]] ; then

 OUTFS=24000

 elif [[$OPT == "-fsout16"]] ; then

 OUTFS=16000

 elif [[$OPT == "-monoout"]] ; then

 OUTMONO=1

 else

 echo "ERROR: Unknown option "$OPT

 echo ""

 exit 1

 fi

done

RESOPTS=""

if [[$CUTOFF == 3500]] ; then

 RESOPTS=$RESOPTS" -f cutoff=0.0729167"

elif [[$CUTOFF == 7000]] ; then

 RESOPTS=$RESOPTS" -f cutoff=0.145833"

elif [[$CUTOFF != 0]] ; then

 echo "ERROR: Wrong cut-off "$CUTOFF

 echo ""

 exit 1

fi

if [[$OUTFS == 24000]] ; then

 RESOPTS=$RESOPTS" -s 24000"

elif [[$OUTFS == 16000]] ; then

 RESOPTS=$RESOPTS" -s 16000"

else

 RESOPTS=$RESOPTS" -i 1"

fi

if [[$OUTMONO != 0 && $STEREO != 0]] ; then

 echo "ERROR: Options -monoout and -s<stereo_degree> given simultaneously"

 echo ""

 exit 1

fi

CPYOPTS=""

if [[$STEREO == 6]] ; then

 CPYOPTS=$CPYOPTS" -cA 3/4*A+1/4*B -cB 1/4*A+3/4*B"

elif [[$STEREO == 12]] ; then

 CPYOPTS=$CPYOPTS" -cA 5/8*A+3/8*B -cB 3/8*A+5/8*B"

elif [[$STEREO != 0]] ; then

 echo "ERROR: Wrong stereo-degree "$STEREO

 echo ""

 exit 1

fi

if [[$OUTMONO == 1]] ; then

 CPYOPTS=$CPYOPTS" -cA 1/2*A+1/2*B"

 #use below for 2-channel mono presentation

 #CPYOPTS=$CPYOPTS" -cA 1/2*A+1/2*B -cB 1/2*A+1/2*B"

fi

if [[$OUTEXT == ".raw"]] ; then

 CPYOPTS=$CPYOPTS" -F noheader -D integer16"

fi

echo ""

echo "ANCHOR: checking input file "$INFILE

echo ""

if ! { $INF $INFILE | grep "Sampling frequency: 48000 Hz" ; } ; then

 echo "ERROR: Sampling frequency not 48000 Hz"

 echo ""

 exit 1

fi

if ! { $INF $INFILE | grep "Number of channels: 2" ; } ; then

 echo "ERROR: Number of channels not 2"

 echo ""

 exit 1

fi

if [[$OUTFS != 0 || $CUTOFF != 0]] ; then

 echo ""

 echo "ANCHOR: filtering/resampling ..."

 echo ""

 echo $RES $RESOPTS $INFILE $TMPFILE

 $RES $RESOPTS $INFILE $TMPFILE

else

 TMPFILE=$INFILE

fi

echo ""

echo "ANCHOR: copying/downmixing ..."

echo ""

echo $CPY $CPYOPTS $TMPFILE $OUTFILE

$CPY $CPYOPTS $TMPFILE $OUTFILE

if [[$TMPFILE != $INFILE]] ; then

 rm $TMPFILE

fi

echo ""

echo "ANCHOR: done ..."

echo ""

exit 0

Script upsamp48.sh

#!/bin/bash

#

upsamp48.sh according to Section 8 of S4-030677_AMRWB+TestPlan_v0.8.doc

HP20031103 20031104

#

RES=./ResampAudio.exe

CPY=./CopyAudio.exe

INF=./InfoAudio.exe

TMPFILE=upsamp48_tmp_file.wav

ATTEN="0.93"

if [$# -lt 2]; then

 echo "usage: `basename $0` [-fs<fsamp>] <infile> <outfile.wav> "

 echo ""

 exit

fi

INARG=$(($# - 1))

OUTARG=$#

INFILE="${!INARG}"

OUTFILE="${!OUTARG}"

INEXT=${INFILE:(-4):4}

INFS=0

for ((I=1 ; I<$#-1 ; I++)) ; do

 OPT=${!I}

 if [[${OPT:0:3} == "-fs"]] ; then

 INFS=${OPT:3}

 else

 echo "ERROR: Unknown option "$OPT

 echo ""

 exit 1

 fi

done

RAWOPTS=""

if [[$INEXT == ".raw"]] ; then

 if [[$INFS == 0]] ; then

 echo "ERROR: Option -fs<fsamp> missing"

 echo ""

 exit 1

 fi

 RAWOPTS=" -P integer16,0,"$INFS",native,1,1/32768"

 INCH=1

else

 INFS=0

 if $INF $INFILE | grep "Sampling frequency: 48000 Hz" > /dev/null ; then

 INFS=48000

 fi

 INCH=1

 if $INF $INFILE | grep "Number of channels: 2" > /dev/null ; then

 INCH=2

 fi

fi

if [[$INCH == 1]] ; then

 if [[$INFS == 48000]] ; then

 CPYOPTS=" -cA "$ATTEN"*A -cB "$ATTEN"*A"$RAWOPTS

 echo ""

 echo "UPSAMPLE48: gain-adjustment/upmixing ..."

 echo ""

 echo $CPY $CPYOPTS $INFILE $OUTFILE

 $CPY $CPYOPTS $INFILE $OUTFILE

 else

 RESOPTS=" -s 48000 -g "$ATTEN""$RAWOPTS

 echo ""

 echo "UPSAMPLE48: gain-adjustment/resampling ..."

 echo ""

 echo $RES $RESOPTS $INFILE $TMPFILE

 $RES $RESOPTS $INFILE $TMPFILE

 echo ""

 echo "UPSAMPLE48: upmixing ..."

 echo ""

 CPYOPTS=" -cA A -cB A"

 echo $CPY $CPYOPTS $TMPFILE $OUTFILE

 $CPY $CPYOPTS $TMPFILE $OUTFILE

 rm $TMPFILE

 fi

else

 if [[$INFS == 48000]] ; then

 CPYOPTS=" -g "$ATTEN

 echo ""

 echo "UPSAMPLE48: gain-adjustment ..."

 echo ""

 echo $CPY $CPYOPTS $INFILE $OUTFILE

 $CPY $CPYOPTS $INFILE $OUTFILE

 else

 RESOPTS=" -s 48000 -g "$ATTEN

 echo ""

 echo "UPSAMPLE48: gain-adjustment/resampling ..."

 echo ""

 echo $RES $RESOPTS $INFILE $OUTFILE

 $RES $RESOPTS $INFILE $OUTFILE

 fi

fi

echo ""

echo "UPSAMPLE48: done ..."

echo ""

exit 0

Script splitup.csh

#!/bin/csh

if ($# != 3) then

 echo "Usage: v. 0.1"

 echo "$0 <infile> <proc_tag> <timfile>"

 echo " "

 echo " This script will de-concatenate a 48000 Hz wav input file"

 echo " <infile> : ./cand_1/processed/all_cat_cand_1_A1.wav (example)"

 echo " <proc_tag> : <codec_id>_<exp_id>, e.g.: cand_1_A1"

 echo " <timfile> : ./preproc/all_cat.tim (typically)"

 echo " "

 echo " Note: this script is to be executed from the processing root!"

 echo " mono-files will be converted to 2-channel files."

 exit -1

endif

pathes to executables to be adjusted to local needs

set RESAMPAUDIO = ResampAudio.exe

set COPYAUDIO = CopyAudio.exe

set ASTRIP = astrip

###

set infile = $1

set proctag = $2

set timfile = $3

set outdir

set base = `basename $infile`

set outdir = `echo $infile | sed s/$base//`

check sampling rate

set info = `file $infile`

while ("$info[3]" != "Hz")

 shift info

 if ($#info < 3) then

echo "incorrect wav header in file $infile"

exit -1

 endif

end

if ($info[2] != 48000) then

 echo "Wrong sampling rate of $infile. Must be 48000 Hz."

 exit -1

endif

check input channels

if ($info[1] == stereo) then

 set channels = 2

else

 set channels = 1

endif

make mono files to 2 channel files

if ($channels == 1) then

 $COPYAUDIO --chanA="A" --chanB="A" $infile tmpfile.wav

 set channels = 2

else

 cp $infile tmpfile.wav

endif

strip the wav header

$COPYAUDIO -F noheader tmpfile.wav catfile.raw

set acclen=1

@ i=1

set line=`sed -n $i\p $timfile`

while ("$line" != "")

 @ i++

 echo $line

 # get length information

 set len = $line[2]

 echo $len

 # deconcatenate with smooth edges

 # make the following simplification:

 # treat stereo file as mono file and apply Hanning window

 # of double length

 # The window size is 100ms=4800samples (rather than 10 ms)

 @ wlen = 4800 * $channels

 $ASTRIP -smooth -wlen $wlen -sample -start $acclen -n $len catfile.raw tmpfile.raw

 set acclen = `echo $acclen + $len | bc`

 # regenerate wav file

 set outname = `echo $line[1] | sed s/.wav/_$proctag.wav/`

 set outfile = $outdir/$outname

 $COPYAUDIO -t noheader -P "integer16,0,48000., native, 2, default" tmpfile.raw $outfile

 # next

 set line=`sed -n $i\p $timfile`

end

clean up

rm -f catfile.raw tmpfile.raw tmpfile.wav

Script Shiftcirc.csh

#!/bin/tcsh

if ($# == 3) then

 set offs=$1

 set in=$2

 set out=$3

else if ($# == 4) then

 set s=$1

 set p=$2

 set e=$3

 set in=$4

 set len = `wc -l $in`

 set offs=`echo "($s*12345 + $p*31415 + $e*27183) % $len[1]"|bc`

 echo "offs = $offs"

 exit

else if ($# == 5) then

 set s=$1

 set p=$2

 set e=$3

 set in=$4

 set out=$5

 set len = `wc -l $in`

 set offs=`echo "($s*12345 + $p*31415 + $e*27183) % $len[1]"|bc`

else

 echo "Usage: v. 0.2"

 echo "$0 <listener_id> <lab_id> <exp_id> <inpat>"

 echo " returning 'offs'"

 echo "or"

 echo "$0 <offs> <inpat> <outpat>"

 echo "or"

 echo "$0 <listener_id> <lab_id> <exp_id> <inpat> <outpat>"

 echo

 exit

endif

set len = `wc -l $in`

set len=$len[1]

echo $offs

if ($offs >= $len[1] || $offs < 0) then

 echo "offset error: must be >= 0 and < length(inpat)"

 exit 1

endif

#do the shift:

@ offs++

sed -n -e $offs,$len\p $in > $out

@ offs--

if ($offs > 0) then

sed -n -e 1,$offs\p $in >> $out

endif

PAGE
1

