
Technical Specification Group Services and System Aspects TSGS#23(04)0077
Meeting #23, Phoenix, AZ, USA, 15-18 March 2004

3GPP TSG-SA4#30 meeting Tdoc S4-040153
February 23-27, 2004, Málaga, Spain

Source: TSG SA WG4 [STMicroelectronics]1

Title: Draft verification plan v. 1.0

Agenda item: 7.4.3

Document for: Information

1. Introduction

This document provides a verification plan for the SES codec selection. The SES
candidate selected during SA4#30 (February 23-27, 2004) will be brought to TSG-SA
for approval (TSG-SA#23, March 15-17, 2003). Some critical items (as listed in [1])
will be verified by volunteering organizations before the candidate is brought to TSG-
SA.

The codecs under consideration are the AFE/X-AFE codec (Advanced DSR front-end
and its extension, cf. [3,4]), the AMR-NB codec and the AMR-WB codec. In case of
the AMR-NB and AMR-WB codecs are selected then the independent complexity
assessment results that are already available from earlier standardisation efforts will
be used to verify the complexity. In the case of the AFE/X-AFE codec the fixed-point
implementation will be verified.

In the case that SA4 passes decision to TSG-SA because the performance falls in the
“grey area” of the recommendation criteria (cf. [11]) and SA4 is unable to reach
consensus then verification will also be performed before it is brought to TSG-SA.

2. Verification of bit-exactness

2.1 Motivation

The motivation is to check that the executable used by the ASR vendors corresponds
to the executable built from the source code of the selected candidate. A test of "bit-
exactness" is used to verify the match of the output bitstreams of the compiled
version of the source code of the selected candidate and the executables provided to
the two test laboratories for selection testing. Output files from both versions are
compared with respect to the bit-exactness.

2.2 Definition

The verification laboratories will make use of:

1. Executables obtained by compiling the source code of the candidate

2. Executables used for selection testing

3. A subset of the samples used for the selection phase.

1 Stéphan Tassart
STMicroelectronics,
Email: stephan.tassart@st.com

During the evaluation phase of the AFE/X-AFE algorithm conducted by the testing
laboratories, two sampling rates were used, one for the narrowband case (T8) and
one for the wideband case (T16). The binaries were delivered for two different
platforms: I386/linux RH7.3 (resp. T8_linux and T16_linux) and AIX (resp.
T8_AIX and T16_AIX).

Source codes will be provided to the verification laboratories. The executables
compiled from the source code are the reference executables to be run at the
different sampling rates (resp. B8 and B16).

Bit exactness will be checked with the VAD flag off since ASR vendors did not use
VAD in their evaluations [section 2.3 of 10].

The bit-exactness verification will be made on a subset of the samples used for the
selection phase:

Acronym Description Duration Bandwidth Owner

A3I8 Aurora 3 Italian 8h 8kHz Alcatel

A3I16 Aurora 3 Italian 8h 16kHz Alcatel

MND8 Mandarin name dialling 5h 8kHz Nokia

Table 1: complexity requirements for the SES candidate

2.3 Task

2.3.1 Narrowband verification

The verification laboratory tests the bit-exactness of the output bitstream of the
candidate B8 vs. the output bitstream of the executable T8_linux or T8_AIX
provided to the testing laboratories.

C compiler

bit-exact ?

bit-exact ?
bitstream

bitstream

B8

X-AFE

src 8kHz

A3I8

MND8

T8_Linux

Figure 1: Verification of the bit-exactness of the narrowband candidate

The platform used for verifying the bit-exactness of the candidate is not relevant
because the source code of the narrowband candidate is platform independent (i.e.
bit-exact on any supported platform). The verification laboratories can use any
supported platform for verifying T8_linux or T8_AIX, i.e. the executable used by
the test laboratories.

2.3.2 Wideband verification

The verification laboratory tests the bit-exactness of the output bitstream of the
candidate B16_linux vs. the output bitstream of the executable T16_linux
provided to the testing laboratories.

gcc

bitstream

bitstream

bit-exact ?

linux

A3I16

X-AFE

src 16kHz

T16_Linux

B16_Linux

Figure 2: Verification of the bit-exactness of the wideband candidate

Motorola notified to the committee that 6 lines of the code delivered to the testing
laboratories were incorrect. Only the wideband case (T16_linux and T16_AIX) is
affected (cf. [5]). The code delivered to the testing laboratories contains a processing
block using the floating-point arithmetic (cf. [6]). The verification laboratory checks
that the compilation of the source code with the floating-point arithmetic mentioned by
Motorola and the executables delivered to the testing laboratories generate identical
bitstreams. However, since the IEEE floating-point arithmetic is not bit-exact (cf.
[7,8]), the verification of the binaries can be conducted only on a similar platform
(same hardware, same compiler, same compilation options).

3. WMOPS Complexity verification

3.1 Motivation

The compiled version of the fixed-point ANSI-C source code must meet the design
constraints (cf. [9]). The WMOPS complexity of the candidate will be estimated in the
framework of the worst observed frame on a subset of the samples used for the
selection phase.

Bandwidth WMOPS design constraint
narrowband ≤25 WMOPS

wideband ≤39 WMOPS

Table 2: complexity requirements for the SES candidate

3.2 Source-code verification

The source code is used to verify the complexity of the codec. The verification
laboratory checks that the C-code has been correctly implemented with basic
operators and that the C-code correctly implements the instrumentation that
generates a maximum WMOPS score for each sample file.

3.3 Complexity verification

3.3.1 Task

The verification laboratories compile the C-code on one of the supported platforms
(gcc on AIX, i386/linux RH7, Sun Solaris 8 or possibly VC++ on win32) and build an
executable to be run at the different sampling rates (resp. A8 for the narrowband and
A16 for the wideband) (Note: the versions A8 and B8 are identical).

The verification laboratories check that the complexity of the VAD processing is
included in the WMOPS complexity verification as indicated in [9].

The executable generates a log file with the maximum observed WMOPS score for
each sample file. The verification laboratories process all the files from the selected
subset and evaluate the maximum observed WMOPS score. The maximum observed

WMOPS score is evaluated by selecting the maximum WMOPS score from every
sample file. The obtained maximum observed WMOPS score is compared with the
design constraints (cf. Table 2).

3.3.2 Database selection

The verification of the WMOPs complexity is made on a subset of the samples used
for the selection phase (cf. Table 1).

3.3.3 Narrowband verification

The verification laboratory processes the selected databases (A3I8 and MND8)
through the A8 executable and produces the maximum WMOPS score.

logs

logs
[max WMOPS]

MND8

A3I8

A8

Figure 3: Verification of the complexity of the narrowband candidate

The platform used for the complexity verification is not relevant for the purpose of the
WMOPS complexity verification.

3.3.4 Wideband verification

The verification laboratory processes the selected databases (A3I16) through the
A16 executable and produces the maximum WMOPS score.

logs
[max WMOPS]A3I16 A16

Figure 4: Verification of the complexity of the wideband candidate

The platform used for the complexity verification is not relevant for the purpose of the
WMOPS complexity verification.

4. RAM and ROM Complexity verification

4.1 Motivation

The memory used by the fixed-point ANSI-C source code must meet the design
constraints (cf. [9]). The memory complexity of the candidate will be estimated from
the source code.

Bandwidth ROM design constraint RAM design constraint
narrowband ≤20 kwords ≤7 kwords

wideband ≤34 kwords ≤8 kwords

Table 3: memory requirements for the SES candidate (16-bit words)

4.2 Definition

The RAM memory used by the software is the sum of all the non-const arrays or
variables defined with a global visibility, all the static arrays or variables (known as
the static memory or permanent allocation) and the maximum amount of RAM
required by the stack (known as the scratch memory).

The ROM memory used by the software is the sum of all the const arrays or variables
(defined in a global or in local visibility). The ROM memory does not include the
program ROM (cf. [9]).

The following sample source code explains how the RAM and the ROM memory are
evaluated.

Word16 buff[16];
const Word32 tab[32];

Word16
func(void *state, Word16 a, const Word16 v[])
{
 Word16 ret;
 Word16 local_buff[8];
 static Word16 state=START;

 [...]

 return ret;
}

Code 1: Example of instrumented C-code

In this small example, the memory complexity would be evaluated as follow:

C instruction Type of memory Accounted for
Word16 buff[16] static RAM 16

const Word32 tab[32] ROM 64

void *state stack push 1

Word16 a stack push 1

const Word16 v[] stack push 1

Word16 ret stack push 1

Word16 local_buff[8] stack push 8

static Word16 state static RAM 1

Return stack pop (-12)

Table 4: Example of memory assessment

4.3 Additional definitions

4.3.1 Static RAM array initialization

Arrays that are allocated and initialised in the static RAM are accounted
simultaneously in static RAM and in ROM.

4.3.2 Stack array initialization

Arrays that are allocated and initialised in the stack are accounted only in static RAM.
Furthermore, the code shall be instrumented with as many move16() (resp.
move32()) basic operations than necessary in order to take into account the actual
initialisation process. Here follows a small example:

Word16
func_proc(Word16 a, Word32 b)
{
 [...]
 Word16 autoBuff[4]={0x4000, 0x1400, 0xFC00, 0xAFF0};
 move16();move16();move16();move16();

 [...]

 return 0;
}

Code 2: Instrumented C-code initializing an array in the stack

Said differently, the process of initialising an array allocated in the stack is formally
equivalent to the following C-code fragment:

Word16
func_proc(Word16 a, Word32 b)
{
 [...]
 Word16 autoBuff[4];

 autoBuff[0] = 0x4000; move16();
 autoBuff[1] = 0x1400; move16();
 autoBuff[2] = 0xFC00; move16();
 autoBuff[3] = 0xAFF0; move16();
 [...]

 return 0;
}

Code 3: Unambiguous equivalent C-code for initializing an array in the stack

4.3.3 Constant value usage

Most C compilers for DSP will inline Word16 and Word32 constant values directly in
the assembly language code. Therefore, constant values (such as 0x00400000L and
25798L) will not be included in the data ROM; instead they are included in the
program source code.

4.3.4 Summary

The following table sums up the different configurations considered for assessing the
complexity and the memory usage regarding the usage of constant values in the
reference C-code.

C instruction Type of memory Accounted for
Word16 swRand[4]={…}; ROM + static RAM 4 each
Word16 autoBuff[4]={…}; stack push 4
((Word16)0x(vvvv)) program transparent

0x(hhhhllll)L program transparent

Table 4: Memory assessment for initialization of arrays and constant value
usage

4.3.5 Example C-code

This following imaginary sample code (which does nothing in particular) illustrates
different cases that shall be taken into account for the memory assessment of the
SES codec :

/* initialization counting for 4 words in the ROM */
Word16 swRand[4] = {8, 12, -4, -7};

Word16
func_proc(Word16 a, Word32 b)
{
 Word16 idx, idx2;

 /* constant value counting for 0 words ROM */
 Word32 enerLog = 0x00400000L;

 /* initialization counting for 0 word ROM */
 Word16 autoBuff[4] = {0x4000, 0x1400, 0xFC00, 0xAFF0};

 /* enerLog initialization */
 move32();

 /* autoBuff initialization */
 move16();move16();move16();move16();

 [...]
 /* loop preparation */
 idx2 = 0; move16();
 for (idx=0;idx<4;idx++) {
 [...]
 autoBuff [idx] = swRand[idx2]; move16();
 swRand[idx2] = /* small constant 25798L counting 0 word ROM */
 extract_h(L_shr(L_add(25798L,
 L_mult(swRand[idx2], 10037)),2));
 move16();

 [...]
 }

 [...]

 return 0;

Code 4: Sample instrumented C-code

4.4 ROM verification

The source code is used to evaluate the ROM complexity. The amount of ROM
memory used by the candidate, as evaluated by the verification laboratories, is
compared to the design constraints (cf. Table 3).

4.5 RAM verification

4.5.1 Permanent RAM verification

The source code is used to evaluate the RAM usage that is not related to the use of
the stack. The verification laboratory enumerates all the array and variable definitions
corresponding to a permanent allocation.

4.5.2 Stack verification

The source code is used to evaluate the stack usage. The verification laboratory
builds the calling tree of the source code and evaluates the worst case for the stack
usage.

4.5.3 Conclusion

The verification laboratory sums the amount of static RAM and the maximum amount
of RAM required by the stack. The amount of RAM memory is compared to the
design constraints (cf. Table 3).

5. Workplan

5.1 Verification laboratories

The verification will be performed by STMicroelectronics (contact is
stephan.tassart@st.com) and IBM (contact is sorin@il.ibm.com).

Task Company
bit-exactness verification, narrowband,linux (cf. 2.3.1) ST

bit-exactness verification, wideband linux (cf. 2.3.2) ST

bit-exactness verification, narrowband AIX (cf. 2.3.1) IBM

source code verification (cf. 3.3.2) ST

WMOPS verification, narrowband (cf. 3.3.3) ST

WMOPS verification, wideband (cf. 3.3.4) ST

RAM verification, narrowband (cf. 4.4) ST

RAM verification, wideband (cf. 4.4) ST

ROM verification, narrowband (cf. 4.4) ST

ROM verification, wideband (cf. 4.4) ST

5.2 Schedule

The workplan is organized as follow:

Date Actions

19th Dec. 2003 Agree the verification plan by correspondence

16th Feb. 2004 Complete legal agreements with Alcatel for the A3I8 and
A3I16 speech databases. Verification laboratories to obtain
A3I8 and A3I16.

19th Feb. 2004 Complete legal agreements (NDA) with Motorola for the X-
AFE source code.

5th Mar. 2004 Complete legal agreements with Nokia for MND8 speech
database.

16th Feb. 2004 The I/O interface and the format of the log files of the X-
AFE candidate are provided to the verification laboratories.

1st Mar. 2004 The testing laboratories to provide the executables (i.e.
T8_linux and T16_linux) to the verification laboratories.

23rd –27th Feb. Meeting SA4#30 – Malaga

1st Mar. 2004 DSR supporting companies to provide the source code to
the verification laboratories. The verification laboratories
compile the source code and obtain a binary (i.e. B8 and
B16_linux).

1st - 3rd Mar. Bit-exactness verification: B8 versus T8_linux on A3I8.

1st - 3rd Mar. Verification of the source code instrumentation.

4th - 5th Mar. Complexity wMOPs verification: A8 on A3I8.

1st - 10th Mar. Verification of the RAM and ROM figures.

8th Mar.-10th Mar. Complexity wMOPs verification: A8 on A3I16.

10th Mar. 2004 Conference call: discussion of partial verification results.

10th Mar. 2004 Verification laboratories to obtain MND8.

11th - 12th Mar. Bit-exactness verification : B16_linux versus T16_linux
on A3I16.

11th - 12th Mar. Bit-exactness verification : T8_AIX versus T8_linux on
A3I8.

15th Mar. 2004 Partial verification report completed: memory assessment
completed, wMOPs assessment partially completed (A3I8,
A3I16), bit-exactness verification partially completed (A3I8,
A3I16)

15th - 17th Mar. Meeting TSG SA4#23

15th - 17th Mar. Bit-exactness verification : B8_linux versus T8_linux on
MND8.

18th - 19th Mar. Complexity wMOPs verification: A8 on MND8.

26th Mar. Verification report completed.

6. References

[1] S4-030745 “SES codec verification”
[2] S4-030852 “SES Workplan version 8.0”
[3] ETSI standard ES 202 050 “Distributed Speech Recognition; Advanced Front-end

Feature Extraction Algorithm; Compression Algorithms”, Oct 2002,
http://pda.etsi.org/PDA/home.asp?wki_id=yeZ1Qi@QwpOPXVVTO7wZ2

[4] ETSI standard ES 202 212 “Distributed Speech Recognition; Extended Advanced
Front-end Feature Extraction Algorithm; Compression Algorithm”, Nov 2003,
http://pda.etsi.org/PDA/copy_file.asp?Action_type=&Action_Nb=&Profile_id=IugJxMa
dBBxgVRiTVU7weOO&Wki_id=yPyx-MSKzNpqwrsvVBZ_Z

[5] S4-030853 “Draft Report SQ and AUC ad-hoc sessions during SA4#29 plenary
meeting”

[6] S4-030866 “Consideration of DSR executable code update to ASR vendors”
[7] IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
[8] IEEE 854-1987 Standard for Radix-Independent Floating-Point Arithmetic
[9] S4-030248 “Design Constraints for default codec for speech enabled services (SES)”
[10] S4-030543 “Test and processing plan for default codec evaluation for speech

enabled services (SES)”
[11] S4-030540 “Recommendation Criteria for default codec for speech enabled services
(SES)”

	SP-040077.doc

