Technical Specification Group Services and System Aspects **TSGS#19(03)0086** Meeting #19, Birmingham, UK, 17 - 20 March 2003

Source: TSG-SA WG4

Title: CR to TS 26.093 - Handling of FACCH and RATSCCH

during AMR DTX (Release 6)

**Document for:** Approval

Agenda Item: 7.4.3

The following CR, agreed at the TSG-SA WG4 meeting #25bis, is presented to TSG SA #19 for approval.

| Spec   | CR  | Rev | Phase | Subject                                            | Cat | Vers  | WG | Meeting          | S4 doc    |
|--------|-----|-----|-------|----------------------------------------------------|-----|-------|----|------------------|-----------|
| 26.093 | 011 |     |       | Handling of FACCH and<br>RATSCCH during AMR<br>DTX | F   | 5.2.0 | S4 | TSG-SA WG4#25bis | S4-030142 |

Proposed change affects: UICC apps#

|         |        | CHANC               | SE REQI | UΕ | ST | -                |       | CR-Form-v7 |
|---------|--------|---------------------|---------|----|----|------------------|-------|------------|
| <b></b> | 26.093 | CR <mark>011</mark> | жrev    | -  | ¥  | Current version: | 5.2.0 | #          |

For HELP on using this form, see bottom of this page or look at the pop-up text over the % symbols.

| Title:         | ¥            | Handling of FACCH and RATSCCH during                                                      | AMR DT     | ГХ         |                                          |  |
|----------------|--------------|-------------------------------------------------------------------------------------------|------------|------------|------------------------------------------|--|
| Source:        | ¥            | TSG SA WG4                                                                                |            |            |                                          |  |
|                | -            |                                                                                           |            |            |                                          |  |
| Work item code | : X          | TEI-6                                                                                     |            | Date: ₩    | 19/03/2003                               |  |
| Category:      | $\mathbb{H}$ | F                                                                                         | F          | Release: ₩ |                                          |  |
|                |              | Use <u>one</u> of the following categories: <b>F</b> (correction)                         |            |            | the following releases:<br>(GSM Phase 2) |  |
|                |              | A (corresponds to a correction in an earlie                                               | r release) | R96        | (Release 1996)                           |  |
|                |              | <ul><li>B (addition of feature),</li><li>C (functional modification of feature)</li></ul> |            |            | (Release 1997)<br>(Release 1998)         |  |
|                |              | D (editorial modification)                                                                |            |            | (Release 1999)                           |  |
|                |              | Detailed explanations of the above categories categories in 3GPP TR 21 900                | an         |            | (Release 4)<br>(Release 5)               |  |

## Reason for change: # Handling of FACCH and RATSCCH during AMR DTX is unclear:

Text 'FACCH should be handled in the same way as a RATSCCH, i.e. like a short speech burst' in clause A.5.1.2.4 is incorrect. i) FACCH unlike RATSCCH is not necessarily framed by ONSET and SID\_FIRST; ii) SID\_FIRST/SID\_UPDATE rescheduling not applicable in a speech burst.

ME X Radio Access Network X Core Network

Rel-6

(Release 6)

Procedure for when a SID\_UPDATE is stolen could affect the occurance of a SPEECH\_GOOD or another SID\_UPDATE frame.

Text 'SPEECH frames shall override possible SID\_FIRST or SID\_UPDATE frames in exceptional cases' is redundant. SPEECH\_GOOD is given precedence over SID\_FIRST or SID\_UPDATE in the corrections given for the items above.

Statement 'SID\_UPDATE frame shall be re-scheduled for transmission immediately after the RATSCCH signalling' in clause A.5.1.2.4 is unclear. 'Immediately' could mean after SID\_FIRST\_P1 has been sent, or after both SID\_FIRST\_P1 and SID\_FIRST\_P2 have been sent.

### Summary of change: ₩

Specify that FACCH frames shall be framed by ONSET and SID\_FIRST in order to fill that part of the burst which would otherwise be undefined. Specify that RATSCCH should be handled in the same way as a FACCH. Remove from A.5.1.2.4 'i.e. like a short speech burst'.

Specify that SID\_UPDATE should be rescheduled, unless rescheduling would steal a frame of TX\_TYPE="SPEECH\_GOOD", or if a frame of TX\_TYPE="SID\_UPDATE" has been received before the rescheduling could take place.

Removal of the text 'SPEECH frames shall override possible SID\_FIRST or SID\_UPDATE frames in exceptional cases'.

Specify that SID\_UPDATE, when stolen, shall be re-scheduled after both SID\_FIRST\_P1 and SID\_FIRST\_P2 has been sent.

Consequences if not approved:

₩ Unclear handling of FACCH and RATSCCH during AMR DTX

| Clauses affected:     | 第 A.5.1.2.1, A.5.1.2.2 and A.5.1.2.4                                        |
|-----------------------|-----------------------------------------------------------------------------|
| Other specs affected: | Y N  N Other core specifications   Test specifications   O&M Specifications |
| Other comments:       | <b>x</b>                                                                    |

#### How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at <a href="http://www.3gpp.org/specs/CR.htm">http://www.3gpp.org/specs/CR.htm</a>. Below is a brief summary:

- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <a href="ftp://ftp.3gpp.org/specs/">ftp://ftp.3gpp.org/specs/</a> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

# A.5.1.2 Functions of the TX Radio Subsystem

The TX Radio Subsystem has the following overall functionality. The radio transmission is cut after the transmission of a SID\_FIRST frame when the speaker stops talking. During speech pauses the transmission is resumed at regular intervals for transmission of one SID\_UPDATE frame, in order to update the generated comfort noise on the RX side (and to improve the measurement of the link quality by the RSS). Note that the transcoder knows what frames to send. In the case when nothing is to be transmitted it outputs frames marked with TX\_TYPE = "NO\_DATA".

Within the TX Radio Subsystem the TX\_TYPE Monitoring unit controls the operation of the Channel Encoder (as specified in 3GPP TS 25.003) and the Transmission of the frame. Control input to the TX\_TYPE Monitoring unit is the TX\_TYPE. Control output and input to the Channel Encoder are indicators specifying the frame format. These frame format indicators are defined in 3GPP TS 25.003, they are different for TCH/AFS and TCH/AHS.

# A.5.1.2.1 Functions of the TX Radio Subsystem for TCH/AFS

The TX Radio Subsystem operates in the following way regarding DTX (without TFO):

all frames marked with TX\_TYPE = "SPEECH\_GOOD" are scheduled for normal channel coding and transmission. The frame format for CHE operation shall be SPEECH. If, however, the previous frame was not of TX\_TYPE = "SPEECH\_GOOD", an ONSET frame format followed by SPEECH\_GOOD shall be signalled to the CHE;

for frames marked with TX\_TYPE = "SID\_FIRST" a SID\_FIRST frame format is signalled to the CHE;

frames marked with TX\_TYPE = "SID\_UPDATE" are scheduled for SID\_UPDATE frame channel coding and transmission. The frame format signalled to CHE is SID\_UPDATE;

for frames marked with TX\_TYPE = "NO\_DATA" no processing or transmission is carried out.

#### If a FACCH needs to be sent during a speech pause, and:

if the frame preceding the FACCH is not of TX\_TYPE="SPEECH\_GOOD", then an ONSET frame shall be signalled to the CHE, followed by the FACCH frame(s);

if the frame following the FACCH frame is not of TX\_TYPE="SPEECH\_GOOD", then a SID\_FIRST shall be signalled to the CHE.

If a SID\_FIRST frame or a SID\_UPDATE frame is stolen for Fast Associated Control Channel (FACCH) signalling purposes, then the subsequent frame shall be scheduled for transmission of the SID\_FIRST or SID\_UPDATE frame (whichever applies) instead stolen SID\_UPDATE should be rescheduled on the frame subsequent to the SID\_FIRST marker that follows the FACCH frame(s) (when that marker exists), unless that rescheduling would steal a frame of TX\_TYPE="SPEECH\_GOOD", or if a frame of TX\_TYPE="SID\_UPDATE" has been received before the rescheduling could take place. This rescheduling shall not affect the timing of subsequent SID\_UPDATE frames.

Note: a SID\_FIRST or a SID\_UPDATE frame is considered as stolen when this frame must be replaced by a FACCH frame, or by a RATSCCH frame, or when this frame is replaced by another re-scheduled SID\_FIRST frame.

SPEECH frames shall override possible SID\_FIRST or SID\_UPDATE frames in exceptional cases,

At handover, TX/RX DTX handler synchronisation shall be initiated. At the time instant before the MS starts sending to the new base station, a message shall be sent to the uplink TX DTX handler with the parameter NSYNC = 12.

### A.5.1.2.2 Functions of the TX Radio Subsystem for TCH/AHS

The TX Radio Subsystem operates in the following way regarding DTX:

all frames marked with TX\_TYPE = "SPEECH\_GOOD" are scheduled for normal channel coding and transmission. The frame format for CHE operation shall be SPEECH. However, if the previous frame was of TX\_TYPE = "SID\_FIRST", a SID\_FIRST\_INH frame format followed by SPEECH\_GOOD shall be signalled to the CHE. If the previous frame was of TX\_TYPE = "SID\_UPDATE", a SID\_UPDATE\_INH frame format followed by SPEECH\_GOOD shall be signalled to the CHE. If the previous frame was of TX\_TYPE "NO\_DATA", an ONSET frame format followed by SPEECH\_GOOD shall be signalled to the CHE;

for frames marked with TX\_TYPE = "SID\_FIRST" a SID\_FIRST\_P1 frame format is signalled to the CHE. Note: All 4 TDMA frames carrying the bits of this frame shall be transmitted. The Mode Indication received with the frame is stored for potential use in the next frame;

for frames marked with TX\_TYPE = "SID\_UPDATE" a SID\_UPDATE frame format is signalled to the CHE. All 4 TDMA frames carrying the bits of this frame shall be transmitted;

for frames marked with TX\_TYPE = "NO\_DATA", no processing or transmission is carried out. However, if the preceding frame was marked with TX\_TYPE = "SID\_FIRST", a SID\_FIRST\_P2 frame format is signalled to CHE. Note: The 2 TDMA frames carrying bits of this frame shall be transmitted. If, depending on the current frame number, the Mode Indication is to be transmitted with these TDMA frames, the Mode Indication shall be used that was stored during the processing of the preceding SID\_FIRST frame.

### If a FACCH needs to be sent during a speech pause, and:

if the frame preceding the FACCH is of TX\_TYPE="SID\_FIRST", then a SID\_FIRST\_INH frame format followed by the FACCH shall be signalled to the CHE;

if the frame preceding the FACCH is of TX\_TYPE="SID\_UPDATE", then a SID\_UPDATE\_INH frame format followed by the FACCH shall be signalled to the CHE;

if the frame preceding the FACCH is of TX TYPE="NO DATA", then an ONSET frame format followed by the FACCH shall be signalled to the CHE;

if the frame following the FACCH is not of TX TYPE="SPEECH GOOD", then a SID FIRST shall be signalled to the CHE. Both SID FIRST P1 and SID FIRST P2 frame formats shall be consecutively signalled to CHE.

If a SID\_FIRST frame or a SID\_UPDATE frame is affected by Fast Associated Control Channel (FACCH) signalling purposes, then the SID\_FIRST or SID\_UPDATE frame (whichever applies) shall be re-scheduled for transmission immediately after the FACCH signalling A stolen SID\_UPDATE should be rescheduled on the frame subsequent to the SID\_FIRST\_P1 and SID\_FIRST\_P2 markers that follow the FACCH frame(s) (when these markers exist), unless that rescheduling would steal a frame of TX\_TYPE="SPEECH\_GOOD", or if a frame of TX\_TYPE="SID\_UPDATE" has been received before the rescheduling could take place. This rescheduling shall not affect the timing of subsequent SID\_UPDATE frames.

Note: a SID UPDATE frame is considered as stolen when this frame must be replaced by a FACCH frame.

SPEECH frames shall override possible SID\_FIRST or SID\_UPDATE frames in exceptional cases.

At handover, TX/RX DTX handler synchronisation shall be initiated. At the time instant before the MS starts sending to the new base station, a message shall be sent to the uplink TX DTX handler with the parameter NSYNC = 12.

## A.5.1.2.3 Functions of the Downlink TX Radio Subsystem for TFO

The TX Radio Subsystem in the BTS shall in addition operate in the following way regarding DTX, if TFO is ongoing (see 3GPP TS 28.062):

- Frames with TX\_TYPE = SPEECH\_GOOD, SID\_FIRST and SID\_UPDATE shall be handled as usual in DTX, regardless whether DTX in downlink is requested or not. Also NO\_DATA shall be handled as usual, if DTX is requested.
- Frames with TX\_TYPE = NO\_DATA shall be replaced by SID\_FILLER frames, if DTX in downlink is not requested. By this the radio transmission continues in downlink, although no parameters are transmitted in speech pauses on the Abis interface. The MS generates Comfort Noise in these speech pauses.
- Frames with TX\_TYPE = SPEECH\_DEGRADED shall be handled exactly like SPEECH\_GOOD frames.
- For frame with TX\_TYPE = SPEECH\_BAD and SID\_BAD the CHE shall perform its regular processing, but then shall invert the six, respectively 14 CRC bits before convolutional encoding and transmitting the frames on the air interface. By this the error concealment mechanism in the MS is triggered to handle these corrupted frames.
- ONSET frames may be ignored by the TX Radio Subsystem and need not to be processed.

**Definition:** SID\_FILLER frames are like SID\_BAD frames, but with all information bits set to "1". The 14 CRC bits shall artificially be inverted by the CHE before convolutional encoding and transmission.

## A.5.1.2.4 Functions of the TX Radio Subsystem for RATSCCH

During regular speech transmission (in the middle of a speech burst) RATSCCH replaces (steals) one (TCH/AFS) respectively two (TCH/AHS) speech frames (see 3GPP TS 25.009). Also in all non speech cases the RATSCCH shall be handled like speech. The respective RATSCCH frame formats (RATSCCH in case of TCH/AFS, respectively RATSCCH\_MARKER and RATSCCH\_DATA in case of TCH/AHS) shall be signalled to the CHE.

If RATSCCH has to be sent during a speech pause in DTX, then first an ONSET frame shall be signalled to the CHE, followed by the RATSCCH frame(s) and finally by the respective SID\_FIRST frame(s).

If a SID\_UPDATE frame is affected by RATSCCH signalling, then the SID\_UPDATE frame shall be re-scheduled for transmission immediately after the RATSCCH signalling.

FACCH RATSCCH should be handled in the same way as a RATSCCH FACCH, i.e. like a short speech burst.