TSGS#19(03)0004

S1-030258

Agenda Item:

Technical Specification Group Services and System Aspects Meeting #19, Birmingham, UK, 17-20 March 2003

TSG-SA WG1 #19 San Francisco, USA, 20-24th January 2003

Title: LS on SIM Temperature Ranges

Response to: Release: Work Item:

Source: SA1
To: ETSI SCP

Cc: T3, SA, GSMA SCaG

Contact Person:

Name: Andrew Chow Tel. Number: +1-719-884-2335

E-mail Address: Andrew Chow@Intel.com

Attachments: S1-030119 [UICC Temperature Range]

1. Overall Description:

TSG SA1 thanks ETSI SCP for the work already undertaken on the definition of new form factors and next generation UICCs. TSG SA1 has been discussing a presentation (S1-030119, attached) which contains a use case for UICC cards with higher temperature ranges. This raises the issue of operating temperature range in other cases such as emergency use (e.g. when a mobile terminal has been left in an automobile or in a jacket on ski trips or a building fire situation). SA1 feels that it would be worthwhile to re-examine the operating temperature range of existing and new UICCs and kindly requests that ETSI SCP do so.

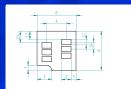
2. Actions:

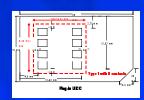
To ETSI SCP group.

ACTION:

 To analyse the operating temperature range of UICCs taking into consideration use cases such as invehicle telematics and emergency use.

3. Date of Next TSG-SA1 Meetings:


SA1#20	07-11 Apr. 2003	Tbd	Korea
SA1 SWGs	12-16 May 2003	San Diego	USA
SA1#21	07-11 Jul. 2003	Sophia Antipolis	France


4. References:

UICC/SIM UD-2 Form Factor

Temperature Range Proposal

Jan 20, 2003 Andrew Chow Intel

Proposal to Increase UICC temperature range

 Proposed new UD-2 temperature range is -40 to 85 °C versus present range of -25 to 70 °C with occasional peaks of 85 °C.

Outline

- Terminal types and their operating environments
- Example of a terminal type that would benefit from increase temperature range
- Market size and potential
- Market requirements including temperature range
- Typical components and temperature ranges
- Choice between custom and standardization

Wireless Terminals Types

Handsets

PC-cards

In-Vehicle Telematics

Machine to Machine

Use

voice (data)

data

data/voice

data

Market Size 400+ M / yr

small

4 m in '02

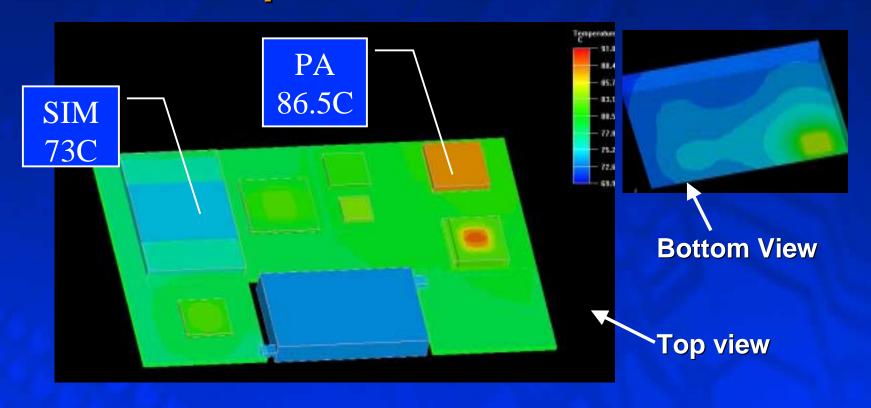
44m in '07

48 m '04

34 m '02

Physical Environ.

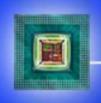
0 to 35 °C Office up to 65 ºC laptop -40 to 85 °C industrial


-40 to 85 °C industrial

Question: In the future, which terminal types will use the current SIM/UICC and which will use UD-2?

intel

PCB Temperature Gradient



- For terminal designers, heat produced by components is also a concern
- Example shows, metal case GPRS class 10, prototype at 70 ⁰ C ambient

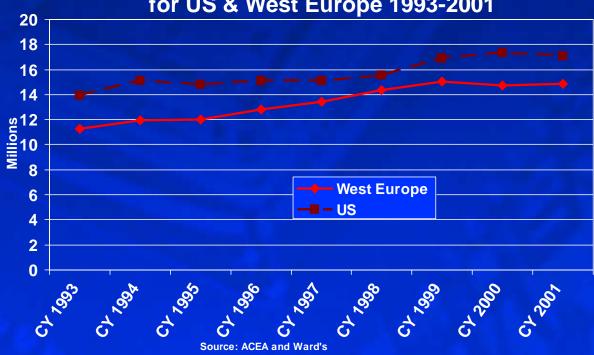
In-Vehicle Communication designs

- Current market size is small compared to handsets
- However, potential for growth with fleet and new auto market segments
- Small form factor and temperature range are constraints to total available market for communication devices
- The new UICC/SIM form factor, UD-2, provides an opportunity to change the temperature range

In-vehicle Telematics Definition

- What is in-vehicle telematics?
 - Wireless exchange of data, information and content between the auto and external sources
 - A Telematics-Enabled vehicle contains a wireless communications system (i.e. cellular) and location-sensing device (GPS receiver)

Monitoring/Diagnostics
(ACN, SOS,
Diagnostics/Prognostics)

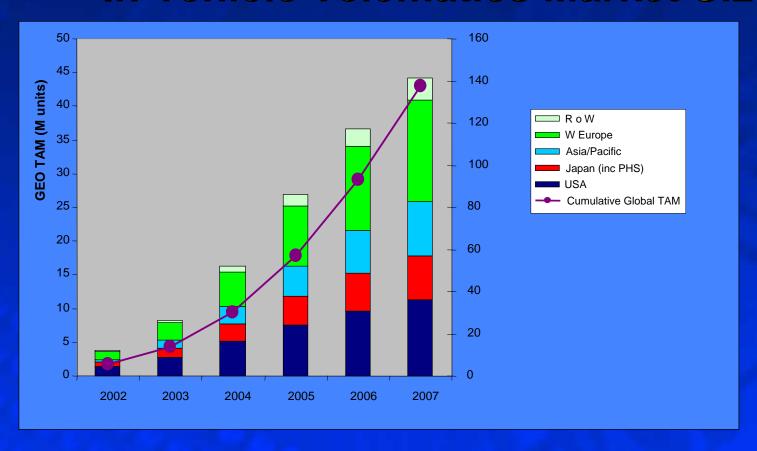

Communications Services (voice, e-mail, messaging)

Content/LBS Info (weather, traffic)

Entertainment
(streaming video, audio, other)
Source: Telematics Research Group

Market Opportunity (Europe + US)

Historical Light Vehicle Sales for US & West Europe 1993-2001



- 3.5% of all vehicles sold have telematics; 11% in US
- 20% predicted by 2007; 42% in US

In-vehicle Telematics Market Size

Source: ARC Group, EMC, Telematics Research Group & Intel estimates

In-Vehicle Telematics Requirements

- **Basic Market requirements for telematics**
 - Two way communications
 - Long life supply (5+ years)
 - Extended temperatures (-40 to +85 °C)

Must Have	May Have	
•2 way communications	•Telematics service monitoring	
Location technology	 Remote auto control functions 	
 Control unit with auto electronics 	•Remote auto diagnostics	
interface	 Automatic collision notification 	
	 Crash event data recorder 	
	•Bluetooth	
	•Speech user interface	
	•Navigation	

Source: Telematics Research Group

Component Temperature Ranges

<u>Part</u>	Min. Range	Max Range
Baseband processors	-20 to 85 °C	-40 to 85 °C
RF Components	-20 to 70	-40 to 85
SRAM and Flash Memory	-20 to 85	-40 to 85
Power Supply components	-40 to 85	-40 to 125+
TCVCO's	-20 to 75	-40 to 85
Digital Logic IC's	-40 to 85	-40 to 85
SIM card		-25 to 70

Standardization or Specialized High Temp SIM/UICC's?

- Many terminal components can be purchased with different temperature ranges.
- Is this the best approach with SIM cards? No, because
 - Non-standardization of the UD-2 temperature range means each operator manages SIM/UICC part types depending on customer equipment
 - Temperature failure of parts in field may be difficult to trouble-shoot as devices may recover after cooling down
 - Development of high temperature variants means more than one temperature range allowable

