Error! No text of specified style in document.
1
Error! No text of specified style in document.

3GPP TSG-SA5 (Telecom Management)
S5-026871

Meeting #31, Atlanta/GEORGIA, USA, 7-11 October 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	32.613
	CR
	007
	(

rev
	-
	(

Current version:
	4.3.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Removal of the Concurrency exception in getSessionLog

	
	

	Source:
(

	SA5

	
	

	Work item code:
(

	OAM-CM
	
	Date: (

	11/10/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	It shall be possible to read the session log even if another operation is in progress.

	
	

	Summary of change:
(

	The concurrancy exception for the getSessionLog is removed.

References to g3SubNetwork, g3ManagedElement and G3ManagedElements has been changed to subNetwork, managedElement and ManagedElement.

	
	

	Consequences if
(

not approved:
	It is not possible to read the session log if another operation is in progress.

	
	

	Clauses affected:
(

	4.3, Annex A and Annex B

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

Change in Clause 4.3

4.3
Operation Parameter Mapping

Reference Bulk CM IRP; Information Service [3] defines semantics of parameters carried in operations. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS startSession parameters to SS equivalents

	IS Operation parameter
	SS parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception StartSessionException, exception SessionIdInUseException, exception MaxSessionReachedException
	M

Table 3: Mapping from IS endSession parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception EndSessionException, exception UnknownSessionIdException, exception NotValidInCurrentStateException
	M

Table 4: Mapping from IS upload parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	uploadDataFile Reference
	BulkCmIRPConstDefs::FileDestination sink
	M

	baseObjectInstance
	BulkCmIRPConstDefs::DistinguishedName base_object
	M

	scope, filter
	BulkCmIRPConstDefs::SearchControl search_control
	M

	status
	exception UploadException, exception UnknownSessionIdException, exception MaxSessionReachedException, exception NotValidInCurrentStateException, exception ConcurrencyException, exception IllegalDNFormatException, exception IllegalFilterFormatException, exception IllegalScopeTypeException, exception IllegalScopeLevelException, exception IllegalURLFormatException
	M

Table 5: Mapping from IS download parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	downloadDataFileReference
	BulkCmIRPConstDefs::FileDestination source
	M

	status
	exception DownloadException, exception UnknownSessionIdException, exception MaxSessionReachedException, exception NotValidInCurrentStateException, exception IllegalURLFormatException
	M

Table 6: Mapping from IS activate parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	fallbackEnabled
	boolean fallback
	M

	status
	exception ActivateException, exception UnknownSessionIdException, exception NotValidInCurrentStateException, exception ConcurrencyException
	M

Table 7: Mapping from IS fallback parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception FallbackException, exception UnknownSessionIdException, exception NoFallbackException, exception NotValidInCurrentStateException, exception ConcurrencyException
	M

Table 8: Mapping from IS abortSessionOperation parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception AbortSessionOperationException, exception UnknownSessionIdException, exception NotValidInCurrentStateException
	M

Table 9: Mapping from IS getSessionIds parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionIdList
	return of type BulkCmIRPConstDefs::SessionIdList
	M

	status
	exception GetSessionIdsException
	M

Table 10: Mapping from IS getSessionStatus parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	sessionState
	return of type BulkCmIRPConstDefs::SessionState
	M

	Not specified in IS
	BulkCmIRPConstDefs::ErrorInformation error_information
	M

	status
	exception GetSessionStatusException, exception UnknownSessionIdException
	M

Table 11: Mapping from IS getSessionLog parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	logFileReference
	BulkCmIRPConstDefs::FileDestination sink
	M

	contentType
	boolean only_error_info
	M

	status
	exception GetSessionLogException, exception UnknownSessionIdException, exception IllegalURLFormatException
	M

Table 12: Mapping from IS getBulkCmIRPVersion parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	versionNumberList
	return of type ManagedGenericIRPConstDefs::VersionNumberSet
	M

	status
	exception GetBulkCmIRPVersionsException
	M

.

End of Change in Clause 4.3

Change in Clause Annex A

Annex A (normative):
IDL: BulkCmIRPConstDefs

#ifndef BulkCmIRPConstDefs_IDL

#define BulkCmIRPConstDefs_IDL

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPConstDefs

This module contains type definitions for the Bulk CM IRP

==

*/

module BulkCmIRPConstDefs

{

 /*

 Defines the current Bulk CM IRP version

 This string is the return value for get_bulk_CM_IRP_versions(),

 get_notification_categories()

 It should be updated based on the rule of sub-clause

 titled "IRP document version number string".

 */

 const string BULK_CM_IRP_VERSION = "32.613 V4.1";

 /*

 This block identifies the notification types defined by

 this Bulk CM IRP version.

 This string is used in the second field of the Structured

 Event.

 */

 interface NotificationType

 {

 const string NOTIFY_SESSION_STATE_CHANGED = "x1";

 const string NOTIFY_GET_SESSION_LOG_ENDED = "x2";

 };

 /*

 This block assigns value for the name of the NV of the Structured Event.

 */

 interface AttributeNameValue

 {

 const string SESSION_ID = "k";

 const string SOURCE_INDICATOR = "m";

 const string ERROR_INFORMATION = "n";

 };

 /*

 This block defines all possible values for sessionState.

 One of these strings appear in the event_name of the

 Structured Event of notifySessionStateChanged notification.

 */

 interface SessionStateChangeNotification

 {

 const string UPLOAD_FAILED = "x1";

 const string UPLOAD_COMPLETED = "x2";

 const string DOWNLOAD_FAILED = "x3";

 const string DOWNLOAD_COMPLETED = "x4";

 const string ACTIVATION_FAILED = "x5";

 const string ACTIVATION_PARTLY_REALISED = "x6";

 const string ACTIVATION_COMPLETED = "x7";

 const string FALLBACK_FAILED = "x8";

 const string FALLBACK_PARTLY_REALISED = "x9";

 const string FALLBACK_COMPLETED = "x10";

 };

 /*

 This block defines all possible values for sessionLogStatus

 One of these strings appear in the event_name of the Structured

 Event of notifyGetSessionLogEnded notification.

 */

 interface LogStateNotification

 {

 const string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY = "x1";

 const string GET_SESSION_LOG_COMPLETED_UNSUCESSFULLY = "x2";

 };

 /*

 For each started configuration session a unique identifier is generated

 by the IRPManager. An sessionId can not be used for an upload if it is

 already in use of a download configuration and vice versa.

 */

 typedef string SessionId;

 /*

 This string field is used in order to provide additional error information

 if an operation has failed.

 */

 typedef string ErrorInformation;

 /*

 Defines the different subphases of a configuration session

 e.g. thus it is easy to implement a detection of an upload

 or a download/activate session.

 */

 enum SubPhase {IdlePhase, DownloadPhase, UploadPhase, ActivationPhase,

 FallbackPhase};

 /*

 Defines the different substates of a configuration session. This includes

 the transition state as well.

 */

 enum SubState {Completed, Failed, PartlyRealised, InProgress};

 /*

 Defines state of a configuration session with the phase and the substate

 of the configuration.

 */

 struct SessionState

 {

 SubPhase sub_phase;

 SubState sub_state;

 };

 /*

 Contains the list of all current sessionIds

 */

 typedef sequence <BulkCmIRPConstDefs::SessionId> SessionIdList;

 /*

 Specifies a complete destination path (including filename).

 */

 typedef string FileDestination;

 /*

 The format of Distinguished Name is specified in

 the Naming Conventions for Managed Objects; 3G TS 32.300 Annex H.

 e.g. "subNetwork=10001, managedElement=400001" identifies an

 ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /*

 Optionally used within the upload method to give filter critera

 */

 typedef string FilterType;

 /*

 Defines the kind of scope to use in a search together with

 SearchControl.level, in a SearchControl value.

 SearchControl.level is always >= 0. If a level is bigger than the

 depth of the tree there will be no exceptions thrown.

 */

 enum ScopeType {BaseOnly, BaseNthLevel, BaseSubtree, BaseAll};

 /*

 Controls the searching for MOs during upload, and contains:

 the type of scope ("type" field),

 the level of scope ("level" field),

 the filter ("filter" field),

 The type and level fields are mandatory.

 The filter field is optional (defined by an empty string).

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;
 // optional parameter

 };

};

#endif

End of Change in Annex A

Change in Clause Annex B

Annex B (normative):
IDL: BulkCmIRPSystem

#ifndef BulkCmIRPSystem_IDL

#define BulkCmIRPSystem_IDL

#include "BulkCmIRPConstDefs.idl"

#include "ManagedGenericIRPConstDefs.idl"

#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPSystem

This module implements capabilities of Bulk CM IRP.

==

*/

module BulkCmIRPSystem

{

 /*

 The request cannot be processed due to a situation of concurrency.

 E.g. two concurrent activation requests involving the same ManagedElement

 instance. The semantics carried in reason is outside the scope of this IRP.

 */

 exception ConcurrencyException { string reason; };

 /*

 The provided filter is malformed or invalid. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception IllegalFilterFormatException { string reason; };

 /*

 The provided Distinguished Name is malformed or invalid. The semantics

 carried in reason is outside the scope of this IRP.

 */

 exception IllegalDNFormatException { string reason; };

 /*

 The provided scope type is illegal. The semantics carried in reason is

 outside the scope of this IRP.

 */

 exception IllegalScopeTypeException { string reason; };

 /*

 The provided scope level is illegal. The semantics carried in reason is

 outside the scope of this IRP.

 */

 exception IllegalScopeLevelException { string reason; };

 /*

 The request cannot be processed because no fallback data is available, i.e.

 fallback capability was previously not asked for.

 */

 exception NoFallbackException {};

 /*

 The provided sessionId value is already used for another configuration

 session. The semantics carried in reason is outside the scope of this IRP.

 */

 exception SessionIdInUseException { string reason; };

 /*

 The provided URL is malformed or invalid. The semantics carried in reason is

 outside the scope of this IRP.

 */

 exception IllegalURLFormatException{ string reason; };

 /*

 The provided sessionId value does not identify any existing configuration

 session.

 */

 exception UnknownSessionIdException {};

 /*

 The request cannot be processed because it is not valid in the current state

 of the configuration session.

 */

 exception NotValidInCurrentStateException

 {

 BulkCmIRPConstDefs::SessionState current_state;

 };

 /*

 The request cannot be processed because the maximum number of simultaneously

 running configuration sessions has been reached. The semantics carried in

 reason is outside the scope of this IRP.

 */

 exception MaxSessionReachedException { string reason; };

 /*

 System otherwise fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception GetBulkCmIRPVersionsException { string reason; };

 exception UploadException { string reason; };

 exception DownloadException { string reason; };

 exception ActivateException { string reason; };

 exception GetSessionLogException { string reason; };

 exception StartSessionException { string reason; };

 exception GetSessionStatusException { string reason; };

 exception FallbackException { string reason; };

 exception EndSessionException { string reason; };

 exception AbortSessionOperationException { string reason; };

 exception GetSessionIdsException { string reason; };

 /*

 Defines the System interface of a EM. It defines all methods which are

 necessary to control a configuration session from a IRPManager.

 */

 interface BulkCmIRP

 {

 /*

 Return the list of all supported Bulk CM IRP versions.

 */

 ManagedGenericIRPConstDefs::VersionNumberSet get_bulk_CM_IRP_versions (

)

 raises (GetBulkCmIRPVersionsException);

 /*

 Uploads a configuration from the subnetwork. The result is put in a

 configuration data file in an area specified by the IRPManager.

 The MIB of the subnetwork is iterated by means of containment search,

 using a SearchControl to control the search and the returned results.

 All MOs in the scope constitutes a set that the filter works on.

 In case of a concurrent running session the function will

 return an exception. If the value of the given baseObject or FilterType

 does not exist then this asynchronous error condition will be notified.

 */

 void upload (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::DistinguishedName base_object,

 in BulkCmIRPConstDefs::SearchControl search_control

)

 raises (UploadException, UnknownSessionIdException,

 MaxSessionReachedException, NotValidInCurrentStateException,

 ConcurrencyException,

 IllegalDNFormatException, IllegalFilterFormatException,

 IllegalScopeTypeException, IllegalScopeLevelException,

 IllegalURLFormatException);

 /*

 Indicates the EM that it can download a configuration data file from

 a given configuration data file storage area. The EM will check the

 consistence of the configuration data and the software compatibilty.

 */

 void download (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination source

)

 raises (DownloadException, UnknownSessionIdException,

 MaxSessionReachedException, NotValidInCurrentStateException,

 IllegalURLFormatException);

 /*

 Activates a previously downloaded and sucessfully parsed configuration

 inside a session. This means that the configuration will be introduced

 in the live sub-network. In case of a concurrent running session

 the function will return an exception.

 */

 void activate (

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean fallback

)

 raises (ActivateException, UnknownSessionIdException,

 NotValidInCurrentStateException, ConcurrencyException);

 /*

 Uploads a log from the subnetwork which is usally used for error

 analysis. The log is put in a logfile in the filesystem which can

 be accessed by the EM. If there are no log entries an empty log file

 is uploaded.

 */

 void get_session_log (

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean only_error_info

)

 raises (GetSessionLogException, UnknownSessionIdException,

 IllegalURLFormatException);

 /*

 Creates an instance of the configuration session state machine. The

 IDLE_PHASE & COMPLETED is notified

 */

 void start_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (StartSessionException, SessionIdInUseException,

 MaxSessionReachedException);

 /*

 Returns the state of a configuration session.

 */

 BulkCmIRPConstDefs::SessionState get_session_status (

 in BulkCmIRPConstDefs::SessionId session_id,

 out BulkCmIRPConstDefs::ErrorInformation error_information

)

 raises (GetSessionStatusException, UnknownSessionIdException);

 /*

 Actives a fallback area. Each time a configuration is activated a

 fallback area can be created, s. activate parameter.

 This area is backup of the complete configuration which can be

 restored by this method. The process is as follows:

 1. When the method activate(...,..., TRUE) is used,

 a copy of the valid area is taken before the activation

 of the new planned data has started. Only one fallback area can

 exists at a time for a specific scope of the subnetwork.

 2. When a fallback area is avilable and triggered by this method, the

 previous valid area is replaced with the data stored in

 the fall back area.

 If the EM detects that the former configuration has never been

 changed it returns an exception because it does not trigger an

 activation of the former data.

 */

 void fallback (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (FallbackException, UnknownSessionIdException, NoFallbackException,

 NotValidInCurrentStateException, ConcurrencyException);

 /*

 The IRPManager invokes this operation to delete all its temporary

 entities and the related sessionId which belong to the scope of

 a configuration session. This includes the related error and log

 informationen too.

 */

 void end_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (EndSessionException, UnknownSessionIdException,

 NotValidInCurrentStateException);

 /*

 The IRPManager invokes this operation to abort an active operation

 during a configuration session. It is only effecting

 a configuration session in state IN_PROGRESS. In this case the

 current session task is interrupted, e.g. the activating in progress,

 using best effort strategy, and a state change is notified

 */

 void abort_session_operation (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (AbortSessionOperationException, UnknownSessionIdException,

 NotValidInCurrentStateException);

 /*

 Returns a list all sessionIds of current running configuration sessions.

 */

 BulkCmIRPConstDefs::SessionIdList get_session_ids (

)

 raises (GetSessionIdsException);

 };

};

#endif

End of Change in Annex B

End of Document

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� If this is programme code, PLEASE include the ENTIRE block of code from START to END.

�PAGE \# "'Page: '#'�'" �� If this is programme code, PLEASE include the ENTIRE block of code from START to END.

3GPP

