Technical Specification Group Services and System Aspects TSGS\#15(02)0080 Meeting \#15, Cheju Island, Korea, 11-14 March 2002

Source: TSG-SA WG4

Title: CRs to TS 26.132 on Correction of references and editorial changes (wrong decimal separators) (R99, Release 4 and Release 5)

Document for: Approval

Agenda Item: 7.4.3

The following CRs, agreed at the TSG-SA WG4 meeting \#20, are presented to TSG SA \#15 for approval.

Spec	CR	Rev	Phase	Subject	Cat	Vers	WG	Meeting	S4 doc
26.132	009	1	R99	Correction of references and editorial changes (wrong decimal separators)	F	3.3.0	S4	TSG-SA WG4\#20	S4-020018
26.132	010	1	REL-4	Correction of references and editorial changes (wrong decimal separators)	A	4.1 .0	S4	TSG-SA WG4\#20	S4-020019
26.132	011	1	REL-5	Correction of references and editorial changes (wrong decimal separators)	A	5.1.0	S4	TSG-SA WG4\#20	S4-020020

CHANGE REQUEST

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathscr{H} symbols.

Title: \quad \%	Correction of references and editorial changes (wrong decimal separators)		
Source: \quad \%	TSG SA WG4		
Work item code:\%	TEI	Date: \%	11 March 2002
Category: \&	F	Release: \% R99	
	Use one of the following categories: F (correction)	Use one of 2	the following releases (GSM Phase 2)
	A (corresponds to a correction in an earlier release)	R96	(Release 1996)
	B (addition of feature),	R97	(Release 1997)
	C (functional modification of feature)	$R 98$	(Release 1998)
	D (editorial modification)	R99	(Release 1999)
	Detailed explanations of the above categories can	REL-4	(Release 4)
	be found in 3GPP IR 21.900.	REL-5	(Release 5)

Reason for change: \& Wrong references, mixing up of tables \& formulars, wrong decimal separators
 Summary of change: it References corrected, decimal separators corrected
 Consequences if If Testing not possible with wrong referenced tables / formulars not approved:

```
Clauses affected: &o 5.2.1,5.2.2,6.1.1,6.2,7.2.2.1,7.2.2.2,7.2.3.1,7.2.3.2,7.2.4.1,7.2.4.2,7.4.3,
7.4.5, 7.5.1, 7.5.2, 7.7.2, 7.7.3, 7.7.4
```


Other specs

``` affected:
```

\mathscr{H} Other core specifications \mathscr{H} Test specifications O\&M Specifications

Other comments: If

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

5.2.1 Codec approach and specification

Definition of 0 dBr point:
D/A converter - a Digital Test Sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose rms value is $3-14 \mathrm{~dB}$ below the maximum full-load capacity of the codec shall generate 0 dBm across a 600 ohm load;

A/D converter - a 0 dBm signal generated from a 600 ohm source shall give the digital test sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose RMS value is $3-, 14 \mathrm{~dB}$ below the maximum full-load capacity of the codec.

Narrow band telephony testing

For testing a 3G terminal supporting narrow-band telephony, the system simulator shall use the AMR speech codec as defined in 3GPP TS 26 series specifications, at the source coding bit rate of $12-2 \mathrm{kbit} / \mathrm{s}$. The transcoding from the output of the AMR speech coding in the system simulator to analogue signals shall be carried out using an ITU-T G. 711 codec performing to ITU-T G. 712 (4-wire analogue).

5.2.2 Direct digital processing approach

In this approach, the companded digital input/output bit-stream of the terminal connected through the radio link to the system simulator is operated upon directly. For the purposes of 3 G acoustic testing, the direct digital processing shall use the default speech codec, the AMR speech codec as defined in 3GTS26 series specifications, at it's highest source coding bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$.

Narrow band telephony testing

For testing a 3G terminal supporting narrow-band telephony, the system simulator shall use the AMR speech codec as defined in 3GPP TS 26 series specifications, at the source coding bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$.

6.1.1 Handset and headset terminals

Alternatively, a test room may be used which meets the following two criteria:

1. The relationship between the pressure at the mouth opening and that at $5 \overline{-}_{2} 0,77_{-2} 5$ and 10 cm in front of the centre of the lip ring is within $\pm 00_{2}-5 \mathrm{~dB}$ of that which exists in a known acoustic free-field.

6.2 System Simulator conditions

The system simulator should provide an error free radio connection to the UE under test. The default speech codec, the AMR speech codec, shall be used at it's highest bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$. Discontinuous Transmission, DTX, (silence suppression) shall be disabled for the purposes of 3G acoustic testing.

7.2.2.1 Sending Loudness Rating (SLR)

c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formula-2.1(A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.2.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [1816], formula-2.1(A-23c), over bands 4 to 17 , using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P. 79 [1816].

7.2.3.1 Sending Loudness Rating (SLR)

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal | level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28=, 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.
c) The sensitivity is expressed in terms of dBV/Pa and the SLR shall be calculated according to ITU-T Recommendation P.79, formula-2.4(A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.3.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [4816], formula-2.4(A-23c), over bands 4 to 17 , using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P.79.

7.2.4.1 Sending Loudness Rating (SLR)

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal | level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-, 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.
c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formmla 2.4 Formula (A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.4.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [4816], formmla 2.1Formula A-23c, over bands 4 to 17, using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P.79.

7.4.3 Vehicle Mounted \& Desk-Top hands-free UE sending

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal
level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-{ }_{-2} 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.

7.4.5 Hand-Held hands-free UE sending

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.

7.5.1 Connections with Handset UE

The sidetone path loss $\mathrm{L}_{\mathrm{meST}}$ as expressed in dB shall be calculated from each band of the 14 frequencies given in table 1 of ITU-T Recommendation P.79, bands 4 to 17 . The STMR (in dB) shall be calculated from the formula B-42.4 of ITU-T Recommendation P.79, using $m=0,225$ and the weighting factors in table B. 23 of ITU-T Recommendation P.79.

7.5.2 Headset UE

The sidetone path loss $\mathrm{L}_{\mathrm{meST}}$ as expressed in dB shall be calculated from each band of the 14 frequencies given in table 1 of ITU-T Recommendation P.79, bands 4 to 17. The STMR (in dB) shall be calculated from the formula B-4 of ITUT Recommendation P. 79 [16], using $\mathrm{m}=0,225$ and the weighting factors in Table 3B. 2 of ITU-T Recommendation P. 79 [16].

7.7.2 Acoustic echo control in a Hands-free UE

...

$$
\left.s(t)=\sum_{i}\left[\llbracket A+\mu_{A M} \cos \left(2 \pi t * f_{A M}\right)\right] * \cos \left(2 \pi t * f_{0 i}\right)\right]
$$

with

$$
\begin{aligned}
& \mathrm{A}=0,5 \\
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-0_{2} 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1-, 2 \mathrm{~s}$).

Note:
Full scale of coder input signal corresponds to $+3-, 24 \mathrm{dBm} 0$ with sinusoidal signal, $\mathrm{CF}=3 \mathrm{~dB}$. A test signal with a CF of maximum 15 dB can thus have a level of up to $-8 \overline{-}_{2} 86 \mathrm{dBm} 0$ without overloading the codec. In order to get best dynamic range the signal amplitude should be as high as possible.

7.7.3 Acoustic echo control in a handset UE

$$
\left.s(t)=\sum_{i}\left[\llbracket A+\mu_{A M} \cos \left(2 \pi t * f_{A M}\right)\right] * \cos \left(2 \pi t * f_{0 i}\right)\right]
$$

with

$$
\begin{aligned}
& \mathrm{A}=0,5 \\
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-\overline{-}_{2} 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1 \overline{1}_{2} 0 \mathrm{~s}$).

7.7.4 Acoustic echo control in a headset UE

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-_{-2} 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1-, 0 \mathrm{~s}$).

Note:
Full scale of coder input signal corresponds to $+3-, 214 \mathrm{dBm} 0$ with sinusoidal signal, $\mathrm{CF}=3 \mathrm{~dB}$. A test signal with a CF of maximum 15 dB can thus have a level of up to $-8-, 86 \mathrm{dBm} 0$ without overloading the codec. In order to get best dynamic range the signal amplitude should be as high as possible.

CHANGE REQUEST

For HELP on using this form, see bottom of this page or look at the pop-up text over the \mathscr{H} symbols.

Title: \quad \%	Correction of references and editorial changes (wrong decimal separators)		
Source: \quad \%	TSG SA WG4		
Work item code:\%	TEI	Date: 4	11 March 2002
Category: \%	A	Release: \%	REL-5
	Use one of the following categories: F (correction)	Use one of 2	the following releases (GSM Phase 2)
	A (corresponds to a correction in an earlier release)	R96	(Release 1996)
	B (addition of feature),	R97	(Release 1997)
	C (functional modification of feature)	$R 98$	(Release 1998)
	D (editorial modification)	R99	(Release 1999)
	Detailed explanations of the above categories can	REL-4	(Release 4)
	be found in 3GPP IR 21.900.	REL-5	(Release 5)

Reason for change: H Wrong references, mixing up of tables \& formulars, wrong decimal separators
 Summary of change: \mathscr{H} References corrected, decimal separators corrected
 Consequences if If Testing not possible with wrong referenced tables / formulars not approved:

```
Clauses affected: &o 5.2.1,5.2.2,6.1.1,6.2,7.2.2.1,7.2.2.2,7.2.3.1,7.2.3.2,7.2.4.1,7.2.4.2,7.4.3,
7.4.5, 7.5.1, 7.5.2, 7.7.2, 7.7.3, 7.7.4
```


Other specs

``` affected:
```

\mathscr{H} Other core specifications \mathscr{H} Test specifications O\&M Specifications

Other comments: If

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

5.2.1 Codec approach and specification

Definition of 0 dBr point:
D/A converter - a Digital Test Sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose rms value is $3-14 \mathrm{~dB}$ below the maximum full-load capacity of the codec shall generate 0 dBm across a 600 ohm load;

A/D converter - a 0 dBm signal generated from a 600 ohm source shall give the digital test sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose RMS value is $3-, 14 \mathrm{~dB}$ below the maximum full-load capacity of the codec.

Narrow band telephony testing

For testing a 3G terminal supporting narrow-band telephony, the system simulator shall use the AMR speech codec as defined in 3GPP TS 26 series specifications, at the source coding bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$. The transcoding from the output of the AMR speech coding in the system simulator to analogue signals shall be carried out using an ITU-T G. 711 codec performing to ITU-T G. 712 (4-wire analogue).

Wide band telephony testing

For testing a 3G terminal supporting wide-band telephony, the system simulator shall use the AMR-WB speech codec as defined in 3GPP TS26 series specifications, at the source coding bit rate of $19-, 85 \mathrm{kbit} / \mathrm{s}$. The transcoding from the output of the AMR-WB speech coding in the system simulator to analogue signals shall be carried out using an ITU-T G. 711 codec performing to ITU-T G. 712 (4-wire analogue).

5.2.2 Direct digital processing approach

In this approach, the companded digital input/output bit-stream of the terminal connected through the radio link to the system simulator is operated upon directly. For the purposes of 3 G acoustic testing, the direct digital processing shall use the default speech codec, the AMR speech codec as defined in 3GTS26 series specifications, at it's highest source coding bit rate of $12-2 \mathrm{kbit} / \mathrm{s}$.

Narrow band telephony testing

For testing a 3G terminal supporting narrow-band telephony, the system simulator shall use the AMR speech codec as defined in 3GPP TS 26 series specifications, at the source coding bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$.

Wide band telephony testing

For testing a 3G terminal supporting wide-band telephony, the system simulator shall use the AMR-WB speech codec as defined in 3GPP TS26 series specifications, at the source coding bit rate of $19 \overline{-}_{2} 85 \mathrm{kbit} / \mathrm{s}$.

6.1.1 Handset and headset terminals

Alternatively, a test room may be used which meets the following two criteria:

1. The relationship between the pressure at the mouth opening and that at $5-, 0,7-, 5$ and 10 cm in front of the centre of the lip ring is within $\pm 0_{2}-5 \mathrm{~dB}$ of that which exists in a known acoustic free-field.

6.2 System Simulator conditions

The system simulator should provide an error free radio connection to the UE under test. The default speech codec, the AMR speech codec, shall be used at it's highest bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$. Discontinuous Transmission, DTX, (silence suppression) shall be disabled for the purposes of 3 G acoustic testing.

7.2.2.1 Sending Loudness Rating (SLR)

c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formula-2.4(A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.2.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [4816], formula-2.1(A-23c), over bands 4 to 17 , using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P. 79 [1816].

7.2.3.1 Sending Loudness Rating (SLR)

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-{ }_{-2} 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.
c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formula-2.4(A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.3.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [1816], formula-2.1 (A-23c), over bands 4 to 17 , using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P.79.

7.2.4.1 Sending Loudness Rating (SLR)

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-{ }_{-2} 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.
c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formula 2.1 Formula (A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.4.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [1816], formmla 2.1Formula A-23c, over bands 4 to 17, using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P.79.

7.4.3 Vehicle Mounted \& Desk-Top hands-free UE sending

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-_{-2} 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.

7.4.5 Hand-Held hands-free UE sending

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-{ }_{-2} 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.

7.5.1 Connections with Handset UE

The sidetone path loss $\mathrm{L}_{\mathrm{meST}}$ as expressed in dB shall be calculated from each band of the 14 frequencies given in table 1 of ITU-T Recommendation P.79, bands 4 to 17 . The STMR (in dB) shall be calculated from the formula B-42.4 of ITU-T Recommendation P.79, using $m=0, .225$ and the weighting factors in table B. 23 of ITU-T Recommendation P.79.

7.5.2 Headset UE

The sidetone path loss $\mathrm{L}_{\mathrm{meST}}$ as expressed in dB shall be calculated from each band of the 14 frequencies given in table 1 of ITU-T Recommendation P.79, bands 4 to 17. The STMR (in dB) shall be calculated from the formula B-4 of ITUT Recommendation P. 79 [16], using $m=0,225$ and the weighting factors in Table 3B. 2 of ITU-T Recommendation P. 79 [16].

7.7.2 Acoustic echo control in a Hands-free UE

$$
\left.s(t)=\sum_{i}\left[\llbracket A+\mu_{A M} \cos \left(2 \pi t * f_{A M}\right)\right] * \cos \left(2 \pi t * f_{0 i}\right)\right]
$$

with

$$
\begin{aligned}
& \mathrm{A}=0,5 \\
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-, 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} 33)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-.26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1-, 0 \mathrm{~s}$).

Note:
Full scale of coder input signal corresponds to $+3-, 214 \mathrm{dBm} 0$ with sinusoidal signal, $\mathrm{CF}=3 \mathrm{~dB}$. A test signal with a CF of maximum 15 dB can thus have a level of up to $-8-886 \mathrm{dBm} 0$ without overloading the codec. In order to get best dynamic range the signal amplitude should be as high as possible.

7.7.3 Acoustic echo control in a handset UE

...

$$
\left.s(t)=\sum_{i}\left[\llbracket A+\mu_{A M} \cos \left(2 \pi t * f_{A M}\right)\right] * \cos \left(2 \pi t * f_{0 i}\right)\right]
$$

with

$$
\begin{aligned}
& \mathrm{A}=0,5 \\
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-, 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-.26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1-, 0 \mathrm{~s}$).

7.7.4 Acoustic echo control in a headset UE

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-, 5 \\
& \mathrm{f}_{0}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($11_{2}, 0 \mathrm{~s}$).

Note:
Full scale of coder input signal corresponds to $+3-{ }_{-2} 14 \mathrm{dBm} 0$ with sinusoidal signal, $\mathrm{CF}=3 \mathrm{~dB}$. A test signal with a CF of maximum 15 dB can thus have a level of up to $-8,286 \mathrm{dBm} 0$ without overloading the codec. In order to get best dynamic range the signal amplitude should be as high as possible.

CHANGE REQUEST

\% 26.132 CR 010 H ev 1 H Current version: 4.1.0 \%

For HELP on using this form, see bottom of this page or look at the pop-up text over the \&o symbols.

Title:	\mathscr{H}	Correction of references and editorial changes (wrong decimal separators)		
Source:	\mathscr{H}	TFS		
Work item code:\%		TEI	Date: ${ }^{\text {d }}$	11 March 2002
Category:	\mathscr{H}	- A	Release: \%	REL-4
		Use $\frac{0}{} \frac{1}{F}$$A$$B$$C$$C$$D$	Use one of the following releases:	
				(GSM Phase 2)
) $\quad \mathrm{R96}$	(Release 1996)
			$R 97$	(Release 1997)
			R98	(Release 1998)
			R99	(Release 1999)
			REL-4	(Release 4)
			REL-5	(Release 5)

Reason for change: H Wrong references, mixing up of tables \& formulars, wrong decimal separators
 Summary of change: tt References corrected, decimal separators corrected
 Consequences if He Testing not possible with wrong referenced tables / formulars not approved:

```
Clauses affected: \mathscr{ F 5.2.1,5.2.2,6.1.1,6.2,7.2.2.1,7.2.2.2,7.2.3.1,7.2.3.2,7.2.4.1,7.2.4.2, 7.4.3,}
7.4.5, 7.5.1, 7.5.2, 7.7.2, 7.7.3, 7.7.4
```


Other specs

``` affected:
```


Other comments: Ho

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1) Fill out the above form. The symbols above marked \mathscr{H} contain pop-up help information about the field that they are closest to.
2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

5.2.1 Codec approach and specification

Definition of 0 dBr point:
D/A converter - a Digital Test Sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose rms value is $3-14 \mathrm{~dB}$ below the maximum full-load capacity of the codec shall generate 0 dBm across a 600 ohm load;

A/D converter - a 0 dBm signal generated from a 600 ohm source shall give the digital test sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose RMS value is $3-, 14 \mathrm{~dB}$ below the maximum full-load capacity of the codec.

Narrow band telephony testing

For testing a 3G terminal supporting narrow-band telephony, the system simulator shall use the AMR speech codec as defined in 3GPP TS 26 series specifications, at the source coding bit rate of $12-2 \mathrm{kbit} / \mathrm{s}$. The transcoding from the output of the AMR speech coding in the system simulator to analogue signals shall be carried out using an ITU-T G. 711 codec performing to ITU-T G. 712 (4-wire analogue).

5.2.2 Direct digital processing approach

In this approach, the companded digital input/output bit-stream of the terminal connected through the radio link to the system simulator is operated upon directly. For the purposes of 3 G acoustic testing, the direct digital processing shall use the default speech codec, the AMR speech codec as defined in 3GTS26 series specifications, at it's highest source coding bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$.

Narrow band telephony testing

For testing a 3G terminal supporting narrow-band telephony, the system simulator shall use the AMR speech codec as defined in 3GPP TS 26 series specifications, at the source coding bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$.

6.1.1 Handset and headset terminals

Alternatively, a test room may be used which meets the following two criteria:

1. The relationship between the pressure at the mouth opening and that at $5 \overline{-}_{2} 0,77_{-2} 5$ and 10 cm in front of the centre of the lip ring is within $\pm 0 \overline{-}_{2} 5 \mathrm{~dB}$ of that which exists in a known acoustic free-field.

6.2 System Simulator conditions

The system simulator should provide an error free radio connection to the UE under test. The default speech codec, the AMR speech codec, shall be used at it's highest bit rate of $12-, 2 \mathrm{kbit} / \mathrm{s}$. Discontinuous Transmission, DTX, (silence suppression) shall be disabled for the purposes of 3G acoustic testing.

7.2.2.1 Sending Loudness Rating (SLR)

c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formula-2.1(A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.2.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [1816], formula-2.1(A-23c), over bands 4 to 17 , using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P. 79 [1816].

7.2.3.1 Sending Loudness Rating (SLR)

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal | level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28=, 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.
c) The sensitivity is expressed in terms of dBV/Pa and the SLR shall be calculated according to ITU-T Recommendation P.79, formula-2.4(A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.3.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [4816], formula-2.4(A-23c), over bands 4 to 17 , using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P.79.

7.2.4.1 Sending Loudness Rating (SLR)

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal | level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-, 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.
c) The sensitivity is expressed in terms of $\mathrm{dBV} / \mathrm{Pa}$ and the SLR shall be calculated according to ITU-T Recommendation P.79, formmla 2.4 Formula (A-23b), over bands 4 to 17 , using $m=0,175$ and the sending weighting factors from ITU-T Recommendation P.79, table 1.

7.2.4.2 Receiving Loudness Rating (RLR)

c) The sensitivity is expressed in terms of $\mathrm{dBPa} / \mathrm{V}$ and the RLR shall be calculated according to ITU-T Recommendation P. 79 [4816], formmla 2.1Formula A-23c, over bands 4 to 17, using $m=0,175$ and the receiving weighting factors from table 1 of ITU-T Recommendation P.79.

7.4.3 Vehicle Mounted \& Desk-Top hands-free UE sending

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal
level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-{ }_{-2} 7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.

7.4.5 Hand-Held hands-free UE sending

a) The test signal to be used for the measurements shall be the artificial voice according to ITU-Recommendation P. 50 or a speech like test signal as described in ITU-T Recommendation P.501. The type of test signal used shall be stated in the test report. The spectrum of acoustic signal produced by the artificial mouth is calibrated under free field conditions at the MRP. The test signal level shall be $-4,7 \mathrm{dBPa}$, measured at the MRP. The test signal level is averaged over the complete test signal sequence. The broadband signal level then is adjusted to $-28-7$ dBPa at the HFRP or the HATSHFRP (as defined in P. 581) and the spectrum is not altered.

7.5.1 Connections with Handset UE

The sidetone path loss $\mathrm{L}_{\mathrm{meST}}$ as expressed in dB shall be calculated from each band of the 14 frequencies given in table 1 of ITU-T Recommendation P.79, bands 4 to 17. The STMR (in dB) shall be calculated from the formula B-42.4 of ITU-T Recommendation P.79, using $m=0,-225$ and the weighting factors in table B. 23 of ITU-T Recommendation P.79.

7.5.2 Headset UE

The sidetone path loss $\mathrm{L}_{\mathrm{meST}}$ as expressed in dB shall be calculated from each band of the 14 frequencies given in table 1 of ITU-T Recommendation P.79, bands 4 to 17. The STMR (in dB) shall be calculated from the formula B-4 of ITUT Recommendation P. 79 [16], using $\mathrm{m}=0,225$ and the weighting factors in Table 3B. 2 of ITU-T Recommendation P. 79 [16].

7.7.2 Acoustic echo control in a Hands-free UE

...

$$
\left.s(t)=\sum_{i}\left[\llbracket A+\mu_{A M} \cos \left(2 \pi t * f_{A M}\right)\right] * \cos \left(2 \pi t * f_{0 i}\right)\right]
$$

with

$$
\begin{aligned}
& \mathrm{A}=0,5 \\
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-0_{2} 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1-, 2 \mathrm{~s}$).

Note:
Full scale of coder input signal corresponds to $+3-, 24 \mathrm{dBm} 0$ with sinusoidal signal, $\mathrm{CF}=3 \mathrm{~dB}$. A test signal with a CF of maximum 15 dB can thus have a level of up to $-8 \overline{-}_{2} 86 \mathrm{dBm} 0$ without overloading the codec. In order to get best dynamic range the signal amplitude should be as high as possible.

7.7.3 Acoustic echo control in a handset UE

$$
\left.s(t)=\sum_{i}\left[\llbracket A+\mu_{A M} \cos \left(2 \pi t * f_{A M}\right)\right] * \cos \left(2 \pi t * f_{0 i}\right)\right]
$$

with

$$
\begin{aligned}
& \mathrm{A}=0,5 \\
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-\overline{-}_{2} 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1 \overline{1}_{2} 0 \mathrm{~s}$).

7.7.4 Acoustic echo control in a headset UE

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{AM}}=4 \mathrm{~Hz}, \mu_{\mathrm{AM}}=0-_{-2} 5 \\
& \mathrm{f}_{0 \mathrm{i}}=250 \mathrm{~Hz} * 2^{(\mathrm{i} / 3)} \quad ; \mathrm{i}=1 . .11 \\
& \mathrm{CF}=14 \mathrm{~dB} \pm 1 \mathrm{~dB} \quad(10 \mathrm{~dB}+4-, 26 \mathrm{~dB} \text { due to } 100 \% \text { AM modulation })
\end{aligned}
$$

$\mathrm{CF}=$ Crest Factor $=$ Peak to RMS ratio
The training sequence level shall be -16 dBm 0 in order not to overload the codec. The test signal level shall be -10 dBm0. The TCLw is calculated according to ITU-T Recommendation G. 122 [8], annex B, clause B. 4 (trapezoidal rule). For the calculation the averaged measured echo level at each frequency band is referred to the averaged test signal level measured in each frequency band. The length of the test signal shall be at least one second ($1-, 0 \mathrm{~s}$).

Note:
Full scale of coder input signal corresponds to $+3-, 214 \mathrm{dBm} 0$ with sinusoidal signal, $\mathrm{CF}=3 \mathrm{~dB}$. A test signal with a CF of maximum 15 dB can thus have a level of up to $-8-, 86 \mathrm{dBm} 0$ without overloading the codec. In order to get best dynamic range the signal amplitude should be as high as possible.

