Technical Specification Group Services and System Aspects **TSGS#13(01)0706**

Meeting #14, Kyoto, Japan, 17-20 December 2001

Source:	TSG SA WG2
Title:	CRs on 03.60 and 23.060
Agenda Item:	7.2.3

The following Change Requests (CRs) have been approved by TSG SA WG2 and are requested to be approved by TSG SA plenary #13.

Note: the source of all these CRs is now S2, even if the name of the originating company(ies) is still reflected on the cover page of all the attached CRs.

On 03.60:

S2 Tdoc #	Source	Title	Spec	CR #	c	Rel	WI
					a		
					t		
S2-012941	Nokia,	Losing PDP context during Inter	03.60	A211r1	F	R97	GPRS
	Ericsson	SGSN RA Update					
S2-012942	Nokia,	Losing PDP context during Inter	03.60	A212r1	Α	R98	GPRS
	Ericsson	SGSN RA Update					

CRs applicable to only one Release:

On 23.060 Rel99 (v.3.9.0) and Rel4 (v.4.2.0):

S2 Tdoc #	Source	Title	Spec	CR #	c	Rel	WI
					a		
					t		
S2-	One2One,	Behaviour of the MS on entering	23.060	275r2	F	R99	GPRS
012952r1	BT	a new PLMN					
S2-012953	NEC	Clarification on the format of	23.060	270r1	F	Rel-4	TEI4
		'APN in use' stored in SGSN					

CRs applicable to Releases 99 and Rel-5 (and to the future Rel-5):

On 23.060 Rel99 (v.3.9.0) and Rel4 (v.4.2.0):

S2 Tdoc #	Source	Title	Spec	CR #	c	Rel	WI
					a		
					t		
S2-012937	Siemens	Various editorial corrections	23.060	280	F	R99	TEI
S2-013048	Siemens	Various editorial corrections	23.060	279r1	F	Rel-4	TEI4
S2-012943	Nokia,	Losing PDP context during Inter	23.060	246r2	A	R99	GPRS
	Ericsson	SGSN RA Update					
S2-013047	Nokia,	Losing PDP context during Inter	23.060	247r3	Α	Rel-4	TEI4
	Ericsson	SGSN RA Update					
S2-012946	Siemens	Correction inter SGSN RAU	23.060	271r1	F	R99	TEI
S2-012947	Siemens	Correction inter SGSN RAU	23.060	272r1	Α	Rel-4	TEI
S2-012948	Siemens	CAMEL interaction during RNC-	23.060	273r1	F	R99	TEI
		initiated and RAB release-					
		initiated local PDP context					
		modification procedure for real-					
		time PDP contexts					
S2-012949	Siemens	CAMEL interaction during RNC-	23.060	274r1	A	Rel-4	TEI
		initiated and RAB release-					
		initiated local PDP context					
		modification procedure for real-					
		time PDP contexts					
S2-012950	N2 (Lucent)	Correction to CAMEL Procedure	23.060	261r1	F	R99	CAME
		Names during					L3

		RoutingAreaUpdate					
S2-012951	N2 (Lucent)	Correction to CAMEL Procedure	23.060	262r1	Α	Rel-4	CAME
		Names during					L3
		RoutingAreaUpdate					
S2-013421	Siemens	Correction of wrong references	23.060	295	F	R99	TEI
S2-013422	Siemens	Correction of wrong references	23.060	296	Α	Rel-4	TEI
S2-013489	Alcatel	Re-initialisation of the CAMEL	23.060	284	F	R99	TEI
		GPRS dialogue after a relocation					
		cancel					
S2-013490	Alcatel	Re-initialisation of the CAMEL	23.060	285	Α	Rel-4	TEI4
		GPRS dialogue after a relocation					
		cancel					

CR creating Release 5 (based on future version v.4.3.0):

S2 Tdoc #	Source	Title	Spec	CR #	c	Rel	WI
					a t		
S2- 012960r4	Ericsson	Impacts on the Attach procedure due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	263r4	В	Rel-5	IuFlex
S2- 012961r1	Ericsson	General changes due to Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	269r2	В	Rel-5	IuFlex
S2- 012962r3	Ericsson	Impacts on the Gs interface due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	264r1	В	Rel-5	IuFlex
S2- 012963r4	Ericsson	Impacts on the Intersystem change procedure due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	265r4	В	Rel-5	IuFlex
S2- 012964r4	Ericsson	Impacts on the RAU procedure due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	266r3	В	Rel-5	IuFlex
S2- 012965r4	Ericsson	Impacts on the Suspend procedure due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	267r4	В	Rel-5	IuFlex
S2- 012966r1	Ericsson	Impacts on the SRNS Relocation procedure due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	268r2	В	Rel-5	IuFlex
S2-013051	Ericsson	PDP context handling at Inter SGSN RA Update	23.060	281r2	В	Rel-5	TEI5
S2-013499	Ericsson	Changes on the Gb interface due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes	23.060	294r1	В	Rel-5	IuFlex
S2-013554	Ericsson, Siemens	Handover and Cell Reselection procedures for GERAN Iu mode	23.060	276r4	В	Rel-5	TEI5
S2-013596	Ericsson	External Network Assisted Cell Change (NACC) in GERAN R5	23.060	297r1	В	Rel-5	GERA N Improv ements 2

	CHAN	NGE REQUI	EST	CR-Form-v3
ж	03.60 CR A	211 ^{# rev} 1	# Current versio	n: 6.9.0 [#]
For <u>HELP</u> on us	ing this form, see bottom	of this page or loo	k at the pop-up text o	ver the X symbols.
Proposed change a	ffects: ೫ (U)SIM	ME/UE Ra	dio Access Network	Core Network x
Title: ೫	Losing PDP context dur	ing Inter SGSN RA	Update	
Source: ೫	Nokia, Ericsson			
Work item code: #	GPRS		Date: ೫	1.11.2001
Category: #	F		Release: ೫	R97
	Use <u>one</u> of the following cat F (essential correction) A (corresponds to a co B (Addition of feature), C (Functional modification) D (Editorial modification) Detailed explanations of the be found in 3GPP TR 21.90) prrection in an earlier , ntion of feature) on) : above categories ca 0.	2 ((release) R96 (F R97 (F R98 (F R99 (F n REL-4 (F REL-5 (F	e following releases: GSM Phase 2) Release 1996) Release 1997) Release 1998) Release 1999) Release 4) Release 5)
Reason for change	SGSN Routing Area u transferred from old St Because only new SGS control cannot be perm	ew SGSN may not be pdate. In this case it GSN to new SGSN o SN can delete PDP co nitted. Therefore only	able to maintain all PE is unclear if control of a r is partial transfer of co ontext(s) towards MS si the new SGSN shall in update, if some PDP c	DP contexts after inter all PDP contexts is control permitted. de, partial transfer of nitiate a PDP context
Summary of chang	GGSNs and then de subclause "PDP Co	s unable to support the SGSN, the new SGSN eactivate the context(ne same number of active shall first update all costs s) that it cannot maintai itiated by SGSN Procee	ve PDP contexts as ontexts in one or more n as described in
Consequences if not approved:	% Different manufacture old SGSN to deactivat interoperability proble	the context(s) towa	fferent solution (e.g. nev rd the GGSN) which w	
Clauses affected:	₩ <mark>6.9.1.2.2; 6.9.1.3.2</mark>			
Other specs affected:	% Other core speci Test specification O&M Specification	ns		
Other comments:	æ			

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in figure 28. Each step is explained in the following list.

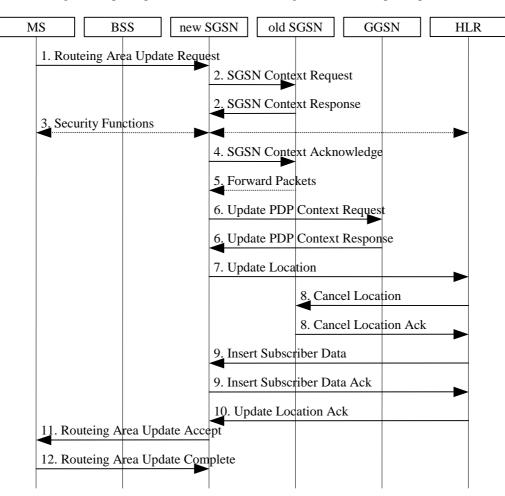


Figure 28: Inter SGSN Routeing Area Update Procedure

Text not changed

In the case of a rejected routeing area update operation due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address in order to establish the GPRS location update dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not reattempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the <u>new</u> SGSN is unable to update the PDP context in one or more GGSNs, then the <u>new</u> SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, then the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

**** next modification ****

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter SGSN) procedure is illustrated in figure 30. Each step is explained in the following list.

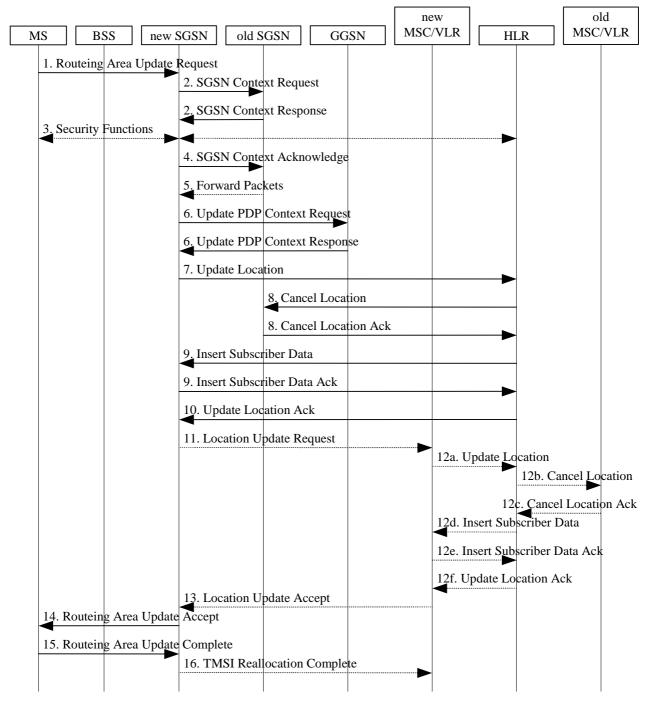


Figure 1: Combined RA / LA Update in the Case of Inter SGSN RA Update Procedure

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up. If the <u>new</u> SGSN is unable to update the PDP context in one or more GGSNs, then the <u>new</u> SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, then the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the Location Update Accept message indicates a reject, then this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful location update is performed.

	CHANGE REQUEST	CR-Form-v3
¥	03.60 CR A212 ^{# rev} 1 [#]	Current version: 7.7.0 [#]
For <u>HELP</u> on	using this form, see bottom of this page or look at th	e pop-up text over the X symbols.
Proposed change	e affects: ¥ (U)SIM ME/UE Radio Ad	ccess Network Core Network x
Title:	Losing PDP context during Inter SGSN RA Upda	te
Source:	K Nokia, Ericsson	
Work item code:	# GPRS	Date: # 1.11.2001
Category:	ж <mark>А</mark>	Release: # R98
	Use <u>one</u> of the following categories: F (essential correction) A (corresponds to a correction in an earlier release B (Addition of feature), C (Functional modification of feature) D (Editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900.	Use <u>one</u> of the following releases: 2 (GSM Phase 2) e) R96 (Release 1996) R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) REL-4 (Release 4) REL-5 (Release 5)
Posson for chan	ge: # In an error case caused by an implementation limit	tation or a temporary lack of memory
Reason for chang	due to congestion, a new SGSN may not be able to SGSN Routing Area update. In this case it is uncle transferred from old SGSN to new SGSN or is par Because only new SGSN can delete PDP context(control cannot be permitted. Therefore only the n deactivation after the completion of the RA update maintained active.	o maintain all PDP contexts after inter ear if control of all PDP contexts is rtial transfer of control permitted. (s) towards MS side, partial transfer of ew SGSN shall initiate a PDP context
Summary of char	nge: # New sentence is proposed in the inter SGSN RA u	update descriptions:
	"If the new SGSN is unable to support the sam received from old SGSN, the new SGSN shall GGSNs and then deactivate the context(s) that subclause "PDP Context Deactivation Initiated cause the SGSN to reject the routeing area upd	first update all contexts in one or more it cannot maintain as described in by SGSN Procedure". This shall not
Consequences if not approved:	% Different manufacturers may implement different old SGSN to deactivate the context(s) toward the interoperability problems.	
Clauses affected	₩ <mark>6.9.1.2.2; 6.9.1.3.2</mark>	
Other specs affected:	%Other core specifications%Test specificationsO&M Specifications	
Other comments.	ж	

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in figure 28. Each step is explained in the following list.

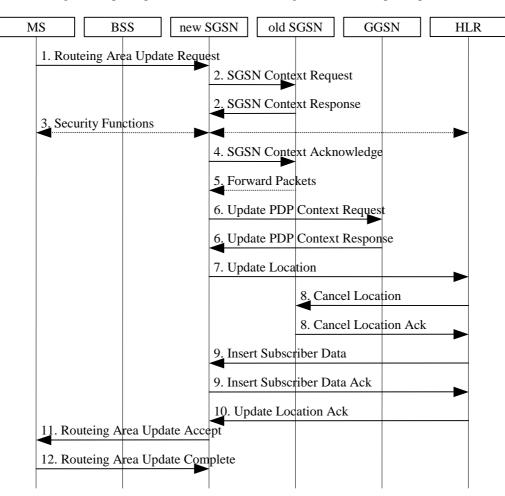


Figure 28: Inter SGSN Routeing Area Update Procedure

Text not changed

In the case of a rejected routeing area update operation due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address in order to establish the GPRS location update dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not reattempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the <u>new</u>SGSN is unable to update the PDP context in one or more GGSNs, then the <u>new</u>SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, then the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

**** next modification ****

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter SGSN) procedure is illustrated in figure 30. Each step is explained in the following list.

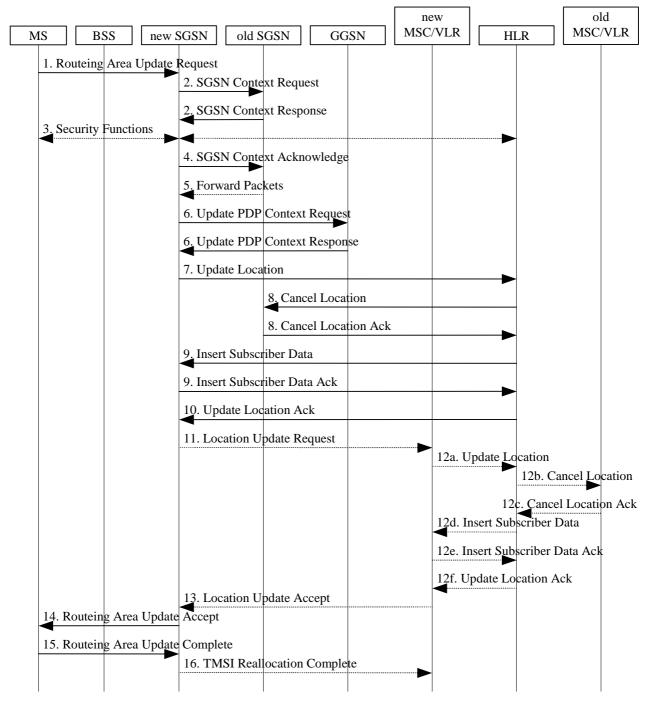


Figure 1: Combined RA / LA Update in the Case of Inter SGSN RA Update Procedure

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up. If the <u>new</u> SGSN is unable to update the PDP context in one or more GGSNs, then the <u>new</u> SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, then the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the Location Update Accept message indicates a reject, then this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful location update is performed.

æ	23.060 CR ²⁷⁵ [#] rev <u>12</u> - [#] Current version: 3.9.0 [#]
For <u>HELP</u> on u	sing this form, see bottom of this page or look at the pop-up text over the st symbols.
Proposed change a	affects: # (U)SIM ME/UE X Radio Access Network Core Network
Title: #	Behaviour of the MS on entering a new PLMN
Source: #	One2One Personal Communications, BT
Work item code: ℜ	GPRS Date: # 29 th October 2001
Category: #	F Release 39
	Use one of the following categories:Use one of the following releases:F (essential correction)2A (corresponds to a correction in an earlier release)R96B (Addition of feature),R97C (Functional modification of feature)R98D (Editorial modification)R99D tetailed explanations of the above categories canREL-4be found in 3GPP TR 21.900.REL-5
Reason for change	 When a MS moves from one PLMN to another PLMN, the expected practise is to ensure that the MS performs a RAU just as it could do in case of an inter SGSN RAU within one PLMN. However, for 2G the current version of TS 23.060 provides another option which suggests that upon entering a new PLMN the MS shall enter IDLE state or perforum RAU. This CR proposes to remove this optior for the following reasons: The GMM state model for MS does not allow for leap from STANDBY to IDLE. There is ambiguity on whether the MS should perform a RAU or enter IDLE state. It is not specified how the MS determines which of the two operations should be performed Changing PLMN is not different than changing RAI. If the intention was to indicate that the MS enters the new PLMN in IDLE state and remains in IDLE state in the new PLMN, then this has to be clarified. For the movement from one PLMN to another for 3G or 2G-3G/3G-2G the MS action is not clear. Equivalent action is clarified in this case.
Summary of chang	e: # This CR intends to remove the <u>ambiguity of the text by providing clarification on</u> <u>the</u> option which states that the MS shall enter IDLE state when entering a new PLMN.
Consequences if not approved:	 Different handsets will behave differently upon entering a new PLMN (i.e. some will perform RAU and some will enter into IDLE state).
Clauses affected:	% 6.9.1, 6.9.2 , 6.13.2

Other specs affected:	¥	Other core specifications # Test specifications O&M Specifications	
Other comments:	ж		

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://www.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6.9.1 Location Management Procedures (GSM only)

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

The MS detects that has entered a new cell by comparing the cell identity with the cell identity stored in the MS's MM context. The MS detects that a new RA has been entered by periodically comparing the RAI stored in its MM context with that received from the new cell. The MS shall consider hysteresis in signal strength measurements.

When the MS camps on a new cell, possibly in a new RA, this indicates one of three possible scenarios:

- a cell update is required;
- a routeing area update is required; or
- a combined routeing area and location area update is required.

In all three scenarios the MS stores the cell identity in its MM context.

If the MS enters a new PLMN, the MS shall either perform a routeing area update, or enter IDLE state.<u>unless it is not</u> allowed to do so for the reasons specified in TS 24.008 [13] and TS 23.122 [7b].

In network mode of operation II and III, whenever an MS determines that it shall perform both an LA update and an RA update:

- 1. It shall initiate the LA update and then initiate the RA update, if the MS is in class A mode of operation.
- 2. It shall perform the LA update first if the MS is not in class A mode of operation.

Routeing Area Update Request messages shall be sent unciphered, since in the inter-SGSN routeing area update case the new SGSN shall be able to process the request.

Next Change

6.9.2 Location Management Procedures (UMTS only)

Refer to 3G TS 25.301 for further information on the location management procedures for the UMTS radio.

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

In this specification, only the Location Management procedures related to the CN are described. These procedures are:

- a routeing area update procedure; and
- Serving RNC relocation procedure.

An MS detects that it entered in a new cell by comparing its identity with the cell identity stored in the MS. By comparing the RAI stored in the MS's MM context with the RAI received from the network, the MS detects that an RA update shall be performed. In RRC-CONNECTED mode (PMM-CONNECTED state or CS MM CONNECTED state), the MS is informed of RAI and Cell Identity by the serving RNC via an "MM information" message at the RRC layer. In RRC-IDLE state, the MS is informed of RAI and Cell Identity by the broadcast system information at the RRC layer.

If the MS enters a new PLMN, the MS shall perform a routeing area update, unless it is not allowed to do so for the reasons specified in TS 24.008 [13] and TS 23.122 [7b].

In network mode of operation II, whenever an MS determines that it shall perform both an LA update and an RA update, the MS shall start the LA update first. The MS should start the RA update procedure before the LA update is completed.

S2-012953

			C	нлы	IGE F			ст				CR-Form-v4
			C					51				
¥	23	.060	CR 2	270	Ħ	s rev	1	ж	Current ve	rsion:	4.2.0	ж
For <u>HELP</u> on u	ising t	his for	m, see k	bottom	of this p	age or	look	at the	e pop-up tex	kt over	the X syr	nbols.
Proposed change	affec	ts: #	(U)SI	M	ME/U	E	Rad	io Ac	cess Netwo	ork	Core Ne	etwork X
<i>Title:</i> ដ	Cla	rificatio	on on the	<mark>e forma</mark>	it of 'AP	<mark>N in us</mark>	e' sto	ored i	n SGSN			
Source: ೫	NE	С										
Work item code: #	GP	<mark>RS en</mark> l	hancem	ents					Date: 3	€ <mark>24</mark> t	^h October	2001
Category: ж	F	Agree	d by cor	ncensus	6				Release: a	€ RE	L4	
	Deta	F (corr A (corr B (Add C (Fur D (Edii iled exp	the follow rection) responds lition of fo nctional mo torial moo lanations 3GPP TR	to a con eature), nodification dification s of the a	rrection in ion of fea 1) above ca	ature)		elease	2	(GSN (Rele (Rele (Rele (Rele	Illowing rele A Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5)	
Reason for change	e: Ж	curre misin Data comp	nt descr terpreta Proced osed wi	ription in ition. Si ure des ith APN	n sectio nce This cribed i Operat	n 13. T s inforr n sections tor Ider	This a natior on 6.7 ntifier	mbig n may 11.1. in or	n MM conte uousness m y be used ir 1, APN info der to make nange by IS	the In matior a judg	d sert Subs shall be gement in	criber
Summary of chang	уе: Ж		CR adds in use'			ry desc	riptio	n in c	order to clar	ify the	structure	of the
Consequences if not approved:	Ħ		SD to cl e' does	•					owed' may r	ot pro	perly work	c if 'APN
Clauses affected:	ж	13.2										
Other specs affected:	ж	Τe	her core est speci &M Spec	ification	s	ж	3					
Other comments:	ж											

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://www.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

13.2 SGSN

SGSN maintains MM context and PDP context information for MSs in the STANDBY, READY, PMM-IDLE, and PMM-CONNECTED states. Table 6 shows the context fields for one MS.

During the Intersystem Change, when new Authentication and Key Agreement is not performed, the KSI in the new 3G-SGSN shall be assigned the value of the CKSN, which has been sent by the MS. Similarly, in the new 2G-SGSN, when AKA des not take place, the CKSN shall be assigned the value of the KSI, which has been sent by the MS.

Note: 2G-SGSN and 3G-SGSN refer to R99 SGSNs with either GSM or UMTS access.

Field	Description	GSM	UMTS
IMSI	IMSI is the main reference key.	Х	Х
MM State	Mobility management state, IDLE, STANDBY, READY,	Х	Х
	PMM-DETACHED, PMM-IDLE, or PMM-CONNECTED.		
P-TMSI	Packet Temporary Mobile Subscriber Identity.	Х	Х
P-TMSI Signature	A signature used for identification checking purposes.	Х	Х
MEI	International Mobile Equipment Identity	Х	Х
MSISDN	The basic MSISDN of the MS.	Х	Х
Routeing Area	Current routeing area.	Х	Х
Cell Identity	Current cell in READY state, last known cell in STANDBY or IDLE	Х	
2	state.		
Cell Identity Age	Time elapsed since the last LLC PDU was received from the MS at the SGSN.	Х	
Service Area Code	Last known SAC when initial UE message was received or Location Reporting procedure was executed.		Х
Service Area Code Age	Time elapsed since the last SAC was received at the 3G-SGSN.		Х
VLR Number	The VLR number of the MSC/VLR currently serving this MS.	Х	X
New SGSN Address	The IP address of the new SGSN where buffered and not sent	X	X
New SOON Address	N-PDUs should be forwarded to.	Λ	~
Authentication Triplets		Х	х
Authentication Triplets Authentication Vectors	Authentication and ciphering parameters.	X	X
	Authentication and ciphering parameters for UMTS.		
	Currently used ciphering key.	X	Х
	Ciphering key sequence number of Kc.	Х	
Ciphering algorithm	Selected ciphering algorithm (GEA).	Х	X
CK	Currently used ciphering key.	Х	X
К	Currently used integrity key.	Х	Х
KSI	Key Set Identifier.		Х
MS Radio Access Capability	MS radio access capabilities.	Х	
MS Network Capability	MS network capabilities.	Х	Х
DRX Parameters	Discontinuous reception parameters.	Х	Х
MNRG	Indicates whether activity from the MS shall be reported to the HLR.	Х	Х
NGAF	Indicates whether activity from the MS shall be reported to the MSC/VLR.	Х	Х
PPF	Indicates whether paging for PS and CS services can be initiated.	Х	Х
Subscribed Charging	The charging characteristics for the MS, e.g., normal, prepaid, flat-	X	X
Characteristics	rate, and/or hot billing subscription.	Λ	Λ
Trace Reference		Х	х
	Identifies a record or a collection of records for a particular trace.		
Trace Type	Indicates the type of trace.	Х	X
Trigger Id	Identifies the entity that initiated the trace.	X	X
OMC Identity	Identifies the OMC that shall receive the trace record(s).	Х	Х
SMS Parameters	SMS-related parameters, e.g., operator-determined barring.	Х	Х
Recovery	Indicates if HLR or VLR is performing database recovery.	Х	Х
Radio Priority SMS	The RLC/MAC radio priority level for uplink SMS transmission.	Х	
GPRS-CSI	Optional GPRS CAMEL subscription information, see 3G TS 23.016	Х	Х
Each MM context contains ze	ro or more of the following PDP contexts:		
PDP Context Identifier	Index of the PDP context.	Х	Х
PDP State	Packet data protocol state, INACTIVE or ACTIVE.	X	X
PDP Type	PDP type, e.g., PPP or IP.	X	X
PDP Address	PDP address, e.g., an IP address.	X	X
APN Subscribed	The APN received from the HLR.	X	X
APN in Use	The APN currently used. This APN shall be composed of the APN	X	X
	Network Identifier and the APN Operator Identifier.	~	~
NSAPI	Network layer Service Access Point Identifier.	Х	v
ΓΙ			X
	Transaction Identifier.	X	X
TEID for Gn/Gp	Tunnel Endpoint Identifier for the Gn and Gp interfaces.	Х	Х
TEID for lu	Tunnel Endpoint Identifier for the lu interface.		X
GGSN Address in Use	The IP address of the GGSN currently used.	Х	X
VPLMN Address Allowed	Specifies whether the MS is allowed to use the APN in the domain of the HPLMN only, or additionally the APN in the domain of the VPLMN.	х	Х
QoS Profile Subscribed	The quality of service profile subscribed.	х	Х
QoS Profile Requested	The quality of service profile requested.	X	X
QoS Profile Negotiated	The quality of service profile negotiated.	Х	Х
Radio Priority	The RLC/MAC radio priority level for uplink user data	Х	

Table 1: SGSN MM and PDP Contexts

Field	Description	GSM	UMTS
	transmission.		
Packet Flow Id	Packet flow identifier.	Х	
Aggregate BSS QoS Profile	The aggregate BSS quality of service profile negotiated for the	Х	
Negotiated	packet flow that this PDP context belongs to.		
Send N-PDU Number	SNDCP sequence number of the next downlink N-PDU to be sent to the MS.	Х	
Receive N-PDU Number	SNDCP sequence number of the next uplink N-PDU expected from the MS.	Х	
GTP-SND	GTP-U sequence number of the next downlink N-PDU to be sent to the MS.	Х	Х
GTP-SNU	GTP-U sequence number of the next uplink N-PDU to be sent to the GGSN.	Х	Х
PDCP-SND	Sequence number of the next downlink in-sequence PDCP-PDU to be sent to the MS.		Х
PDCP-SNU	Sequence number of the next uplink in-sequence PDCP-PDU expected from the MS.		Х
Charging Id	Charging identifier, identifies charging records generated by SGSN and GGSN.	Х	Х
PDP Context Charging	The charging characteristics of this PDP context, e.g., normal,	Х	Х
Characteristics	prepaid, flat-rate, and/or hot billing.		
RNC Address in Use	The IP address of the RNC currently used.		Х

CHANGE REQUEST				
ж	23.060 CR 280 # rev # Current version: 3.9.0 #			
For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.				
Proposed change affects: # (U)SIM ME/UE Radio Access Network X Core Network X				
Title: #	Various editorial corrections			
Source: %	Siemens AG			
Work item code: #	TEI99 Date: 策 2001-10-31			
Category: ж	F Release: # REL-99			
	Use one of the following categories:Use one of the following releases:F (essential correction)2(GSM Phase 2)A (corresponds to a correction in an earlier release)R96(Release 1996)B (Addition of feature),R97(Release 1997)C (Functional modification of feature)R98(Release 1998)D (Editorial modification)R99(Release 1999)Detailed explanations of the above categories can be found in 3GPP TR 21.900.REL-4(Release 4) REL-5			
Reason for change	 Xarious editorial modifications without related CRs are made in 23.060 v3.9.0. Also some erroneous CR implementations are corrected. The detailed changes are listed in S2-012850. 	S		
Summary of chang	e: # Correction of editorial errors.			
Consequences if not approved:	* New ambiguities and and errors are contained in 23.060 compared to v 3.8.0.			
Clauses affected:	% 6.1.1.1, 6.9, 6.13, 9.2.2.1			
Other specs affected:	%Other core specifications%Test specificationsO&M Specifications			
Other comments:	¥			

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://www.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

6 Mobility Management Functionality

6.1 Definition of Mobility Management States

The Mobility Management (MM) activities related to a subscriber are characterised by one of three different MM states. In A/Gb mode, the MM states for a GPRS subscriber are IDLE, STANDBY, and READY. In Iu mode, the MM states for a GPRS subscriber are PMM-DETACHED, PMM-IDLE, and PMM-CONNECTED. Each state describes a certain level of functionality and information allocated. The information sets held at the MS and the SGSN are denoted MM context.

The MM state relates only to GPRS MM activities of a subscriber. The MM state is independent of the number and state of PDP contexts for that subscriber.

6.1.1 Mobility Management States (GSM only)

6.1.1.1 IDLE (GPRS) State

In GPRS IDLE state, the subscriber is not attached to GPRS mobility management. The MS and SGSN contexts hold no valid location or routeing information for the subscriber. The subscriber-related mobility management procedures are not performed.

The MS performs PLMN selection and GSM cell selection and re-selection.

Simultaneous dData transmission to and from the mobile subscriber and the paging of the subscriber is not possible. The GPRS MS is seen as not reachable in this case.

In order to establish MM contexts in the MS and the SGSN, the MS shall perform the GPRS Attach procedure.

6.9 Location Management Function

The Location Management function provides:

- mechanisms for cell and PLMN selection;
- a mechanism for the network to know the Routeing Area for MSs in STANDBY, PMM-IDLE, READY, and PMM-CONNECTED states;
- a mechanism for the 2G-SGSN to know the cell identity for MSs in READY state;
- a mechanism for the UTRAN to know the URA identity or cell identity for MSs in PMM-CONNECTED state;
- a mechanism for the UTRAN to indicate to an MS in RRC Connected mode when a Routeing Area Update procedure shall be performed by providing the RAI; and
- a mechanism for the network to know the address of the serving RNC handling an MS in PMM-CONNECTED state. This mechanism is the serving RNC relocation procedure.
- NOTE: The SGSN may not know the Routeing Area where the UMTS MS is physically located for an MS is in RRC Connected mode. An MS in PMM-CONNECTED state is necessarily in RRC Connected mode. An MS in PMM-IDLE state is in RRC Connected mode only if the MS is in CS MM-CONNECTED state.

In Iu mode, the tracking of the location of the MS is on three levels (cell, URA, or RA); see 3G TS 23.121.

In A/Gb mode, the tracking of the location of the MS is on two levels (cell or RA).

Routeing Area (RA) is defined in subclause "Routeing Area Identity".

6.9.1 Location Management Procedures (GSM only)

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

The MS detects that has entered a new cell has been entered by comparing the cell's identity with the cell identity stored in the MS's MM context. The MS detects that a new RA has been entered by periodically comparing the RAI stored in its MM context with that received from the new cell. The MS shall consider hysteresis in signal strength measurements.

When the MS camps on a new cell, possibly in a new RA, this indicates one of three possible scenarios:

- a cell update is required;
- a routeing area update is required; or
- a combined routeing area and location area update is required.

In all three scenarios the MS stores the cell identity in its MM context.

If the MS enters a new PLMN, the MS shall either perform a routeing area update, or enter IDLE state.

In network mode of operation II and III, whenever an MS determines that it shall perform both an LA update and an RA update:

- 1. It shall initiate the LA update and then initiate the RA update, if the MS is in class A mode of operation.
- 2. It shall perform the LA update first if the MS is not in class A mode of operation.

Routeing Area Update Request messages shall be sent unciphered, since in the inter-SGSN routeing area update case the new SGSN shall be able to process the request.

6.9.1.1 Cell Update Procedure

A cell update takes place when the MS enters a new cell inside the current RA and the MS is in READY state. If the RA has changed, a routeing area update is executed instead of a cell update.

If the network does not support the Cell Notification which is an optimised Cell Update Procedure (see 24.008), the MS performs the cell update procedure by sending an uplink LLC frame of any type except the LLC NULL frame (see 04.64) containing the MS's identity to the SGSN. If the network and the MS support the Cell Notification, then the MS shall use the LLC NULL frame containing the MS's identity in order to perform a cell update. The support of Cell Notification is mandatory for the MS the network, but the network and the MS have to support the Cell Update Procedure without using the LLC NULL frame for backward compatibility reasons.

In the direction towards the SGSN, the BSS shall add the Cell Global Identity including RAC and LAC to all BSSGP frames; see [21]. A cell update is any correctly received and valid LLC PDU carried inside a BSSGP PDU containing a new identifier of the cell.

The SGSN records this MS's change of cell and further traffic towards the MS is conveyed over the new cell.

6.9.1.2 Routeing Area Update Procedure

A routeing area update takes place when a GPRS-attached MS detects that it has entered a new RA, when the periodic RA update timer has expired, or when the MS has new access capabilities to indicate to the network, or when a suspended MS is not resumed by the BSS (see subclause "Suspension of GPRS Services") for GSM. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra SGSN routeing area update.

4

6.9.1.2.1 Intra SGSN Routeing Area Update

The Intra SGSN Routeing Area Update procedure is illustrated in Figure 1.

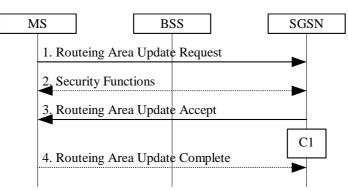


Figure 1: Intra SGSN Routeing Area Update Procedure

- 1) The MS sends a Routeing Area Update Request (P-TMSI, old RAI, old P-TMSI Signature, Update Type) to the SGSN. Update Type shall indicate RA update or periodic RA update. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN, see GSM 08.18 [21].
- 2) Security functions may be executed. These procedures are defined in subclause "Security Function".
- 3) The SGSN validates the MS's presence in the new RA. If, due to regional subscription restrictions, the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the SGSN updates the MM context for the MS. A new P-TMSI may be allocated. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature) is returned to the MS.
- 4) If P-TMSI was reallocated, the MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.

The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. It returns as a result "Continue".

Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. It returns as a result "Continue".

5

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in Figure 2.

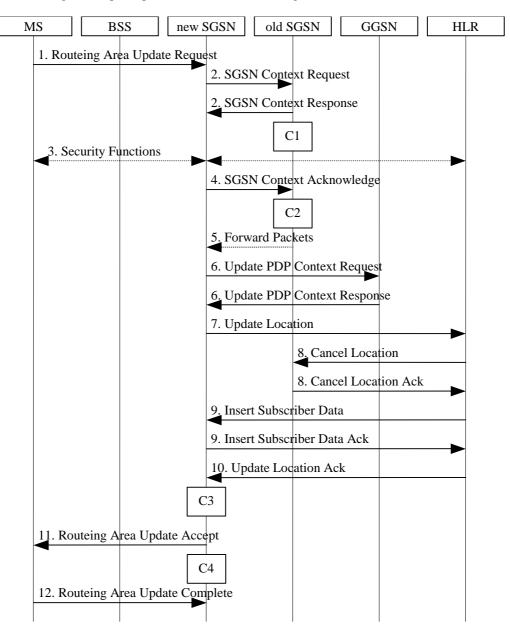


Figure 2: Inter SGSN Routeing Area Update Procedure

- 1) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, Classmark, DRX parameters and MS Network Capability) to the new SGSN. Update Type shall indicate RA update or periodic RA update. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN. Classmark contains the MS GPRS multislot capabilities and supported GPRS ciphering algorithms as defined in TS 24.008. DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.
- 2) The new SGSN sends SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN stops assigning SNDCP N-PDU numbers to downlink N-PDUs received, and responds with SGSN context Response (MM Context, PDP Contexts). If the MS is not known in the old SGSN, the old SGSN responds with an

appropriate error cause. The old SGSN stores New SGSN Address, to allow the old SGSN to forward data packets to the new SGSN. Each PDP Context includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode to the MS, the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode from the MS, the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. The old SGSN starts a timer and stops the transmission of N-PDUs to the MS. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.

3) Security functions may be executed. These procedures are defined in subclause "Security Function". Ciphering mode shall be set if ciphering is supported.

If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.

- 4) The new SGSN sends an SGSN Context Acknowledge message to the old SGSN. This informs the old SGSN that the new SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure. If the security functions do not authenticate the MS correctly, then the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 5) The old SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new SGSN. Additional N-PDUs received from the GGSN before the timer described in step 2 expires are also duplicated and tunnelled to the new SGSN. N-PDUs that were already sent to the MS in acknowledged mode and that are not yet acknowledged by the MS are tunnelled together with the SNDCP N-PDU number. No N-PDUs shall be forwarded to the new SGSN after expiry of the timer described in step 2.
- 6) The new SGSN sends Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return Update PDP Context Response (TEID).
- 7) The new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 8) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM and PDP contexts. Otherwise, the contexts are removed only when the timer expires. This allows the old SGSN to complete the forwarding of N-PDUs. It also ensures that the MM and PDP contexts are kept in the old SGSN in case the MS initiates another inter-SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 9) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS is not allowed to be attached in the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 10) The HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 11) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS, is not allowed to be attached in the SGSN, or if subscription checking fails, the new SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new SGSN and the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number). Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure.
- 12) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms reception of N-PDUs

that were forwarded from the old SGSN, these N-PDUs shall be discarded by the new SGSN. LLC and SNDCP in the MS are reset.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, , or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS does not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN stops forwarding N-PDUs to the new SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

and the CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns asresult "Continue".

C2) CAMEL_GPRS_Detach

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

6.9.1.3 Combined RA / LA Update Procedure

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs an IMSI attach, or when the MS has to indicate new access capabilities to the network. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see GSM 03.22), as no combined RA / LA updates are performed during a CS connection.

8

6.9.1.3.1 Combined Intra SGSN RA / LA Update

The Combined RA / LA Update (intra SGSN) procedure is illustrated in Figure 3.

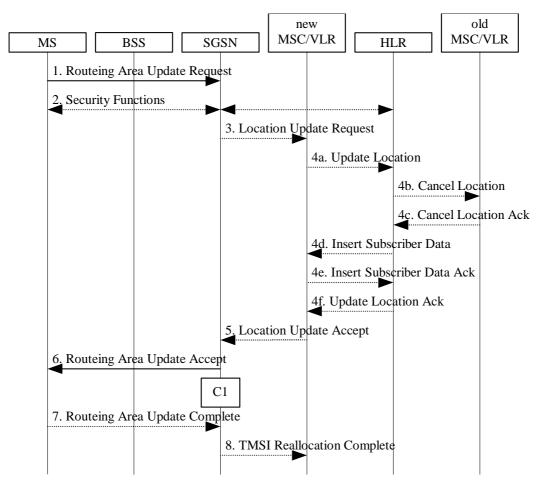


Figure 3: Combined RA / LA Update in the Case of Intra SGSN RA Update Procedure

- The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) to the SGSN. Update Type shall indicate combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN.
- 2) Security functions may be executed. This procedure is defined in subclause "Security Function". If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.
- 3) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 4) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).

- d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
- e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
- f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 5) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 6) The SGSN validates the MS's presence in the new RA. If due to regional subscription restrictions the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the SGSN updates the MM context for the MS. A new P-TMSI may be allocated. The SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 7) If a new P-TMSI or VLR TMSI was received, the MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 8) The SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful Location Update is performed.

CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078:

- C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
- -The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 3, the procedure returns as result "Continue".
- -Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 3, the procedure returns as result "Continue".

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter-SGSN) procedure is illustrated in Figure 4.

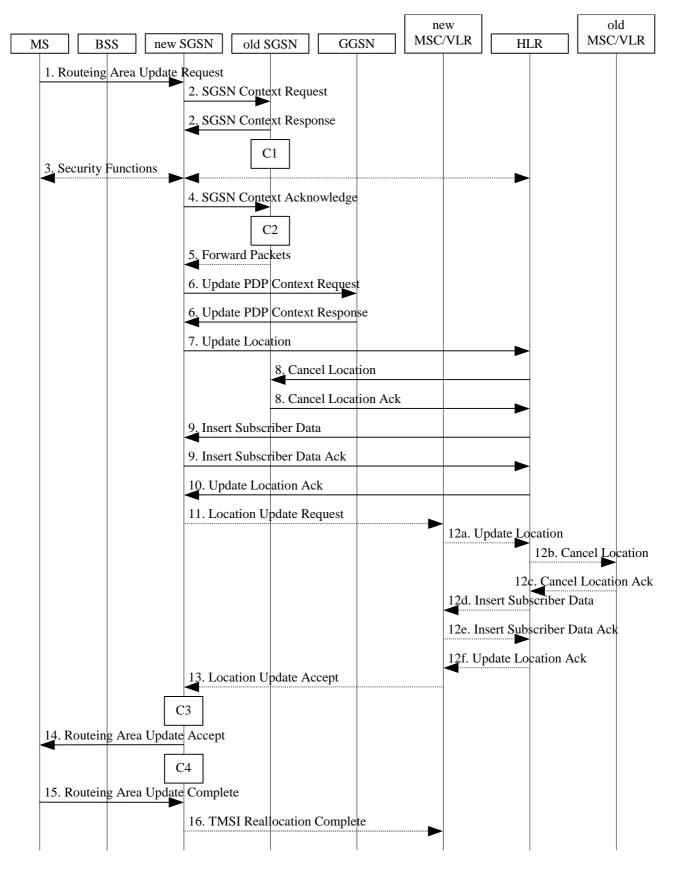


Figure 4: Combined RA / LA Update in the Case of Inter SGSN RA Update Procedure

Error! No text of specified style in document.

- 1) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, Classmark, DRX parameters and MS Network Capability) to the new SGSN. Update Type shall indicate combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN. Classmark contains the MS GPRS multislot capabilities and supported GPRS ciphering algorithms as defined in TS 24.008. DRX Parameters indicates whether or not the MS uses discontinuous and the DRX cycle length.
- 2) The new SGSN sends SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN stops assigning SNDCP N-PDU numbers to downlink N-PDUs received, and responds with SGSN Context Response (MM Context, PDP Contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN stores New SGSN Address until the old MM context is cancelled, to allow the old SGSN to forward data packets to the new SGSN. Each PDP Context includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode to the MS, the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode from the MS, the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. The old SGSN starts a timer and stops the downlink transfer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 3) Security functions may be executed. These procedures are defined in subclause "Security Function". Ciphering mode shall be set if ciphering is supported. If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.
- 4) The new SGSN sends an SGSN Context Acknowledge message to the old SGSN. This informs the old SGSN that the new SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure. If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 5) The old SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new SGSN. Additional N-PDUs received from the GGSN before the timer described in step 2 expires are also duplicated and tunnelled to the new SGSN. N-PDUs that were already sent to the MS in acknowledged mode and that are not yet acknowledged by the MS are tunnelled together with the SNDCP N-PDU number. No N-PDUs shall be forwarded to the new SGSN after expiry of the timer described in step 2.
- 6) The new SGSN sends Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (TEID).
- 7) The new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 8) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM and PDP contexts. Otherwise, the contexts are removed only when the timer expires. This allows the old SGSN to complete the forwarding of N-PDUs. It also ensures that the MM and PDP contexts are kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 9) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS is not allowed to be attached in the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.

10) The HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.

- 11) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 9). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 12) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 13) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 14) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS is not allowed to be attached eannot attach in the RASGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM and PDP contexts for the MS. A logical link is established between the new SGSN and the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature, Receive N-PDU Number). Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure.
- 15) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms reception of N-PDUs that were forwarded from the old SGSN, these N-PDUs shall be discarded by the new SGSN. LLC and SNDCP in the MS are reset.
- 16) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful location update is performed.

13

CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

6.9.2 Location Management Procedures (UMTS only)

Refer to 3G TS 25.301 for further information on the location management procedures for the UMTS radio.

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

In this specification, only the Location Management procedures related to the CN are described. These procedures are:

- a routeing area update procedure; and
- Serving RNC relocation procedure.

An MS detects that it entered in a new cell by comparing its identity with the cell identity stored in the MS. By comparing the RAI stored in the MS's MM context with the RAI received from the network, the MS detects that an RA update shall be performed. In RRC-CONNECTED mode (PMM-CONNECTED state or CS MM CONNECTED state), the MS is informed of RAI and Cell Identity by the serving RNC via an "MM information" message at the RRC layer. In RRC-IDLE state, the MS is informed of RAI and Cell Identity by the broadcast system information at the RRC layer.

In network mode of operation II, whenever an MS determines that it shall perform both an LA update and an RA update, the MS shall start the LA update first. The MS should start the RA update procedure before the LA update is completed.

6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection re-establishment", or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see sub-clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure 5.

Note: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see sub-clause 6.1.2.4.1).

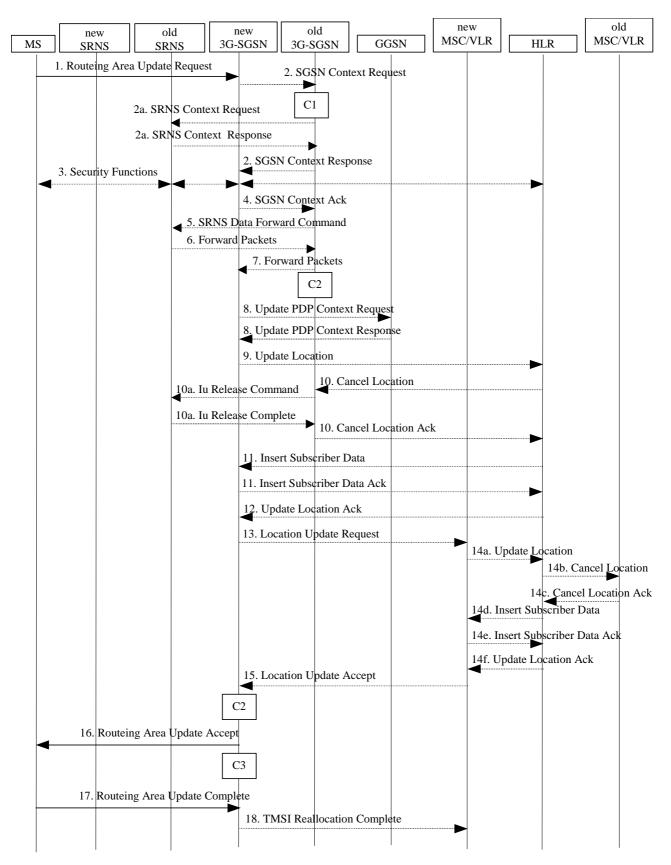


Figure 5: UMTS RA Update Procedure

- The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see subclause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in subclause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN starts a timer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old SGSN shall sends SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using acknowledged mode, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS (per each active radio bearer).
- 3) Security functions may be executed. These procedures are defined in subclause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 4) If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 5) If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G□SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.

- 6) The SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP PDUs together with the PDCP downlink sequence number, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN.
- 7) If the RA update is an Inter-SGSN RA Update, the old 3G□SGSN tunnels the GTP PDUs to the new 3G-SGSN.
- 8) If the RA update is an Inter-SGSN RA Update and if the MS is in the PMM-CONNECTED state in the new 3G-SGSN, the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- 9) If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 10) If the RA update is an nter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 10a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer expires, the SRNS responds with an Iu Release Complete message.
- 11) If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach tois not allowed to be attached in the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 13) If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.

- 16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach tois not allowed to be attached in the <u>RASGSN</u>, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- NOTE: Steps 14, 15, and 18 are performed only if step 12 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

CAMEL procedure calls shall be performed; see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

6.9.2.2 Serving RNS Relocation Procedures

Serving RNS relocation procedures move the UTRAN to CN connection point at the UTRAN side of the source RNC to the target RNC. The Serving RNS Relocation Procedures, described in the following sub-clauses, may be performed as "Lossless SRNS Relocation", which means packet loss during the SRNS change is eliminated. For this purpose, the RNS and the MS have to provide PDCP layer functionality, which in the subsequent description is referred as the lossless PDCP. The source RNC decides to perform the Serving RNS Relocation Procedure as "Lossless SRNS Relocation" based on capabilities of the UE and the RNS and based on QoS parameters (e.g SDU error ratio).

For "Lossless SRNS Relocation", both the MS and the source RNS have to support and to use the lossless PDCP. When the SRNS changes, the old RNS forwards all received and not yet transferred downlink GTP-PDUs to the target RNS. GTP-PDUs forwarded to the target RNS indicate a PDCP sequence number if the contained N-PDUs were sent to the MS as a PDCP-SDUs, but are not yet acknowledged by lossless PDCP. The target RNS and the MS exchange respective sequence numbers of next expected PDCP-PDUs. This process indicates PDCP-PDUs that were already successfully transferred between the MS and the source RNS for downlink and uplink directions, respectively. This confirms all N-PDUs (PDCP-SDUs) successfully transferred before the change of the SRNS. These N-PDUs are discarded by the MS and the target RNS, respectively. The target RNS identifies the forwarded GTP-PDUs containing confirmed N-PDUs by the PDCP sequence number in the GTP-PDU. All other N-PDUs have to be transmitted via the new MS – RNS link.

6.9.2.2.1 SRNS Relocation Procedure after Soft Handover

This procedure is only performed for an MS in PMM-CONNECTED state where the Iur interface carries both the control signalling and the user data.

The Serving SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, from a "standing still position". In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an Intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

Figure 6 shows SRNS relocation when source SRNC and target RNC are connected to different SGSNs. Figure 7 shows the situation after SRNS Relocation procedure and Routeing Area Update procedure have been completed. In the case described in Figure 6 and Figure 7, the MS is in state PMM-CONNECTED.

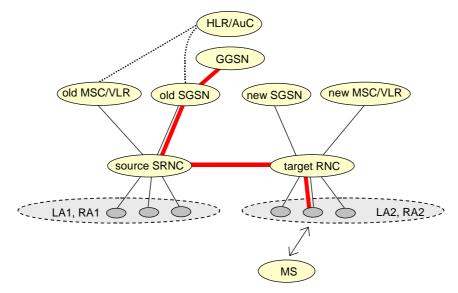


Figure 6: Before SRNS Relocation and Routeing Area Update

Before the Serving SRNS Relocation procedure and RA update, the MS is registered in the old SGSN. The source RNC is acting as a serving RNC (SRNC).

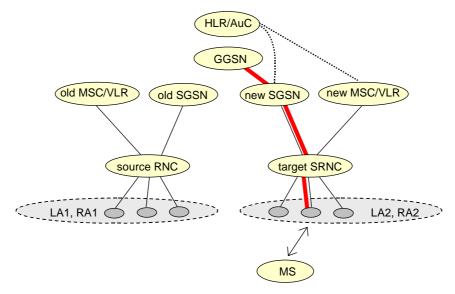


Figure 7: After SRNS Relocation and Routeing Area Update

After the Serving SRNS Relocation procedure and RA update, the MS is registered in the new SGSN The MS is in the state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as the serving RNC.

The Serving SRNS Relocation procedure is illustrated in Figure 8. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

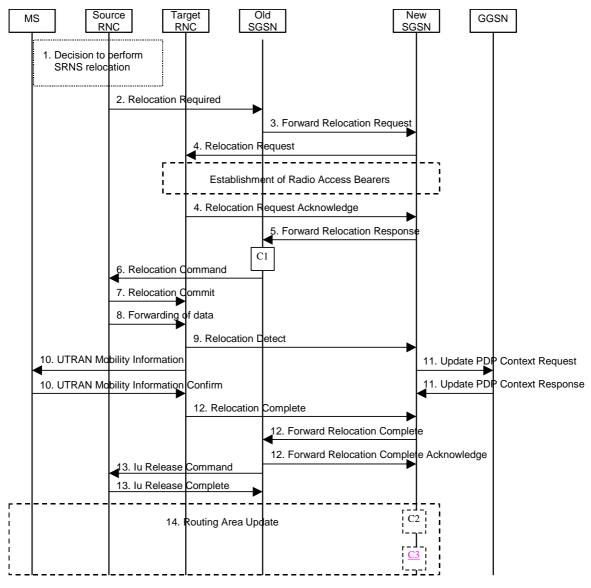


Figure 8: Serving SRNS Relocation Procedure

- 1) The source SRNC decides to perform/initiate SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between MS and source SRNC (data flows via the target RNC, which acts as a drift RNC); GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to target RNC transparent container) to the old SGSN. The source SRNC shall set the Relocation Type to "UE not involved". The Source SRNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation, the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN transparent container, RANAP Cause) to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see the Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)"). The Forward Relocation Request message is applicable only in the case of inter-SGSN SRNS relocation.

Error! No text of specified style in document.

4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC to target RNC transparent container, RABs to be setup) to the target RNC. Only the Iu Bearers of the RABs are setup between the target RNC and the new-SGSN as the existing Radio Bearers will be reallocated between the MS and the target RNC when the target RNC takes the role of the serving RNC. For each requested RAB, the RABs to be setup information elements shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data. After all necessary resources for accepted RABs including the Iu user plane are successfully allocated; the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data. For each RAB to be set up Tthe target RNC may be set-up-receiveto simultaneously receive for each RAB-downlink user packets both from the source SRNC and from the new SGSN.

After the new SGSN receives the Relocation Request Acknowledge message, the GTP-U tunnels are established between the target RNC and the new-SGSN.

- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and RAB Setup Information) is sent from the new SGSN to old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e. the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and the RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (RABs to be released, and RABs subject to data forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from source SRNC to target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) Upon reception of the Relocation Command message from the PS domain, the source SRNC shall start the dataforwarding timer.
- Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may starts data forwarding (step 7) and send Relocation Commit message (step 8) almost simultaneously except in the delivery order required case where step 7 triggers step 8. Target RNC may send Relocation Detect message (step 9) and UTRAN Mobility Information message (step 10) at the same time. Hence, target RNC may receive UTRAN Mobility Information Confirm message (step 10) while data forwarding (step 7) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP-U PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-U PDUs next to be transmitted are not used by the target RNC. PDCP sequence numbers are only sent by the source RNC_used when for radio bearers which used lossless SRNS relocation is configured for PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN)

shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink respectively.

Before sending the Relocation Commit uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require maintaining the delivery order.

- 8) The source RNC begins the forwarding of data for the RABs to be subject for data forwarding. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-U PDUs, which are exchanged between the source RNC and the target RNC, are duplicated in the source RNC and routed at IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-U PDUs corresponding to transmitted but not yet acknowledged PDCP PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers.
- 9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 10) The target SRNC sends a UTRAN Mobility Information message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

The target SRNC establishes and/or restarts the RLC, and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target SRNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which useds lossless PDCP in the source RNC. PDCP-SND confirms all mobile-terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC.

Upon reception of the UTRAN Mobility Information message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If the new SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

- 11) Upon receipt of the Relocation Detect message, the CN may switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier).
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect and upon reception of Relocation Complete, the CN shall switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN shall signal to the old SGSN the completion of the SRNS relocation gas a Forward Relocation Complete message.
- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation; the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location"

Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED mode.

CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach.

They are called in the following order:

-The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".

-Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result ""Continue"".

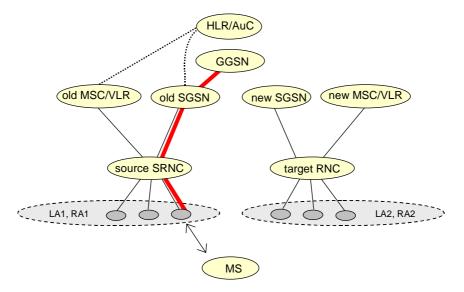
C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.


6.9.2.2.2 Combined Hard Handover and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state in case the Iur interface is not available.

The Combined Hard Handover and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a hard handover decided by the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

If the target RNC is connected to a different SGSN than the source SRNC, an Inter-SGSN SRNS Relocation procedure is performed. This procedure is followed by an Inter-SGSN Routeing Area Update procedure.

Figure 9shows the situation before a Combined Hard Handover and SRNS Relocation procedure when source and target RNC are connected to different SGSNs. Figure 10shows the situation after the Combined Hard Handover and SRNS Relocation procedure and RA update procedure have been completed. In the case described in Figure 9 and Figure 10 the MS is in PMM-CONNECTED state.

Figure 9: Before Combined Hard Handover and SRNS Relocation and Routeing Area Update

Before the SRNS Relocation and Routeing Area Update the MS is registered in the old SGSN and in the old MSC/VLR. The source RNC is acting as serving RNC.

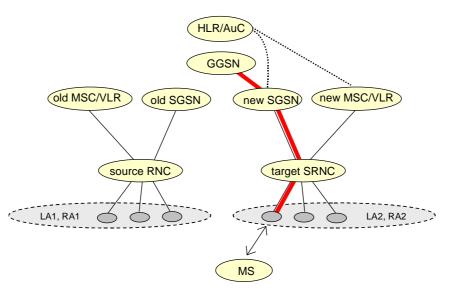


Figure 10: After Combined Hard Handover and SRNS Relocation and Routeing Area Update

After the SRNS relocation and RA update, the MS is registered in the new SGSN and in the new MSC/VLR. The MS is in state PMM-CONNECTED towards the new SGSN and in MM IDLE state towards the new MSC/VLR. The target RNC is acting as serving RNC.

The Combined Hard Handover and SRNS Relocation procedure for the PS domain is illustrated in Figure 11. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

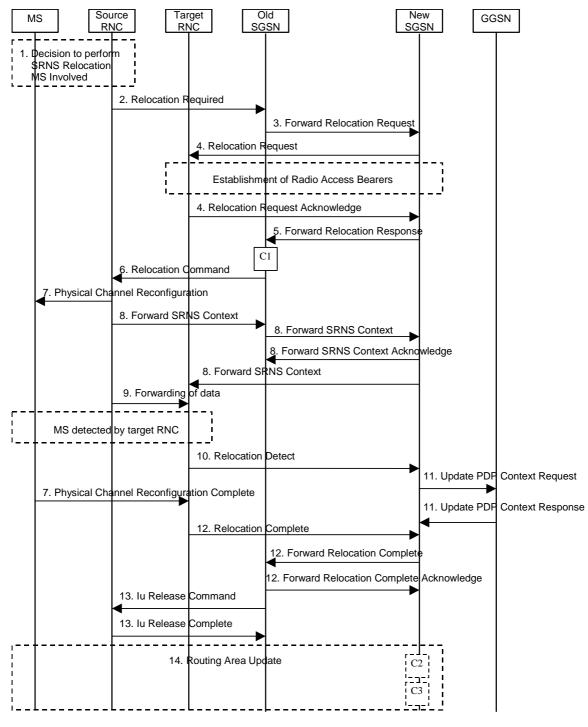


Figure 11: Combined Hard Handover and SRNS Relocation Procedure

- Based on measurement results and knowledge of the UTRAN topology, the source SRNC decides to initiate a combined hard handover and SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between the MS and the source SRNC (no drift RNC available); GTP-U tunnel(s) between the source SRNC and the old SGSN; GTP-U tunnel(s) between the old SGSN and the GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC To Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE Involved". Source RNC To Target RNC Transparent Container includes the necessary information for relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).

- 3) The old SGSN determines from the Target ID if the SRNS relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)"). The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation
- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC To Target RNC Transparent Container, RABs To Be Setup) to the target RNC. For each requested RAB, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all the necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (Target RNC To Source RNC Transparent Container, RABs Setup, RABs Failed To Setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and the Iu Transport Association, which corresponds to the down-link Tunnel Endpoint Identifier for user data. The transparent container contains all radio-related information that the MS needs for the handover, i.e., a complete RRC message (e.g., Physical Channel Reconfiguration) to be sent transparently via CN and source SRNC to the MS. For each RAB to be set up Tethe target RNC may for each RAB to be set up receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.

After the new SGSN receives the Relocation Request Acknowledge message, the GTP-U tunnel(s) are established between the target RNC and the new SGSN. However at this point, the target RNC has not yet established the Radio Bearer(s) with the MS yet.

- 5) When resources for the transmission of user data between target RNC and new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response (Cause, UTRAN Transparent Container, RANAP Cause, Target RNC Information) message is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e., the relocation resource allocation procedure is terminated successfully. UTRAN transparent container and RANAP Cause are information from the target RNC to be forwarded to the source SRNC. The Target RNC Information, one information element for each RAB to be set up, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (Target RNC To Source RNC Transparent Container, RABs To Be Released, RABs Subject To Data Forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) Upon reception of the Relocation Command message from the PS domain, the source RNC shall start the dataforwarding timer.
- Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may send RRC message to MS (step 7), Forward SRNS Context message to the old SGSN (step 8) and starts data forwarding (step 9) almost simultaneously.

When the source SRNC is ready, the source RNC shall trigger the execution of relocation of SRNS by sending to the MS the RRC message provided in the Target RNC to source RNC transparent container, e.g., a Physical Channel Reconfiguration (UE Information Elements, CN Information Elements) message. UE Information Elements include among others new SRNC identity and S-RNTI. CN Information Elements contain among others Location Area Identification and Routeing Area Identification.

Before the RRC message is sent (e.g, Physical Channel Reconfiguration) uplink and downlink data transfer in the source RNC shall be suspended for RABs which require to maintain the delivery order.

When the MS has reconfigured it self, it sends e.g., a Physical Channel Reconfiguration Complete message to the target SRNC. If the Forward SRNS Context message with the sequence numbers is received, the exchange of packets with the MS may start. If this message is not yet received, the target RNC may start the packet transfer for all RABs, which do not require maintaining the delivery order.

8) The source SRNC continues the execution of relocation of SRNS by sending a Forward SRNS Context (RAB Contexts) message to the target RNC via the old and the new SGSN, which is acknowledged by a Forward SRNS Context Acknowledge message. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are sent by the source RNC for the radio bearers which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink, respectively.

The target RNC establishes and/or restarts the RLC and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target RNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, then the target RNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms reception of packets that were received in the source RNC, the MS shall discard these packets.

- 9) The source RNC begins the forwarding of data for the RABs to be subject for data forwarding. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source RNC and the target RNC are duplicated in the source RNC and routed at the IP layer towards the target RNC. For each radio bearer using lossless PDCP, the GTP-PDUs corresponding to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with the corresponding downlink PDCP sequence numbers.
- 10) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE Involved", the relocation execution trigger may be received from the Uu interface; i.e., when target RNC detects the MS on the lower layers. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 11)Upon reception of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS relocation is an inter-SGSN SRNS relocation, the new SGSN sends an Update PDP Context Request (New SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) message to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.
- 12) When the target SRNC receives the Physical Channel Reconfiguration Complete message or the Radio Bearer Release Complete message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate a Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.
- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired, the source RNC responds with an Iu Release Complete message.

14) After the MS has finished the reconfiguration procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- -The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- -Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

In Figure 11, the procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.3 Combined Cell / URA Update and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state, where the Iur interface carries control signalling but no user data.

The Combined Cell / URA Update and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a cell re-selection in the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

Before the Combined Cell / URA Update and SRNS Relocation and the Routeing Area Update, the MS is registered in the old SGSN. The source RNC is acting as serving RNC.

After the Combined Cell / URA Update and SRNS Relocation and the Routeing Area Update, the MS is registered in the new SGSN. The MS is in state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as serving RNC.

The Combined Cell / URA Update and SRNS Relocation procedure for the PS domain is illustrated in Figure 12. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

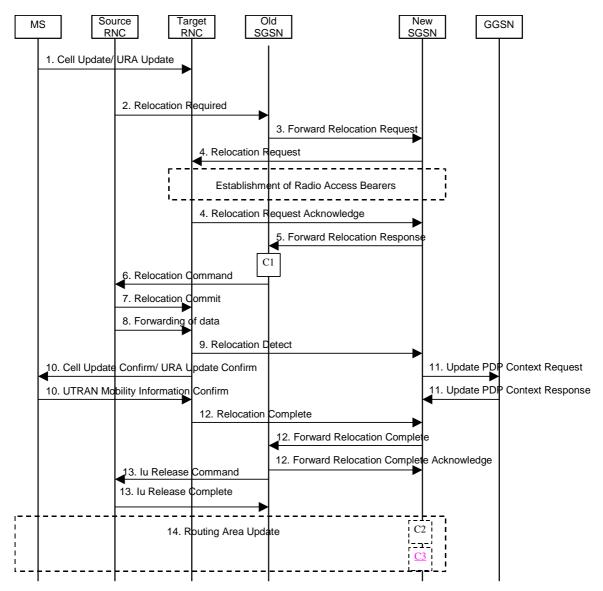


Figure 12: Combined Cell / URA Update and SRNS Relocation Procedure

- The MS sends a Cell Update / URA Update message to the source SRNC (if the cell is located under another RNC the message is routed via the DRNC to SRNC over the Iur). The source SRNC decides whether or not to perform a combined cell / URA update and SRNS relocation towards the target RNC. The rest of this subclause describes the case where a combined cell / URA update and SRNS relocation applies. In this case no radio bearer is established between the source SRNC and the UE. Nonetheless the following tunnel(s) are established: GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE not involved". Source RNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality, and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In the case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) message to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN, see Routeing Area Update procedure

in subclause "Location Management Procedures (UMTS only)". The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.

4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC to Target RNC Transparent Container, RABs To Be Setup) to the target RNC. For each requested RAB, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After successful allocation of all necessary resources for accepted RABs including the Iu user plane, the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and an Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. For each RAB to be set up Tthe target-RNC may be set up to simultaneously receive simultaneously for each RAB downlink user packets both from the source SRNC and from the new SGSN.

After the new SGSN receives the Relocation Request Acknowledge message, the GTP-U tunnels are established between the target RNC and the new-SGSN.

- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and Target RNC Information) is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from the source SRNC the forwarded downlink packets, i.e., the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command (RABs to be released, and RABs subject to data forwarding) message to the source SRNC. The old SGSN decides the RABs subject to data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) Upon reception of the Relocation Command message from the PS domain, the source SRNC shall start the dataforwarding timer.
 - Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may send Relocation Commit message (step 7) and starts data forwarding (step 8) almost simultaneously. Target RNC may send Relocation Detect message (step 9) and Cell Update Confirm/URA Update Confirm message (step 10) at the same time. Hence, target RNC may receive the UTRAN Mobility Information Confirm message from MS (step 10) while data forwarding (step 8) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP-PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are only sent by the source RNC for radio bearers which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN)

shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink respectively.

- 8) The source RNC begins the forwarding of data for the RABs subject to data forwarding. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-U PDUs exchanged between the source RNC and the target RNC are duplicated in the source RNC and routed at the IP layer towards the target RNC. For each radio bearer using lossless PDCP, the GTP-PDUs corresponding to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with the corresponding downlink PDCP sequence numbers.
- 9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 10) The target SRNC sends a Cell Update Confirm / URA Update Confirm message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

Upon reception of the Cell Update Confirm / URA Update Confirm message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If the new SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to the GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

The target SRNC and the MS exchange the PDCP sequence numbers; PDCP-SNU and PDCP-SND. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms the reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the target SRNC shall discard these packets.

- 11)Upon receipt of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.
- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the Cell / URA update and RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

CAMEL procedure calls shall be performed; see referenced procedures in 3G TS 23.078:

 $C1) \quad CAMEL_GPRS_PDP_Context_Disconnection \ and \ CAMEL_GPRS_Detach$

They are called in the following order:

- -The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- -Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL GPRS Routeing Area Update-Session

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.13 UMTS - GSM Intersystem Change

The UMTS - GSM intersystem change procedures may be supported for network elements conforming to GSM releases 97, 98, and 99, and to UMTS release 99. At intersystem change release 99 network elements shall use GTP release 97 or 98 on the Gn interface when interworking with release 97 or 98 network elements, respectively.

An intersystem change from UMTS to GSM or GSM to UMTS takes place when an MS supporting both UMTS and GSM changes the radio access technology. A prerequisite for an intersystem change is that the MS is GPRS-attached. The transition of the mobility management states is as specified for the corresponding mobility management procedures.

There is no transition of the session management states at an intersystem change.

6.13.1 Intra SGSN Intersystem Change

An SGSN that supports both the Gb and Iu-PS interfaces may support an intra-SGSN intersystem change if the radio access technology nodes serving the MS before and after the intersystem change are both served by this SGSN.

6.13.1.1 UMTS to GSM Intra SGSN Change

The intersystem change from UMTS to GSM takes place when an MS changes from UTRAN to GSM radio access. Depending on the PMM state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in PMM-IDLE state changes to the GSM radio access without changing the RA, the MS shall follow the selective RA update procedures, see subclause "Selective RA Update".
- When an MS in PMM-IDLE state changes to the GSM radio access and the RA changes, the MS shall initiate the GPRS RA update procedure, see subclause "Intra SGSN Routeing Area Update".
- When an MS in PMM-CONNECTED state changes to the GSM radio access, the MS shall initiate the GPRS RA update procedure independent of whether the RA has changed or not. The RA update procedure is either combined RA / LA update or only RA update.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request message indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3G TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Figure 13: UMTS to GSM Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell that supports GSM radio technology, and stops transmission to the network.
- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) message to the 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attached requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the 2G+3G-SGSN.
- 3) If the MS is PMM-CONNECTED state, the 2G+3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS.

Upon reception of the SRNS Context Request message, the SRNS starts buffering and stops sending downlink PDUs to the MS. The SRNS responds with an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The GTP sequence numbers are included for each PDP context indicating the next insequence downlink GTP-U PDUs to be sent to the MS and the next in-sequence GTP PDU to be tunnelled to the GGSN. For each active PDP context which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) and the downlink PDCP sequence number (PDCP-SNU). PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been

confirmed. The 2G+3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers of the respective 2G GPRS PDP contexts.

- 5) Security functions may be executed.
- 6) If the MS is PMM-CONNECTED, the 2G+3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. This informs the SRNS that the 2G+3G-SGSN is ready to receive data packets. Upon reception of SRNS Data Forward Command message from the 2G+3G-SGSN the SRNS shall start the data-forwarding timer.
- 7) For each RAB indicated by the SRNS Data Forward Command, the SRNS starts duplicating and tunnelling the buffered GTP-U PDUs back to the 2G+3G-SGSN. For each radio bearer using lossless PDCP, the GTP-PDUs corresponding to transmitted but not yet acknowledged PDCP-PDUs are duplicated and tunnelled back to the 2G+3G-SGSN together with the corresponding downlink PDCP sequence numbers. The 2G+3G-SGSN converts the PDCP sequence numbers to SNDCP sequence number (by stripping off the eight most significant bits of the PDCP sequence numbers).
- 8) The 2G+3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 9) If the association has to be established i.e., if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, then the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the association with the 2G+3G-SGSN by storing the SGSN Number.
- 10) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 11) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 12) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A logical link is established between the new 2G+3G-SGSN and the MS. The 2G+3G-SGSN initiates the establishment procedure. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (corresponding to converted PDCP-SNU)) message is returned to the MS. Receive N-PDU Number contains the acknowledgements for each NSAPI, which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number in the MS confirms the reception of N-PDUs, the MS shall discard these N-PDUs.

- 13) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number (= converted PDCP-SND) contains the acknowledgements for each NSAPI, which useds lossless PDCP before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs that were successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, the 2G+3G-SGSN shall discard these N-PDUs. The MS deducts Receive N-PDU Number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which uses lossless PDCP. The new 2G-SGSN negotiates with the MS the use of acknowledged or unacknowledged SNDCP for each NSAPI regardless whether the SRNS uses lossless PDCP or not.
- 14) The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 15) The 2G+3G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078:

C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.

The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 13, the procedure returns as result "Continue".

Then, the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 13, the procedure returns as result "Continue".

6.13.1.2 GSM to UMTS Intra-SGSN Change

The intersystem change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN. Depending on the GPRS mobility management state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in STANDBY state changes to UTRAN inside the current RA, the MS shall follow the selective RA update procedures, see subclause "Selective RA Update".
- When an MS in STANDBY state changes to UTRAN and the RA changes, the MS shall initiate the UMTS RA update procedure, see subclause "Routeing Area Update Procedure".
- When an MS in READY state changes to UTRAN independent of whether the RA has changed or not, the MS shall initiate the UMTS RA update procedure and afterwards initiate the RABs by the Service Request procedure, see subclause "MS Initiated Service Request Procedure". The RA update procedure is either combined RA / LA update or only RA update.

If the network operates in mode I, an MS that is both PS-attached and CS-attached shall perform the Combined RA / LA Update procedure. This concerns only idle mode (see 3G TS 23.122), as no combined RA / LA updates are performed during a CS connection.

36

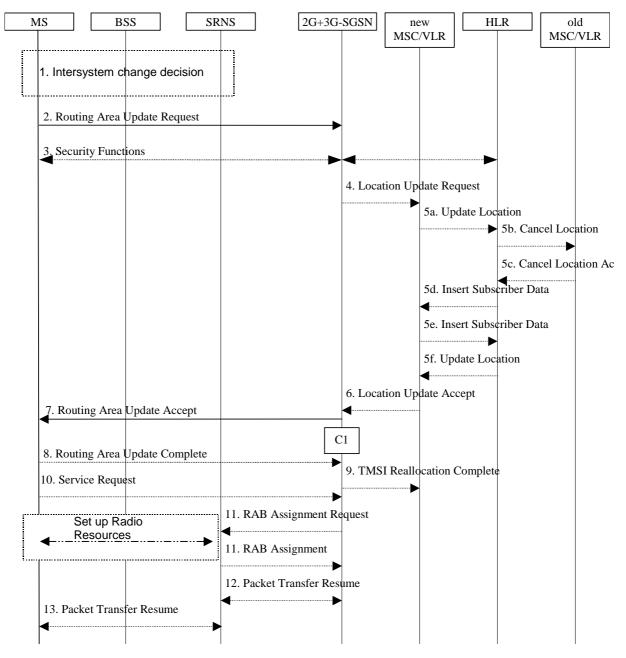


Figure 14: GSM to UMTS Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell that supports UMTS radio technology, and stops transmission to the network.
- 2) The MS initiates an RRC connection establishment and sends a Routeing Area Update Request (P-TMSI, Old RA, Old P-TMSI Signature, Update Type, CM) message to the combined 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested and also if the MS has a follow on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-onrequest indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNS shall add an identifier of the area where the message was received before passing the message to the 2G+3G-SGSN. The 2G+3G-SGSN stops transmission of N-PDUs to the MS.
- 3) Security functions may be executed.
- 4) If the association has to be established i.e., if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the

RAI by the 2G+3G-SGSN. The VLR creates or updates the association with the 2G+3G-SGSN by storing SGSN Number.

- 5) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 6) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 7) The 2G+3G-SGSN validates the MS's presence in the new RA. If, due to roaming restrictions, the MS eannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature) message is returned to the MS. For this intersystem change, the 2G+3G-SGSN derives the corresponding PDCP sequence numbers from the N-PDU sequence numbers stored in the SGSN PDP contexts by adding eight most significant bits "1". These PDCP sequence numbers are stored in the SGSN PDP context.
- 8) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 10) If the MS has pending uplink data or signalling, it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 11) The 2G+3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers and stored in the PDP context in step 7). The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The SRNS responds with a RAB Assignment Response message.
- NOTE: The NSAPI value is carried in the RAB ID IE.
- 12) Traffic flow is resumed between the 2G+3G-SGSN and the SRNS. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled by the 2G+3G-SGSN to the SRNS together with the corresponding N-PDU numbers (SNDCP sequence numbers). No PDCP sequence numbers shall be indicated for these N-PDUs. The SRNS shall discard all N-PDUs with N-PDU sequence numbers older than the eight least significant bits of PDCP-SND received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with sequence numbers older than the eight least significant bits of the PDCP-SNU received from the SRNS. All other N-PDUs shall be transmitted to the SRNS. The SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

13)The traffic flow is resumed between the SRNS and the MS.

CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078:

C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once relative to the session. In Figure 14, the procedure returns as result "Continue".

Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 14, the procedure returns as result "Continue".

6.13.1.3 Selective RA Update

The MS shall use the following procedures when in STANDBY or PMM-IDLE state.

Note that upon expiry of the periodic RA update timer, the MS shall carry out the periodic routeing area update procedure.

6.13.1.3.1 Uplink Signalling or Data Transmission

In STANDBY or PMM-IDLE state the MS shall not perform an RA update procedure until uplink data or signalling information is to be sent from the MS.

If the MS is in the same access network as when it last sent data or signalling, the procedures defined for that access system shall be followed. This shall be the sending of an LLC PDU in GPRS, or for example sending of a Service Request message in Iu mode.

If the MS is in a different access network as when it last sent data or signalling, the RA update procedure shall be performed before the sending of data or signalling. The RA update procedure needs not be performed if the signalling message is a power-off detach.

6.13.1.3.2 Downlink Signalling or Data Transmission

If the 2G+3G-SGSN receives data for an MS in STANDBY or PMM-IDLE state, the SGSN shall page in the RA where the MS is located. This may include both 2G and 3G cells.

If the MS receives this page in the same access network as when it last sent data or signalling, the procedures defined for that access system shallould be followed. This shall be the sending of an LLC PDU in a GSM cell or for example sending of a Service Request message in a UMTS cell.

If the MS receives this page in a different access network as when it last sent data or signalling, the RA update procedure shall be performed. The 2G+3G-SGSN shall accept this RAU as a valid response.

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSM Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSM takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN to GSM radio access and the GSM radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a GSM RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 15.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3G TS 23.122), as no combined RA / LA updates are performed during a CS connection.

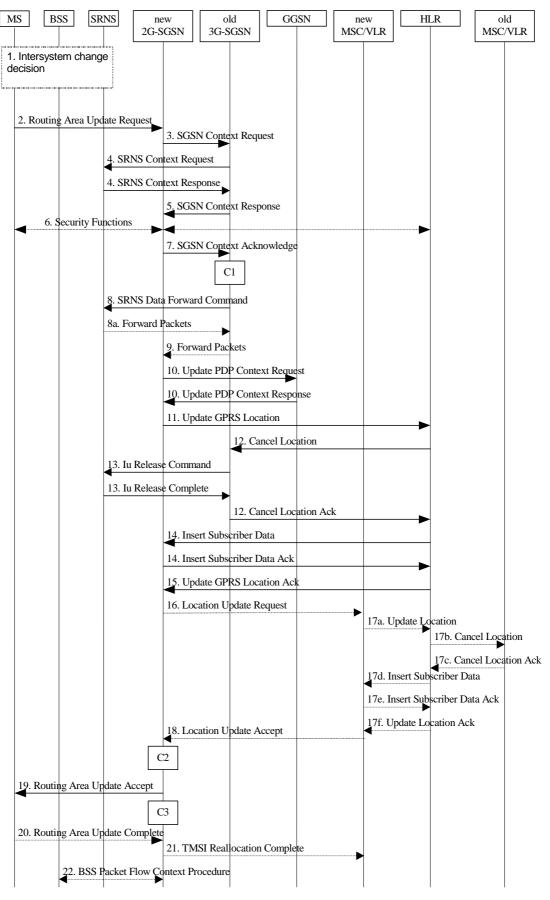


Figure 15: UMTS to GSM Inter-SGSN Change

1) The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports GSM radio technology, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, MS Network Capability) message to the new 2G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the new 2G-SGSN.
- 3) The new 2G-SGSN sends an SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) message to the old 3G-SGSN to get the MM and PDP contexts for the MS. The old 3G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 3G-SGSN. If the received old P-TMSI Signature does not match the stored value, the security functions in the new 2G-SGSN should be initiated. If the security functions authenticate the MS correctly, the new 2G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 3G-SGSN. MS Validated indicates that the new 2G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 2G-SGSN indicates that it has authenticated the MS correctly, the old 3G-SGSN starts a timer. If the MS is not known in the old 3G-SGSN, the old 3G-SGSN responds with an appropriate error cause.
- 4) If the MS is PMM-CONNECTED the old 3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS. Upon receipt of this message the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) downlink PDCP sequence number (PDCP-SND). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been confirmed. The 3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers and, subsequently, storing these N-PDU numbers in its PDP contexts.
- 5) The old 3G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. For each PDP context the old 3G-SGSN shall include the GTP sequence number for the next uplink GTP PDU to be tunnelled to the GGSN and the next donwlink GTP sequence number for the next in-sequence N-PDU to be sent to the MS. Each PDP Context also includes the SNDCP Send N-PDU Number (the value is 0) for the next in-sequence downlink N-PDU to be sent in acknowledged mode SNDCP to the MS and the SNDCP Receive N-PDU Number (= converted PDCP-SNU) for the next in-sequence uplink N-PDU to be received in acknowledged mode SNDCP from the MS. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 6) Security functions may be executed.
- 7) The new 2G-SGSN sends an SGSN Context Acknowledge message to the old 3G-SGSN. This informs the old 3G-SGSN that the new 2G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a RA update procedure back to the old SGSN before completing the ongoing RA update procedure.
- 8) If the MS is PMM-CONNECTED, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. For each indicated RAB the SRNS starts duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. For each radio bearer which uses lossless PDCP, the SRNS shall start tunnelling the GTP-U PDUs related to transmitted but not yet acknowledged PDCP-PDUs to the old 3G-SGSN together with the corresponding downlink PDCP sequence numbers. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the dataforwarding timer.
- 9) The old 3G-SGSN tunnels the GTP PDUs to the new 2G-SGSN. In the case of GTPv1, the conversion of PDCP sequence numbers to SNDCP sequence numbers (the eight most significant bits shall be stripped off) shall be done in the new SGSN. No N-PDU sequence numbers shall be indicated for these N-PDUs. If GTPv0 is used between the SGSNs, the conversion of PDCP sequence numbers to SNDCP numbers shall be done in the old 3G-SGSN (by stripping off the eight most significant bits).
- 10) The new 2G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.

- 11) The new 2G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 12) The HLR sends a Cancel Location (IMSI) message to the old 3G-SGSN. The old 3G-SGSN acknowledges with a Cancel Location Ack (IMSI) message. The old 3G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts shall be removed when the timer expires.
- 13) When the MS is PMM-CONNECTED, the old 3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 14) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 2G-SGSN. The 2G-SGSN constructs an MM context and PDP contexts for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 15) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 2G-SGSN.
- 16) If the association has to be established i.e., if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new 2G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G-SGSN. The 2G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 14). The VLR creates or updates the association with the 2G-SGSN by storing SGSN Number.
- 17) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 18) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 2G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 19) The new 2G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS is not allowed to be attachedeannot attach in the <u>RA2G-SGSN</u>, or if subscription checking fails, the new 2G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 2G-SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new 2G-SGSN and the MS. The 2G-SGSN initiates the establishment procedure. The new 2G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU)) message. Receive N-PDU Number contains acknowledgements for each NSAPI which used lossless PDCP before starting the update procedure, thereby confirming all mobile-originated N-PDUs that were successfully transferred. If Receive N-PDU Number confirms the reception of N-PDUs, the MS shall discard these N-PDUs.
- 20) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number (= converted PDCP-SND)) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each lossless PDCP used by the MS before starting the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred. If Receive N-PDU Number confirms the reception of N-PDUs that were forwarded from the old 3G-SGSN, the new 2G-SGSN shall discard these N-PDUs. The MS deducts Receive N-PDU number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected by the MS in-sequence downlink per radio bearer, which used lossless PDCP. The new 2G-SGSN negotiates with the MS the use of acknowledged or unacknowledged SNDCP for each NSAPI regardless whether the SRNS used lossless PDCP or not.

42

- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- 22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

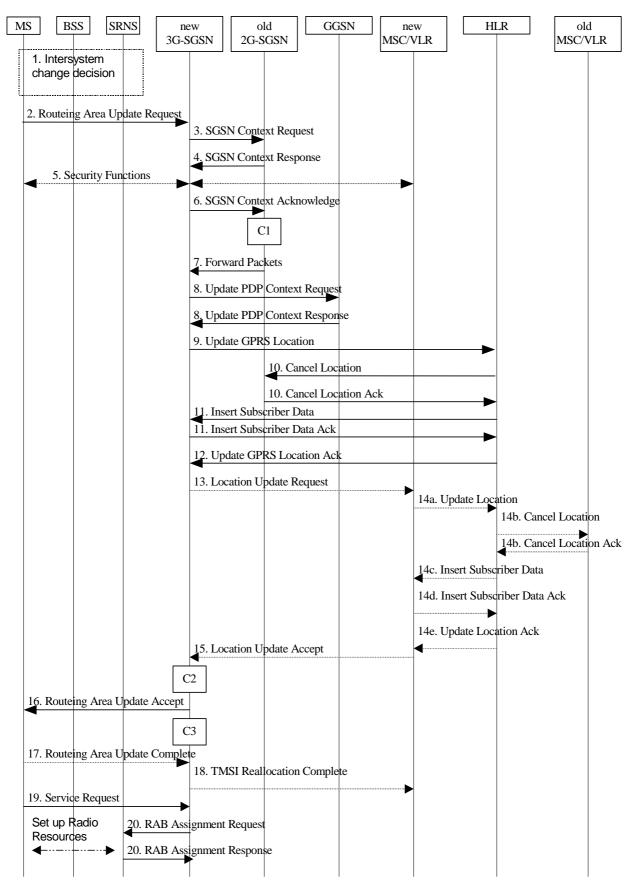
CAMEL procedure calls shall be performed; see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- -The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- -Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".


C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times once per PDP context. It returns as result "Continue".

6.13.2.2 GSM to UMTS Inter-SGSN Change

The inter-system change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN and the UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 16.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3G TS 23.122), as no combined RA / LA updates are performed during a CS connection.

1) The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports UMTS radio technology, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (P-TMSI, old RAI, old P-TMSI Signature, Update Type, CM, MS Network Capability) message to the new 3G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested, and also if the MS has a follow-on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS.
- 3) The new 3G-SGSN uses the old RAI received from the MS to derive the old 2G-SGSN address, and sends an SGSN Context Request (old RAI, old P-TMSI, New SGSN Address) message to the old 2G-SGSN to get the MM and PDP contexts for the MS. The old 2G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 2G-SGSN. If the received old P-TMSI Signature does not match the stored value, the old 2G-SGSN should initiate the security functions in the new 3G-SGSN. If the security functions authenticate the MS correctly, the new 3G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 2G-SGSN. MS Validated indicates that the new 3G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 3G-SGSN indicates that it has authenticated the MS correctly, the old 2G-SGSN starts a timer and stops the transmission of N-PDUs to the MS.
- 4) The old 2G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. Each PDP Context includes the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. Each PDP Context also includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode SNDCP to the MS and the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode SNDCP from the MS. The new 3G-SGSN derives the corresponding PDCP sequence numbers from these N-PDU sequence numbers by adding eight most significant bits "1". These PDCP sequence numbers are stored in the 3G-SGSN PDP contexts. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 5) Security functions may be executed.
- 6) The new 3G-SGSN sends an SGSN Context Acknowledge message to the old 2G-SGSN. This informs the old 2G-SGSN that the new 3G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 7) The old 2G-SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new 3G-SGSN. Additional N-PDUs received from the GGSN before the timer described in step 3 expires are also duplicated and tunnelled to the new 3G-SGSN. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled together with the corresponding SNDCP N-PDU sequence numbers. No PDCP sequence numbers shall be indicated for these N-PDUs. No N-PDUs shall be forwarded to the new 3G-SGSN after expiry of the timer described in step 3.
- 8) The new 3G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.
- 9) The new 3G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 10) The HLR sends a Cancel Location (IMSI, Cancellation Type) message to the old 2G-SGSN. The old 2G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts are removed when the timer expires. The old 2G-SGSN acknowledges with a Cancel Location Ack (IMSI) message.
- 11) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 3G-SGSN. The 3G-SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 3G-SGSN.

- 13) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 3G-SGSN. The 3G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 12). The VLR creates or updates the association with the 3G-SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new 3G-SGSN validate the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the <u>RA3G-SGSN</u>, or if subscription checking fails, the new 3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 3G-SGSN constructs MM and PDP contexts for the MS. The new 3G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI signature) message.
- 17) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new 3G-SGSN sends TMSI Reallocation Complete message to the new VLR, if the MS confirms the VLR TMSI.
- 19) If the MS has uplink data or signalling pending it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 20) If the MS sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4 and are stored in the SGSN PDP context. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the SRNS. Other N-PDUs shall be transmitted to the SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078: performed, see referenced procedures in 3G TS 23.078.

These procedures are called in the following order:

The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".

46

Then the CAMEL_GPRS_Detach procedure is called once. It returns as result "Continue".

C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

9.2.2 Activation Procedures

9.2.2.1 PDP Context Activation Procedure

The PDP Context Activation procedure is illustrated in Figure 17 and Figure 18.

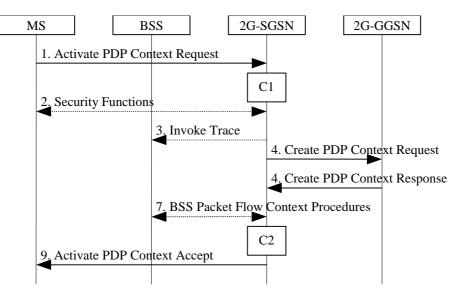


Figure 17: PDP Context Activation Procedure for GSM

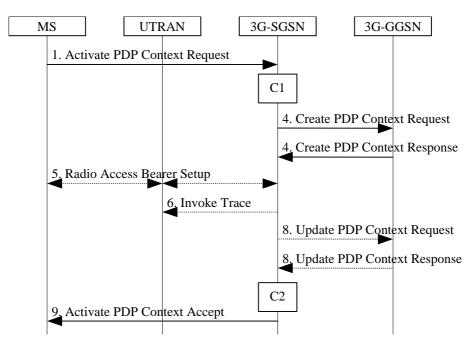


Figure 18: PDP Context Activation Procedure for UMTS

1) The MS sends an Activate PDP Context Request (NSAPI, TI, PDP Type, PDP Address, Access Point Name, QoS Requested, PDP Configuration Options) message to the SGSN. The MS shall use PDP Address to indicate

whether it requires the use of a static PDP address or whether it requires the use of a dynamic PDP address. The MS shall leave PDP Address empty to request a dynamic PDP address. The MS may use Access Point Name to select a reference point to a certain external network and/or to select a service. Access Point Name is a logical name referring to the external packet data network and/or to a service that the subscriber wishes to connect to. QoS Requested indicates the desired QoS profile. PDP Configuration Options may be used to request optional PDP parameters from the GGSN (see GSM 09.60). PDP Configuration Options is sent transparently through the SGSN.

- 2) In A/Gb mode, security functions may be executed. These procedures are defined in subclause "Security Function".
- 3) In A/Gb mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the BSS. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- 4) The SGSN validates the Activate PDP Context Request using PDP Type (optional), PDP Address (optional), and Access Point Name (optional) provided by the MS and the PDP context subscription records. The validation criteria, the APN selection criteria, and the mapping from APN to a GGSN are described in annex A.

If no GGSN address can be derived or if the SGSN has determined that the Activate PDP Context Request is not valid according to the rules described in annex A, the SGSN rejects the PDP context activation request.

If a GGSN address can be derived, the SGSN creates a TEID for the requested PDP context. If the MS requests a dynamic address, the SGSN lets a GGSN allocate the dynamic address. The SGSN may restrict the requested QoS attributes given its capabilities and the current load, and it shall restrict the requested QoS attributes according to the subscribed QoS profile.

The SGSN sends a Create PDP Context Request (PDP Type, PDP Address, Access Point Name, QoS Negotiated, TEID, NSAPI, MSISDN, Selection Mode, Charging Characteristics, Trace Reference, Trace Type, Trigger Id, OMC Identity, PDP Configuration Options) message to the affected GGSN. Access Point Name shall be the APN Network Identifier of the APN selected according to the procedure described in Annex A. PDP Address shall be empty if a dynamic address is requested. The GGSN may use Access Point Name to find an external network and optionally to activate a service for this APN. Selection Mode indicates whether a subscribed APN was selected, or whether a non-subscribed APN sent by an MS or a non-subscribed APN chosen by the SGSN was selected. Selection Mode is set according to Annex A. The GGSN may use Selection Mode when deciding whether to accept or reject the PDP context activation. For example, if an APN requires subscription, the GGSN is configured to accept only the PDP context activation that requests a subscribed APN as indicated by the SGSN with Selection Mode. Charging Characteristics indicates which kind of charging the PDP context is liable for. The charging characteristics on the GPRS subscription and individually subscribed APNs as well as the way the SGSN handles Charging Characteritics and chooses to send them or not to the GGSN is defined in 3G TS 32.015 [70]. The SGSN shall include Trace Reference, Trace Type, Trigger Id, and OMC Identity if GGSN trace is activated. The SGSN shall copy Trace Reference, Trace Type, and OMC Identity from the trace information received from the HLR or OMC.

The GGSN creates a new entry in its PDP context table and generates a Charging Id. The new entry allows the GGSN to route PDP PDUs between the SGSN and the external PDP network, and to start charging. The way the GGSN handles Charging Characteritics that it may have received from the SGSN is defined in 3G TS 32.015 [70]. The GGSN then returns a Create PDP Context Response (TEID, PDP Address, PDP Configuration Options, QoS Negotiated, Charging Id, Cause) message to the SGSN. PDP Address is included if the GGSN allocated a PDP address. If the GGSN has been configured by the operator to use External PDN Address Allocation for the requested APN, PDP Address shall be set to 0.0.0.0, indicating that the PDP address shall be negotiated by the MS with the external PDN after completion of the PDP Context is in ACTIVE state, and use the GGSN-Initiated PDP Context Modification procedure to transfer the currently used PDP address to the SGSN and the MS. PDP Configuration Options contain optional PDP parameters that the GGSN may transfer to the MS. These optional PDP parameters may be requested by the MS in the Activate PDP Context Request message, or may be sent unsolicited by the GGSN. PDP Configuration Options is sent transparently through the SGSN. The Create PDP Context messages are sent over the backbone network.

If QoS Negotiated received from the SGSN is incompatible with the PDP context being activated, the GGSN rejects the Create PDP Context Request message. The GGSN operator configures the compatible QoS profiles.

5) In Iu mode, RAB setup is done by the RAB Assignment procedure, see subclause "RAB Assignment Procedure".

- 6) In Iu mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the UTRAN. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- 7) In A/Gb mode, BSS packet flow context procedures may be executed. These procedures are defined in subclause "BSS Context".
- 8) In Iu mode and in case the QoS attributes have been downgraded in step 4, the SGSN may inform the GGSN about the downgraded QoS attributes by sending an Update PDP Context Request to the affected GGSN. The GGSN confirms the new QoS attributes by sending an Update PDP Context Response to the SGSN.
- 9) The SGSN inserts the NSAPI along with the GGSN address in its PDP context. If the MS has requested a dynamic address, the PDP address received from the GGSN is inserted in the PDP context. The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns an Activate PDP Context Accept (PDP Type, PDP Address, TI, QoS Negotiated, Radio Priority, Packet Flow Id, PDP Configuration Options) message to the MS. The SGSN is now able to route PDP PDUs between the GGSN and the MS, and to start charging.

For each PDP Address a different quality of service (QoS) profile may be requested. For example, some PDP addresses may be associated with E-mail that can tolerate lengthy response times. Other applications cannot tolerate delay and demand a very high level of throughput, interactive applications being one example. These different requirements are reflected in the QoS profile. The QoS profile is defined in subclause "Quality of Service Profile". If a QoS requirement is beyond the capabilities of a PLMN, the PLMN negotiates the QoS profile as close as possible to the requested QoS profile. The MS either accepts the negotiated QoS profile, or deactivates the PDP context.

After an SGSN has successfully updated the GGSN, the PDP contexts associated with an MS is distributed as shown in clause "Information Storage".

If the PDP Context Activation Procedure fails or if the SGSN returns an Activate PDP Context Reject (Cause, PDP Configuration Options) message, the MS may attempt another activation to the same APN up to a maximum number of attempts.

For an MS with GPRS-CSI defined, CAMEL procedure calls shall interaction may be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Establishment.

In Figure 17 and Figure 18, procedures return as result "Continue".

- C2) CAMEL_GPRS_PDP_Context_Establishment_Acknowledgement.
- In Figure 17 and Figure 18, procedures return as result "Continue".

Error! No text of specified style in document.

Tdoc \$2-0120482028

3GPP TSG-SA2 Kobe, October 2	Meeting #20 9 – November 2, 2001	Tdoc S2-01 <u>3048</u> 2938
CHANGE REQUEST		
æ	23.060 CR 279 ^{# rev} 1	#Current version: 4.2.0 #
For <u>HELP</u> on us	sing this form, see bottom of this page or lool	k at the pop-up text over the 発 symbols.
Proposed change a		dio Access Network X Core Network X
Title: #	Various editorial corrections	
Source: #	Siemens AG	
Work item code: #	TEI_4	Date:
Category: ж	F	Release: # REL-4
	Use <u>one</u> of the following categories: F (essential correction) A (corresponds to a correction in an earlier B (Addition of feature), C (Functional modification of feature) D (Editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900.	R97 (Release 1997) R98 (Release 1998) R99 (Release 1999)
Reason for change	· # Various editorial modifications without	related CRs are made in 23.060 v4.2.0.
neason for change		ions are corrected. The detailed changes
Summary of chang	e: # Correction of editorial errors.	
Consequences if not approved:	* New ambiguities and and errors are cor	ntained in 23.060 compared to v 4.1.0.
Clauses affected:	# 6.5.2, 6.5.3, 6.9, 6.13, 8.1.2, 9.2.2.	1, 9.2.3, 9.2.3.6, 12.7.4
Other specs affected:	%Other core specifications%Test specifications0&M Specifications	
Other comments:	¥	

How to create CRs using this form:

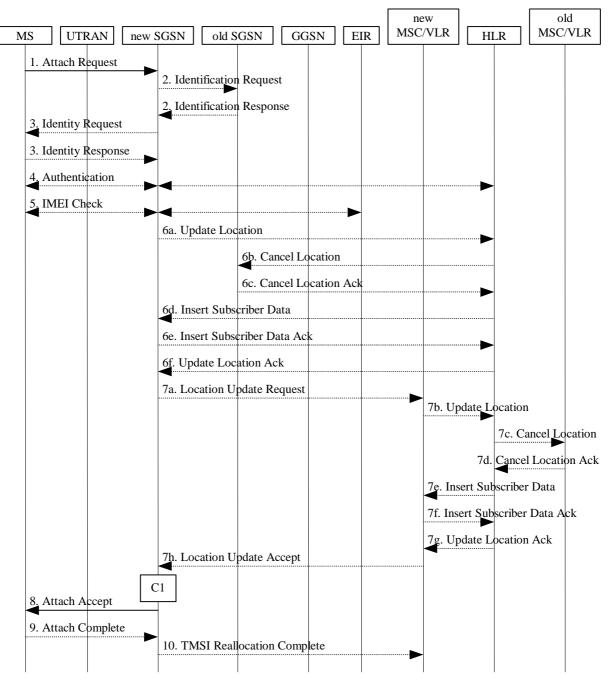
Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G Specs/CRs.htm. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

1

6.5.2 UMTS GPRS Attach Procedure

A GPRS-attached MS makes an IMSI attach via the SGSN with the combined RA / LA update procedure if the network operates in mode I. If the network operates in mode II, or if the MS is not GPRS-attached, the MS makes a normal IMSI attach. An IMSI-attached MS engaged in a CS connection shall use the (non-combined) GPRS Attach procedure when it performs a GPRS attach.


After having executed the GPRS attach, the MS is in the PMM-CONNECTED state and MM contexts are established in the MS and the SGSN. The MS may then activate PDP contexts as described in clause "Activation Procedures".

6.5.3Combined GPRS / IMSI Attach procedure

An IMSI-attached MS that cannot operate in CS/PS mode of operation shall follow the normal IMSI detach procedure before it makes a GPRS attach. A GPRS-attached MS that cannot operate in CS/PS mode of operation shall perform a GPRS detach before it makes an IMSI attach.

6.5.3 Combined GPRS / IMSI Attach procedure

The Combined GPRS / IMSI Attach procedure is illustrated in Figure 1.

3

Figure 1: Combined GPRS / IMSI Attach Procedure

1) For GPRS, the MS initiates the attach procedure by the transmission of an Attach Request (IMSI or P-TMSI and old RAI, Classmark, CKSN, Attach Type, DRX Parameters, old P-TMSI Signature) message to the SGSN. IMSI shall be included if the MS does not have a valid P-TMSI available. If the MS has a valid P-TMSI, then P-TMSI and the old RAI associated with P-TMSI shall be included. Classmark contains the MS's GPRS multislot capabilities and supported GPRS ciphering algorithms in addition to the existing classmark parameters defined in GSM 04.08. Attach Type indicates which type of attach is to be performed, i.e. GPRS attach only, GPRS Attach while already IMSI attached, or combined GPRS / IMSI attach. DRX Parameters indicates whether the MS uses discontinuous reception or not. If the MS uses discontinuous reception, then DRX Parameters also indicate when the MS is in a non-sleep mode able to receive paging requests and channel assignments. If the MS uses P-TMSI for identifying itself and if it has also stored its old P-TMSI Signature, then the MS shall include the old P-TMSI Signature in the Attach Request message.

For UMTS, the MS initiates the attach procedure by the transmission of an Attach Request (IMSI or P-TMSI and old RAI, Core Network Classmark, KSI, Attach Type, old P-TMSI Signature, Follow On Request, DRX Parameters) message to the SGSN. IMSI shall be included if the MS does not have a valid P-TMSI available. If the MS uses P-TMSI for identifying itself and if it has also stored its old P-TMSI Signature, then the MS shall include the old P-TMSI Signature in the Attach Request message. If the MS has a valid P-TMSI, then P-TMSI and the old RAI associated with P-TMSI shall be included. KSI shall be included if the MS shall security parameters. Core Network Classmark is described in clause "MS Network Capability". The MS shall set "Follow On Request" if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow on request indication to release or keep the Iu connection after the completion of the GPRS Attach procedure. Attach Type indicates which type of attach is to be performed, i.e. GPRS attach only, GPRS Attach while already IMSI attached, or combined GPRS / IMSI attach. DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- 2) If the MS identifies itself with P-TMSI and the SGSN has changed since detach, the new SGSN sends an Identification Request (P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to request the IMSI. The old SGSN responds with Identification Response (IMSI, Authentication Triplets (for GPRS) or Authentication Vectors (for UMTS)). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN also validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN.
- 3) If the MS is unknown in both the old and new SGSN, the SGSN sends an Identity Request (Identity Type = IMSI) to the MS. The MS responds with Identity Response (IMSI).
- 4) The authentication functions are defined in the clause "Security Function". If no MM context for the MS exists anywhere in the network, then authentication is mandatory. Ciphering procedures are described in clause "Security Function". If P-TMSI allocation is going to be done and the network supports ciphering, the network shall set the ciphering mode.
- 5) The equipment checking functions are defined in the clause "Identity Check Procedures". Equipment checking is optional.
- 6) If the SGSN number has changed since the GPRS detach, or if it is the very first attach, then the SGSN informs the HLR:
 - a) The SGSN sends an Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
 - b) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure.
 - c) The old SGSN acknowledges with Cancel Location Ack (IMSI). If there are any ongoing procedures for that MS, the old SGSN shall wait until these procedures are finished before removing the MM and PDP contexts.
 - d) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN.
 - e) The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS is not allowed to attach in the RA, the SGSN rejects the Attach Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If subscription checking fails for other reasons, the SGSN rejects the Attach Request with an appropriate cause and returns an Insert Subscriber Data Ack (IMSI, Cause) message to the HLR. If all checks are successful then the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI, Cause) message to the HLR. If all checks are successful then the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
 - f) The HLR acknowledges the Update Location message by sending an Update Location Ack to the SGSN after the cancelling of old MM context and insertion of new MM context are finished. If the Update Location is rejected by the HLR, the SGSN rejects the Attach Request from the MS with an appropriate cause.

7) If Attach Type in step 1 indicated GPRS Attach while already IMSI attached, or combined GPRS / IMSI attached, then the VLR shall be updated if the Gs interface is installed. The VLR number is derived from the RA information. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 6d). This operation marks the MS as GPRS-attached in the VLR.

5

- a) The SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) message to the VLR. Location Update Type shall indicate IMSI attach if Attach Type indicated combined GPRS / IMSI attach. Otherwise, Location Update Type shall indicate normal location update. The VLR creates an association with the SGSN by storing SGSN Number.
- b) If the LA update is inter-MSC, the new VLR sends Update Location (IMSI, new VLR) to the HLR.
- c) If the LA update is inter-MSC, the HLR sends a Cancel Location (IMSI) to the old VLR.
- d) The old VLR acknowledges with Cancel Location Ack (IMSI).
- e) If the LA update is inter-MSC, the HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
- f) The VLR acknowledges with Insert Subscriber Data Ack (IMSI).
- g) After finishing the inter-MSC location update procedures, the HLR responds with Update Location Ack (IMSI) to the new VLR.
- h) The VLR responds with Location Update Accept (VLR TMSI) to the SGSN.
- 8) The SGSN selects Radio Priority SMS, and sends an Attach Accept (P-TMSI, VLR TMSI, P-TMSI Signature, Radio Priority SMS) message to the MS. P-TMSI is included if the SGSN allocates a new P-TMSI.
- 9) If P-TMSI or VLR TMSI was changed, the MS acknowledges the received TMSI(s) by returning an Attach Complete message to the SGSN.
- 10) If VLR TMSI was changed, the SGSN confirms the VLR TMSI re-allocation by sending a TMSI Reallocation Complete message to the VLR.

If the Attach Request cannot be accepted, the SGSN returns an Attach Reject (IMSI, Cause) message to the MS.

The CAMEL procedure call shall be performed, see referenced procedure in 3GPP TS 23.078:

C1) CAMEL_GPRS_Attach

In Figure 1, the procedure returns as result "Continue".

6.9 Location Management Function

The Location Management function provides:

- mechanisms for cell and PLMN selection;
- a mechanism for the network to know the Routeing Area for MSs in STANDBY, PMM-IDLE, READY, and PMM-CONNECTED states;
- a mechanism for the 2G-SGSN to know the cell identity for MSs in READY state;
- a mechanism for the UTRAN to know the URA identity or cell identity for MSs in PMM-CONNECTED state;
- a mechanism for the UTRAN to indicate to an MS in RRC Connected mode when a Routeing Area Update procedure shall be performed by providing the RAI; and
- a mechanism for the network to know the address of the serving RNC handling an MS in PMM-CONNECTED state. This mechanism is the serving RNC relocation procedure.
- NOTE: The SGSN may not know the Routeing Area where the UMTS MS is physically located for an MS is in RRC Connected mode. An MS in PMM-CONNECTED state is necessarily in RRC Connected mode. An MS in PMM-IDLE state is in RRC Connected mode only if the MS is in CS MM-CONNECTED state.

In Iu mode, the tracking of the location of the MS is on three levels (cell, URA, or RA); see 3GPP TS 23.121.

In A/Gb mode, the tracking of the location of the MS is on two levels (cell or RA).

Routeing Area (RA) is defined in clause "Routeing Area Identity".

6.9.1 Location Management Procedures (GSM only)

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

The MS detects that it has entered a new cell by comparing the cell's identity with the cell identity stored in the MS's MM context. The MS detects that a new RA has been entered by periodically comparing the RAI stored in its MM context with that received from the new cell. The MS shall consider hysteresis in signal strength measurements.

When the MS camps on a new cell, possibly in a new RA, this indicates one of three possible scenarios:

- a cell update is required;
- a routeing area update is required; or
- a combined routeing area and location area update is required.

In all three scenarios the MS stores the cell identity in its MM context.

If the MS enters a new PLMN, the MS shall either perform a routeing area update, or enter IDLE state.

In network mode of operation II and III, whenever an MS determines that it shall perform both an LA update and an RA update:

- 1. It shall initiate the LA update and then initiate the RA update, if the MS is in class A mode of operation.
- 2. It shall perform the LA update first if the MS is not in class A mode of operation.

Routeing Area Update Request messages shall be sent unciphered, since in the inter-SGSN routeing area update case the new SGSN shall be able to process the request.

6.9.1.1 Cell Update Procedure

A cell update takes place when the MS enters a new cell inside the current RA and the MS is in READY state. If the RA has changed, a routeing area update is executed instead of a cell update.

If the network does not support the Cell Notification which is an optimised Cell Update Procedure (see 3GPP TS 24.008), the MS performs the cell update procedure by sending an uplink LLC frame of any type except the LLC NULL frame (see GSM 04.64) containing the MS's identity to the SGSN. If the network and the MS support the Cell Notification, then the MS shall use the LLC NULL frame containing the MS's identity in order to perform a cell update. The support of Cell Notification is mandatory for the MS the network, but the network and the MS have to support the Cell Update Procedure without using the LLC NULL frame for backward compatibility reasons.

In the direction towards the SGSN, the BSS shall add the Cell Global Identity including RAC and LAC to all BSSGP frames, see GSM 08.18 [21]. A cell update is any correctly received and valid LLC PDU carried inside a BSSGP PDU containing a new identifier of the cell.

The SGSN records this MS's change of cell and further traffic towards the MS is conveyed over the new cell.

6.9.1.2 Routeing Area Update Procedure

A routeing area update takes place when a GPRS-attached MS detects that it has entered a new RA, when the periodic RA update timer has expired, or when the MS has to indicate new access capabilities to the network or, for GSM, when a suspended MS is not resumed by the BSS (see clause "Suspension of GPRS Services"). The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra SGSN routeing area update.

6.9.1.2.1 Intra SGSN Routeing Area Update

The Intra SGSN Routeing Area Update procedure is illustrated in Figure 2.

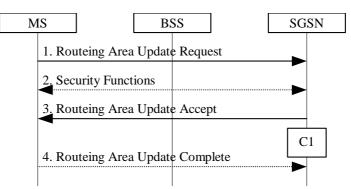


Figure 2: Intra SGSN Routeing Area Update Procedure

- The MS sends a Routeing Area Update Request (P-TMSI, old RAI, old P-TMSI Signature, Update Type) to the SGSN. Update Type shall indicate RA update or periodic RA update. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN, see GSM 08.18 [21].
- 2) Security functions may be executed. These procedures are defined in subclause "Security Function".
- 3) The SGSN validates the MS's presence in the new RA. If, due to regional subscription restrictions, the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the SGSN updates the MM context for the MS. A new P-TMSI may be allocated. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature) is returned to the MS.
- 4) If P-TMSI was reallocated, the MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078 C1:

- CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
 - The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. It returns as a result "Continue".
 - Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. It returns as a result "Continue".

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in Figure 3.

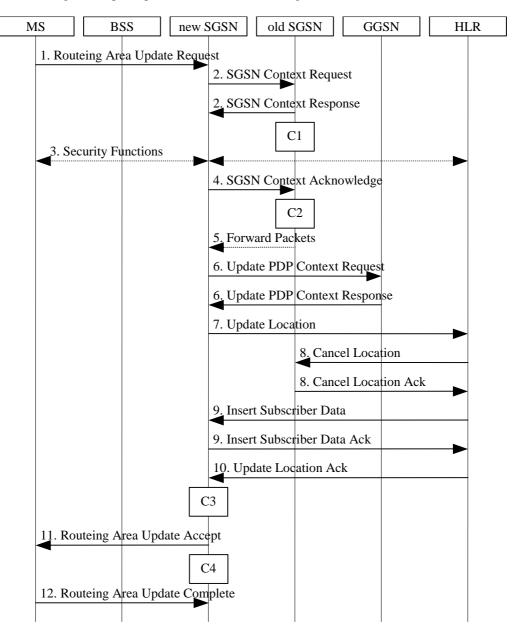


Figure 3: Inter SGSN Routeing Area Update Procedure

1) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, Classmark, DRX parameters and MS Network Capability) to the new SGSN. Update Type shall indicate RA update or periodic RA update. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN. Classmark contains the MS GPRS multislot capabilities and supported GPRS ciphering algorithms as defined in TS 24.008. DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- 2) The new SGSN sends SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN stops assigning SNDCP N-PDU numbers to downlink N-PDUs received, and responds with SGSN Context Response (MM Context, PDP Contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN stores New SGSN Address, to allow the old SGSN to forward data packets to the new SGSN. Each PDP Context includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode to the MS, the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode from the MS, the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. The old SGSN starts a timer and stops the transmission of N-PDUs to the MS. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". Ciphering mode shall be set if ciphering is supported.

If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.

- 4) The new SGSN sends an SGSN Context Acknowledge message to the old SGSN. This informs the old SGSN that the new SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure. If the security functions do not authenticate the MS correctly, then the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 5) The old SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new SGSN. Additional N-PDUs received from the GGSN before the timer described in step 2 expires are also duplicated and tunnelled to the new SGSN. N-PDUs that were already sent to the MS in acknowledged mode and that are not yet acknowledged by the MS are tunnelled together with the SNDCP N-PDU number. No N-PDUs shall be forwarded to the new SGSN after expiry of the timer described in step 2.
- 6) The new SGSN sends Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return Update PDP Context Response (TEID).
- 7) The new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 8) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM and PDP contexts. Otherwise, the contexts are removed only when the timer expires. This allows the old SGSN to complete the forwarding of N-PDUs. It also ensures that the MM and PDP contexts are kept in the old SGSN in case the MS initiates another inter-SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 9) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to is not allowed to be attached in the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 10) The HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.

11) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS, is not allowed to be attached in the SGSN, or if subscription checking fails, the new SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new SGSN and the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number). Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure.

10

12) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms reception of N-PDUs that were forwarded from the old SGSN, these N-PDUs shall be discarded by the new SGSN. LLC and SNDCP in the MS are reset.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, , or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS does not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in clause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN stops forwarding N-PDUs to the new SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns a sresult "Continue".

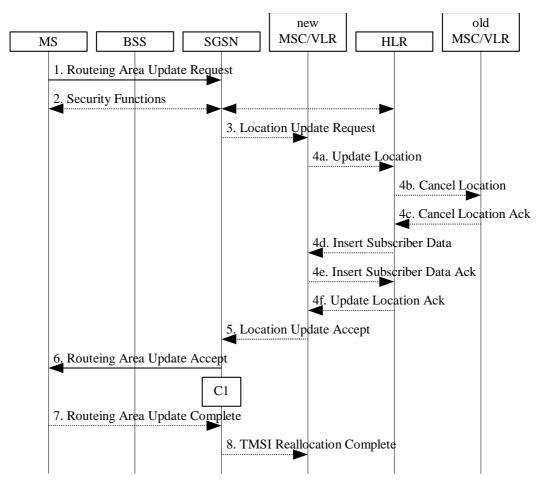
C2) CAMEL_GPRS_Detach

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.


This procedure is called several times: once per PDP context. It returns as result "Continue".

6.9.1.3 Combined RA / LA Update Procedure

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRS-attached MS performs an IMSI attach or when the MS has to indicate new access capabilities to the network. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see GSM 03.22), as no combined RA / LA updates are performed during a CS connection.

6.9.1.3.1 Combined Intra SGSN RA / LA Update

The Combined RA / LA Update (intra SGSN) procedure is illustrated in Figure 4.

Figure 4: Combined RA / LA Update in the Case of Intra SGSN RA Update Procedure

- The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) to the SGSN. Update Type shall indicate combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN.
- 2) Security functions may be executed. This procedure is defined in clause "Security Function". If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.
- 3) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 4) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).

- d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
- e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
- f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 5) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 6) The SGSN validates the MS's presence in the new RA. If due to regional subscription restrictions the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the SGSN updates the MM context for the MS. A new P-TMSI may be allocated. The SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 7) If a new P-TMSI or VLR TMSI was received, the MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 8) The SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful Location Update is performed.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078 C1:

- CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
 - The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 4, the procedure returns as result "Continue".
 - Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 4, the procedure returns as result "Continue".

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter-SGSN) procedure is illustrated in Figure 5.

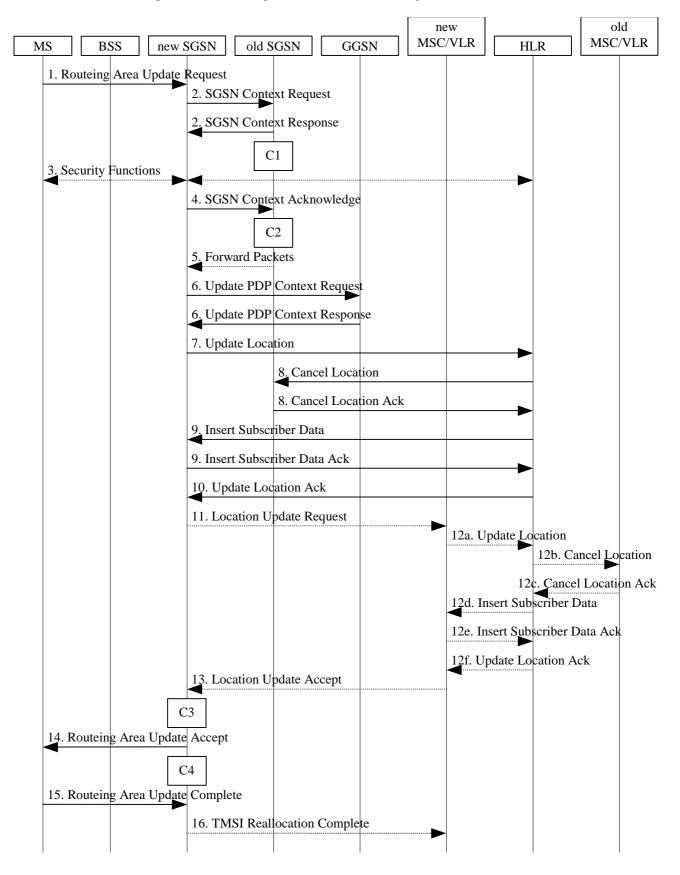


Figure 5: Combined RA / LA Update in the Case of Inter SGSN RA Update Procedure

- 1) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, Classmark, DRX parameters and MS Network Capability) to the new SGSN. Update Type shall indicate combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN. Classmark contains the MS GPRS multislot capabilities and supported GPRS ciphering algorithms as defined in 3GPP TS 24.008. DRX Parameters indicates whether or not the MS uses discontinuous and the DRX cycle length.
- 2) The new SGSN sends SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN stops assigning SNDCP N-PDU numbers to downlink N-PDUs received, and responds with SGSN Context Response (MM Context, PDP Contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN stores New SGSN Address until the old MM context is cancelled, to allow the old SGSN to forward data packets to the new SGSN. Each PDP Context includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode to the MS, the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode from the MS, the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. The old SGSN starts a timer and stops the downlink transfer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". Ciphering mode shall be set if ciphering is supported. If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.
- 4) The new SGSN sends an SGSN Context Acknowledge message to the old SGSN. This informs the old SGSN that the new SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure. If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 5) The old SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new SGSN. Additional N-PDUs received from the GGSN before the timer described in step 2 expires are also duplicated and tunnelled to the new SGSN. N-PDUs that were already sent to the MS in acknowledged mode and that are not yet acknowledged by the MS are tunnelled together with the SNDCP N-PDU number. No N-PDUs shall be forwarded to the new SGSN after expiry of the timer described in step 2.
- 6) The new SGSN sends Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (TEID).
- 7) The new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 8) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM and PDP contexts. Otherwise, the contexts are removed only when the timer expires. This allows the old SGSN to complete the forwarding of N-PDUs. It also ensures that the MM and PDP contexts are kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 9) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to is not allowed to be attached in the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.

10) The HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.

- 11) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 9). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 12) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 13) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 14) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the RASGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM and PDP contexts for the MS. A logical link is established between the new SGSN and the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature, Receive N-PDU Number). Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure.
- 15) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms reception of N-PDUs that were forwarded from the old SGSN, these N-PDUs shall be discarded by the new SGSN. LLC and SNDCP in the MS are reset.
- 16) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in clause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful location update is performed.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

6.9.2 Location Management Procedures (UMTS only)

Refer to 3GPP TS 25.301 for further information on the location management procedures for the UMTS radio.

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

In this specification, only the Location Management procedures related to the CN are described. These procedures are:

- a routeing area update procedure; and
- Serving RNC relocation procedure.

An MS detects entering a new cell by comparing the cell's identity identity with the cell identity stored in the MS. By comparing the RAI stored in the MS's MM context with the RAI received from the network, the MS detects that an RA update shall be performed. In RRC-CONNECTED mode (PMM-CONNECTED state or CS MM CONNECTED state), the MS is informed of RAI and Cell Identity by the serving RNC via an "MM information" message at the RRC layer. In RRC-IDLE state, the MS is informed of RAI and Cell Identity by the broadcast system information at the RRC layer.

In network mode of operation II, whenever an MS determines that it shall perform both an LA update and an RA update, the MS shall start the LA update first. The MS should start the RA update procedure before the LA update is completed.

6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection reestablishment" or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure 6.

NOTE 1: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see clause 6.1.2.4.1).

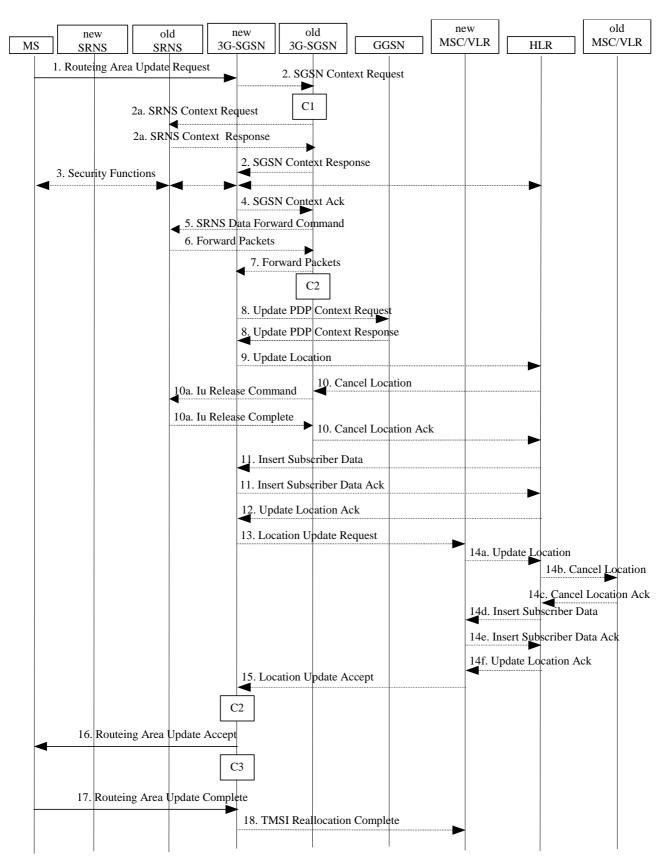


Figure 6: UMTS RA Update Procedure

- The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see clause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in clause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE 2: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN starts a timer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is in the PMM-CONNECTED state and the RAU was received over another Iu connection than the established one, the old SGSN sends an SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using acknowledged mode, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next in-sequence PDCP sequence number each active radio bearer).
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 4) If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 5) If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.

- 6) The SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP-PDUs together with the PDCP downlink sequence number, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN.
- 7) If the RA update is an Inter-SGSN RA Update, the old 3G-SGSN tunnels the GTP PDUs to the new 3G-SGSN.
- 8)If the RA update is an Inter-SGSN RA Update and if the MS wasnot in PMM-CONNECTED state in the new 3G-SGSN, the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state in the new 3G-SGSN, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- 9) If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 10) If the RA update is an nter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 10a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 11) If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach tois not allowed to be attached in the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 13) If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.

- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach tois not allowed to be attached in the <u>RASGSN</u>, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- NOTE 3: Steps 14, 15, and 18 are performed only if step 12 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

The CAMEL procedure call shalls be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

6.9.2.2 Serving RNS Relocation Procedures

Serving RNS relocation procedures move the UTRAN to CN connection point at the UTRAN side of the source RNC to the target RNC. The Serving RNS Relocation Procedures, described in the following sub-clauses, may be performed as "Lossless SRNS Relocation", which means packet loss during the SRNS change is eliminated. For this purpose, the RNS and the MS have to provide PDCP layer functionality, which in the subsequent description is referred as the lossless PDCP. The source RNC decides to perform the Serving RNS Relocation Procedure as "Lossless SRNS Relocation" based on capabilities of the UE and the RNS and based on QoS parameters (e.g SDU error ratio).

For "Lossless SRNS Relocation", both the MS and the source RNS have to support and to use the lossless PDCP. When the SRNS changes, the old RNS forwards all received and not yet transferred downlink GTP-PDUs to the target RNS. GTP-PDUs forwarded to the target RNS indicate a PDCP sequence number if the contained N-PDUs were sent to the MS as a PDCP-SDUs, but are not yet acknowledged by lossless PDCP. The target RNS and the MS exchange respective sequence numbers of next expected PDCP-PDUs. This process indicates PDCP-PDUs that were already successfully transferred between the MS and the source RNS for downlink and uplink directions, respectively. This also confirms all N-PDUs (PDCP-SDUs) successfully transferred before the change of the SRNS. These N-PDUs are discarded by the MS and the target RNS, respectively. The target RNS identifies the forwarded GTP-PDUs containing confirmed N-PDUs by the PDCP sequence number in the GTP-PDU. All other N-PDUs have to be transmitted via the new MS – RNS link

6.9.2.2.1 Serving SRNS Relocation Procedure after Soft Handover

This procedure is only performed for an MS in PMM-CONNECTED state where the Iur interface carries both the control signalling and the user data.

The Serving SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, from a "standing still position". In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects an Intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about new location of the MS.

Figure 7 shows user data routing <u>before SRNS relocation</u> when source SRNC and target RNC are connected to different SGSNs <u>before SRNS relocation</u>. Figure 8 shows the user data routing after SRNS Relocation procedure and Routeing Area Update procedure is completed. In case depicted in Figure 7 and Figure 8, the MS is in state PMM-CONNECTED.

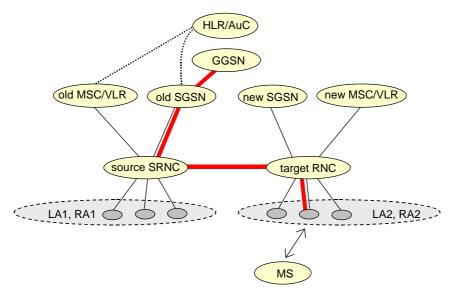


Figure 7: Before SRNS Relocation and Routeing Area Update

Before the SRNS Relocation procedure and RA update, the MS is registered in the old SGSN. The source RNC is acting as a serving RNC (SRNC).

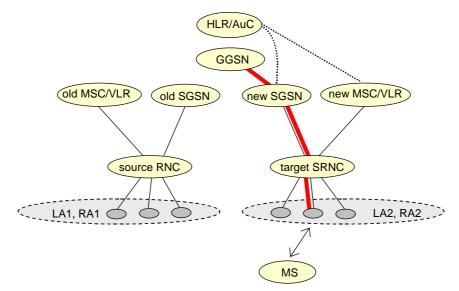


Figure 8: After SRNS Relocation and Routeing Area Update

After the SRNS Relocation procedure and RA update, the MS is registered in the new SGSN. The MS is in the state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as the serving RNC.

The Serving SRNS Relocation procedure is illustrated in Figure 9. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

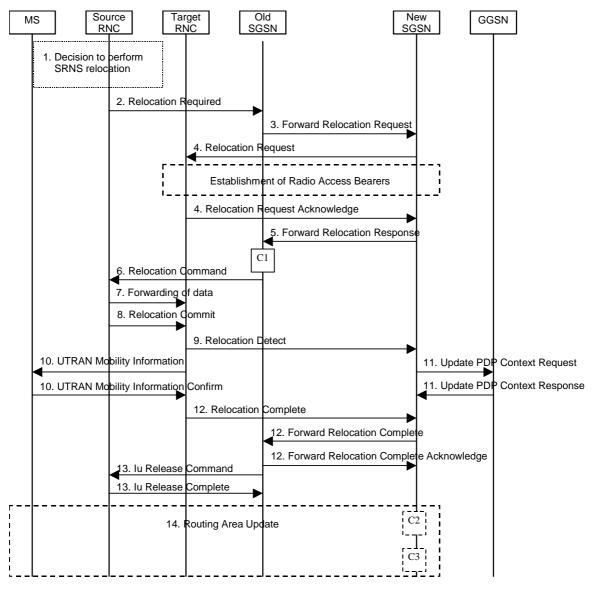


Figure 9: SRNS Relocation Procedure after soft handover

- The source SRNC decides to perform/initiate SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between MS and source SRNC (data flows via the target RNC, which acts as a drift RNC); GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to target RNC transparent container) to the old SGSN. The source SRNC shall set the Relocation Type to "UE not involved". The Source SRNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation, the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN transparent container, RANAP Cause) to the new SGSN. The PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Datawhich the old SGSN and the new SGSN send uplink packets). At the

same time a timer is started on the MM and PDP contexts in the old SGSN (see the Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)"). The Forward Relocation Request message is applicable only in the case of inter-SGSN SRNS relocation.

- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source-RNC to target RNC transparent container, RABs to be setup) to the target RNC. Only the Iu Bearers of the RABs are setup between the target RNC and the new-SGSN as the existing Radio Bearers will be reallocated between the MS and the target RNC when the target RNC takes the role of the serving RNC. For each requested RAB, the RABs to be setup information elements shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data. After all necessary resources for accepted RABs including the Iu user plane are successfully allocated; the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and an Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. For each RAB to be set up, the target RNC may receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.
- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and RAB Setup Information) is sent from the new SGSN to old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e. the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and the RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (RABs to be released, and RABs subject to data forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from source SRNC to target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data. Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may start data forwarding (step 7) and send Relocation Commit message (step 8) almost simultaneously except in the delivery order required case where step 7 triggers step 8. Target RNC may send Relocation Detect message (step 9) and UTRAN Mobility Information message (step 10) at the same time. Hence, target RNC may receive UTRAN Mobility Information Confirm message (step 10) while data forwarding (step 7) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicate downlink data and receiving uplink data 8) Before sending the Relocation Commit the uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require delivery order. The source RNC shall start the data-forwarding timer. When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP_PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC. PDCP sequence numbers are only sent by the source RNC for radio bearers, which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink, respectively.

- 9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 10) The target SRNC sends a UTRAN Mobility Information message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

The target SRNC establishes and/or restarts the RLC, and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target SRNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile-terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC.

Upon reception of the UTRAN Mobility Information message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If new the SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

For all RABs, the target RNC should:

start uplink reception of data and start transmission of uplink GTP-PDUs towards the new SGSN;

start processing the already buffered and the arriving downlink GTP-PDUs and start downlink transmission towards the MS.

- 11) Upon receipt of the Relocation Detect message, the CN may switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier).
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the

Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect and upon reception of Relocation Complete, the CN shall switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN shall signal to the old SGSN the completion of the SRNS relocation gas a Forward Relocation Complete message.

- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation; the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED mode.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach.

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result ""Continue"".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.2 Combined Hard Handover and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state in case the Iur interface is not available.

The Combined Hard Handover and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a hard handover decided by the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

If the target RNC is connected to a different SGSN than the source SRNC, an Inter-SGSN SRNS Relocation procedure is performed. This procedure is followed by an Inter-SGSN Routeing Area Update procedure.

Figure 10 shows the situation before a Combined Hard Handover and SRNS Relocation procedure when source and target RNC are connected to different SGSNs. Figure 11 shows the situation after the Combined Hard Handover and SRNS Relocation procedure and RA update procedure have been completed. In the case described in Figure 10 and Figure 11 the MS is in PMM-CONNECTED state.

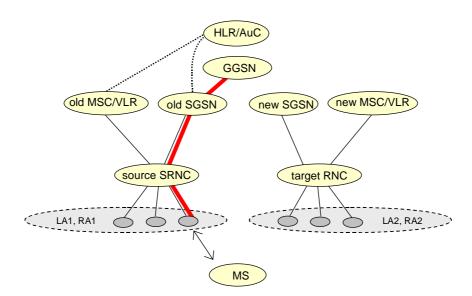


Figure 10: Before Combined Hard Handover and SRNS Relocation and Routeing Area Update

Before the SRNS Relocation and Routeing Area Update the MS is registered in the old SGSN and in the old MSC/VLR. The source RNC is acting as serving RNC.

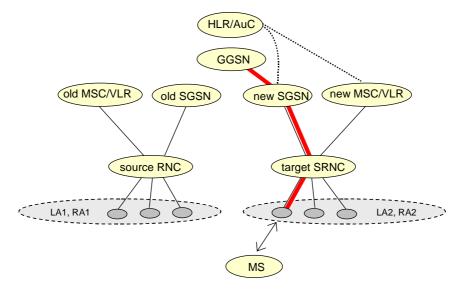


Figure 11: After Combined Hard Handover and SRNS Relocation and Routeing Area Update

After the SRNS relocation and RA update, the MS is registered in the new SGSN and in the new MSC/VLR. The MS is in state PMM-CONNECTED towards the new SGSN and in MM IDLE state towards the new MSC/VLR. The target RNC is acting as serving RNC.

The Combined Hard Handover and SRNS Relocation procedure for the PS domain is illustrated in Figure 12. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

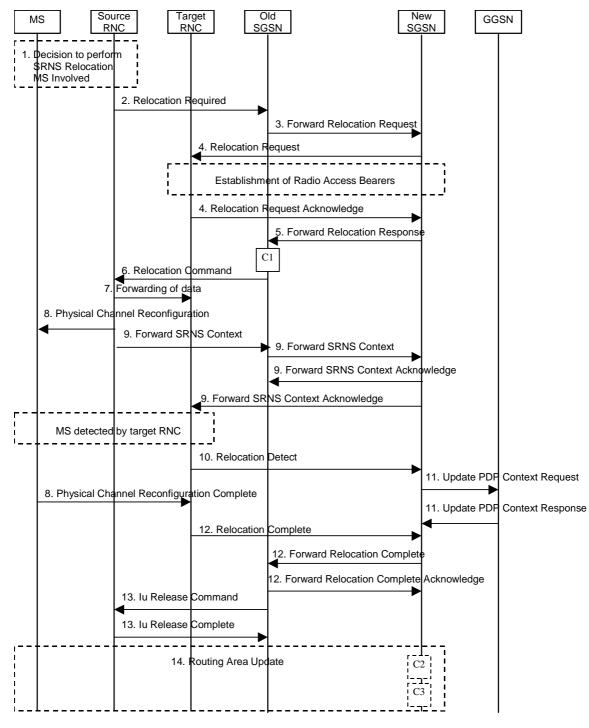


Figure 12: Combined Hard Handover and SRNS Relocation Procedure

- Based on measurement results and knowledge of the UTRAN topology, the source SRNC decides to initiate a combined hard handover and SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between the MS and the source SRNC (no drift RNC available); GTP-U tunnel(s) between the source SRNC and the old SGSN; GTP-U tunnel(s) between the old SGSN and the GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC To Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE Involved". Source RNC To Target RNC Transparent Container includes the necessary information for relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).

1

27

- 3) The old SGSN determines from the Target ID if the SRNS relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)"). The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.
- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC To Target RNC Transparent Container, RAB To Be Setup) to the target RNC. For each requested RAB requested to be established, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all the necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (Target RNC To Source RNC Transparent Container, RABs Setup, RABs Failed To Setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and the Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. The transparent container contains all radio-related information that the MS needs for the handover, i.e., a complete RRC message (e.g., Physical Channel Reconfiguration) to be sent transparently via CN and source SRNC to the MS. For each RAB to be set up, the target RNC may receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.

- 5) When resources for the transmission of user data between target RNC and new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response (Cause, UTRAN Transparent Container, RANAP Cause, Target-RNC Information) message is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e., the relocation resource allocation procedure is terminated successfully. UTRAN transparent container and RANAP Cause are information from the target RNC to be forwarded to the source SRNC. The Target RNC Information, one information element for each RAB to be set up, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (Target RNC To Source RNC Transparent Container, RABs To Be Released, RABs Subject To Data Forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begins the forwarding of data for the RABs to be subject for data forwarding.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may start data forwarding (step 7), send Physical Channel Reconfiguration message to MS (step 8) and forward SRNS Context message to the old SGSN (step 8) almost simultaneously.

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data.

Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

8) Before sending the Physical Channel Reconfiguration the uplink and downlink data transfer shall be suspended in the source SRNC for RABs, which require delivery order. When the source SRNC is ready, the source RNC shall trigger the execution of relocation of SRNS by sending to the MS the RRC message provided in the Target RNC to source RNC transparent container, e.g., a Physical Channel Reconfiguration (UE Information Elements, CN Information Elements) message. UE Information Elements include among others new SRNC identity and S-RNTI. CN Information Elements contain among others Location Area Identification and Routeing Area Identification.

Before the RRC message is sent (e,g, Physical Channel Reconfiguration) uplink and downlink data transfer in the source RNC shall be suspended for RABs which require to maintain the delivery order.

When the MS has reconfigured itself, it sends e.g., a Physical Channel Reconfiguration Complete message to the target SRNC. If the Forward SRNS Context message with the sequence numbers is received, the exchange of packets with the MS may start. If this message is not yet received, the target RNC may start the packet transfer for all RABs, which do not require maintaining the delivery order.

9) The source SRNC continues the execution of relocation of SRNS by sending a Forward SRNS Context (RAB Contexts) message to the target RNC via the old and the new SGSN, which is acknowledged by a Forward SRNS Context Acknowledge message. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are only sent by the source RNC for the radio bearers which used losslessPDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context uplink and downlink, respectively.

The target RNC establishes and/or restarts the RLC and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target RNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received by the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, then the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the MS shall discard these packets.

- 10) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE Involved", the relocation execution trigger may be received from the Uu interface; i.e., when target RNC detects the MS on the lower layers. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 11)Upon reception of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS relocation is an inter-SGSN SRNS relocation, the new SGSN sends an Update PDP Context Request (New SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) message to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.
- 12) When the target SRNC receives the Physical Channel Reconfiguration Complete message or the Radio Bearer Release Complete message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate a Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.

- 13)Upon receiving the Relocation Complete message or, if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired, the source RNC responds with an Iu Release Complete message.
- 14) After the MS has finished the reconfiguration procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- -The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- -Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

In Figure 12, the procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.3 Combined Cell / URA Update and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state, where the Iur interface carries control signalling but no user data.

The Combined Cell / URA Update and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a cell re-selection in the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

Before the Combined Cell / URA Update and SRNS Relocation and the Routeing Area Update, the MS is registered in the old SGSN. The source RNC is acting as serving RNC.

After the Combined Cell / URA Update and SRNS Relocation and the Routeing Area Update, the MS is registered in the new SGSN. The MS is in state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as serving RNC.

The Combined Cell / URA Update and SRNS Relocation procedure for the PS domain is illustrated in Figure 13. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

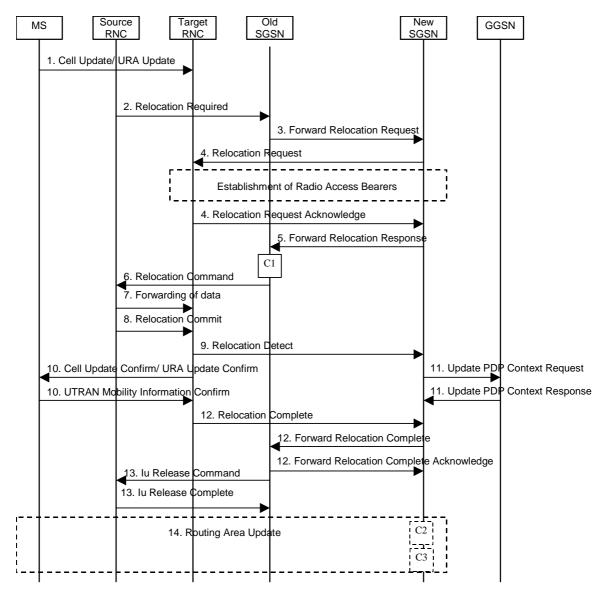


Figure 13: Combined Cell / URA Update and SRNS Relocation Procedure

- 1) The MS sends a Cell Update / URA Update message to the source SRNC (if the cell is located under another RNC the message is routed via the DRNC to SRNC over the Iur). The source SRNC decides whether or not to perform a combined cell / URA update and SRNS relocation towards the target RNC. The rest of this subclause describes the case where a combined cell / URA update and SRNS relocation applies. In this case no radio bearer is established between the source SRNC and the UE. Nonetheless the following tunnel(s) are established: GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE not involved". Source RNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality, and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In the case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) message to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN, see Routeing Area Update procedure

in subclause "Location Management Procedures (UMTS only)". The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.

4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC to Target RNC Transparent Container, RABs To Be Setup) to the target RNC. For each requested RAB, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and a Iu Transport Association which corresponds to the downlink Tunnel Endpoint Identifier for user data. The target-RNC may simultaneously receive for each RAB to be set up downlink user packets both from the source SRNC and from the new SGSN.

After the new SGSN receives the Relocation Request Acknowledge message, the GTP-U tunnels are established between the target RNC and the new-SGSN.

- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and Target RNC Information) is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from the source SRNC the forwarded downlink packets, i.e., the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command (RABs to be released, and RABs subject to data forwarding) message to the source SRNC. The old SGSN decides the RABs subject to data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begin the forwarding of data for the RABs subject to data forwarding and starts the data-forwarding timer. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may send data forwarding (step 7) and start Relocation Commit message (step 8) almost simultaneously. Target RNC may send Relocation Detect message (step 9) and Cell Update Confirm/URA Update Confirm message (step 10) at the same time. Hence, target RNC may receive the UTRAN Mobility Information Confirm message from MS (step 10) while data forwarding (step 8) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data. Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

33

8) Before sending the Relocation Commit the uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require delivery order.

When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP-PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are only sent by the source RNC for radio bearers, which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink respectively.

- 9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 10) The target SRNC sends a Cell Update Confirm / URA Update Confirm message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

Upon reception of the Cell Update Confirm / URA Update Confirm message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If the new SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to the GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

The target SRNC and the MS exchange the PDCP sequence numbers; PDCP-SNU and PDCP-SND. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation procedure. . If PDCP-SND confirms the reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the <u>SRNC</u> relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the target SRNC shall discard these packets that were received in the source SRNC, the target SRNC shall discard these packets that were received in the source SRNC, the target SRNC shall discard these packets that were received in the source SRNC, the target SRNC shall discard these packets that were received in the source SRNC, the target SRNC shall discard these packets.

- 11)Upon receipt of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of

the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.

- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the Cell / URA update and RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

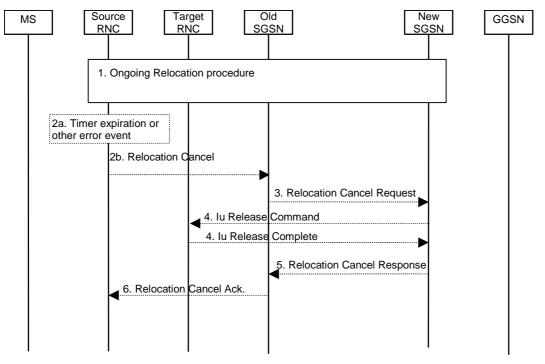
The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL GPRS Routeing Area Update-Session

The procedure returns as result "Continue".


C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue". For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.4 SRNS Relocation Cancel Procedure

The purpose of the SRNS Relocation Cancel procedure is to cancel an ongoing SRNS relocation. The SRNS Relocation Cancel procedure may be initiated during or after the Relocation Preparation procedure and may be initiated by the source RNC.

The SRNS Relocation Cancel procedure is illustrated in Figure 14. The sequence is valid for cancelling both an intra-SGSN SRNS relocation and an inter-SGSN SRNS relocation.

Figure 14: SRNS Cancel Relocation Procedure

- 1) An SRNS Relocation procedure has started, as specified in section 6.9.2.2.1.
- 2a) The SRNS Cancel Relocation may be initiated by a timer expiry or by an error event in the source RNC.
- 2b) When one of conditions in 2a is satisfied, the source RNC sends a Relocation Cancel (Cause) to the old SGSN. Cause indicates the reason for cancelling the ongoing SRNS relocation.
- 3) The old SGSN sends a Relocation Cancel Request (IMSI, RANAP Cause) to the new SGSN to indicate that the ongoing SRSN relocation should be cancelled. RANAP Cause contains the cause value received by the source RNC in the Relocation Cancel message.
- 4) The new SGSN sends an Iu Release Command (Cause) to request from the target RNC to release the Iu resources already allocated for the SRNS relocation, or to cancel the ongoing allocation of Iu resources for the SRNS relocation. Cause is set equal to RANAP Cause, i.e. to whatever cause value was included in the Relocation Cancel Request received from old SGSN. The target RNC releases the requested Iu resources and responds with an Iu Release Complete.
- 5) The new SGSN acknowledges the cancellation of the ongoing SRNS Relocation by sending a Relocation Cancel Response to the old SGSN.
- 6) The old SGSN responds to the source RNC with a Relocation Cancel Ack message.

6.13 UMTS - GSM Intersystem Change

The UMTS - GSM intersystem change procedures may be supported for network elements conforming to GSM releases 97, 98, and 99, and to UMTS release 99. At intersystem change release 99 network elements shall use GTP release 97 or 98 on the Gn interface when interworking with release 97 or 98 network elements, respectively.

An intersystem change from UMTS to GSM or GSM to UMTS takes place when an MS supporting both UMTS and GSM changes the radio access technology. A prerequisite for an intersystem change is that the MS is GPRS-attached. The transition of the mobility management states is as specified for the corresponding mobility management procedures.

There is no transition of the session management states at an intersystem change.

35

6.13.1 Intra SGSN Intersystem Change

An SGSN that supports both the Gb and Iu-PS interfaces may support an intra-SGSN intersystem change if the radio access technology nodes serving the MS before and after the intersystem change are both served by this SGSN.

6.13.1.1 UMTS to GSM Intra SGSN Change

The intersystem change from UMTS to GSM takes place when an MS changes from UTRAN to GSM radio access. Depending on the PMM state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in PMM-IDLE state changes to the GSM radio access without changing the RA, the MS shall follow the selective RA update procedures, see clause "Selective RA Update".
- When an MS in PMM-IDLE state changes to the GSM radio access and the RA changes, the MS shall initiate the GPRS RA update procedure, see clause "Intra SGSN Routeing Area Update".
- When an MS in PMM-CONNECTED state changes to the GSM radio access, the MS shall initiate the GPRS RA update procedure independent of whether the RA has changed or not. The RA update procedure is either combined RA / LA update or only RA update.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request message indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

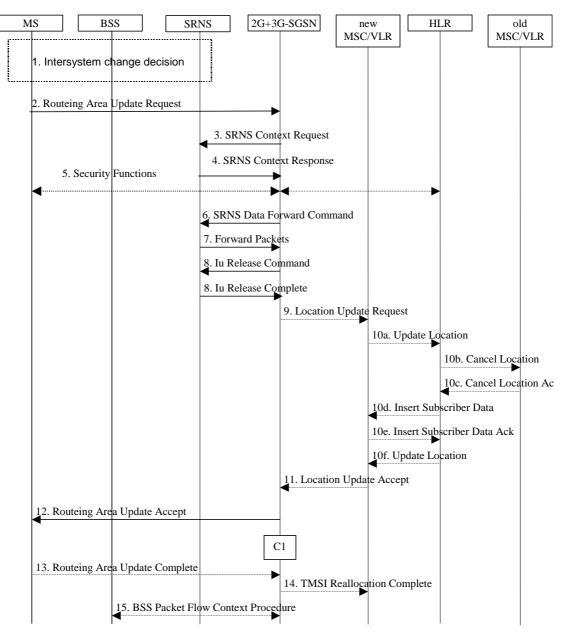


Figure 15: UMTS to GSM Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell that supports GSM radio technology, and stops transmission to the network.
- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) message to the 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA-update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attached requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the 2G+3G-SGSN.
- 3) If the MS is PMM-CONNECTED state, the 2G+3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS.

Upon reception of the SRNS Context Request message, the SRNS starts buffering and stops sending downlink PDUs to the MS. The SRNS responds with an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The GTP sequence numbers are included for each PDP context indicating the next insequence downlink GTP-PDU to be sent to the MS and the next in-sequence GTP PDU to be tunnelled to the GGSN. For each active PDP context, which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) and the downlink PDCP sequence number (PDCP-SNU) and the downlink PDCP sequence uplink packet to be received in from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been

confirmed. The 2G+3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers of the respective 2G GPRS PDP contexts.

- 5) Security functions may be executed.
- 6) If the MS is PMM-CONNECTED, the 2G+3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. This informs the SRNS that the 2G+3G-SGSN is ready to receive data packets. Upon reception of SRNS Data Forward Command message from the 2G+3G-SGSN the SRNS shall start the data-forwarding timer.
- 7) For each RAB indicated by the SRNS Data Forward Command the SRNS starts duplicating and tunnelling the buffered GTP-PDUs back to the 2G+3G-SGSN. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and tunnelled back to the 2G+3G-SGSN together with their related downlink PDCP sequence numbers. The 2G+3G-SGSN converts the PDCP sequence numbers to SNDCP sequence number (by stripping off the eight most significant bits of the PDCP sequence numbers).
- 8) The 2G+3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 9) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, then the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the association with the 2G+3G-SGSN by storing the SGSN Number.
- 10) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 11)The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.

- 12) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A logical link is established between the new 2G+3G-SGSN and the MS. 2G+3G-SGSN initiates the establishment procedure. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU)) message is returned to the MS. Receive N-PDU Number contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, these N-PDUs shall be discarded by the MS.13) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number (= converted PDCP-SND) contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, these N-PDUs shall be discarded by the 2G+3G-SGSN. The MS deducts Receive N-PDU Number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP. The new 2G-SGSN negotiates with the MS for each NSAPI the use of acknowledged or unacknowledged SNDCP regardless whether the SRNS used lossless PDCP or not.
- 14) The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 15) The 2G+3G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078:

- C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
- The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 15, the procedure returns as result "Continue".
- Then, the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 15, the procedure returns as result "Continue".

6.13.1.2 GSM to UMTS Intra-SGSN Change

The intersystem change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN. Depending on the GPRS mobility management state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in STANDBY state changes to UTRAN inside the current RA, the MS shall follow the selective RA update procedures, see clause "Selective RA Update".
- When an MS in STANDBY state changes to UTRAN and the RA changes, the MS shall initiate the UMTS RA update procedure, see clause "Routeing Area Update Procedure".
- When an MS in READY state changes to UTRAN independent of whether the RA has changed or not, the MS shall initiate the UMTS RA update procedure and afterwards initiate the RABs by the Service Request procedure, see clause "MS Initiated Service Request Procedure". The RA update procedure is either combined RA / LA update or only RA update.

If the network operates in mode I, an MS that is both PS-attached and CS-attached shall perform the Combined RA / LA Update procedure. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

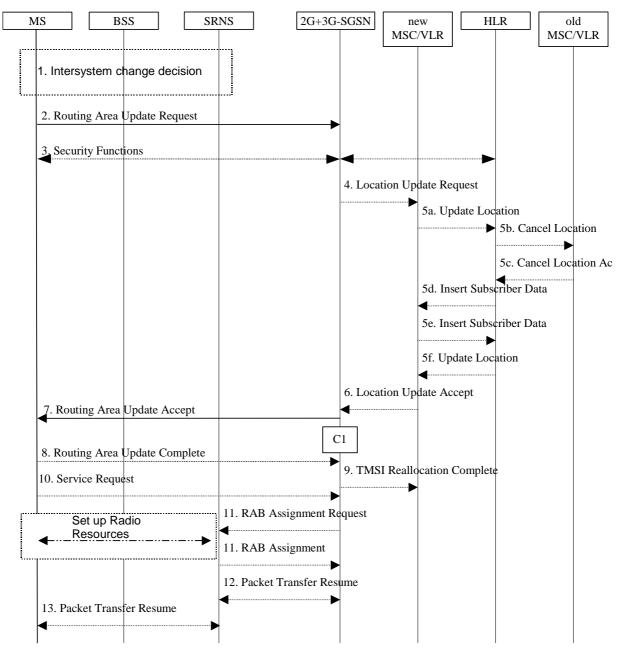


Figure 16: GSM to UMTS Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell that supports UMTS radio technology, and stops transmission to the network.
- 2) The MS initiates an RRC connection establishment and sends a Routeing Area Update Request (P-TMSI, Old RA, Old P-TMSI Signature, Update Type, CM) message to the combined 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested and also if the MS has a follow on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-onrequest indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNS shall add an identifier of the area where the message was received before passing the message to the 2G+3G-SGSN. The 2G+3G-SGSN stops transmission of N-PDUs to the MS.
- 3) Security functions may be executed.

- 4) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the association with the 2G+3G-SGSN by storing SGSN Number.
- 5) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 6) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 7) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature) message is returned to the MS.The 2G+3G-SGSN derives for this intersystem change the corresponding PDCP sequence numbers from the N-PDU sequence numbers stored in the SGSN PDP contexts by adding eight most significant bits "1". These PDCP sequence numbers are stored in the SGSN PDP contexts.
- 8) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 10) If the MS has pending uplink data or signalling, it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 11) The 2G+3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers and stored in the PDP contexts in step 7). The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The SRNS responds with a RAB Assignment Response message.
- NOTE: The NSAPI value is carried in the RAB ID IE.
- 12) Traffic flow is resumed between the 2G+3G-SGSN and the SRNS. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled by the 2G+3G-SGSN to the SRNS together with their related N-PDU number (SNDCP sequence number). No PDCP sequence numbers shall be indicated for these N-PDUs. The SRNS shall discard all N-PDUs with N-PDU sequence numbers older than the eight least significant bits of PDCP-SND received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with sequence numbers older than the eight least significant all N-PDUs with sequence numbers older than the eight least significant bits of PDCP-SND received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with sequence numbers older than the eight least significant bits of the PDCP-SNU received from the SRNS. All other N-PDUs shall be transmitted to the SRNS. The SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

13) The traffic flow is resumed between the SRNS and the MS.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078:

C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.

- The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once relative to the session. In Figure 16, the procedure returns as result "Continue".
- Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 16, the procedure returns as result "Continue".

6.13.1.3 Selective RA Update

The MS shall use the following procedures when in STANDBY or PMM-IDLE state.

Note that upon expiry of the periodic RA update timer, the MS shall carry out the periodic routeing area update procedure.

6.13.1.3.1 Uplink Signalling or Data Transmission

In STANDBY or PMM-IDLE state the MS shall not perform an RA update procedure until uplink data or signalling information is to be sent from the MS.

If the MS is in the same access network as when it last sent data or signalling, the procedures defined for that access system shall be followed. This shall be the sending of an LLC PDU in GPRS, or for example sending of a Service Request message in Iu mode.

If the MS is in a different access network as when it last sent data or signalling, the RA update procedure shall be performed before the sending of data or signalling. The RA update procedure needs not be performed if the signalling message is a power-off detach.

6.13.1.3.2 Downlink Signalling or Data Transmission

If the 2G+3G-SGSN receives data for an MS in STANDBY or PMM-IDLE state, the SGSN shall page in the RA where the MS is located. This may include both 2G and 3GPP cells.

If the MS receives this page in the same access network as when it last sent data or signalling, the procedures defined for that access system <u>shall</u> be followed. This shall be the sending of an LLC PDU in a GSM cell or for example sending of a Service Request message in a UMTS cell.

If the MS receives this page in a different access network as when it last sent data or signalling, the RA update procedure shall be performed. The 2G+3G-SGSN shall accept this RAU as a valid response.

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSM Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSM takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN to GSM radio access and the GSM radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a GSM RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 17.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

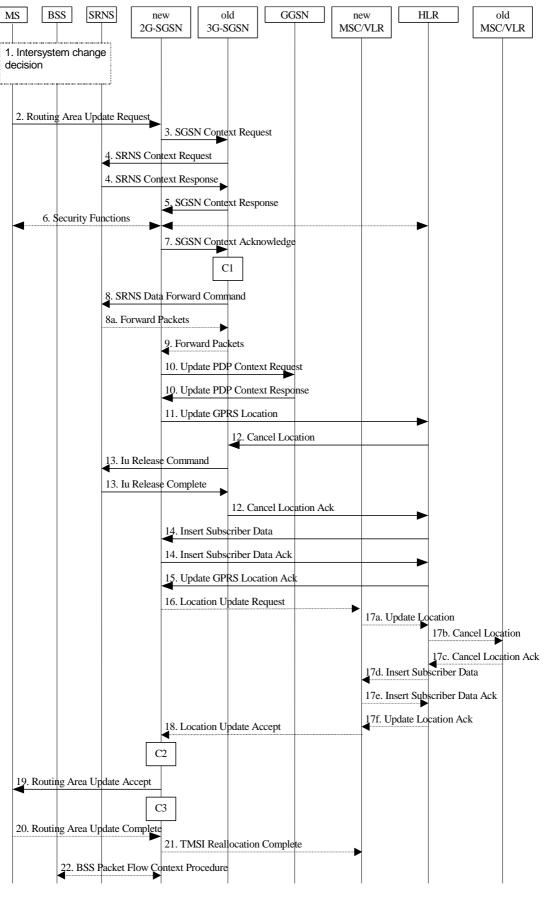


Figure 17: UMTS to GSM Inter-SGSN Change

1) The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports GSM radio technology, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, MS Network Capability) message to the new 2G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the new 2G-SGSN.
- 3) The new 2G-SGSN sends an SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) message to the old 3G-SGSN to get the MM and PDP contexts for the MS. The old 3G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 3G-SGSN. If the received old P-TMSI Signature does not match the stored value, the security functions in the new 2G-SGSN should be initiated. If the security functions authenticate the MS correctly, the new 2G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 3G-SGSN. MS Validated indicates that the new 2G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 2G-SGSN indicates that it has authenticated the MS correctly, the old 3G-SGSN starts a timer. If the MS is not known in the old 3G-SGSN, the old 3G-SGSN responds with an appropriate error cause.
- 4) If the MS is PMM-CONNECTED the old 3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS. Upon receipt of this message the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context, which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) downlink PDCP sequence number (PDCP-SND). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been confirmed. The 3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers and stores the N-PDU numbers in its PDP contexts.
- 5) The old 3G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. For each PDP context the old 3G-SGSN shall include the GTP sequence number for the next uplink GTP PDU to be tunnelled to the GGSN and the next donwlink GTP sequence number for the next in-sequence N-PDU to be sent to the MS. Each PDP Context also includes the SNDCP Send N-PDU Number (the value is 0) for the next in-sequence downlink N-PDU to be sent in <u>SNDCP</u> acknowledged mode to the MS and the SNDCP Receive N-PDU Number (= converted PDCP-SNU) for the next in-sequence uplink N-PDU to be received in SNDCP acknowledged mode from the MS. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 6) Security functions may be executed.
- 7) The new 2G-SGSN sends an SGSN Context Acknowledge message to the old 3G-SGSN. This informs the old 3G-SGSN that the new 2G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a RA update procedure back to the old SGSN before completing the ongoing RA update procedure.
- 8) If the MS is in the PMM-CONNECTED state, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. For each indicated RAB the SRNS starts duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. For each radio bearer which uses lossless PDCP the SRNS shall start tunnelling the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs to the old 3G-SGSN together with their related downlink PDCP sequence numbers. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
- 9) The old 3G-SGSN tunnels the GTP PDUs to the new 2G-SGSN. In the case of GTPv1, the conversion of PDCP sequence numbers to SNDCP sequence numbers (the eight most significant bits shall be stripped off) shall be done in the new SGSN. No N-PDU sequence numbers shall be indicated for these N-PDUs. If GTPv0 is used between the SGSNs, the conversion of PDCP sequence numbers to SNDCP numbers shall be done in the old 3G-SGSN (by stripping off the eight most significant bits).
- 10) The new 2G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.

- 11) The new 2G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 12) The HLR sends a Cancel Location (IMSI) message to the old 3G-SGSN. The old 3G-SGSN acknowledges with a Cancel Location Ack (IMSI) message. The old 3G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts shall be removed when the timer expires.
- 13) When the MS is PMM-CONNECTED, the old 3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 14) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 2G-SGSN. The 2G-SGSN constructs an MM context and PDP contexts for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 15) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 2G-SGSN.
- 16) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new 2G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G-SGSN. The 2G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 14). The VLR creates or updates the association with the 2G-SGSN by storing SGSN Number.
- 17) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 18) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 2G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 19) The new 2G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the RA2G-SGSN, or if subscription checking fails, the new 2G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 2G-SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new 2G-SGSN and the MS. 2G-SGSN initiates the establishment procedure. The new 2G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU) message. Receive N-PDU Number contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, the MS shall discard these N-PDUs.
- 20) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number (= converted PDCP-SND)) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each lossless PDCP used by the MS before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs that were forwarded from the old 3G-SGSN, the new 2G-SGSN shall discard these N-PDUs. The MS deducts Receive N-PDU number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected insequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP. The new 2G-

SGSN negotiates with the MS for each NSAPI the use of acknowledged or unacknowledged SNDCP regardless whether the SRNS used lossless PDCP or not.

- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- 22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times once per PDP context. It returns as result "Continue".

6.13.2.2 GSM to UMTS Inter-SGSN Change

The inter-system change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN and the UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 18.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

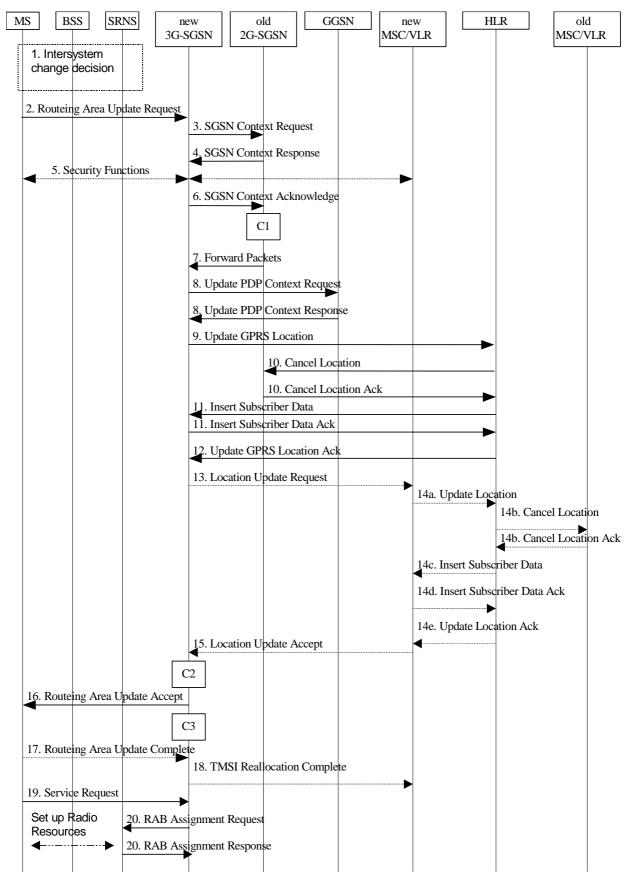


Figure 18: GSM to UMTS Inter SGSN Change

1) The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports UMTS radio technology, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (P-TMSI, old RAI, old P-TMSI Signature, Update Type, CM, MS Network Capability) message to the new 3G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested, and also if the MS has a follow-on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS.
- 3) The new 3G-SGSN uses the old RAI received from the MS to derive the old 2G-SGSN address, and sends an SGSN Context Request (old RAI, old P-TMSI, New SGSN Address) message to the old 2G-SGSN to get the MM and PDP contexts for the MS. The old 2G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 2G-SGSN. If the received old P-TMSI Signature does not match the stored value, the old 2G-SGSN should initiate the security functions in the new 3G-SGSN. If the security functions authenticate the MS correctly, the new 3G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 2G-SGSN. MS Validated indicates that the new 3G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 3G-SGSN indicates that it has authenticated the MS correctly, the old 2G-SGSN starts a timer and stops the transmission of N-PDUs to the MS.
- 4) The old 2G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. Each PDP Context includes the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. Each PDP Context also includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode SNDCP to the MS and the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode SNDCP from the MS. The new 3G-SGSN derives the corresponding PDCP sequence numbers from these N-PDU sequence numbers by adding eight most significant bits "1". These PDCP sequence numbers are stored in the 3G-SGSN PDP contexts. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 5) Security functions may be executed.
- 6) The new 3G-SGSN sends an SGSN Context Acknowledge message to the old 2G-SGSN. This informs the old 2G-SGSN that the new 3G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 7) The old 2G-SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new 3G-SGSN. Additional N-PDUs received from the GGSN before the timer described in step 3 expires are also duplicated and tunnelled to the new 3G-SGSN. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled together with their related SNDCP N-PDU sequence number. No PDCP sequence numbers shall be indicated for these N-PDUs. No N-PDUs shall be forwarded to the new 3G-SGSN after expiry of the timer described in step 3.
- 8) The new 3G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.
- 9) The new 3G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 10) The HLR sends a Cancel Location (IMSI, Cancellation Type) message to the old 2G-SGSN. The old 2G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts are removed when the timer expires. The old 2G-SGSN acknowledges with a Cancel Location Ack (IMSI) message.
- 11) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 3G-SGSN. The 3G-SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 3G-SGSN.

- 13) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 3G-SGSN. The 3G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 12). The VLR creates or updates the association with the 3G-SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new 3G-SGSN validate the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to is not allowed to be attached in the <u>RA3G-SGSN</u>, or if subscription checking fails, the new 3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 3G-SGSN constructs MM and PDP contexts for the MS. The new 3G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI signature) message.
- 17) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new 3G-SGSN sends TMSI Reallocation Complete message to the new VLR, if the MS confirms the VLR TMSI.
- 19) If the MS has uplink data or signalling pending it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 20) If the MS has sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4) and stored in the SGSN PDP contexts. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNDs. Other N-PDUs shall be transmitted to the SRNS. The SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

- They are called in the following order:- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. It returns as result "Continue".

C2) CAMEL_GPRS_Routeing_Area_Update_Session

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context

This procedure is called several times: once per PDP context. It returns as result "Continue".

8.1.2 Discontinuous Reception

A GSM MS may use discontinuous reception (DRX) or not. If using DRX, the MS shall also be able to specify other DRX parameters that indicate the delay for the network to send a page request or a channel assignment to the MS (see GSM 03.64).

The DRX parameters shall be indicated by the MS in the attach procedure. The SGSN shall then send these parameters in each page request to the BSS that uses this information and the IMSI to calculate the correct paging group.

DRX usage is independent of the MM states IDLE, STANDBY and READY. When a GPRS MS in READY state uses DRX, <u>DRX</u>^{it} has to be considered also when assigning a packet data channel for downlink transfer. The SGSN shall therefore indicate the DRX parameters for the MS in all packet transmission requests to the BSS.

A GSM MS shall not apply DRX in READY state during the GPRS attach and routeing area update procedures.

9.2.2.1 PDP Context Activation Procedure

The PDP Context Activation procedure is illustrated in Figure 19 and Figure 20.

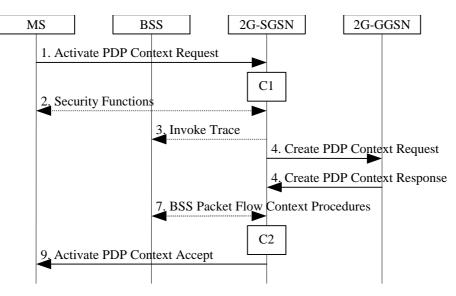


Figure 19: PDP Context Activation Procedure for GSM

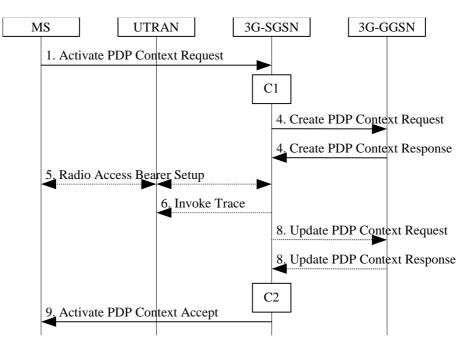


Figure 20: PDP Context Activation Procedure for UMTS

- 1) The MS sends an Activate PDP Context Request (NSAPI, TI, PDP Type, PDP Address, Access Point Name, QoS Requested, PDP Configuration Options) message to the SGSN. The MS shall use PDP Address to indicate whether it requires the use of a static PDP address or whether it requires the use of a dynamic PDP address. The MS shall leave PDP Address empty to request a dynamic PDP address. The MS may use Access Point Name to select a reference point to a certain external network and/or to select a service. Access Point Name is a logical name referring to the external packet data network and/or to a service that the subscriber wishes to connect to. QoS Requested indicates the desired QoS profile. PDP Configuration Options may be used to request optional PDP parameters from the GGSN (see GSM 09.60). PDP Configuration Options is sent transparently through the SGSN.
- 2) In A/Gb mode, security functions may be executed. These procedures are defined in clause "Security Function".
- 3) In A/Gb mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the BSS. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- 4) The SGSN validates the Activate PDP Context Request using PDP Type (optional), PDP Address (optional), and Access Point Name (optional) provided by the MS and the PDP context subscription records. The validation criteria, the APN selection criteria, and the mapping from APN to a GGSN are described in annex A.

If no GGSN address can be derived or if the SGSN has determined that the Activate PDP Context Request is not valid according to the rules described in annex A, the SGSN rejects the PDP context activation request.

If a GGSN address can be derived, the SGSN creates a TEID for the requested PDP context. If the MS requests a dynamic address, the SGSN lets a GGSN allocate the dynamic address. The SGSN may restrict the requested QoS attributes given its capabilities and the current load, and it shall restrict the requested QoS attributes according to the subscribed QoS profile.

The SGSN sends a Create PDP Context Request (PDP Type, PDP Address, Access Point Name, QoS Negotiated, TEID, NSAPI, MSISDN, Selection Mode, Charging Characteristics, Trace Reference, Trace Type, Trigger Id, OMC Identity, PDP Configuration Options) message to the affected GGSN. Access Point Name shall be the APN Network Identifier of the APN selected according to the procedure described in Annex A. PDP Address shall be empty if a dynamic address is requested. The GGSN may use Access Point Name to find an external network and optionally to activate a service for this APN. Selection Mode indicates whether a subscribed APN was selected, or whether a non-subscribed APN sent by an MS or a non-subscribed APN chosen by the SGSN was selected. Selection Mode is set according to Annex A. The GGSN may use Selection Mode when deciding whether to accept or reject the PDP context activation. For example, if an APN requires subscription, the GGSN is configured to accept only the PDP context activation that requests a subscribed APN as indicated by the SGSN with Selection Mode. Charging Characteristics indicates which kind of charging the

PDP context is liable for. The charging characteristics on the GPRS subscription and individually subscribed APNs as well as the way the SGSN handles Charging Characteritics and chooses to send them or not to the GGSN is defined in 3GPP TS 32.215 [70]. The SGSN shall include Trace Reference, Trace Type, Trigger Id, and OMC Identity if GGSN trace is activated. The SGSN shall copy Trace Reference, Trace Type, and OMC Identity from the trace information received from the HLR or OMC.

52

The GGSN creates a new entry in its PDP context table and generates a Charging Id. The new entry allows the GGSN to route PDP PDUs between the SGSN and the external PDP network, and to start charging. The way the GGSN handles Charging Characteritics that it may have received from the SGSN is defined in 3GPP TS 32.215 [70]. The GGSN then returns a Create PDP Context Response (TEID, PDP Address, PDP Configuration Options, QoS Negotiated, Charging Id, Cause) message to the SGSN. PDP Address is included if the GGSN allocated a PDP address. If the GGSN has been configured by the operator to use External PDN Address Allocation for the requested APN, PDP Address shall be set to 0.0.0.0, indicating that the PDP address shall be negotiated by the MS with the external PDN after completion of the PDP context Activation procedure. The GGSN shall relay, modify and monitor these negotiations as long as the PDP context is in ACTIVE state, and use the GGSN-Initiated PDP Context Modification procedure to transfer the currently used PDP address to the SGSN and the MS. PDP Configuration Options contain optional PDP parameters that the GGSN may transfer to the MS. These optional PDP parameters may be requested by the MS in the Activate PDP Context Request message, or may be sent unsolicited by the GGSN. PDP Configuration Options is sent transparently through the SGSN. The Create PDP Context messages are sent over the backbone network.

If QoS Negotiated received from the SGSN is incompatible with the PDP context being activated, the GGSN rejects the Create PDP Context Request message. The GGSN operator configures the compatible QoS profiles.

- 5) In Iu mode, RAB setup is done by the RAB Assignment procedure, see subclause "RAB Assignment Procedure".
- 6) In Iu mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the UTRAN. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- In A/Gb mode, BSS packet flow context procedures may be executed. These procedures are defined in clause "BSS Context".
- 78) In Iu mode and in case the QoS attributes have been downgraded in step 4, the SGSN may inform the GGSN about the downgraded QoS attributes by sending an Update PDP Context Request to the affected GGSN. The GGSN confirms the new QoS attributes by sending an Update PDP Context Response to the SGSN.
- 9) The SGSN inserts the NSAPI along with the GGSN address in its PDP context. If the MS has requested a dynamic address, the PDP address received from the GGSN is inserted in the PDP context. The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns an Activate PDP Context Accept (PDP Type, PDP Address, TI, QoS Negotiated, Radio Priority, Packet Flow Id, PDP Configuration Options) message to the MS. The SGSN is now able to route PDP PDUs between the GGSN and the MS, and to start charging.

For each PDP Address a different quality of service (QoS) profile may be requested. For example, some PDP addresses may be associated with E-mail that can tolerate lengthy response times. Other applications cannot tolerate delay and demand a very high level of throughput, interactive applications being one example. These different requirements are reflected in the QoS profile. The QoS profile is defined in clause "Quality of Service Profile". If a QoS requirement is beyond the capabilities of a PLMN, the PLMN negotiates the QoS profile as close as possible to the requested QoS profile. The MS either accepts the negotiated QoS profile, or deactivates the PDP context.

After an SGSN has successfully updated the GGSN, the PDP contexts associated with an MS is distributed as shown in clause "Information Storage".

If the PDP Context Activation Procedure fails or if the SGSN returns an Activate PDP Context Reject (Cause, PDP Configuration Options) message, the MS may attempt another activation to the same APN up to a maximum number of attempts.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

- C1) CAMEL_GPRS_PDP_Context_Establishment.
- In Figure 19 and Figure 20, procedures return as result "Continue".
 - C2) CAMEL_GPRS_PDP_Context_Establishment_Acknowledgement.
- In Figure 19 and Figure 20, procedures return as result "Continue".

9.2.3 Modification Procedures

Modification procedures modify parameters that were negotiated during an activation procedure for one or several PDP contexts. An MS₂ ora GGSN, or an SGSN, or an RNC can request a modification procedure. The Modification procedures may possibly be triggered by the HLR as explained in subclause "Insert Subscriber Data Procedure" or by an RNC in a RAB Release or an RNC-initiated RAB Modification procedure. An MS and SGSN can also decide about modification procedures after an RNC-initiated Iu release.

The following parameters can be modified:

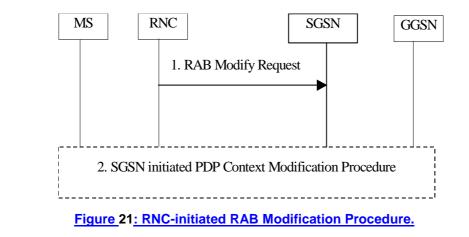
- QoS Negotiated;
- Radio Priority;
- Packet Flow Id;
- PDP Address (in case of the GGSN-initiated modification procedure); and
- TFT (in case of MS-initiated modification procedure).

The SGSN can request the modification of parameters by sending a Modify PDP Context Request message to the MS.

A GGSN can request the modification of parameters by sending an Update PDP Context Request message to the SGSN.

An MS can request the modification of parameters by sending a Modify PDP Context Request message to the SGSN.

An RNC can request an Iu release by sending an Iu Release Request message to the SGSN. After Iu release the MS and SGSN shall modify the PDP contexts according to the rules defined in clause "RNC-Initiated PDP Context Modification Procedure".


An RNC can request the release of a radio access bearer. After RAB release the MS and the SGSN shall locally modify the corresponding PDP context according to rules defined in the clause "RAB Release-Initiated Local PDP Context Modification Procedure".

A trace may be activated while a PDP context is active. To enable trace activation in a GGSN, the SGSN shall send an Update PDP Context Request message to the GGSN. If PDP context modification is performed only to activate a trace, the SGSN shall not send a Modify PDP Context Request message to the MS.

An RNC may request the modification of some negotiated RAB related QoS parameters by sending a RAB Modify Request.

9.2.3.6 RNC-initiated RAB Modification Procedure (UTRAN only)

The RNC-initiated RAB Modification procedure permits RNC to propose modifications to any negotiable RAB parameter for an MS after RAB establishment, 3G 25.413 [56a]. RAB parameters are equivalent to RAB attributes as defined in TS 23.107 [58] for each QoS class. The procedure is depicted in SEQARABIC.

- 1) The RNC sends a RAB Modify Request (RAB ID, RAB Parameter Values) message to the SGSN.
- 2) The SGSN may decide to ignore the message or to invoke the PDP Context Modification procedure as described in subclause 9.2.3.1, which includes the SGSN RAB Modification procedure.

Figure 73: RNC-initiated RAB Modification Procedure.

12.7.4 RAB Assignment Procedure

The purpose of the RAB Assignment procedure is to enable establishment of new RABs for a given MS and/or modification and/or release of already established RABs. When this procedure is executed and if there is any PDP context without radio access bearer assigned, all the radio access bearer are re-established. The same messages are used for the three mentioned actions and it is only the content carried by the messages that is different. The RAB Assignment procedure, which is shown below, is specified in 3GPP TS 25.413. The RRC protocol is specified in 3GPP TS 25.331.

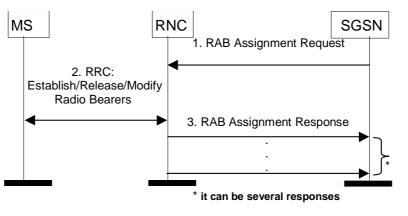
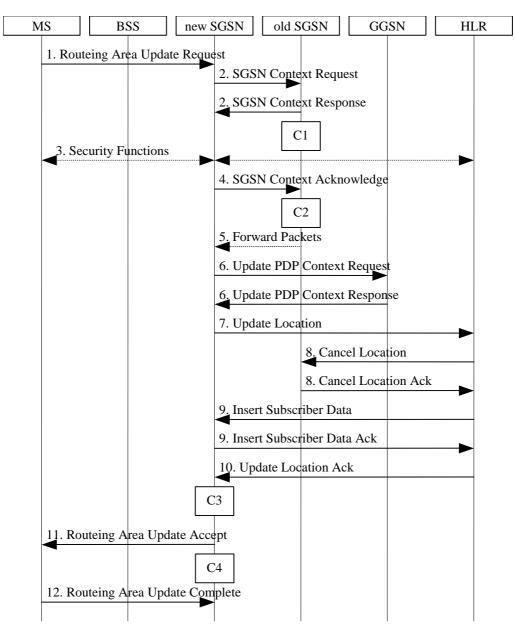


Figure 23: RAB Assignment Procedure

- The SGSN sends a RAB Assignment Request message to the RNC to establish, modify, or release one or several RABs. For each requested RAB or modified, if the RAB is allowed for queuing and the resource situation requires it, the RNC may place the RAB in the establishment queue.
- 2) The RNC establishes, modifies, or releases the appropriate radio bearers.
- 3)The RNC returns a RAB Assignment Response message to the SGSN. If the request to establish or modify one or several RABs has been queued, the RNC will report the outcome of the establishment or modification in subsequent RAB Assignment Response messages. If the SGSN receives a RAB Assignment Response message with a cause indicating that the requested QoS profile(s) can not be provided (e.g. "Requested Maximum Bit Rate not Available"), then the SGSN may send a new RAB Assignment Request message with different QoS profile(s). The number of re-attempts, if any, as well as how the new QoS profile(s) values are determined is implementation dependent.


Figure 90: RAB Assignment Procedure

CHANGE REQUEST				
æ	23.060 CR 246 [#] rev 2 [#] Current version: 3.9.0 [#]			
For <u>HELP</u> on u	sing this form, see bottom of this page or look at the pop-up text over the $#$ symbols.			
Proposed change affects: # (U)SIM ME/UE Radio Access Network Core Network				
Title: Ж	Losing PDP context during Inter SGSN RA Update			
Source: %	Nokia, Ericsson			
Work item code: 郑	GPRS Date: # 1.11.2001			
Category: Ж	A Release: # R99			
Reason for change	Use one of the following categories: Use one of the following releases: F (essential correction) 2 A (corresponds to a correction in an earlier release) R96 B (Addition of feature), R97 C (Functional modification of feature) R98 D (Editorial modification) R99 D (Editorial modification) R99 Detailed explanations of the above categories can be found in 3GPP TR 21.900. REL-4 Release 19 Release 19 et out on a gery Tr 21.900. REL-5 et occupestion, a new SGSN may not be able to maintain all PDP contexts after inter SGSN Routing Area update. In this case it is unclear if control of all PDP contexts is transferred from old SGSN to new SGSN or is partial transfer of control permitted. Because only new SGSN can delete PDP context(s) towards MS side, partial transfer of control cannot be permitted. Therefore only the new SGSN shall initiate a PDP context deactivation after the completion of the RA update, if some PDP context cannot be maintained active. When an inter-SGSN RA update procedure is performed from a first SGSN that supports GTPv1 to a second SGSN that supports GTPv0, then procedures defined in section 11.1.1 shall be followed. In this case MS will delete locally all PDP context(s) except the PDP context with the highest-quality QoS profile (MS can detect this case from the broadcasted "Release Indication" bits; see spec 04.60). We propose to add a new note to clarify this last point.			
Summary of chang	 New sentence is proposed in the inter SGSN RA update descriptions: If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update. In addition, to maintain the location management procedures for UMTS and GSM consistent, this CR proposes to align section 6.9.2.1 with sections 6.9.1.2.2 & 6.9.1.3.2 by adding the sentence: If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update. 			

Consequences if not approved:	 B Different manufacturers may implement different solution (e.g. new SGSN may count on old SGSN to deactivate the context toward the GGSN) which would lead to interoperability problems.
Clauses affected: Other specs	# 6.9.1.2.2; 6.9.1.3.2; 6.9.2.1; 6.13.2.1; 6.13.2.2; 11.1.1 # Other core specifications #
affected: Other comments:	Test specifications O&M Specifications

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in Error! Not a valid bookmark self-reference.

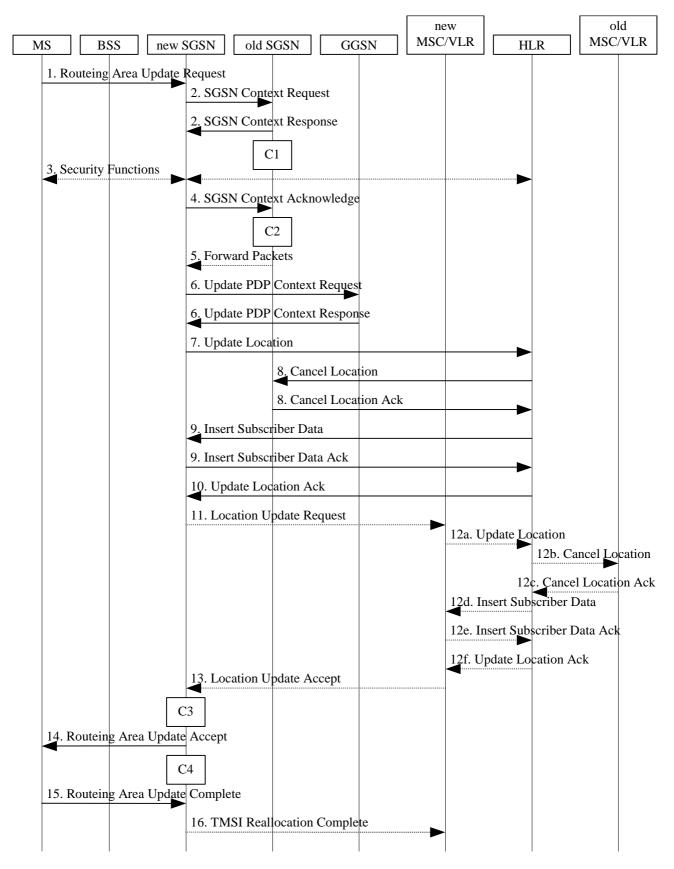
Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, , or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS does not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the <u>new</u>SGSN is unable to update the PDP context in one or more GGSNs, the <u>new</u>SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN stops forwarding N-PDUs to the new SGSN.


If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

**** next modification ****

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter-SGSN) procedure is illustrated in Figure .

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the <u>new</u> SGSN is unable to update the PDP context in one or more GGSNs, the <u>new</u> SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

****next modification****

6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection re-establishment", or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see sub-clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure .

Note: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see sub-clause 6.1.2.4.1).

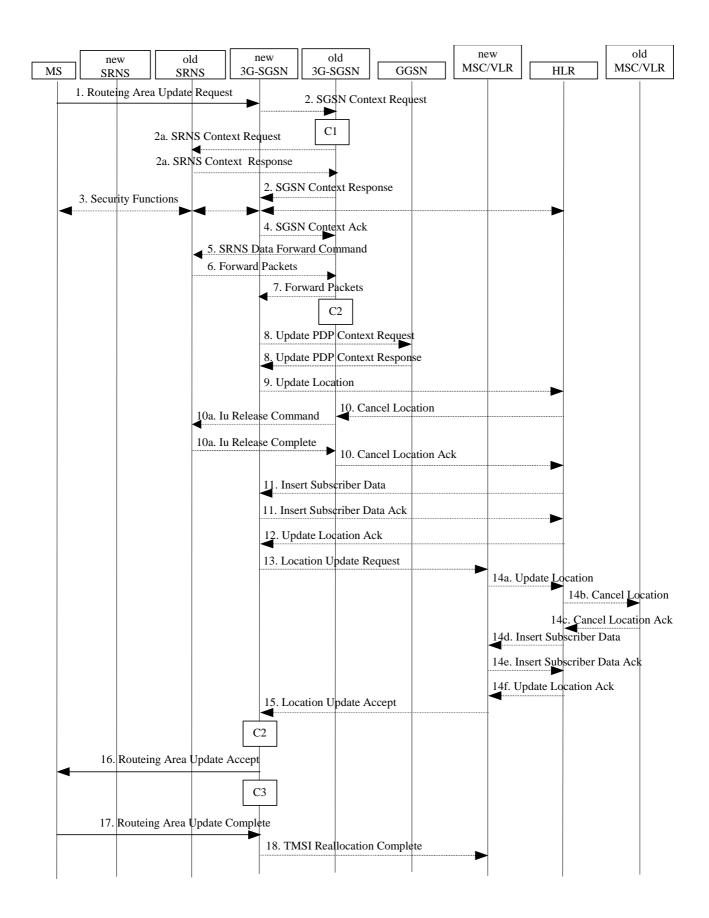


Figure 36: UMTS RA Update Procedure

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

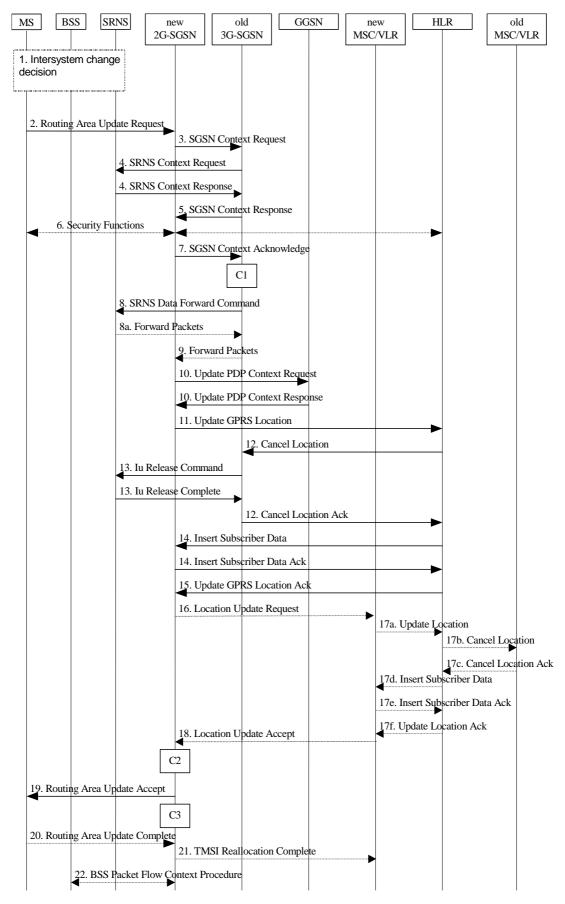
If the new SGSN is unable to update the PDP context in one or more GGSNs, the new SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

NOTE: In case MS was in PMM-CONNECTED state the PDP Contexts are sent already in the Forward Relocation Request message as described in subclause "Serving RNS relocation procedures".

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.


****next modification****

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSM Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSM takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN to GSM radio access and the GSM radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a GSM RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 1.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3G TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Figure 1: UMTS to GSM Inter-SGSN Change

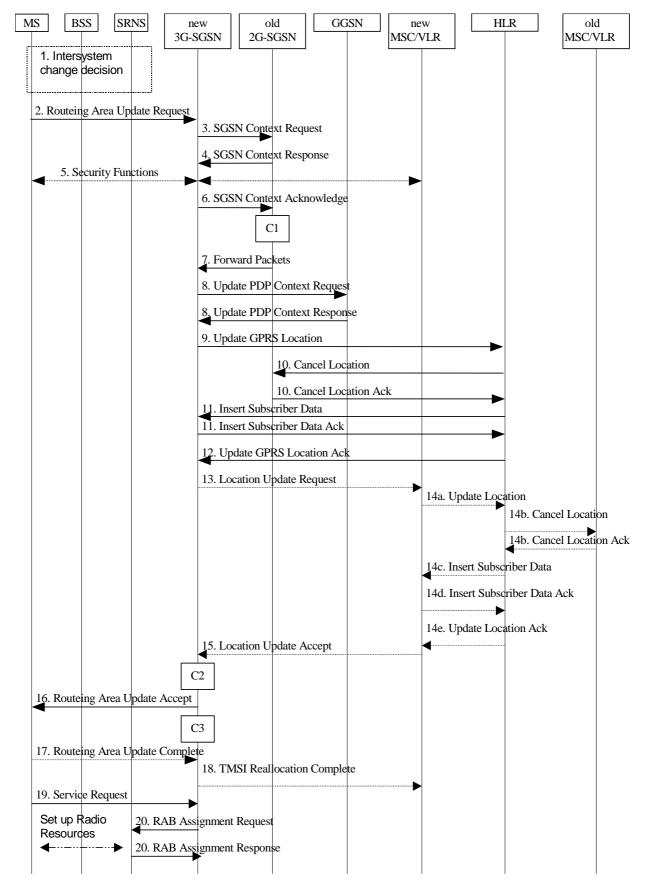
Text not changed

- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- 22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

If the new SGSN is unable to update the PDP context in one or more GGSNs, the new SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

CAMEL procedure calls shall be performed; see referenced procedures in 3G TS 23.078:


C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

****next modification****

6.13.2.2 GSM to UMTS Inter-SGSN Change

The inter-system change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN and the UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 2.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3G TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Text not changed

20) If the MS sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4 and are stored in the SGSN PDP context. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the SRNS. Other N-PDUs shall be transmitted to the SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

If the new SGSN is unable to update the PDP context in one or more GGSNs, the new SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078: performed, see referenced procedures in 3G TS 23.078.

These procedures are called in the following order:

The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".

****next modification****

11.1.1 Interactions Between GTP v0 (R97) and GTP v1 (R99)

When a first GSN receives a GTP PDU from a second GSN using a version not supported, then the first GSN shall return a "version not supported" error message to the second GSN. The second GSN shall then fall back to the most-recent version supported by the first GSN. A GSN shall use its most-recent GTP version when initiating GTP PDU transmission to a new GSN.

When an SGSN that supports GTP v1 establishes a GTP tunnel to a GGSN that supports GTP v0, the SGSN shall convert a release 99 QoS profile to a release 97 QoS profile before transmitting the QoS profile to the GGSN. If the MS supports the R99 QoS profile, the SGSN shall convert the negotiated R97 QoS profile to an R99 QoS profile before transmitting the QoS profile to the MS.

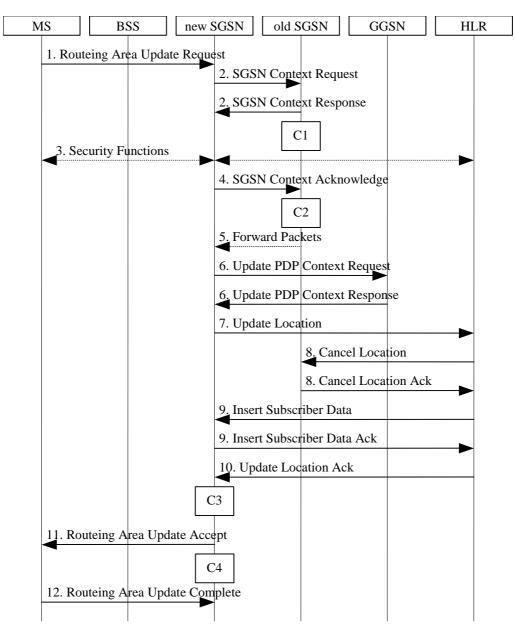
A GGSN shall be able to fall back to GTP v0 during an Update PDP Context procedure. That is, the GGSN shall accept an Update PDP Context Request of GTP v0 even if the established GTP tunnel is of GTP v1.

When an inter-SGSN RA update procedure is performed from a first SGSN that supports GTP v1 to a second SGSN that supports GTP v0, the first SGSN shall convert the R99 QoS profile to an R97 QoS profile before sending the SGSN Context Response message. Furthermore, it fills the Uplink Flow Label Signalling field in the PDP Context information element of the SGSN Context Response message with the lower two octets of the Uplink TEID Control Plane. If several PDP contexts have been activated for the same APN and PDP address in the first SGSN (secondary PDP context activation), then all PDP contexts except the PDP context with the highest-quality QoS profile are deleted in the MS and in the first SGSN, and the first SGSN shall initiate deletion of these PDP contexts in the GGSN.

MS detects that the new SGSN is supporting only GTPv0 from the Release Indication broadcasted on the GSM radio.

3G TS 23.107 [58] specifies how to determine the highest-quality QoS profile. The second SGSN shall be responsible for updating the remaining PDP context in the GGSN, and the GGSN shall remove the TFT if present when it receives the GTP v0 Update PDP Context Request message.

NOTE: The conversion between an R99 QoS profile and an R97 QoS profile is defined in 3G TS 23.107.


When an inter-SGSN RA update procedure is performed from a first SGSN that supports GTP v0 to a second SGSN that supports GTP v1, the second SGSN shall convert the R97 QoS profile to the R99 QoS profile, ignore the delivered Uplink Flow Label Signalling and use GTP v1 to send the Update PDP Context Request message to the GGSN. The Update PDP Context Request message shall be sent with a header containing a TEID set to all zeros and with an additional IE containing the IMSI for the PDP context.

¥	23.060 CR 247 [#] rev 3 [#] Current version: 4.2.0 [#]			
For <u>HELP</u> on	using this form, see bottom of this page or look at the pop-up text over the $#$ symbols.			
Proposed change affects: # (U)SIM ME/UE Radio Access Network Core Network				
Title:	Losing PDP context during Inter SGSN RA Update			
Source:	Nokia, Ericsson, Motorola			
Work item code:	業 TEI4 Date: 業 1.11.2001			
Category:	米 A Release: 米 REL-4			
Reason for chang	Use one of the following categories: Use one of the following releases: F (essential correction) 2 (GSM Phase 2) A (corresponds to a correction in an earlier release) R96 (Release 1996) B (Addition of feature), R97 (Release 1997) C (Functional modification of feature) R98 (Release 1998) D (Editorial modification) R99 (Release 1999) Detailed explanations of the above categories can REL-4 (Release 4) be found in 3GPP TR 21.900. REL-5 (Release 5) ge: # In an error case caused by an implementation limitation or a temporary lack of memory due to congestion, a new SGSN may not be able to maintain all PDP contexts after inter SGSN Routing Area update. In this case it is unclear if control of all PDP contexts is transferred from old SGSN to new SGSN or is partial transfer of control permitted. Because only new SGSN can delete PDP context(s) towards MS side, partial transfer of control cannot be permitted. Therefore only the new SGSN shall initiate a PDP context deactivation after the completion of the RA update, if some PDP context(s) cannot be maintained active. When an inter-SGSN RA update procedure is performed from a first SGSN that supports GTPv1 to a second SGSN that supports GTPv0, then procedures defined in section 11.1.1 shall be followed. In this case MS will delete locally all PDP context(s) except the PDP context with the highest-quality QoS profile (MS can detect this case from the broadcasted "Release Indi			
Summary of char	Inge: #New sentence is proposed in the inter SGSN RA update descriptions:If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.In addition, to maintain the location management procedures for UMTS and GSM consistent, this CR proposes to align section 6.9.2.1 with sections 6.9.1.2.2 & 6.9.1.3.2 by adding the sentence:If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in subclause "SGSN- initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.			

Consequences if not approved:	 B Different manufacturers may implement different solution (e.g. new SGSN may count on old SGSN to deactivate the context toward the GGSN) which would lead to interoperability problems.
Clauses affected: Other specs	# 6.9.1.2.2; 6.9.1.3.2; 6.9.2.1; 6.13.2.1; 6.13.2.2; 11.1.1 # Other core specifications #
affected: Other comments:	Test specifications O&M Specifications

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in Error! Not a valid bookmark self-reference.

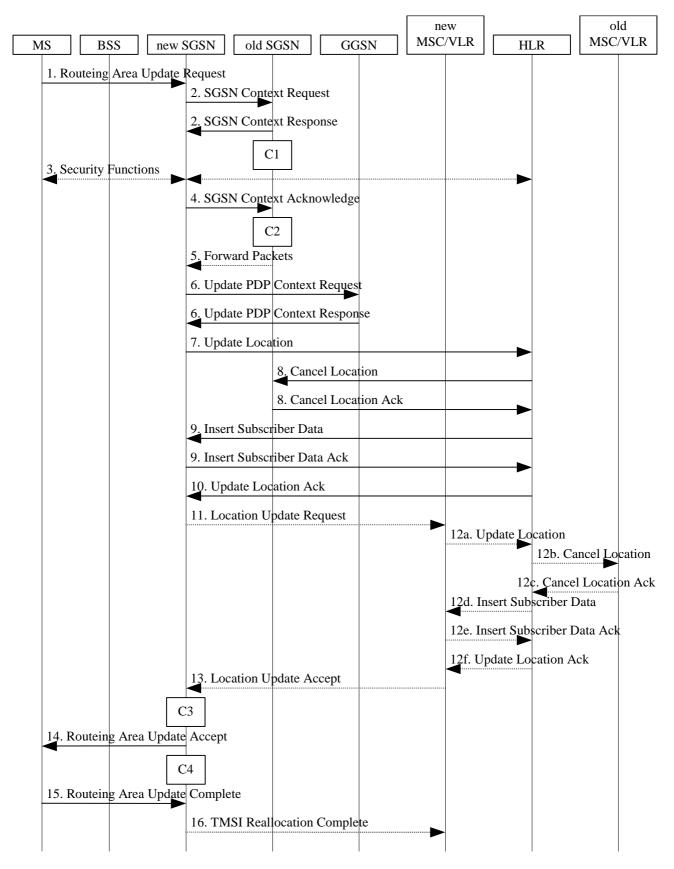
Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, , or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS does not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the <u>new</u>SGSN is unable to update the PDP context in one or more GGSNs, the <u>new</u>SGSN shall deactivate the corresponding PDP contexts as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN stops forwarding N-PDUs to the new SGSN.


If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

**** next modification ****

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter-SGSN) procedure is illustrated in Figure .

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the <u>new</u>SGSN is unable to update the PDP context in one or more GGSNs, the <u>new</u>SGSN shall deactivate the corresponding PDP contexts as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

****next modification****

6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection re-establishment", or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see sub-clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure .

Note: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see sub-clause 6.1.2.4.1).

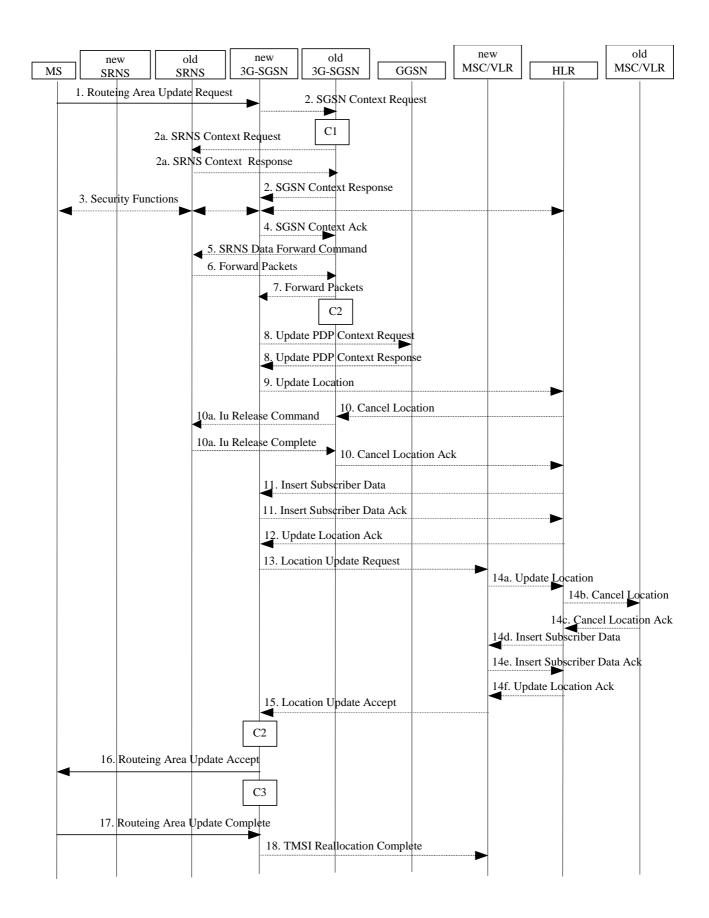


Figure 36: UMTS RA Update Procedure

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

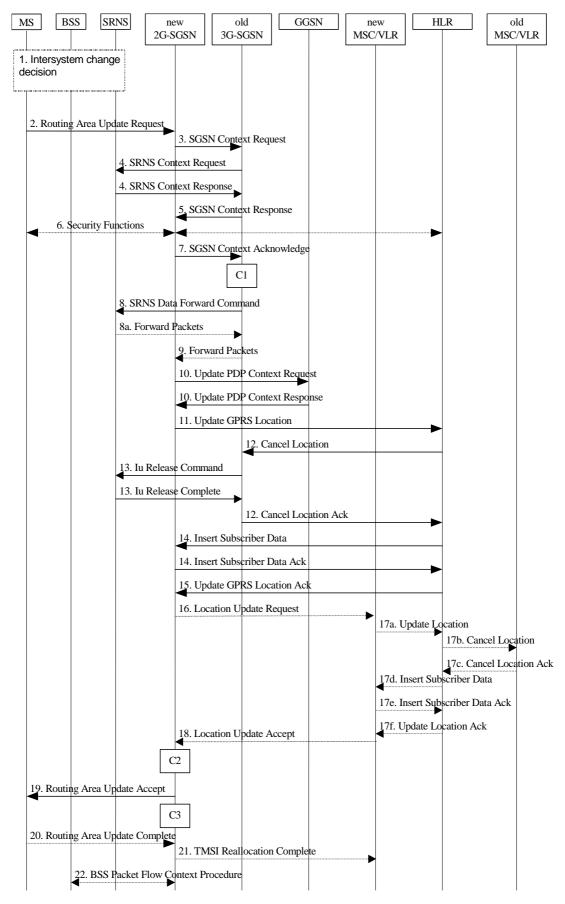
If the new SGSN is unable to update the PDP context in one or more GGSNs, the new SGSN shall deactivate the corresponding PDP contexts as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

NOTE: In case MS was in PMM-CONNECTED state the PDP Contexts are sent already in the Forward Relocation Request message as described in subclause "Serving RNS relocation procedures".

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.


****next modification****

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSM Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSM takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN to GSM radio access and the GSM radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a GSM RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 1.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Figure 1: UMTS to GSM Inter-SGSN Change

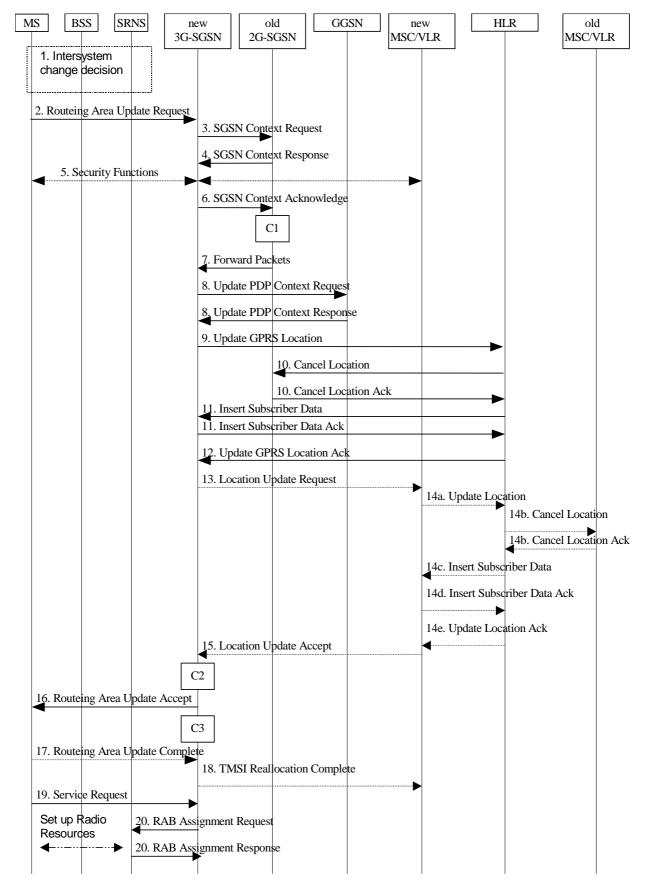
Text not changed

- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- 22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

If the new SGSN is unable to update the PDP context in one or more GGSNs, the new SGSN shall deactivate the corresponding PDP contexts as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:


C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

****next modification****

6.13.2.2 GSM to UMTS Inter-SGSN Change

The inter-system change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN and the UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 2.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Text not changed

20) If the MS has sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4) and stored in the SGSN PDP contexts. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNUs received from the SRNS. Other N-PDUs shall be transmitted to the SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

If the new SGSN is unable to update the PDP context in one or more GGSNs, the new SGSN shall deactivate the corresponding PDP contexts as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the new SGSN is unable to support the same number of active PDP contexts as received from old SGSN, the new SGSN shall first update all contexts in one or more GGSNs and then deactivate the context(s) that it cannot maintain as described in subclause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

- They are called in the following order:- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. It returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session

****next modification****

11.1.1 Interactions Between GTP v0 (R97) and GTP v1 (R99)

When a first GSN receives a GTP PDU from a second GSN using a version not supported, then the first GSN shall return a "version not supported" error message to the second GSN. The second GSN shall then fall back to the most-recent version supported by the first GSN. A GSN shall use its most-recent GTP version when initiating GTP PDU transmission to a new GSN.

When an SGSN that supports GTP v1 establishes a GTP tunnel to a GGSN that supports GTP v0, the SGSN shall convert a release 99 QoS profile to a release 97 QoS profile before transmitting the QoS profile to the GGSN. If the MS supports the R99 QoS profile, the SGSN shall convert the negotiated R97 QoS profile to an R99 QoS profile before transmitting the QoS profile to the MS.

A GGSN shall be able to fall back to GTP v0 during an Update PDP Context procedure. That is, the GGSN shall accept an Update PDP Context Request of GTP v0 even if the established GTP tunnel is of GTP v1.

When an inter-SGSN RA update procedure is performed from a first SGSN that supports GTP v1 to a second SGSN that supports GTP v0, the first SGSN shall convert the R99 QoS profile to an R97 QoS profile before sending the SGSN Context Response message. Furthermore, it fills the Uplink Flow Label Signalling field in the PDP Context information element of the SGSN Context Response message with the lower two octets of the Uplink TEID Control Plane. If several PDP contexts have been activated for the same APN and PDP address in the first SGSN (secondary PDP context activation), then all PDP contexts except the PDP context with the highest-quality QoS profile are deleted in the MS and in the first SGSN, and the first SGSN shall initiate deletion of these PDP contexts in the GGSN.

MS detects that the new SGSN is supporting only GTPv0 from the Release Indication broadcasted on the GSM radio.

3G TS 23.107 [58] specifies how to determine the highest-quality QoS profile. The second SGSN shall be responsible for updating the remaining PDP context in the GGSN, and the GGSN shall remove the TFT if present when it receives the GTP v0 Update PDP Context Request message.

NOTE: The conversion between an R99 QoS profile and an R97 QoS profile is defined in 3G TS 23.107.

When an inter-SGSN RA update procedure is performed from a first SGSN that supports GTP v0 to a second SGSN that supports GTP v1, the second SGSN shall convert the R97 QoS profile to the R99 QoS profile, ignore the delivered Uplink Flow Label Signalling and use GTP v1 to send the Update PDP Context Request message to the GGSN. The Update PDP Context Request message shall be sent with a header containing a TEID set to all zeros and with an additional IE containing the IMSI for the PDP context.

3GPP TSG-SA2 Meeting #20 Kobe, October 29 – November 2, 2001

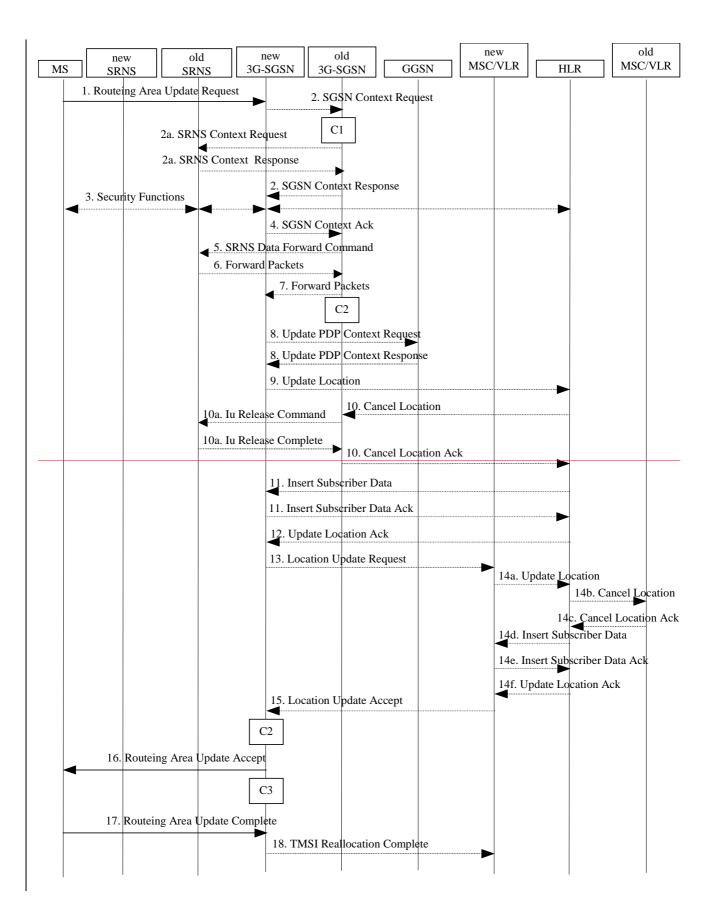
												CR-Form-v3
			(CHAN	IGE	REC	QUE	EST	-			
æ	23.	060	CR	271	я	s rev	1	ж	Current vers	sion:	3.9.0	ж
For <u>HELP</u> on u	ising t	his for	m, see	bottom	of this p	age o	r look	at th	e pop-up tex	t over	r the ¥ sy	mbols.
Proposed change	affect	's: #	(U)	SIM	ME/U	E	Ra	dio Ad	ccess Networ	rk <mark>X</mark>	Core N	etwork X
Title: ដ	Dat	<mark>a forw</mark>	arding	during 3	BG RAU	<mark>in PM</mark>	MCC	ONNE	CTED state			
Source: %	Sier	mens	AG									
Work item code: %	TEL	_99							Date: ଖ	3 <mark>20</mark>	01-10-24	
Category: ж	F								Release: ೫	R9	9	
	Detai	F (ess A (con B (Add C (Fur D (Edi led exp	ential c respon dition of nctional torial m planatio	owing cate orrection, ds to a co f feature), modifica podificatio ons of the FR 21.900) prrection i tion of fea n) above ca	ature)			Use <u>one</u> o 2 e) R96 R97 R98 R99 REL-4 REL-5	(GSI (Rela (Rela (Rela (Rela (Rela	Dllowing re M Phase 2 ease 1996 ease 1997 ease 1998 ease 1999 ease 4) ease 5))))
Reason for change	э: Ж	-				-			ction security			
				o lossles numberir		ction b	y CR	211r	2 "Correction	is for	lossless a	and PDCP
Summary of chang	уе: Ж			and aligr stem cha				SN f	unctionality fo	or 3G	- 3G cha	nge with
Consequences if not approved:	Ħ	If the CR is not approved, it is highly probable that implementations behave differently in the various RAU cases. Higher implementation/test effort because of inconsistencies between similar procedures. The user service for certain 3G - 3G changes is degraded compared to intersystem changes.										
Clauses affected:	ж	6.9.2	.1									
Other specs	ж	X Ot	her co	ore speci	fications	g	€ <mark>T</mark>	S 29.	060. CR pend	ding r	egarding	transfer
affected:	-			cification ecificatio			of	PDC	P SN.			
Other comments:	Ħ											

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://www.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.


6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection re-establishment", or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see sub-clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure 36.

Note: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see sub-clause 6.1.2.4.1).

68

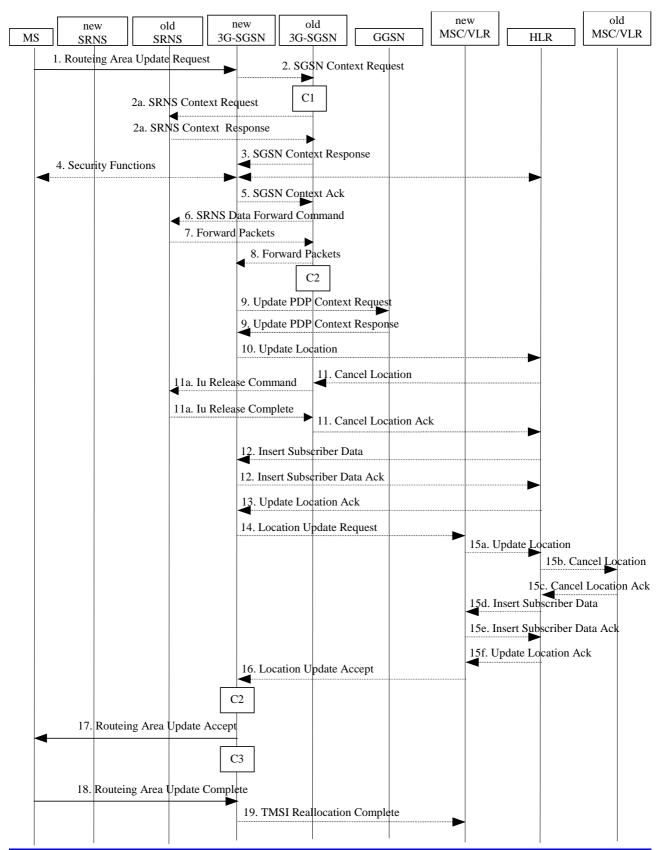


Figure 1: UMTS RA Update Procedure

<u>3GPP</u>

- The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see subclause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in subclause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN starts a timer_responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN starts a timer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old SGSN shall sends SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using acknowledged mode which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next insequence PDCP sequence number expected from the MS (per each active radio bearer). No conversion of PDCP sequence numbers to SNDCP sequence numbers shall be done in the 3G-SGSN.
- 3) The old 3G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. For each PDP context the old 3G-SGSN shall include the GTP sequence number for the next uplink GTP PDU to be tunnelled to the GGSN and the next downlink GTP sequence number for the next PDU to be sent to the MS. Each PDP Context also includes PDCP sequence numbers if PDCP sequence numbers are received from the old SRNS. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request. The GTP sequence numbers received from the old 3G-SGSN are only relevant if delivery order is required for the PDP context (QoS profile).
- <u>4)</u> <u>3)</u>Security functions may be executed. These procedures are defined in subclause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.

- 4)5) If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 5)6) If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G□SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
 - 6)7) TheFor each indicated RAB the SRNS starts duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. For each radio bearer which uses lossless PDCP the SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP□PDUs together with their related PDCP downlink sequence number, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
 - <u>7)8)</u> If the RA update is an Inter-SGSN RA Update, the old 3G□SGSN tunnels the GTP PDUs to the new 3G-SGSN. No conversion of PDCP sequence numbers to SNDCP sequence numbers shall be done in the 3G-SGSN.
 - 8) 8) 8) 8) 16 the RA update is an Inter-SGSN RA Update and if the MS is-was not in the PMM-CONNECTED state in the new 3G-SGSN, the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state in the new 3G-SGSN, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- 9)10) 9)-If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 10)11)10)If the RA update is an Inter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 110a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer expires, the SRNS responds with an Iu Release Complete message.
- 12)11)If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 13)12)If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 14)13)If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 15)14)If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.

- b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
- c) The old VLR acknowledges with Cancel Location Ack (IMSI).
- d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
- e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
- f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- <u>16</u>)15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- <u>17)</u>16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the SGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
 - 18)17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
 - 19)18) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
 - NOTE: Steps 14, 15, and 18Steps 15, 16, and 19 are performed only if step 1214 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

CAMEL procedure calls shall be performed; see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

3GPP TSG-SA2 Meeting #20 Kobe, October 29 – November 2, 2001

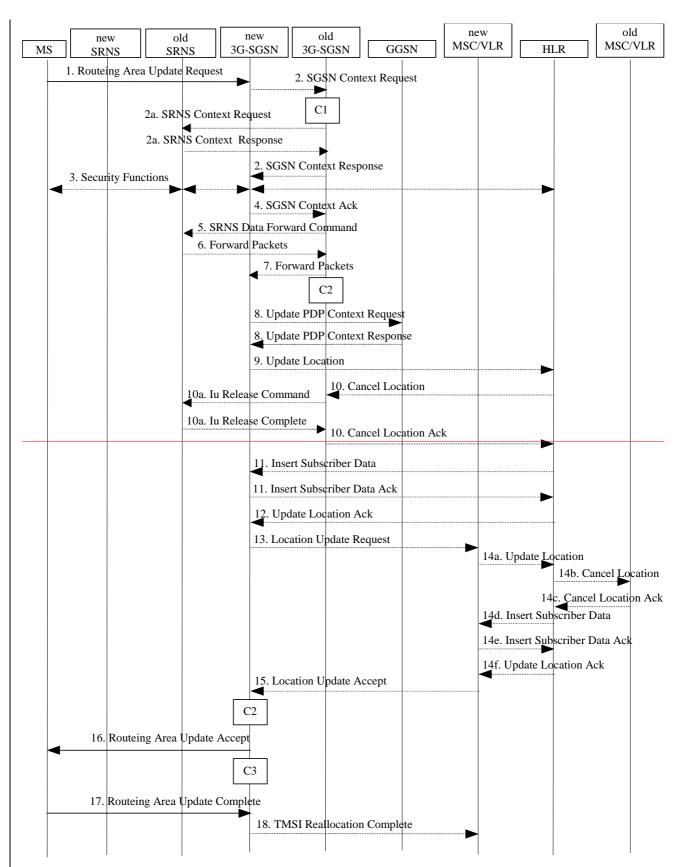
				CHAI	NGE	R	EQ	UE	ST				CR-Form-v3
æ	23	.060	CR	272		ж	rev	1	Ħ	Current ver	sion:	4.2.0	ж
For HELP on using this form, see bottom of this page or look at the pop-up text over the # symbols.													
Proposed change affects: # (U)SIM ME/UE Radio Access Network X Core Network X													
<i>Title:</i> ដ	Dat	a forw	arding	during	3G RA	U in	PMN	<u>/ CO</u>	NNE	CTED state			
Source: ೫	Sie	Siemens AG											
Work item code: #	TE	4								Date: #	20	01-10-24	
Category: ж	Α									Release: #	RE	L-4	
Use one of the following categories:Use one of the following releasF (essential correction)2A (corresponds to a correction in an earlier release)R96B (Addition of feature),R97C (Functional modification of feature)R98D (Editorial modification)R99D tetailed explanations of the above categories canREL-4be found in 3GPP TR 21.900.REL-5													
Reason for change	e: X	Align	ment	to inter s	system	cha	inge a	and c	orred	ction security	funct	tions in fig	ure.
		Align	ment		ss cor	recti	on by			248) "Correc			
Summary of chang	уе: Ж			and alig stem cha					SN fu	unctionality fo	or 3G	- 3G char	ige with
Consequences if not approved:	X	diffei of ind	rently i	in the va tencies l	rious F petwee	RAU en si	case milar	s. Hi proc	gher edur	le that impler implementat es. The user ystem chang	ion/te servi	st effort b	ecause
Clauses affected:	ж	6.9.2	2.1										
Other specs affected:	ж	Τe	est spe	ore spec	ns	ns	¥			060. CR pend P SN.	ding r	egarding t	ransfer
Other comments:	Ħ	0	aivi Sp	pecificati	ons								

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://www.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.


6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection reestablishment" or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in.

NOTE 1: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see clause 6.1.2.4.1).

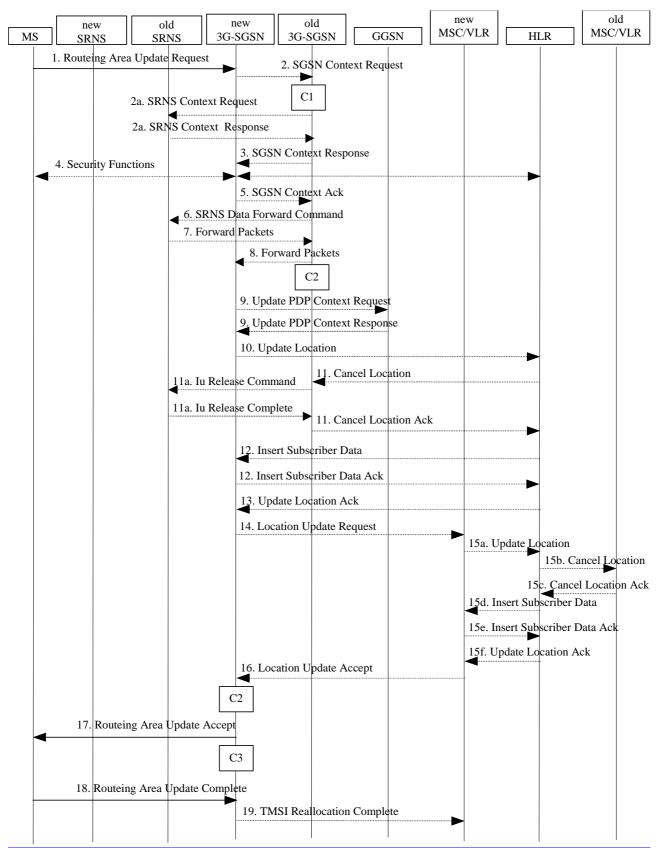


Figure 1: UMTS RA Update Procedure

- The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see clause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in clause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE 2: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS. If the old SGSN starts a timer_responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN starts a timer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is in the PMM-CONNECTED state and the RAU was received over another Iu connection than the established one, the old SGSN sends an SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message-from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context-using acknowledged mode which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS (per each active radio bearer). No conversion of PDCP sequence numbers to SNDCP sequence numbers shall be done in the 3G-SGSN.
- 3) The old 3G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. For each PDP context the old 3G-SGSN shall include the GTP sequence number for the next uplink GTP PDU to be tunnelled to the GGSN and the next downlink GTP sequence number for the next PDU to be sent to the MS. Each PDP Context also includes the PDCP sequence numbers if PDCP sequence numbers are received from the old SRNS for the next downlink PDCP-PDU to be sent to the MS (if lossless PDCP) and the PDCP sequence number for the next uplink PDCP-PDU to be received in from the MS (if lossless PDCP). The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request. The GTP sequence numbers received from the old 3G-SGSN are only relevant if delivery order is required for the PDP context (QoS profile).
- <u>4)</u> <u>3)</u> Security functions may be executed. These procedures are defined in clause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.

5)_4)—If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.

71

- 6) 5)—If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
 - 7) 6) For each indicated RAB the SRNS starts duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. For each radio bearer which uses lossless PDCP T the SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP-PDUs together with their related the PDCP downlink sequence numbers, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the dataforwarding timer.
 - 8) If the RA update is an Inter-SGSN RA Update, the old 3G-SGSN tunnels the GTP PDUs to the new 3G-SGSN. No conversion of PDCP sequence numbers to SNDCP sequence numbers shall be done in the 3G-SGSN.
 - 9) 8) If the RA update is an Inter-SGSN RA Update and if the MS was not in PMM-CONNECTED state in the new 3G-SGSN, the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state in the new 3G-SGSN, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- <u>10)</u>9)–If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 11)10)If the RA update is an Inter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 110a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 12)++)If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 13) 12) If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 14)13)If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.

- 15)14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- <u>16)</u> The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
 - <u>17)</u>16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the SGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
 - 18)17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
 - <u>19)18)</u>The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.

NOTE 3: Steps 1415, 1516, and 1819 are performed only if step 12-14 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

The CAMEL procedure call shalls be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

		rm-v4							
ж	3.060 CR 273 # ev 1 # Current version: 3.9.0 #								
For <u>HELP</u> on usi	ng this form, see bottom of this page or look at the pop-up text over the $lpha$ symbols	•							
Proposed change af	ects: # (U)SIM ME/UE Radio Access Network Core Network	K X							
	CAMEL interaction during RNC-initiated and RAB release-initiated local PDP contended in the second s	ext							
Source: #	Siemens								
Work item code: #	FEI Date: 米 23.10.2001								
Ľ	F Release: % R99 Use <u>one</u> of the following categories: Use <u>one</u> of the following release F (correction) 2 (GSM Phase 2) A (corresponds to a correction in an earlier release) R96 (Release 1996) B (addition of feature), R97 (Release 1997) C (functional modification of feature) R98 (Release 1998) D (editorial modification) R99 (Release 1999) Detailed explanations of the above categories can be found in 3GPP <u>TR 21.900</u> . REL-5 (Release 5)								
Summary of change.	# Addition of a CAMEL interaction during RNC-initiated and RAB release-initiated local PDP context modification procedure for real-time PDP contexts.	ed							
Consequences if not approved:	# The SCP would be not informed about the QoS change.								
Clauses affected:	¥ 9.2.3.4; 9.2.3.5								
Other specs Affected:	# Other core specifications # Test specifications O&M Specifications								
Other comments:	¥								

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.2.3.4 RNC-Initiated PDP Context Modification Procedure

The RNC can request the release of the Iu connection (see subclause "Iu Release Procedure") e.g., due to a break of the radio connection or due to user inactivity. After Iu Release the PDP contexts are modified as follows:

- In the SGSN, for a PDP context using background or interactive traffic class, the PDP context is preserved with no modifications.

- In the SGSN, for a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the associated RAB is released. The SGSN sends an Update PDP Context Request (TEID, QoS Negotiated) message to the GGSN to set the maximum bit rate to 0 kbit/s in the GGSN. The value of 0 kbit/s for the guaranteed bit rate indicates to the GGSN to stop sending packets to the SGSN for this PDP context. <u>CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078: CAMEL_GPRS_Change_Of_QoS. The procedure returns as result "Continue".</u>

The following procedures shall be performed in the MS when radio coverage is lost:

- For a PDP context using background or interactive traffic class, the PDP context is preserved even if RRC reestablishment procedures have failed.
- For a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the RRC re-establishment procedure has failed. After coverage is regained the MS should re-activate the PDP context and re-establish the RAB (refer to section "Re-establishment of RABs").

9.2.3.5 RAB Release-Initiated Local PDP Context Modification Procedure

The RNC can request a RAB to be released through the RAB Release procedure on the streaming or conversational traffic class bearers without releasing the Iu connection when there is a break in the radio connection. After the RAB(s) release the SGSN shall modify the PDP context as follows.

- In the SGSN, for a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the associated RAB is released. The SGSN sends an Update PDP Context Request (TEID, QoS Negotiated) message to the GGSN to set the maximum bit rate to 0 kbit/s in the GGSN. The value of 0 kbit/s for the guaranteed bit rate indicates to the GGSN to stop sending packets to the SGSN on this PDP context. <u>CAMEL procedure calls shall be performed</u>, see referenced procedure in 3G TS 23.078: CAMEL_GPRS_Change_Of_QoS. The procedure returns as result "Continue".

The following procedures shall be performed in the MS when radio coverage is lost:

For a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the
maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the RRC re-establishment
procedure has failed. After coverage is regained the MS should re-activate the PDP context and re-establish the
RAB (refer to section "Re-establishment of RABs").

The radio access bearer shall be released by the RNC only when RRC re-establishment is not any longer possible. Therefore the change happens simultaneously in the MS and in the SGSN.

		(CHAN	GE R	EQ	UES	ST				CR-Form-v4
æ	23.0	<mark>60</mark> CR	274	ж	ev	1	ж	Current vers	sion:	4.2.0	ж
For <u>HELP</u> on us	ing this	form, see	bottom o	f this pa	ge or l	look a	t the	pop-up tex	t over	the ¥ syr	mbols.
Proposed change a	ffects:		SIM	ME/UE		Radio	o Aco	cess Networ	k	Core Ne	etwork X
Title: Ж			ion during cedure foi					release-initi	ated l	ocal PDP	context
Source: ೫	Sieme	ns									
Work item code: %	TEI_4							Date: #	23.	10.2001	
	Use <u>one</u> <i>F</i> (<i>A</i> (<i>B</i> (<i>C</i> (<i>D</i> (Detailed	correction) correspond addition of functional éditorial m explanatic	ds to a corr	rection in n of featu bove cate	re)			Release: ¥ Use <u>one</u> or 2) R96 R97 R98 R99 REL-4 REL-5	f the fo (GSN (Rele (Rele (Rele (Rele (Rele		
Reason for change:	R d R kl C T	AB releas escribe ho elease. T bit/s. This SI defined his CR ad	e-initiated by to hand he maxim QoS char J. ds the Ca	l local PI dle the P um bit ra nge is no mel inte	DP co DP co ate of r ot repo	ntext r ontexts real-tir orted to n to th	modi s in c me F o the ese	nodification ification pro- case of lu R 2DP context 2 SCP in case both section	cedure elease s are o se of a ns.	e in 23.06 e and RAE downgrad in MS with	0 3 led to 0 n GPRS-
Summary of change								initiated and real-time Pl			nitiated
Consequences if not approved:	жT	he SCP w	ould be n	ot inform	ned ab	out th	e Qo	oS change.			
Clauses affected:	ж <mark>9</mark>	<mark>.2.3.4; 9.2</mark>	.3.5								
Other specs Affected:	¥	Test spe	re specific cifications ecificatior	6	ж						
Other comments:	ж										

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.2.3.4 RNC-Initiated PDP Context Modification Procedure

The RNC can request the release of the Iu connection (see clause "Iu Release Procedure") e.g. due to a break of the radio connection or due to user inactivity. After Iu Release the PDP contexts are modified as follows:

- In the SGSN, for a PDP context using background or interactive traffic class, the PDP context is preserved with no modifications.
- In the SGSN, for a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the associated RAB is released. The SGSN sends an Update PDP Context Request (TEID, QoS Negotiated) message to the GGSN to set the maximum bit rate to 0 kbit/s in the GGSN. The value of 0 kbit/s for the guaranteed bit rate indicates to the GGSN to stop sending packets to the SGSN for this PDP context. <u>CAMEL procedure calls shall be performed</u>, see referenced procedure in 3G TS 23.078: CAMEL <u>GPRS Change Of QoS</u>. The procedure returns as result <u>"Continue"</u>.

The following procedures shall be performed in the MS when radio coverage is lost:

- For a PDP context using background or interactive traffic class, the PDP context is preserved even if RRC reestablishment procedures have failed.
- For a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the RRC re-establishment procedure has failed. After coverage is regained the MS should re-activate the PDP context and re-establish the RAB (refer to section "Re-establishment of RABs").

9.2.3.5 RAB Release-Initiated Local PDP Context Modification Procedure

The RNC can request a RAB to be released through the RAB Release procedure on the streaming or conversational traffic class bearers without releasing the Iu connection when there is a break in the radio connection.

After the RAB(s) release the SGSN shall modify the PDP context as follows:

- In the SGSN, for a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (both for uplink and downlink) when the associated RAB is released. The SGSN sends an Update PDP Context Request (TEID, QoS Negotiated) message to the GGSN to set the maximum bit rate to 0 kbit/s in the GGSN. The value of 0 kbit/s for the guaranteed bit rate indicates to the GGSN to stop sending downlink packets corresponding to this PDP context. <u>CAMEL procedure calls shall be performed, see referenced procedure in 3G TS 23.078: CAMEL GPRS Change Of QoS. The procedure returns as result "Continue".</u>

The following procedures shall be performed in the MS when radio coverage is lost:

- For a PDP context using streaming or conversational traffic class, the PDP context is preserved, but the maximum bit rate is downgraded to 0 kbit/s (for both uplink and downlink) when the RRC re-establishment procedure has failed. After coverage is regained the MS should start the MS-Initiated PDP Context Modification procedure or the PDP Context Deactivation Initiated by MS procedure. The MS shall use the PDP context modification procedure to re-activate the PDP context and to re-establish the RAB.

The radio access bearer shall be released by the RNC only when RRC re-establishment is not any longer possible. Therefore the change happens simultaneously in the MS and in the SGSN.

3GPP TSG SA WG2 #20 Kobe, Japan, 29th October – 2nd November 2001

3GPP TSG-CN WG2 Meeting #20 Brighton, UK, 15th - 19th October 2001

Tdoc	N2-01	0848
------	-------	------

	CR-Form-v3										
CHANGE REQUEST											
ж	23.060 CR 261 # rev 1 # Current version: 3.9.0 #										
For <mark>HELP</mark> on u	sing this form, see bottom of this page or look at the pop-up text over the # symbols.										
Proposed change affects: # (U)SIM ME/UE Radio Access Network Core Network X											
Title: ೫	Correction to CAMEL Procedure Names during RoutingAreaUpdate										
Source: ೫	Lucent Technologies										
Work item code: %	CAMEL Phase 3 Date: # 27 th October 2001										
Category: ж	F (essential correction) Release: % R99										
Use oneof the following categories:Use oneof the following relevanceF(essential correction)2(GSM Phase 2)A(corresponds to a correction in an earlier release)R96(Release 1996)B(Addition of feature),R97(Release 1997)C(Functional modification of feature)R98(Release 1998)D(Editorial modification)R99(Release 1999)Detailed explanations of the above categories canREL-4(Release 4)be found in 3GPP TR 21.900.REL-5(Release 5)											
Reason for change	 In Figure 36 in UMTS RA Procedure in TS 23.060 (3.8.0) there is an error in terms of the CAMEL detection point locations. The point at which the new-SGSN invokes CAMEL Procedures is currently labelled C2 which calls procedure "CAMEL_GPRS_Detach". This is clearly incorrect and should be CAMEL_GPRS_Routeing_Area_Update_Session, ie label C3. Similarly the point labelled C3 should be C4. 										
Summary of chang	Figure 36 has been revised such that at the new-SGSN the second occurance of the label C2 (Procedure CAMEL_GPRS_Detach) is now replaced with the label C3 (Procedure CAMEL_GPRS_Routing_Area_Update_Session) and the first occurance of label C3 (Procedure										

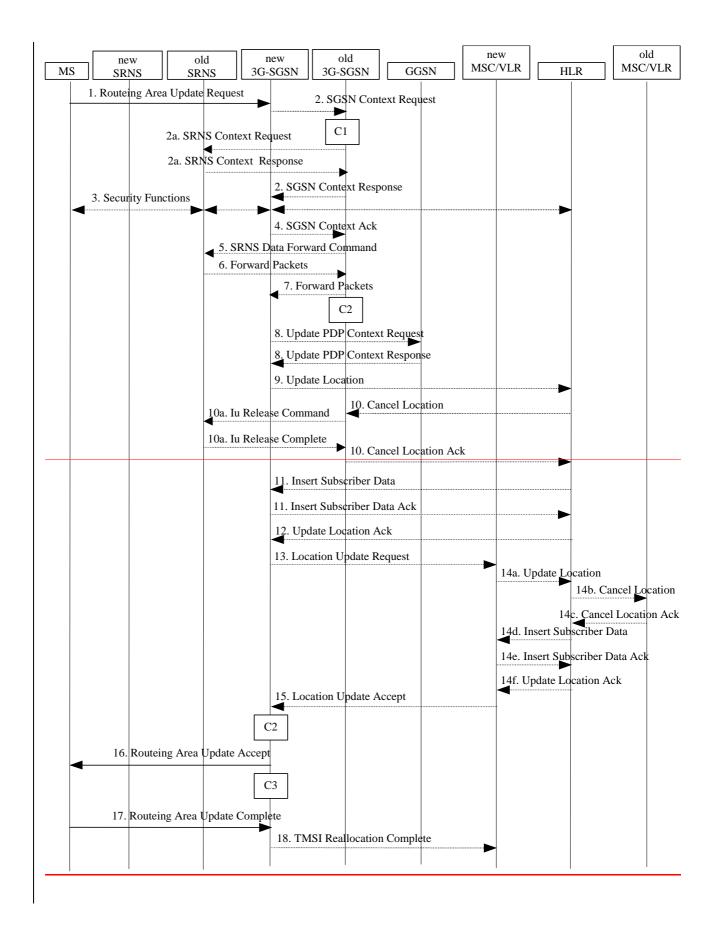
CAMEL_GPRS_Routing_Area_Update_Session) is replaced with the label C4 (Procedure CAMEL_GPRS_Routeing_Area_Update_Context)

Consequences if	К	Incorrect implementation of CAMEL capability in SGSN resulting erroneous
not approved:		behaviour.

Clauses affected:	ж	<mark>ំង 6.9.2.1</mark>										
Other specs	ж	Other core specifications #										
affected:		Test specifications										
		O&M Specifications										

Other comments: * This change request has been endorsed by TSG CNWG2, upon which it has no direct impact.

**** First Modified Section ****


6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection re-establishment", or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see sub-clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure 1.

Note: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see sub-clause 6.1.2.4.1).

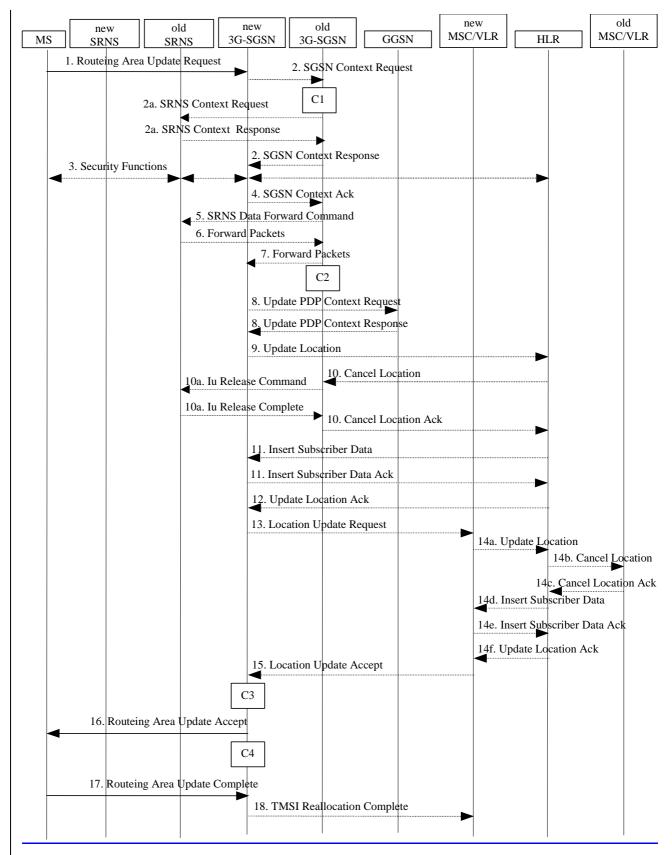


Figure 1: UMTS RA Update Procedure

- 1) The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see subclause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in subclause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old SGSN shall sends SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next insequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using acknowledged mode, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS (per each active radio bearer).
- 3) Security functions may be executed. These procedures are defined in subclause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.

- If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G?SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
- The SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP?PDUs together with the PDCP downlink sequence number, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN.
- If the RA update is an Inter-SGSN RA Update, the old 3G?SGSN tunnels the GTP PDUs to the new 3G-SGSN.
- 8) If the RA update is an Inter-SGSN RA Update and if the MS is in the PMM-CONNECTED state in the new 3G-SGSN, , the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- 9) If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 10) If the RA update is an nter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 10a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer expires, the SRNS responds with an Iu Release Complete message.
- 11) If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 13) If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt

of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.

- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the SGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- NOTE: Steps 14, 15, and 18 are performed only if step 12 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state. If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

- CAMEL procedure calls shall be performed; see referenced procedures in 3G TS 23.078:
 - C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

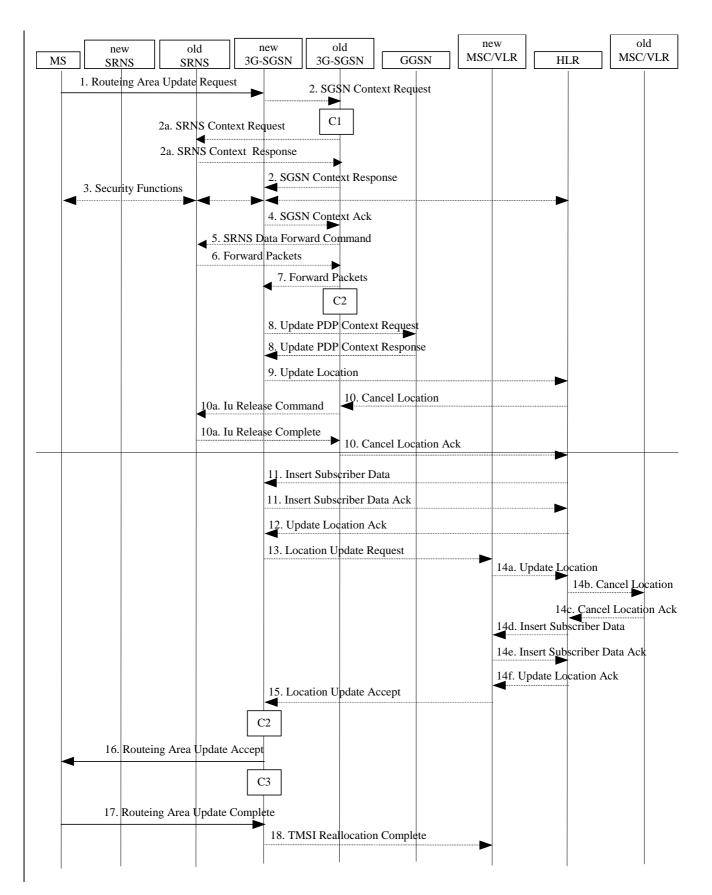
3GPP TSG-CN WG2 Meeting #20 Brighton, UK, 15th - 19th October 2001

				CHAN	IGE	R	EQ	UE	ST	-				CR-Form-v4
¥	23.	060	CR	262		ж	rev	1	ж	Curre	nt vers	sion:	4.2.0	ж
For <u>HELP</u> on u	sing t	his for	m, see	e bottom	of this	s pag	ge or	look	at th	e pop-u	ıp tex	t ovei	r the ¥ sy	mbols.
Proposed change a	affect	ts: #	(U)	SIM	ME	UE/		Rad	lio Ad	ccess N	letwor	'k	Core N	etwork X
Title: ¥	Cor	rection	n to CA	AMEL Pr	ocedu	<mark>ire N</mark>	ame	s dur	ing F	Routing	Areal	Ipdate	e	
Source: #	Luc	ent Te	echnolo	ogies										
Work item code: Ж	CA	MEL P	hase (3						Da	ate: ೫	8 <mark>18</mark>	th October	2001
Category: # Reason for change Summary of chang	Deta be fo	F (con A (con B (add C (fun D (edi iled exp und in In Fig term The label incor label Figur the la	rection) respondition of ctional dition of ctional m blanatic 3GPP s of the point a led C2 rect ar C3. S re 36 h abel C3	ds to a cc f feature), modificatio ons of the TR 21.900 6 in UMT e CAME t which t 2 which c nd should imilarly t nas been 2 (Proce	orrection ion of in above <u>0</u> . S RA L dete the ne alls pin d be C he po revise dure (on in a featur cate cate cate cate cate cate cate cate	re) gories cedur poir GSN dure ' EL_G belle uch th EL_G	re in Int loc invol CAN PRS d C3	TS 2 ation kes 0 /EL_ S_Ro sho t the S_De	e) R R R R R R R R R R R R R R R R R R R	<u>one</u> of 296 297 298 299 2EL-4 2EL-5 (3.8.0) Proce _Deta Area_ C4. GSN t	f the fo (GSI (Reli (Rel	ollowing re M Phase 2, ease 1996, ease 1997, ease 1998, ease 4) ease 5) e is an err S is curren This is clea ate_Sessi econd occ ced with t	or in htly arly on, ie
	C3 (Procedure CAMEL_GPRS_Routing_Area_Update_Session) and the fir occurance of label C3 (Procedure CAMEL_GPRS_Routing_Area_Update_Session) is replaced with the label (Procedure CAMEL_GPRS_Routeing_Area_Update_Context)										abel C4			
Consequences if not approved:	Ħ		rect in viour.	nplemen	tation	of C/	AME	L cap	Dabili	ity in SC	SSN r	esulti	ng errone	ous
Clauses affected:	ж	6.9.2	2.1											
Other specs affected:	æ	Te	est spe	ore speci ecification ecification	าร	ons	ж							
Other comments:	ж		chang t impa:		st has	beer	n end	orse	d by	TSG C	N 2, u	ipon	which it ha	as no

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.


6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection reestablishment" or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure 1.

NOTE 1: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see clause 6.1.2.4.1).

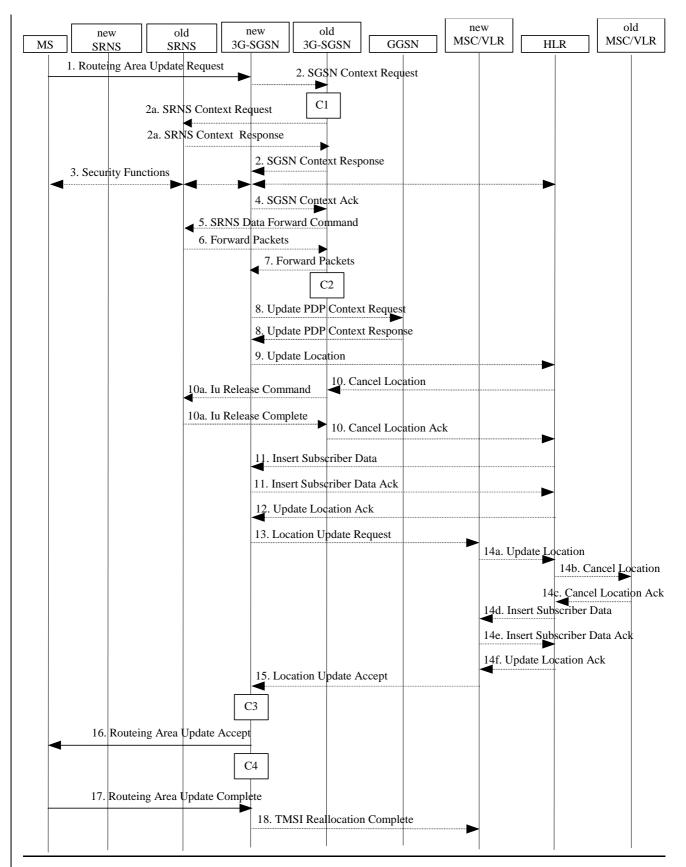


Figure 1: UMTS RA Update Procedure

- The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see clause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in clause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE 2: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN starts a timer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is in the PMM-CONNECTED state and the RAU was received over another Iu connection than the established one, the old SGSN sends an SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using acknowledged mode, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS (per each active radio bearer).
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 4) If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 5) If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.

- 6) The SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP-PDUs together with the PDCP downlink sequence number, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN.
- 7) If the RA update is an Inter-SGSN RA Update, the old 3G-SGSN tunnels the GTP PDUs to the new 3G-SGSN.
- 8)If the RA update is an Inter-SGSN RA Update and if the MS wasnot in PMM-CONNECTED state in the new 3G-SGSN, the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state in the new 3G-SGSN, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- 9) If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 10) If the RA update is an nter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 10a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 11) If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 13) If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.

- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the SGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- NOTE 3: Steps 14, 15, and 18 are performed only if step 12 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

The CAMEL procedure call shalls be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

		C	HANGE	ERE	QUE	EST				CR-Form-v4
ж	23.06	<mark>0</mark> CR <mark>2</mark>	95	ж.	€V	ж	Current vers	sion:	3.9.0	ж
For <u>HELP</u> on us	sing this f	orm, see b	ottom of thi	s page	or look	at the	e pop-up text	tover	the ¥ syr	nbols.
Proposed change a	affects: a	₩ (U)SI	M ME	E/UE	Rad	dio Ac	cess Networ	k	Core Ne	etwork X
Title: ೫	Correcti	ion of wror	g reference	S						
Source: ೫	Siemen	S								
Work item code: ೫	TEI						Date: ೫	21.	11.2001	
	F (co A (c B (a C (fu D (e Detailed e	orrection) orresponds ddition of fe unctional mo ditorial mod	odification of lification) of the above	on in an feature,)		Release: ¥ Use <u>one</u> of 2 8) R96 R97 R98 R99 REL-4 REL-5	the fo. (GSN) (Rele (Rele (Rele (Rele (Rele		
Reason for change	Co atti cur Sin Act	ntext Activ ributes hav rrent text re nilar incons tivation pro is CR corre	ation proceed re been down efers wrongl sistency existency existency ocedure. ects these in	dure (s vngrade ly to ste sts in t	ection s ed in st ep 4. he sect stent ref	9.2.2. ² ep 5 (ion 9.2		ited if nent p ndary	the QoS procedure PDP Cor). But the ntext
Summary of chang			wrong refer DP Context				context Activa e.	ation p	procedure	and
Consequences if not approved:	ំង Inc	consistent o	description.							
Clauses affected:	¥ <mark>9.2</mark>	2.2.1; 9.2.2	.1.1							
Other specs affected:	-	Other core Test speci O&M Spec		ons	ж					
Other comments:	ж									

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.2.2 Activation Procedures

9.2.2.1 PDP Context Activation Procedure

The PDP Context Activation procedure is illustrated in Figure 1 and Figure 2.

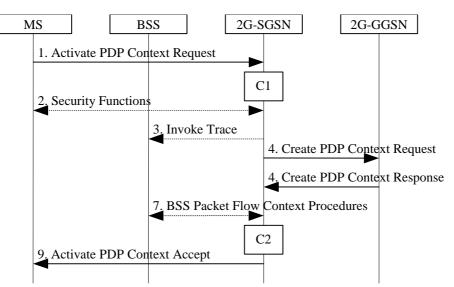
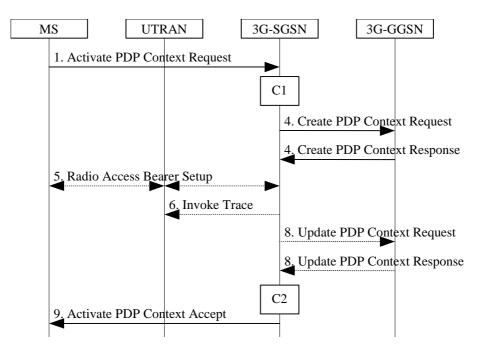



Figure 1: PDP Context Activation Procedure for GSM

1) The MS sends an Activate PDP Context Request (NSAPI, TI, PDP Type, PDP Address, Access Point Name, QoS Requested, PDP Configuration Options) message to the SGSN. The MS shall use PDP Address to indicate whether it requires the use of a static PDP address or whether it requires the use of a dynamic PDP address. The MS shall leave PDP Address empty to request a dynamic PDP address. The MS may use Access Point Name to select a reference point to a certain external network and/or to select a service. Access Point Name is a logical name referring to the external packet data network and/or to a service that the subscriber wishes to connect to. QoS Requested indicates the desired QoS profile. PDP Configuration Options may be used to request optional PDP parameters from the GGSN (see GSM 09.60). PDP Configuration Options is sent transparently through the SGSN.

- 2) In A/Gb mode, security functions may be executed. These procedures are defined in subclause "Security Function".
- 3) In A/Gb mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the BSS. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- 4) The SGSN validates the Activate PDP Context Request using PDP Type (optional), PDP Address (optional), and Access Point Name (optional) provided by the MS and the PDP context subscription records. The validation criteria, the APN selection criteria, and the mapping from APN to a GGSN are described in annex A.

If no GGSN address can be derived or if the SGSN has determined that the Activate PDP Context Request is not valid according to the rules described in annex A, the SGSN rejects the PDP context activation request.

If a GGSN address can be derived, the SGSN creates a TEID for the requested PDP context. If the MS requests a dynamic address, the SGSN lets a GGSN allocate the dynamic address. The SGSN may restrict the requested QoS attributes given its capabilities and the current load, and it shall restrict the requested QoS attributes according to the subscribed QoS profile.

The SGSN sends a Create PDP Context Request (PDP Type, PDP Address, Access Point Name, QoS Negotiated, TEID, NSAPI, MSISDN, Selection Mode, Charging Characteristics, Trace Reference, Trace Type, Trigger Id, OMC Identity, PDP Configuration Options) message to the affected GGSN. Access Point Name shall be the APN Network Identifier of the APN selected according to the procedure described in Annex A. PDP Address shall be empty if a dynamic address is requested. The GGSN may use Access Point Name to find an external network and optionally to activate a service for this APN. Selection Mode indicates whether a subscribed APN was selected, or whether a non-subscribed APN sent by an MS or a non-subscribed APN chosen by the SGSN was selected. Selection Mode is set according to Annex A. The GGSN may use Selection Mode when deciding whether to accept or reject the PDP context activation. For example, if an APN requires subscription, the GGSN is configured to accept only the PDP context activation that requests a subscribed APN as indicated by the SGSN with Selection Mode. Charging Characteristics indicates which kind of charging the PDP context is liable for. The charging characteristics on the GPRS subscription and individually subscribed APNs as well as the way the SGSN handles Charging Characteritics and chooses to send them or not to the GGSN is defined in 3G TS 32.015 [70]. The SGSN shall include Trace Reference, Trace Type, Trigger Id, and OMC Identity if GGSN trace is activated. The SGSN shall copy Trace Reference, Trace Type, and OMC Identity from the trace information received from the HLR or OMC.

The GGSN creates a new entry in its PDP context table and generates a Charging Id. The new entry allows the GGSN to route PDP PDUs between the SGSN and the external PDP network, and to start charging. The way the GGSN handles Charging Characteritics that it may have received from the SGSN is defined in 3G TS 32.015 [70]. The GGSN then returns a Create PDP Context Response (TEID, PDP Address, PDP Configuration Options, QoS Negotiated, Charging Id, Cause) message to the SGSN. PDP Address is included if the GGSN allocated a PDP address. If the GGSN has been configured by the operator to use External PDN Address Allocation for the requested APN, PDP Address shall be set to 0.0.0.0, indicating that the PDP address shall be negotiated by the MS with the external PDN after completion of the PDP Context is in ACTIVE state, and use the GGSN-Initiated PDP Context Modification procedure to transfer the currently used PDP address to the SGSN and the MS. PDP Configuration Options contain optional PDP parameters that the GGSN may transfer to the MS. These optional PDP parameters may be requested by the MS in the Activate PDP Context Request message, or may be sent unsolicited by the GGSN. PDP Configuration Options is sent transparently through the SGSN. The Create PDP Context messages are sent over the backbone network.

If QoS Negotiated received from the SGSN is incompatible with the PDP context being activated, the GGSN rejects the Create PDP Context Request message. The GGSN operator configures the compatible QoS profiles.

- 5) In Iu mode, RAB setup is done by the RAB Assignment procedure, see subclause "RAB Assignment Procedure".
- 6) In Iu mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the UTRAN. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- 7) In A/Gb mode, BSS packet flow context procedures may be executed. These procedures are defined in subclause "BSS Context".

- 8) In Iu mode and in case the QoS attributes have been downgraded in step 4<u>5</u>, the SGSN may inform the GGSN about the downgraded QoS attributes by sending an Update PDP Context Request to the affected GGSN. The GGSN confirms the new QoS attributes by sending an Update PDP Context Response to the SGSN.
- 9) The SGSN inserts the NSAPI along with the GGSN address in its PDP context. If the MS has requested a dynamic address, the PDP address received from the GGSN is inserted in the PDP context. The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns an Activate PDP Context Accept (PDP Type, PDP Address, TI, QoS Negotiated, Radio Priority, Packet Flow Id, PDP Configuration Options) message to the MS. The SGSN is now able to route PDP PDUs between the GGSN and the MS, and to start charging.

For each PDP Address a different quality of service (QoS) profile may be requested. For example, some PDP addresses may be associated with E-mail that can tolerate lengthy response times. Other applications cannot tolerate delay and demand a very high level of throughput, interactive applications being one example. These different requirements are reflected in the QoS profile. The QoS profile is defined in subclause "Quality of Service Profile". If a QoS requirement is beyond the capabilities of a PLMN, the PLMN negotiates the QoS profile as close as possible to the requested QoS profile. The MS either accepts the negotiated QoS profile, or deactivates the PDP context.

After an SGSN has successfully updated the GGSN, the PDP contexts associated with an MS is distributed as shown in clause "Information Storage".

If the PDP Context Activation Procedure fails or if the SGSN returns an Activate PDP Context Reject (Cause, PDP Configuration Options) message, the MS may attempt another activation to the same APN up to a maximum number of attempts.

For an MS with GPRS-CSI defined, CAMEL interaction may be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Establishment.

In Figure 1 and Figure 2, procedures return as result "Continue".

C2) CAMEL_GPRS_PDP_Context_Establishment_Acknowledgement.

In Figure 1 and Figure 2, procedures return as result "Continue".

9.2.2.1.1 Secondary PDP Context Activation Procedure

The Secondary PDP Context Activation procedure may be used to activate a PDP context while reusing the PDP address and other PDP context information from an already active PDP context, but with a different QoS profile. Procedures for APN selection and PDP address negotiation are not executed. A unique TI and a unique NSAPI shall identify each PDP context sharing the same PDP address and APN.

The Secondary PDP Context Activation procedure may be executed without providing a Traffic Flow Template (TFT) to the newly activated PDP context if all other active PDP contexts for this PDP address and APN already have an associated TFT.Otherwise a TFT shall be provided. The TFT contains attributes that specify an IP header filter that is used to direct data packets received from the interconnected external packet data network to the newly activated PDP context.

The Secondary PDP Context Activation procedure may only be initiated after a PDP context is already activated for the same PDP address and APN. The procedure is illustrated in Figure 3 and Figure 4.

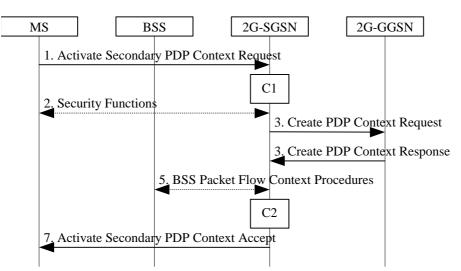


Figure 3: Secondary PDP Context Activation Procedure for GSM

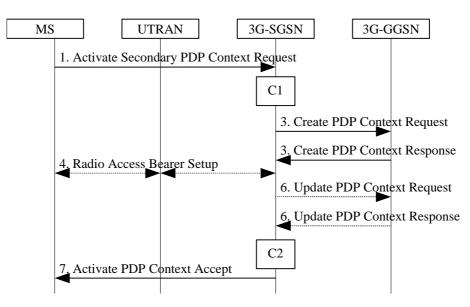


Figure 4: Secondary PDP Context Activation Procedure for UMTS

- The MS sends an Activate Secondary PDP Context Request (Linked TI, NSAPI, TI, QoS Requested, TFT) message to the SGSN. Linked TI indicates the TI value assigned to any one of the already activated PDP contexts for this PDP address and APN. QoS Requested indicates the desired QoS profile. TFT is sent transparently through the SGSN to the GGSN to enable packet classification for downlink data transfer. TI and NSAPI contain values not used by any other activated PDP context.
- 2) In A/Gb mode, security functions may be executed. These procedures are defined in subclause "Security Function".
- 3) The SGSN validates the Activate Secondary PDP Context Request using the TI indicated by Linked TI. The same GGSN address is used by the SGSN as for the already-activated PDP context(s) for that TI and PDP address.

The SGSN may restrict the requested QoS attributes given its capabilities and the current load, and it shall restrict the requested QoS attributes according to the subscribed QoS profile, which represents the maximum QoS per PDP context to the associated APN. The GGSN may restrict and negotiate the requested QoS as specified in subclause "PDP Context Activation Procedure". The SGSN sends a Create PDP Context Request (QoS Negotiated, TEID, NSAPI, Primary NSAPI, TFT) message to the affected GGSN. Primary NSAPI indicates the NSAPI value assigned to any one of the already activated PDP contexts for this PDP address and

APN. TFT is included only if received in the Activate Secondary PDP Context Request message. The GGSN uses the same external network as used by the already-activated PDP context(s) for that PDP address, generates a new entry in its PDP context table, and stores the TFT. The new entry allows the GGSN to route PDP PDUs via different GTP tunnels between the SGSN and the external PDP network. The GGSN returns a Create PDP Context Response (TEID, QoS Negotiated, Cause) message to the SGSN.

- 4) In Iu mode, RAB setup is done by the RAB Assignment procedure.
- 5) In A/Gb mode, BSS packet flow context procedures may be executed. These procedures are defined in subclause "BSS Context".
- 6) In Iu mode and in case when the QoS attributes <u>have been downgraded in step 4</u>are downgraded (step 3), the SGSN may inform the GGSN about the downgraded QoS attributes by sending to it an Update PDP Context Request. The GGSN confirms the new QoS attributes by sending an Update PDP Context Response to the SGSN.
- 7) The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns an Activate Secondary PDP Context Accept (TI, QoS Negotiated, Radio Priority, Packet Flow Id) message to the MS. The SGSN is now able to route PDP PDUs between the GGSN and the MS via different GTP tunnels and possibly different LLC links.

For each additionally activated PDP context a QoS profile and TFT may be requested.

If the secondary PDP context activation procedure fails or if the SGSN returns an Activate Secondary PDP Context Reject (Cause) message, the MS may attempt another activation with a different TFT, depending on the cause.

CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Establishment.

In Figure 3 and in Figure 4, procedures return as result "Continue".

C2) CAMEL_GPRS_PDP_Context_Establishment_Acknowledgement.

In Figure 3 and in Figure 4, procedures return as result "Continue".

		CHA	NGE R	EQUE	EST				CR-Form-v4
ж	23.06	0 CR 296	ж	ev	ж	Current vers	sion:	4.2.0	ж
For <u>HELP</u> on u	sing this f	form, see bottom	n of this pag	ge or look	at the	e pop-up text	over th	he 🛱 syn	nbols.
Proposed change	affects:	₩ (U)SIM	ME/UE	Rad	dio Aco	cess Networl	k	Core Ne	twork X
Title: %	Correct	ion of wrong refe	erences						
Source: ೫	Siemen	S							
Work item code: %	TEI					Date: ೫	21.1	1.2001	
Category: ₩	F (c A (c B (a C (fu D (e Detailed e	of the following ca orrection) orresponds to a c addition of feature) unctional modification explanations of the in 3GPP <u>TR 21.90</u>	orrection in a , tion of featur on) e above cate	re)		Release: ¥ Use <u>one</u> of 2) R96 R97 R98 R99 REL-4 REL-5	the follo (GSM I (Releas (Releas (Releas	owing relé Phase 2) se 1996) se 1997) se 1998) se 1999) se 4)	eases:
Reason for change	Co att cu Sir Ac Th	e optional step 6 intext Activation ributes have bee rrent text refers nilar inconsisten tivation procedu is CR corrects th	procedure en downgra wrongly to s icy exists in re. nese incons	(section s ded in ste step 4. the sect sistent ref	9.2.2.1 ep 5 (F ion 9.2) may execu RAB Assignn 2.2.1.1 Secor es.	nted if it nent prindary P	the QoS ocedure) PDP Con). But the text
Summary of chang		rrection of wron condary PDP C					ation pr	ocedure	and
Consequences if not approved:	¥ Inc	consistent descri	ption.						
Clauses affected:	Ж <mark>9.2</mark>	2.2.1; 9.2.2.1.1							
Other specs affected:		Other core spec Test specificatic O&M Specificati	ons	ж					
Other comments:	ж								

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.2.2 Activation Procedures

9.2.2.1 PDP Context Activation Procedure

The PDP Context Activation procedure is illustrated in Figure 1 and Figure 2.

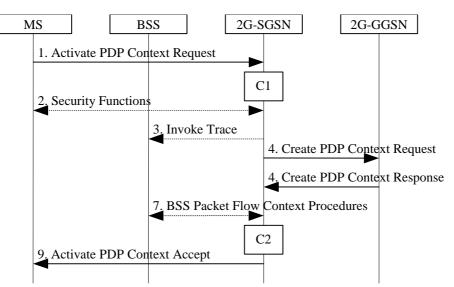
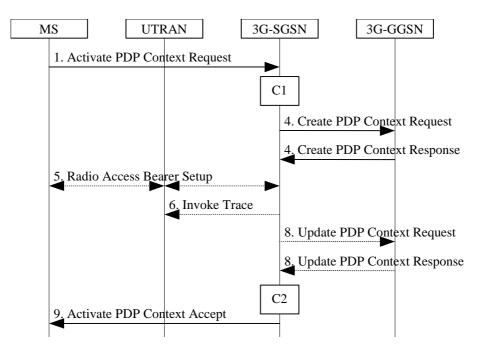



Figure 1: PDP Context Activation Procedure for GSM

1) The MS sends an Activate PDP Context Request (NSAPI, TI, PDP Type, PDP Address, Access Point Name, QoS Requested, PDP Configuration Options) message to the SGSN. The MS shall use PDP Address to indicate whether it requires the use of a static PDP address or whether it requires the use of a dynamic PDP address. The MS shall leave PDP Address empty to request a dynamic PDP address. The MS may use Access Point Name to select a reference point to a certain external network and/or to select a service. Access Point Name is a logical name referring to the external packet data network and/or to a service that the subscriber wishes to connect to. QoS Requested indicates the desired QoS profile. PDP Configuration Options may be used to request optional PDP parameters from the GGSN (see GSM 09.60). PDP Configuration Options is sent transparently through the SGSN.

- 2) In A/Gb mode, security functions may be executed. These procedures are defined in clause "Security Function".
- 3) In A/Gb mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the BSS. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- 4) The SGSN validates the Activate PDP Context Request using PDP Type (optional), PDP Address (optional), and Access Point Name (optional) provided by the MS and the PDP context subscription records. The validation criteria, the APN selection criteria, and the mapping from APN to a GGSN are described in annex A.

If no GGSN address can be derived or if the SGSN has determined that the Activate PDP Context Request is not valid according to the rules described in annex A, the SGSN rejects the PDP context activation request.

If a GGSN address can be derived, the SGSN creates a TEID for the requested PDP context. If the MS requests a dynamic address, the SGSN lets a GGSN allocate the dynamic address. The SGSN may restrict the requested QoS attributes given its capabilities and the current load, and it shall restrict the requested QoS attributes according to the subscribed QoS profile.

The SGSN sends a Create PDP Context Request (PDP Type, PDP Address, Access Point Name, QoS Negotiated, TEID, NSAPI, MSISDN, Selection Mode, Charging Characteristics, Trace Reference, Trace Type, Trigger Id, OMC Identity, PDP Configuration Options) message to the affected GGSN. Access Point Name shall be the APN Network Identifier of the APN selected according to the procedure described in Annex A. PDP Address shall be empty if a dynamic address is requested. The GGSN may use Access Point Name to find an external network and optionally to activate a service for this APN. Selection Mode indicates whether a subscribed APN was selected, or whether a non-subscribed APN sent by an MS or a non-subscribed APN chosen by the SGSN was selected. Selection Mode is set according to Annex A. The GGSN may use Selection Mode when deciding whether to accept or reject the PDP context activation. For example, if an APN requires subscription, the GGSN is configured to accept only the PDP context activation that requests a subscribed APN as indicated by the SGSN with Selection Mode. Charging Characteristics indicates which kind of charging the PDP context is liable for. The charging characteristics on the GPRS subscription and individually subscribed APNs as well as the way the SGSN handles Charging Characteritics and chooses to send them or not to the GGSN is defined in 3GPP TS 32.215 [70]. The SGSN shall include Trace Reference, Trace Type, Trigger Id, and OMC Identity if GGSN trace is activated. The SGSN shall copy Trace Reference, Trace Type, and OMC Identity from the trace information received from the HLR or OMC.

The GGSN creates a new entry in its PDP context table and generates a Charging Id. The new entry allows the GGSN to route PDP PDUs between the SGSN and the external PDP network, and to start charging. The way the GGSN handles Charging Characteritics that it may have received from the SGSN is defined in 3GPP TS 32.215 [70]. The GGSN then returns a Create PDP Context Response (TEID, PDP Address, PDP Configuration Options, QoS Negotiated, Charging Id, Cause) message to the SGSN. PDP Address is included if the GGSN allocated a PDP address. If the GGSN has been configured by the operator to use External PDN Address Allocation for the requested APN, PDP Address shall be set to 0.0.0.0, indicating that the PDP address shall be negotiated by the MS with the external PDN after completion of the PDP Context Activation procedure. The GGSN shall relay, modify and monitor these negotiations as long as the PDP context is in ACTIVE state, and use the GGSN-Initiated PDP Context Modification procedure to transfer the currently used PDP address to the SGSN and the MS. PDP Configuration Options contain optional PDP parameters that the GGSN may transfer to the MS. These optional PDP parameters may be requested by the MS in the Activate PDP Context Request message, or may be sent unsolicited by the GGSN. PDP Configuration Options is sent transparently through the SGSN. The Create PDP Context messages are sent over the backbone network.

If QoS Negotiated received from the SGSN is incompatible with the PDP context being activated, the GGSN rejects the Create PDP Context Request message. The GGSN operator configures the compatible QoS profiles.

- 5) In Iu mode, RAB setup is done by the RAB Assignment procedure, see subclause "RAB Assignment Procedure".
- 6) In Iu mode and if BSS trace is activated, the SGSN shall send an Invoke Trace (Trace Reference, Trace Type, Trigger Id, OMC Identity) message to the UTRAN. Trace Reference, and Trace Type are copied from the trace information received from the HLR or OMC.
- In A/Gb mode, BSS packet flow context procedures may be executed. These procedures are defined in clause "BSS Context".

- 78) In Iu mode and in case the QoS attributes have been downgraded in step 45, the SGSN may inform the GGSN about the downgraded QoS attributes by sending an Update PDP Context Request to the affected GGSN. The GGSN confirms the new QoS attributes by sending an Update PDP Context Response to the SGSN.
- 9) The SGSN inserts the NSAPI along with the GGSN address in its PDP context. If the MS has requested a dynamic address, the PDP address received from the GGSN is inserted in the PDP context. The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns an Activate PDP Context Accept (PDP Type, PDP Address, TI, QoS Negotiated, Radio Priority, Packet Flow Id, PDP Configuration Options) message to the MS. The SGSN is now able to route PDP PDUs between the GGSN and the MS, and to start charging.

For each PDP Address a different quality of service (QoS) profile may be requested. For example, some PDP addresses may be associated with E-mail that can tolerate lengthy response times. Other applications cannot tolerate delay and demand a very high level of throughput, interactive applications being one example. These different requirements are reflected in the QoS profile. The QoS profile is defined in clause "Quality of Service Profile". If a QoS requirement is beyond the capabilities of a PLMN, the PLMN negotiates the QoS profile as close as possible to the requested QoS profile. The MS either accepts the negotiated QoS profile, or deactivates the PDP context.

After an SGSN has successfully updated the GGSN, the PDP contexts associated with an MS is distributed as shown in clause "Information Storage".

If the PDP Context Activation Procedure fails or if the SGSN returns an Activate PDP Context Reject (Cause, PDP Configuration Options) message, the MS may attempt another activation to the same APN up to a maximum number of attempts.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Establishment.

In Figure 1 and Figure 2, procedures return as result "Continue".

C2) CAMEL_GPRS_PDP_Context_Establishment_Acknowledgement.

In Figure 1 and Figure 2, procedures return as result "Continue".

9.2.2.1.1 Secondary PDP Context Activation Procedure

The Secondary PDP Context Activation procedure may be used to activate a PDP context while reusing the PDP address and other PDP context information from an already active PDP context, but with a different QoS profile. Procedures for APN selection and PDP address negotiation are not executed. A unique TI and a unique NSAPI shall identify each PDP context sharing the same PDP address and APN.

The Secondary PDP Context Activation procedure may be executed without providing a Traffic Flow Template (TFT) to the newly activated PDP context if all other active PDP contexts for this PDP address and APN already have an associated TFT.Otherwise a TFT shall be provided. The TFT contains attributes that specify an IP header filter that is used to direct data packets received from the interconnected external packet data network to the newly activated PDP context.

The Secondary PDP Context Activation procedure may only be initiated after a PDP context is already activated for the same PDP address and APN. The procedure is illustrated in Figure 3 and Figure 4.

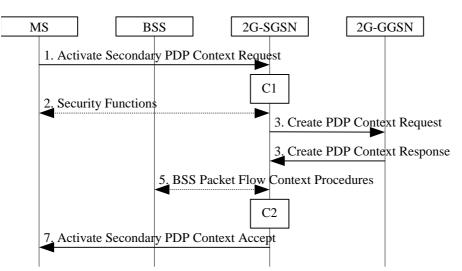


Figure 3: Secondary PDP Context Activation Procedure for GSM

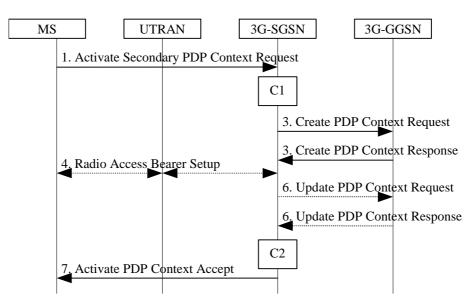


Figure 4: Secondary PDP Context Activation Procedure for UMTS

- The MS sends an Activate Secondary PDP Context Request (Linked TI, NSAPI, TI, QoS Requested, TFT) message to the SGSN. Linked TI indicates the TI value assigned to any one of the already activated PDP contexts for this PDP address and APN. QoS Requested indicates the desired QoS profile. TFT is sent transparently through the SGSN to the GGSN to enable packet classification for downlink data transfer. TI and NSAPI contain values not used by any other activated PDP context.
- 2) In A/Gb mode, security functions may be executed. These procedures are defined in clause "Security Function".
- The SGSN validates the Activate Secondary PDP Context Request using the TI indicated by Linked TI. The same GGSN address is used by the SGSN as for the already-activated PDP context(s) for that TI and PDP address.

The SGSN may restrict the requested QoS attributes given its capabilities and the current load, and it shall restrict the requested QoS attributes according to the subscribed QoS profile, which represents the maximum QoS per PDP context to the associated APN. The GGSN may restrict and negotiate the requested QoS as specified in clause "PDP Context Activation Procedure". The SGSN sends a Create PDP Context Request (QoS Negotiated, TEID, NSAPI, Primary NSAPI, TFT) message to the affected GGSN. Primary NSAPI indicates the NSAPI value assigned to any one of the already activated PDP context for this PDP address and APN. TFT is included only if received in the Activate Secondary PDP Context (s) for that PDP address, generates a new entry in its PDP context table, and stores the TFT. The new entry allows the GGSN to route PDP PDUs via different GTP tunnels between the SGSN and the external PDP network. The GGSN returns a Create PDP Context Response (TEID, QoS Negotiated, Cause) message to the SGSN.

- 4) In Iu mode, RAB setup is done by the RAB Assignment procedure.
- 5) In A/Gb mode, BSS packet flow context procedures may be executed. These procedures are defined in clause "BSS Context".
- 56) In Iu mode and in case the QoS attributes have been downgraded in step 34, the SGSN may inform the GGSN about the downgraded QoS attributes by sending an Update PDP Context Request to the affected GGSN. The GGSN confirms the new QoS attributes by sending an Update PDP Context Response to the SGSN.
- 7) The SGSN selects Radio Priority and Packet Flow Id based on QoS Negotiated, and returns an Activate Secondary PDP Context Accept (TI, QoS Negotiated, Radio Priority, Packet Flow Id) message to the MS. The SGSN is now able to route PDP PDUs between the GGSN and the MS via different GTP tunnels and possibly different LLC links.

For each additionally activated PDP context a QoS profile and TFT may be requested.

If the secondary PDP context activation procedure fails or if the SGSN returns an Activate Secondary PDP Context Reject (Cause) message, the MS may attempt another activation with a different TFT, depending on the cause.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Establishment.

In Figure 3 and in Figure 4, procedures return as result "Continue".

C2) CAMEL_GPRS_PDP_Context_Establishment_Acknowledgement.

In Figure 3 and in Figure 4, procedures return as result "Continue".

3GPP TSG-SA2 Meeting #21

Tdoc <u>S2-013489 revision of</u> S2-013266

Cancun, Mexico, 26th - 30th November 2001

	CR-Form-v4										
CHANGE REQUEST											
ж	23.060 CR CR <u>284</u> * rev <u>1</u> - * Current version: 3.9.0 *										
For <u>HELP</u> on usi	ing this form, see bottom of this page or look at the pop-up text over the $lpha$ symbols.										
Proposed change at	ffects: # (U)SIM ME/UE Radio Access Network Core Network X										
Title: ೫	Re-initialisation of the CAMEL GPRS dialogue after a relocation cancel										
Source: ೫	Alcatel										
Work item code: #	CAMEL phase3 Date: # 19/11/01										
Category: # F (essential correction) Release: # R99 Use one of the following categories: Use one of the following releases: 2 (GSM Phase 2) A (corresponds to a correction in an earlier release) R96 (Release 1996) B (addition of feature), R97 (Release 1997) C (functional modification of feature) R98 (Release 1998) D (editorial modification) R99 (Release 1999) Detailed explanations of the above categories can be found in 3GPP TR 21.900. REL-4 (Release 4)											
Reason for change:	Hissing Camel handling in case of relocation cancel .										
Summary of change	2: # The SRNS relocation procedure (used in case of 3G inter SGSN Handover) may be cancelled by the source RNC using the SRNS relocation Cancel procedure (described in paragraph 6.9.2.2.4 of 23.060).										
The SRNS relocation Cancel procedure may be initiated during or after the relocation preparation procedure.											
1. Before the CAMEL GPRS dialogue is terminated in the old SGSN. The G dialogue is maintained in this case.											
	2. After the CAMEL GPRS dialogue is terminated (after point C1 in figure 39, figure 42, figure 43 of 23.060). In this case a CAMEL GPRS dialogue shall be re-initialised.										
	The purpose of this Change request is to add in figure 43a the points C2 and C3 at the reception of relocation cancel message to allow the CAMEL GPRS dialogue to continue on the old SGSN because of the relocation failure.										

Consequences if ***** No CAMEL supervision after relocation cancel. The GPRS session/PDP contexts supervision is not maintained and CAMEL charging is not possible.

Clauses affected:	% 3.2, 6.9.2.2.4
Other specs affected:	% Other core specifications % Test specifications 0&M Specifications
Other comments:	æ

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

- First modified section –

3.2 Abbreviations

Applicable abbreviations can be found in GSM 01.04[1]. For the purposes of the present document the following abbreviations apply:

_

AAL5	ATM Adaptation Layer type 5
APN	Access Point Name
ATM	Asynchronous Transfer Mode
AUTN	Authentication Token
BG	Border Gateway
-	5
BSSAP+	Base Station System Application Part +
BSSGP	Base Station System GPRS Protocol
BVCI	BSSGP Virtual Connection Identifier
CCU	Channel Codec Unit
CDR	Call Detail Record
CGF	Charging Gateway Functionality
CGI	Cell Global Identification
CK	Cipher Key
CMM	Circuit Mobility Management
CS	Circuit Switched
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
DTM	Discontinuous Transfer Mode
EGPRS	Enhanced GPRS
ESP	Encapsulating Security Payload
GEA	GPRS Encryption Algorithm
GGSN	Gateway GPRS Support Node
GMM/SM	GPRS Mobility Management and Session Management
GPRS-SSF	GPRS Service Switching Function
GPRS-CSI	GPRS CAMEL Subscription Information
GSM-SCF	GSM Service Control Function
GSIM	GSM Service Identity Module
GSN	GPRS Support Node
GTP	GPRS Tunnelling Protocol
GTP-C	GTP Control Plane
GTP-U	GTP User Plane
ICMP	Internet Control Message Protocol
IETF	Internet Engineering Task Force
IK	Integrity Key
IP	Internet Protocol
IPv4	Internet Protocol version 4
IPv6	Internet Protocol version 6
IPX	Internet Packet eXchange
ISP	Internet Service Provider
KSI	Key Set Identifier
L2TP	Layer-2 Tunnelling Protocol
LL-PDU	LLC PDU
LLC	Logical Link Control
MAC	Medium Access Control
MIP	Mobile IP
MNRF	Mobile station Not Reachable Flag
MNRG	Mobile station Not Reachable for GPRS flag
MNRR	Mobile station Not Reachable Reason
MTP2 MTP2	Message Transfer Part layer 2
MTP3	Message Transfer Part layer 3
NGAF	Non-GPRS Alert Flag
N-PDU	Network Protocol Data Unit
NS	Network Service

NSAPINetwork layer Service Access Point IdentifierNSSNetwork SubSystemP-TMSIPacket TMSIPCUPacket Data COnvergence ProtocolPDCHPacket Data Convergence ProtocolPDCPPacket Data NetworkPDPPacket Data NetworkPDPPacket Data NetworkPDPPacket Data Protocol, e.g., IPPDUProtocol Data UnitPMMPacket Mobility ManagementPFFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRACRouteing Area CodeRAIRouteing Area UpdateRLCRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Network ControllerRNSRadio Network ControllerRNSRadio Network ControllerRNSServing GPRS Support NodeSMShort Message Service CentreSMS-GMSCShort Message Service CentreSMS-GMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCP	MOADI	
P-TMSIPacket TMSIPCUPacket Control UnitPDCHPacket Data Convergence ProtocolPDCPPacket Data NetworkPDPPacket Data NetworkPDPPacket Data Vetocol, e.g., IPPDUProtocol Data UnitPMMPacket Mobility ManagementPPFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRNCRadio Link ControlRNCRadio Network ControllerRNCRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Ressage Service CentreSMSShort Message Service CentreSMS-GMSCShort Message Service CentreSMS-GMSCShort Message Service CentreSMS-GMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNSTCAPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser		•
PCUPacket Control UnitPDCHPacket Data CHannelPDCPPacket Data Convergence ProtocolPDNPacket Data Protocol, e.g., IPPDUProtocol Data UnitPMMPacket Mobility ManagementPFFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemSM-SCShort MessageSM-SCShort Message Service CentreSMS-GMSCShort Message Service Cateway MSCSM-SUDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNSServing RNSTCAPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOAPTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link Identity		
PDCHPacket Data CHannelPDCPPacket Data Convergence ProtocolPDNPacket Data NetworkPDPPacket Data NetworkPDPPacket Data UnitPMMPacket Mobility ManagementPFFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Network ControllerRNCRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemSM-SCShort Message Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPTransmission Control ProtocolTFTTraffic Flow TemplateTCAPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTuppe of ServiceTRAUTranscoder		
PDCPPacket Data Convergence ProtocolPDNPacket Data NetworkPDPPacket Data Protocol, e.g., IPPDUProtocol Data UnitPMMPacket Mobility ManagementPFFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Ink ControlRNCRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort Message Service Gateway MSCSMS-GMSCShort Message Service Gateway MSCSMS-PDUSNDCP PDUSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPServing RNSTCAPTransaction Capabilities Application PartTCPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOS </td <td></td> <td></td>		
PDNPacket Data NetworkPDPPacket Data Protocol, e.g., IPPDUProtocol Data UnitPMMPacket Mobility ManagementPFFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Ink ControlRNCRadio Network ControllerRNSRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Network SubsystemSSNServing GPRS Support NodeSMShort MessageSM-SCShort Message Service CentreSMS-GMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDP		
PDPPacket Data Protocol, e.g., IPPDUProtocol Data UnitPMMPacket Mobility ManagementPPFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemSMS-GMSCShort MessageSMS-SCShort Message Service CentreSMS-GMSCShort Message Service Cateway MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent Convergence ProtocolSPIServing RNSTCAPTransaction Capabilities Application PartTCPTransfic Flow TemplateTEIDTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		-
PDUProtocol Data UnitPMMPacket Mobility ManagementPPFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Network ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Network SubsystemSMS-SCShort MessageSM-SCShort Message Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEA		
PMMPacket Mobility ManagementPPFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSM-GMSCShort MessageSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service ControlSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNSServing RNCSRNSServing RNCSRNSServing RNSTCAPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service I	PDP	
PPFPaging Proceed FlagPPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNCRadio Network ControllerRNCRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network ControlSGSNServing GPRS Support NodeSMShort MessageSMS-GMSCShort Message Service CentreSMS-GMSCShort Message Service Gateway MSCSNP-PDUSNDCP PDUSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmUIAUS<	PDU	
PPPPoint-to-Point ProtocolPTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Network Subport NodeSMShort MessageSM-SCShort Message Service Gateway MSCSMS-GMSCShort Message Service Interworking MSCSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNCSRNSServing RNCSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUMTS Integrity AlgorithmUIAUSTAN Registration Are	PMM	
PTPPoint To PointPVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSMS-GMSCShort Message service Gateway MSCSMS-GMSCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNSCServing RNCSRNSServing RNCSRNSServing RNCSRNSServing RNCSRNCServing RNCSRNSServing RNCSRNSServing RNCSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransaction	PPF	
PVCPermanent Virtual CircuitRARouteing AreaRABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service CentreSMS-GMSCShort Message Service Gateway MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNSServing RNCSRNSServing RNCSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module	PPP	Point-to-Point Protocol
RARouteing AreaRABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Network SubsystemRNCRadio Network SubsystemRNSShort MessageSMShort MessageSM-SCShort Message Service CentreSMS-GMSCShort Message Service Gateway MSCSNS-FPUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCServing RNCSRNSServing RNSTCAPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module	PTP	Point To Point
RABRadio Access BearerRACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSMS-GMSCShort Message Service CentreSMS-GMSCShort Message Service Gateway MSCSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module	PVC	Permanent Virtual Circuit
RACRouteing Area CodeRAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network SubsystemRNTIRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSNPDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module	RA	Routeing Area
RAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module	RAB	Radio Access Bearer
RAIRouteing Area IdentityRANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSTASServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunneling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module	RAC	Routeing Area Code
RANAPRadio Access Network Application ProtocolRAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent ConvergenceSRNSServing RNCSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module	RAI	
RAURouteing Area UpdateRLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSNDCSubNetwork Dependent ConvergenceSNDCSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module	RANAP	
RLCRadio Link ControlRNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
RNCRadio Network ControllerRNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		e 1
RNSRadio Network SubsystemRNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-IWMSCShort Message Service Interworking MSCSN-IWMSCShort Message Service Interworking MSCSN-IWMSCShort Message Service Interworking MSCSN-IWMSCSubnetwork Dependent ConvergenceSNDCSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
RNTIRadio Network Temporary IdentityRRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTupe of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
RRCRadio Resource ControlSGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service CentreSMS-GMSCShort Message Service Gateway MSCSMS-GMSCShort Message Service Interworking MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTuppe of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SGSNServing GPRS Support NodeSMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNSServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
SMShort MessageSM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SM-SCShort Message service Service CentreSMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SMS-GMSCShort Message Service Gateway MSCSMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTupe of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		•
SMS-IWMSCShort Message Service Interworking MSCSN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SN-PDUSNDCP PDUSNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SNDCSubNetwork Dependent ConvergenceSNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SNDCPSubNetwork Dependent Convergence ProtocolSPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SPISecurity Parameter IndexSRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SRNCServing RNCSRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
SRNSServing RNSTCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
TCAPTransaction Capabilities Application PartTCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		
TCPTransmission Control ProtocolTFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUTRAN Registration AreaUSIMUser Service Identity Module		•
TFTTraffic Flow TemplateTEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
TEIDTunnel Endpoint IDentifierTLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
TLLITemporary Logical Link IdentityTOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
TOMTunnelling Of MessagesTOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
TOSType of ServiceTRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
TRAUTranscoder and Rate Adaptor UnitUDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
UDPUser Datagram ProtocolUEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
UEAUMTS Encryption AlgorithmUIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
UIAUMTS Integrity AlgorithmURAUTRAN Registration AreaUSIMUser Service Identity Module		
URAUTRAN Registration AreaUSIMUser Service Identity Module		
USIM User Service Identity Module		
UTRAN UMTS Terrestrial Radio Access Network		
	UTRAN	UMTS Terrestrial Radio Access Network

- Second modified section —

6.9.2.2.4 SRNS Relocation Cancel Procedure

_

The purpose of the SRNS Relocation Cancel procedure is to cancel an ongoing SRNS relocation. The SRNS Relocation Cancel procedure may be initiated during or after the Relocation Preparation procedure and it is always triggered by the source RNC.

The SRNS Relocation Cancel procedure is illustrated in Figure 43a. The sequence is valid for cancelling both an intra-SGSN SRNS relocation and an inter-SGSN SRNS relocation.

Figure 43a: SRNS Relocation Cancel Procedure

- 1) An SRNS Relocation procedure has started, as specified in section 6.9.2.2.1.
- 2) Before the completion of the SRNS Relocation procedure, either during or after the SRNS Relocation Preparation, the source RNC may decide to cancel the ongoing SRNS Relocation. This decision may be triggered by a timer expiry or by an error event in the source RNC. In this case, the source RNC sends a Relocation Cancel (Cause) to the old SGSN.

- 2) The old SGSN sends a Relocation Cancel Request (IMSI) to the new SGSN to indicate that the ongoing SRNS relocation for the MS, specified by IMSI, should be cancelled at the target RNC.
- 4) The new SGSN sends an Iu Release Command (Cause) to request from the target RNC to release the Iu resources already allocated for the SRNS relocation, or to cancel the ongoing allocation of Iu resources for the SRNS relocation. Cause is set equal to "Relocation Cancelled" as defined in 25.413 [56b]. The target RNC releases the requested Iu resources and responds with an Iu Release Complete.
- 5) The new SGSN acknowledges the cancellation of the ongoing SRNS Relocation by sending a Relocation Cancel Response to the old SGSN.
- 6) Finally, the old SGSN responds to the source RNC with a Relocation Cancel Ack message.

In case of inter SGSN relocation CAMEL procedure calls shall be performed, see referenced procedures in <u>3G TS 23.078</u>:

<u>C2)</u> CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL GPRS Routeing Area_Update_Context.

The procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

3GPP TSG-SA2 Meeting #21

Tdoc <u>S2-013490 revision of</u> S2-013267

Cancun, Mexico, 26th - 30th November 2001

CHANGE REQUEST									
ж	23.060 CR CR <u>285</u> [#] rev <u>1</u> - [#] Current version: 4.2.0 [#]								
For <u>HELP</u> on u	sing this form, see bottom of this page or look at the pop-up text over the $#$ symbols.								
Proposed change	affects: % (U)SIM ME/UE Radio Access Network Core Network X								
Title: Ж	Re-initialisation of the CAMEL GPRS dialogue after a relocation cancel								
Source: ೫	Alcatel								
Work item code: ₩	CAMEL phase3 Date: # 20/11/01								
Category: Ж	F (essential correction) Release: % A								
	Use one of the following categories:Use one of the following releases:F (correction)2(GSM Phase 2)A (corresponds to a correction in an earlier release)R96(Release 1996)B (addition of feature),R97(Release 1997)C (functional modification of feature)R98(Release 1998)D (editorial modification)R99(Release 1999)Detailed explanations of the above categories can be found in 3GPP TR 21.900.REL-4(Release 5)								
Reason for change	e: # Missing Camel handling in case of relocation cancel .								
Summary of chang	ge: % The SRNS relocation procedure (used in case of 3G inter SGSN Handover) may be cancelled by the source RNC using the SRNS relocation Cancel procedure (described in paragraf 6.9.2.2.4 of 23.060).								
	The SRNS relocation Cancel procedure may be initiated during or after the relocation preparation procedure.								
	1. Before the CAMEL GPRS dialogue is terminated in the old SGSN. The GPRS dialogue is maintained in this case.								
	2. After the CAMEL GPRS dialogue is terminated (after point C1 in figure 39.								

 After the CAMEL GPRS dialogue is terminated (after point C1 in figure 39, figure 42, figure 43 of 23.060). In this case a CAMEL GPRS dialogue shall be re-initialised.

The purpose of this Change request is to add in figure 44 the points C2 and C3 at the reception of relocation cancel message to allow the CAMEL GPRS dialogue to continue on the old SGSN because of the relocation failure.

 Consequences if
 %
 No CAMEL supervision after relocation cancel. The GPRS session/PDP contexts supervision is not maintained and CAMEL charging is not possible.

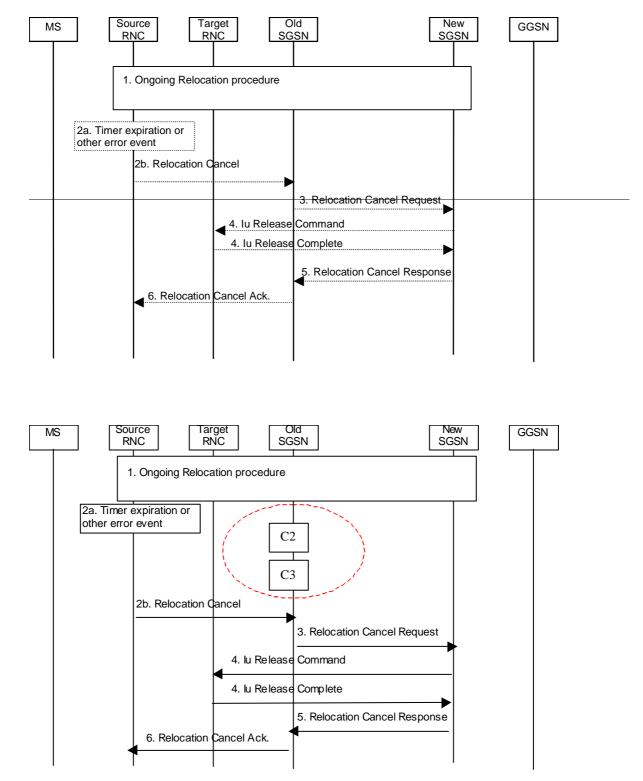
Clauses affected:	% 6.9.2.2.4
Other specs	ℋ Other core specifications ℋ
affected:	Test specifications
	O&M Specifications

Other comments:

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.


– First modified section —

6.9.2.2.4 SRNS Relocation Cancel Procedure

_

The purpose of the SRNS Relocation Cancel procedure is to cancel an ongoing SRNS relocation. The SRNS Relocation Cancel procedure may be initiated during or after the Relocation Preparation procedure and may be initiated by the source RNC.

The SRNS Relocation Cancel procedure is illustrated in Figure 44. The sequence is valid for cancelling both an intra-SGSN SRNS relocation and an inter-SGSN SRNS relocation.

Figure 44: SRNS Cancel Relocation Procedure

- 1) An SRNS Relocation procedure has started, as specified in section 6.9.2.2.1.
- 2a) The SRNS Cancel Relocation may be initiated by a timer expiry or by an error event in the source RNC.
- 2b) When one of conditions in 2a is satisfied, the source RNC sends a Relocation Cancel (Cause) to the old SGSN. Cause indicates the reason for cancelling the ongoing SRNS relocation.

- 3) The old SGSN sends a Relocation Cancel Request (IMSI, RANAP Cause) to the new SGSN to indicate that the ongoing SRSN relocation should be cancelled. RANAP Cause contains the cause value received by the source RNC in the Relocation Cancel message.
- 4) The new SGSN sends an Iu Release Command (Cause) to request from the target RNC to release the Iu resources already allocated for the SRNS relocation, or to cancel the ongoing allocation of Iu resources for the SRNS relocation. Cause is set equal to RANAP Cause, i.e. to whatever cause value was included in the Relocation Cancel Request received from old SGSN. The target RNC releases the requested Iu resources and responds with an Iu Release Complete.
- 5) The new SGSN acknowledges the cancellation of the ongoing SRNS Relocation by sending a Relocation Cancel Response to the old SGSN.
- 6) The old SGSN responds to the source RNC with a Relocation Cancel Ack message.

In case of inter SGSN relocation CAMEL procedure calls shall be performed, see referenced procedures in <u>3G TS 23.078</u>:

C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

<u>C3</u> CAMEL_GPRS_Routeing_Area_Update_Context.

The procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

3GPP TSG-SA2 Kobe, Japan, Oc			vember	[,] 2, 2	001					Tdo	oc S	2-0129 (S2-0	012789)
			CHAN	IGE	RE	Ql	JE	ST					CR-Form-v4
¥	23.060	CR	263		ж (ev 2	2 <u>34</u>	ж	Curre	nt vers	sion:	4.2.0 (for R5)	ж
For <u>HELP</u> on u	sing this fo	orm, se	e bottom	of this	page	e or lo	ook a	at the	е рор-и	ıp text	tover	the # syr	nbols.
Proposed change a	affects: ೫	3 (U)	SIM	ME/	/UE		Radi	o Ac	cess N	letwor	k	Core Ne	etwork X
Title: ೫	Impacts to Multip			ocedu	re du	e to t	the li	ntra	Domai	n Con	nectio	on of RAN	I Nodes
Source: #	L.M. Eric	sson											
Work item code: %	IUFLEX								D	ate: ೫		* <mark>October1</mark> vember 20	
Category: ₩	A (co B (ac C (fu	rrection rrespon Idition o nctional litorial n cplanatio) nds to a con f feature), modification nodification ons of the a	rrectior on of fe n) above	n in ar eature)		lease	Use 2) F F F F F		the fo (GSN (Rele (Rele (Rele (Rele	L-5 Mowing rele A Phase 2) ease 1996) ease 1997) ease 1998) ease 1999) ease 4) ease 5)	eases:
Reason for change	Cor	nectio		nodes	to m	ultipl	le CN					for "Intra D from this	
Summary of chang	je:	inges a	are introdu	uced to	o the	Attac	<mark>ch pr</mark>	ocec	dure.				
Consequences if	ដ Inco	mplete	e descripti	ion of	the A	ttach	n pro	cedu	ire in 3	GPP	TS 23	.060	

not approved:	
Clauses affected:	ж <u>6.5.3</u>
Other specs affected:	% Other core specifications % Test specifications Ø&M Specifications
Other comments:	ж

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

6.5.3 Combined GPRS / IMSI Attach procedure

An IMSI-attached MS that cannot operate in CS/PS mode of operation shall follow the normal IMSI detach procedure before it makes a GPRS attach. A GPRS-attached MS that cannot operate in CS/PS mode of operation shall perform a GPRS detach before it makes an IMSI attach.

The Combined GPRS / IMSI Attach procedure is illustrated in Figure 1.



Figure 1: Combined GPRS / IMSI Attach Procedure

1) For GPRS, the MS initiates the attach procedure by the transmission of an Attach Request (IMSI or P-TMSI and old RAI, Classmark, CKSN, Attach Type, DRX Parameters, old P-TMSI Signature) message to the SGSN. IMSI shall be included if the MS does not have a valid P-TMSI available. If the MS has a valid P-TMSI, then P-TMSI and the old RAI associated with P-TMSI shall be included. Classmark contains the MS's GPRS multislot capabilities and supported GPRS ciphering algorithms in addition to the existing classmark parameters defined in GSM 04.08. Attach Type indicates which type of attach is to be performed, i.e. GPRS attach only, GPRS Attach while already IMSI attached, or combined GPRS / IMSI attach. DRX Parameters indicates whether the MS uses discontinuous reception or not. If the MS uses discontinuous reception, then DRX Parameters also indicate when the MS is in a non-sleep mode able to receive paging requests and channel assignments. If the MS uses P-TMSI for identifying itself and if it has also stored its old P-TMSI Signature, then the MS shall include the old P-TMSI Signature in the Attach Request message.

For UMTS, the MS initiates the attach procedure by the transmission of an Attach Request (IMSI or P-TMSI and old RAI, Core Network Classmark, KSI, Attach Type, old P-TMSI Signature, Follow On Request, DRX Parameters) message to the SGSN. IMSI shall be included if the MS does not have a valid P-TMSI available. If the MS uses P-TMSI for identifying itself and if it has also stored its old P-TMSI Signature, then the MS shall include the old P-TMSI Signature in the Attach Request message. If the MS has a valid P-TMSI, then P-TMSI and the old RAI associated with P-TMSI shall be included. KSI shall be included if the MS has valid security parameters. Core Network Classmark is described in clause "MS Network Capability". The MS shall set "Follow On Request" if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow on request indication to release or keep the Iu connection after the completion of the GPRS Attach procedure. Attach Type indicates which type of attach is to be performed, i.e. GPRS attach only, GPRS Attach while already IMSI attached, or combined GPRS / IMSI attach. DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- 2) If the MS identifies itself with P-TMSI and the SGSN has changed since detach, the new SGSN sends an Identification Request (P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to request the IMSI. If the old SGSN providesapplies, and the new SGSN provides functionality forapplies, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the new SGSN may derive the old SGSN from the old RAI and the old P-TMSI and send the Identification Request message to this old SGSN. Otherwise-, the new SGSN derives the old SGSN from the old RAI. In any case the new SGSN will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the P-TMSI and relay the message to that actual old SGSN. This SGSN, which is associated with the same pool area as the actual old SGSN, and the new SGSN cannot determine the old SGSN, the new SGSN will send the Identification Request message to a 'default' SGSN, which is associated with the old pool area, for which also the old SGSN is associated. The 'default' SGSN will determine the correct old SGSN from the P-TMSI, and relay the message to thisthat SGSN, unless it is itself the 'default' SGSN itself is the correct old SGSN. The old SGSN responds with Identification Response (IMSI, Authentication Triplets (for GPRS) or Authentication Vectors (for UMTS)). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN also validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN.
- 3) If the MS is unknown in both the old and new SGSN, the SGSN sends an Identity Request (Identity Type = IMSI) to the MS. The MS responds with Identity Response (IMSI).
- 4) The authentication functions are defined in the clause "Security Function". If no MM context for the MS exists anywhere in the network, then authentication is mandatory. Ciphering procedures are described in clause "Security Function". If P-TMSI allocation is going to be done and the network supports ciphering, the network shall set the ciphering mode.
- 5) The equipment checking functions are defined in the clause "Identity Check Procedures". Equipment checking is optional.
- 6) If the SGSN number has changed since the GPRS detach, or if it is the very first attach, then the SGSN informs the HLR:
 - a) The SGSN sends an Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
 - b) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure.
 - c) The old SGSN acknowledges with Cancel Location Ack (IMSI). If there are any ongoing procedures for that MS, the old SGSN shall wait until these procedures are finished before removing the MM and PDP contexts.

- d) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN.
- e) The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS is not allowed to attach in the RA, the SGSN rejects the Attach Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If subscription checking fails for other reasons, the SGSN rejects the Attach Request with an appropriate cause and returns an Insert Subscriber Data Ack (IMSI, Cause) message to the HLR. If all checks are successful then the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI, Cause) message to the HLR.
- f) The HLR acknowledges the Update Location message by sending an Update Location Ack to the SGSN after the cancelling of old MM context and insertion of new MM context are finished. If the Update Location is rejected by the HLR, the SGSN rejects the Attach Request from the MS with an appropriate cause.
- 7) If Attach Type in step 1 indicated GPRS Attach while already IMSI attached, or combined GPRS / IMSI attached, then the VLR shall be updated if the Gs interface is installed. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. When the VLR does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, is not updated with functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, Thethe VLR number is derived from the RAI information. When the SGSN is updated with provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, and when the VLR applies this feature Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the SGSN uses the RAI and a hash value from the RAI information. When the SGSN is updated with provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the SGSN uses the RAI and a hash value from the RAI information. When the SGSN is updated with provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the SGSN uses the RAI and a hash value from the IMSI when looking up a translation table to determine the VLR number. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 6d). This operation marks the MS as GPRS-attached in the VLR.
 - a) The SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) message to the VLR. Location Update Type shall indicate IMSI attach if Attach Type indicated combined GPRS / IMSI attach. Otherwise, Location Update Type shall indicate normal location update. The VLR creates an association with the SGSN by storing SGSN Number.
 - b) If the LA update is inter-MSC, the new VLR sends Update Location (IMSI, new VLR) to the HLR.
 - c) If the LA update is inter-MSC, the HLR sends a Cancel Location (IMSI) to the old VLR.
 - d) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - e) If the LA update is inter-MSC, the HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - f) The VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - g) After finishing the inter-MSC location update procedures, the HLR responds with Update Location Ack (IMSI) to the new VLR.
 - h) The VLR responds with Location Update Accept (VLR TMSI) to the SGSN.
- 8) The SGSN selects Radio Priority SMS, and sends an Attach Accept (P-TMSI, VLR TMSI, P-TMSI Signature, Radio Priority SMS) message to the MS. P-TMSI is included if the SGSN allocates a new P-TMSI.
- 9) If P-TMSI or VLR TMSI was changed, the MS acknowledges the received TMSI(s) by returning an Attach Complete message to the SGSN.
- 10)If VLR TMSI was changed, the SGSN confirms the VLR TMSI re-allocation by sending a TMSI Reallocation Complete message to the VLR.

If the Attach Request cannot be accepted, the SGSN returns an Attach Reject (IMSI, Cause) message to the MS.

The CAMEL procedure call shall be performed, see referenced procedure in 3GPP TS 23.078:

C1) CAMEL_GPRS_Attach

In Figure 1, the procedure returns as result "Continue".

**** END OF MODIFICATIONS ****

3GPP TSG-SA2 Kobe, Japan, C		-		vember	[.] 2, 2	001						Td		- 01296 -012797
				CHAN	IGE	RE	ΞQ	UE	ST	l				CR-Form-v-
ж	23.	060	CR	269		ж	ev	2	ж	Curre	nt vers	sion:	4.2.0 (for R5	
For HELP on	using t	his for	m, see	e bottom	of this	pag	e or	look	at the	е рор-и	ıp text	t over	the ¥ sy	mbols.
Proposed change	e affect	ts: #	(U)	SIM	ME	/UE		Rad	lio Ac	cess N	letwor	'k	Core N	letwork X
Title:	₩ Gei Noc		hange	es due to	Intra I	Doma	ain C	Conne	ectior	n of RA	N Noo	des to	Multiple	CN
Source:	₩ L.N	I. Erics	son											
Work item code:	¥ IUF	LEX								Da	ate: ೫	31 ⁸	st Octobe	<mark>r 2001</mark>
Category:	Deta	F (corr A (corr B (adc C (fund D (edit Ied exp	rection) respon lition of ctional torial m olanatic	owing cate ds to a con f feature), modification ons of the TR 21.900	rrection on of fe n) above	n in a eature	e)			2 e) R R R R R		(GSI (Rele (Rele (Rele (Rele (Rele	Nowing re M Phase 2 ease 1996 ease 1997 ease 1998 ease 1999 ease 4) ease 5)	?) 3) 7) 3)
Reason for chang	ge: Ж	Conr	nectior	13 has re of RAN rated into	nodes	s to n	nultip	ole C						Domain s TS must
Summary of char	nge: ೫			<mark>evel desc</mark> is introdu		n of l	ntra	Dom	ain C	Connec	tion of	f RAN	I Nodes t	o Multiple
Consequences if not approved:	¥			el descri is include	p			•••••		nnectio	on of F	RAN	Nodes to	Multiple
Clauses affected.	: ¥	2, 3.	1, 5.8											
Other specs affected:	æ	Te	est spe	ore specif ecification pecificatio	IS	าร	ж							
Other comments.	: ж													

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

2 References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] GSM 01.04: "Digital cellular telecommunications system (Phase 2+); Abbreviations and acronyms".
- [2] GSM 01.61: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); GPRS ciphering algorithm requirements".
- [3] 3GPP TS 22.060: "General Packet Radio Service (GPRS); Service description; Stage 1".
- [4] 3GPP TS 23.003: "Numbering, addressing and identification".
- [5] 3GPP TS 23.007: "Restoration procedures".
- [5b] 3GPP TS 23.016: "Subscriber data management; Stage 2".
- [6] GSM 03.20: "Digital cellular telecommunications system (Phase 2+); Security related network functions".
- [7] GSM 03.22: "Digital cellular telecommunications system (Phase 2+); Functions related to Mobile Station (MS) in idle mode and group receive mode".
- [7b] 3GPP TS 23.122: "Non-Access Stratum functions related to Mobile Station (MS) in idle mode".
- [8] 3GPP TS 23.040: "Technical realization of the Short Message Service (SMS)".
- [8b] 3GPP TS 23.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase 3 - Stage 2".
- [9] 3GPP TS 21.905: "Vocabulary for 3GPP Specifications", (Release 4).
- [10] Void.
- [11] GSM 03.64: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Overall description of the GPRS radio interface; Stage 2".
- [12] 3GPP TS 24.007: "Mobile radio interface signalling layer 3; General aspects".
- [13] 3GPP TS 24.008: "Mobile Radio Interface Layer 3 specification; Core Network Protocols; Stage 3".
- [14] GSM 04.60: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Mobile Station (MS) Base Station System (BSS) interface; Radio Link Control/Medium Access Control (RLC/MAC) protocol".
- [15] GSM 04.64: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Mobile Station – Serving GPRS Support Node (MS-SGSN) Logical Link Control (LLC) layer specification".

[16]	GSM 04.65: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Mobile Station (MS) – Serving GPRS Support Node (SGSN); Subnetwork Dependent Convergence Protocol (SNDCP)".
[16b]	GSM 05.08: "Digital cellular telecommunications system (Phase 2+); Radio subsystem link control".
[17]	3GPP TS 27.060: "Packet Domain; Mobile Station (MS) supporting Packet Switched services".
[18]	GSM 08.08: "Digital cellular telecommunications system (Phase 2+); Mobile-services Switching Centre - Base Station System (MSC-BSS) interface; Layer 3 specification".
[19]	GSM 08.14: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Base Station System (BSS) - Serving GPRS Support Node (SGSN) interface; Gb interface layer 1".
[20]	GSM 08.16: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Base Station System (BSS) - Serving GPRS Support Node (SGSN) interface; Network Service".
[21]	GSM 08.18: "Digital cellular telecommunications system (Phase 2+); General Packet Radio Service (GPRS); Base Station System (BSS) - Serving GPRS Support Node (SGSN); BSS GPRS Protocol (BSSGP)".
[22]	GSM 08.60: "Digital cellular telecommunications system (Phase 2+); In-band control of remote transcoders and rate adaptors for Enhanced Full Rate (EFR) and full rate traffic channels".
[23]	3GPP TS 29.002: "Mobile Application Part (MAP) specification".
[24]	3GPP TS 29.016: "General Packet Radio Service (GPRS); Serving GPRS Support Node (SGSN) - Visitors Location Register (VLR); Gs interface network service specification".
[25]	3GPP TS 29.018: "General Packet Radio Service (GPRS); Serving GPRS Support Node (SGSN) - Visitors Location Register (VLR); Gs interface layer 3 specification".
[26]	3GPP TS 29.060: "General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp Interface".
[27]	3GPP TS 29.061: "Interworking between the Public Land Mobile Network (PLMN) supporting Packet Based services and Packet Data Networks (PDN)".
[27b]	3GPP TS 29.078: "Customised Applications for Mobile network Enhanced Logic (CAMEL) Phase 3; CAMEL Application Part (CAP) Specification".
[28]	GSM 11.11: "Digital cellular telecommunications system (Phase 2+); Specification of the Subscriber Identity Module - Mobile Equipment (SIM-ME) interface".
[29]	ITU-T Recommendations I.130: "Method for the characterization of telecommunication services supported by an ISDN and network capabilities of an ISDN".
[30]	ITU-T Recommendation E.164: "The international public telecommunication numbering plan".
[31]	ITU-T Recommendation Q.65: "The unified functional methodology for the characterization of services and network capabilities".
[32]	ITU-T Recommendation V.42bis: "Data compression procedures for data circuit-terminating equipment (DCE) using error correction procedures".
[33]	ITU-T Recommendation X.3: "Packet assembly/disassembly facility (PAD) in a public data network".
[34]	ITU-T Recommendation X.25: "Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit".

[39] RFC 768 (1980): "User Datagram Protocol" (STD 6).

- [40] RFC 791 (1981): "Internet Protocol" (STD 5).
- [41] RFC 792 (1981): "Internet Control Message Protocol" (STD 5).
- [42] RFC 793 (1981): "Transmission Control Protocol" (STD 7).
- [43] RFC 1034 (1987): "Domain names concepts and facilities" (STD 13).
- [44] RFC 1661 (1994): "The Point-to-Point Protocol (PPP)" (STD 51).
- [45] RFC 1542 (1993): "Clarifications and Extensions for the Bootstrap Protocol".
- [46] RFC 2002 (1996): "IP Mobility Support".
- [47] RFC 2131 (1997): "Dynamic Host Configuration Protocol".
- [49] TIA/EIA-136 (1999): "TDMA Cellular / PCS"; Arlington: Telecommunications Industry Association.
- [50] 3GPP TS 25.301: "Radio Interface Protocol Architecture".
- [51] 3GPP TS 25.303: "Interlayer procedures in Connected Mode".
- [51b] 3GPP TS 25.304: "UE Procedures in Idle Mode and Procedures for Call Reselection in Connected Mode".
- [52] 3GPP TS 25.331: "RRC Protocol Specification".
- [53] 3GPP TS 25.401: "UTRAN Overall Description".
- [54] 3GPP TS 23.121: "Architectural Requirements for Release 1999".
- [55] 3GPP TS 25.322: "RLC protocol specification".
- [56] 3GPP TS 25.412: "UTRAN Iu Interface Signalling Transport".
- [56b] 3GPP TS 25.413: "UTRAN Iu Interface RANAP Signalling".
- [57] 3GPP TS 25.323: "Packet Data Convergence Protocol (PDCP) specification".
- [58] 3GPP TS 23.107: "Quality of Service (QoS) concept and architecture".
- [59] ITU-T Recommendation I.361: "B-ISDN ATM layer specification".
- [60] 3GPP TS 25.321: "Medium Access Control (MAC) protocol specification".
- [61] 3GPP TS 33.102: "3G Security; Security architecture".
- [62] 3GPP TS 22.002: "Circuit Bearer Services (BS) supported by a Public Land Mobile Network (PLMN)".
- [63] 3GPP TS 25.411: "UTRAN Iu interface Layer 1".
- [64] 3GPP TS 25.414: "UTRAN Iu interface data transport & transport signalling".
- [65] 3GPP TS 23.171: "Functional stage 2 description of location services in UMTS".
- [66] 3GPP TS 23.015: "Technical realization of Operator Determined Barring (ODB)".
- [67] ITU-T Recommendation I.363.5: "B-ISDN ATM Adaptation Layer (AAL) specification: Type 5 AAL".
- [68] RFC 2373 (1998): "IP Version 6 Addressing Architecture".
- [69] RFC 2462 (1998): "IPv6 Stateless Address Autoconfiguration".
- [70] 3GPP TS 32.215: "3G Telecom Management; Charging management; Charging data description for the Packet Switched (PS) domain".

[71] RFC 2461 (1998): "Neighbor Discovery for IP Version 6 (IPv6)".

[72] 3GPP TS 29.202: "Signalling System No. 7 (SS7) signalling transport in core network; Stage 3".

[73] 3GPP TS 23.236: "Intra Domain Connection of RAN Nodes to Multiple CN Nodes".

**** NEXT MODIFIED SECTION ****

3.1 Definitions

Definitions can be found in 3GPP TS 22.060 [3] and 3GPP TS 25.401 [53]. For the purposes of the present document, the following terms and definitions apply:

GPRS: Packet Services for GSM, UMTS or GERAN systems

(GSM only): indicates that this (sub)clause or paragraph applies to a GSM system or a GERAN system

NOTE 1: For multi-system cases, the current serving radio access network determines its type.

(UTRAN only): indicates that this (sub)clause or paragraph applies only to a UMTS system

NOTE 2: For multi-system cases, the current serving radio access network determines its type.

In A/Gb mode: indicates that this (sub)clause or paragraph applies only to a system or sub-system which operate in A/Gb mode of operation, i.e. with a functional division that is in accordance with the use of an A or a Gb interface between the radio access network and the core network

In Iu mode: indicates that this clause or paragraph applies only to a system or a sub-system which operates in Iu mode of operation, i.e. with a functional division that is in accordance with the use of an Iu-CS or Iu-PS interface between the radio access network and the core network

Inter-system change: change of radio access between different radio access technologies such as GSM and UMTS

MS: this specification makes no distinction between MS and UE

2G- / **3G-:** prefixes 2G- and 3G- refer to functionality that supports only GSM or UMTS, respectively, e.g. 2G-SGSN refers only to the GSM functionality of an SGSN

NOTE 3: When the prefix is omitted, reference is made independently from the GSM or UMTS functionality.

Pool area: refers to a grouping of one or more RA(s) that, from a RAN perspective, are served by a certain group of CN nodes, as defined for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes.

**** NEXT MODIFIED SECTION ****

5 General Packet Domain Architecture and Transmission Mechanism

5.8 Functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes

The Intra Domain Connection of RAN Nodes to Multiple CN Nodes overcomes the strict hierarchy that restricts the connection of a RAN node to just one CN node, and hence also to one SGSN. This implies that a RAN node must be able to determine which of the SGSNs, covering the area where an MS is located, should receive the messages signalling and user traffic sent from an MS. To avoid unnecessary signalling in the core network, an MS that has attached to one SGSN, should generally continue to be served by this SGSN as long as the MS is in the radio coverage of the pool area, to which the SGSN is associated. The concept of pool area is a RAN based definition that comprises one or more RA(s) that, from a RAN perspective, are served by a certain group of CN nodes. This does not exclude that one or more of the SGSNs in this group serve RAs outside the pool area. This group of SGSNs is also referred to as an SGSN pool.

To enable the RAN node to determine which SGSN to select when forwarding messages from an MS, Intra Domain Connection of RAN Nodes to Multiple CN Nodes defines a routing mechanism (and other related functionality). Another routing mechanism (and other related functionality) is also-defined for the SGSNs that support the Intra Domain Connection of RAN Nodes to Multiple CN Nodes are part of an SGSN pool. The routing mechanism is required to find the correct old SGSN (from the multiple SGSNs that are associated with a pool area). wWhen an MS roams out of the pool area and into the area of one or more SGSNs that do not know about the internal structure of the pool area where the MS roamed from. In such a case, the new SGSN will send the Identification Request message or the SGSN Context Request message to a 'default' SGSN an SGSN that is believed to be the old SGSN. This SGSN, which is associated with the same pool area as the actual old SGSN, resolves the ambiguity of multiple SGSNs in the pool area and determines the correct old SGSN from the P-TMSI (or the TLLI). The received message is then relayed to the correct old SGSN (unless it is itself the correct old SGSN).old pool area, for which also the old SGSN is associated. The 'default' SGSN will determine the old SGSN. The routing mechanisms in both the SGSNs and the RAN nodes utilises the fact that every SGSN being part of an SGSN pool-that serves a pool area must have its own unique value range of the P-TMSI parameter within the pool area.

The requirements on, and the detailed functionality needed to support, the Intra Domain Connection of RAN Nodes to Multiple CN Nodes are defined in 3GPP TS 23.236 [73].

**** END OF MODIFICATIONS ****

3GPP TSG-SA2 Me Kobe, Japan, Octo	eting #20 ber 29 - November	Tdoc S2-012962 <u>re</u> (S2-012	2790)				
CHANGE REQUEST							
* 2	3.060 CR 264	* ev <mark>1<u>3</u> *</mark>	Current version: 4.2.0				
For <u>HELP</u> on using	g this form, see bottom o	of this page or look at the	pop-up text over the X symbo	ols.			
Proposed change affe	ects: ¥ (U)SIM	ME/UE Radio Acc	cess Network Core Netwo	ork X			
	npacts on the Gs interfa Iultiple CN Nodes	ce due to the Intra Doma	in Connection of RAN Nodes	to			
Source: ೫ L	.M. Ericsson						
Work item code: #	JFLEX		Date: # 31 st -October <u>13 N</u> 2001	<u>lov</u>			
De	e <u>one</u> of the following cate F (correction)	- rection in an earlier release, on of feature)) above categories can	Release: % REL-5 Use <u>one</u> of the following release 2 (GSM Phase 2)) Page (Release 1996) R97 (Release 1996) R97 Release 1997) R98 (Release 1998) R99 (Release 1999) REL-4 (Release 4) REL-5 (Release 5) Release 5) Release 5 Release 5	95:			
Reason for change:		nodes to multiple CN nod	S 23.236 v.5.0.0 for "Intra Dom les". The impacts from this TS				
Summary of change: 8	Changes are introduced to the administration of the Gs interface. This includes an update of the chapter on 'Tunnelling of non-GSM Signalling Messages Function'.						
Consequences if not approved:	E Incomplete description 23.060	on of the administration of	of the Gs interface in 3GPP TS				
Clauses affected:	₭ <u>6.3.1, 6.10</u>						
Other specs	Context Core Specifies Context Specifications O&M Specification	S S					
Other comments:	æ						

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

6.3.1 Administration of the SGSN - MSC/VLR Association

The SGSN - MSC/VLR association is created at the following occasions:

- Combined GPRS / IMSI attach.
- GPRS attach when the MS is already IMSI-attached.
- Combined RA / LA update when the MS performs IMSI attach and is already GPRS-attached.
- Combined RA / LA update when an IMSI and GPRS-attached MS changes from an area of network operation mode II or III to an area of network operation mode I.

The association is initiated by the SGSN. The SGSN creates an association by sending a BSSAP+ message concerning a particular MS to the VLR. An SGSN that does not provide functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes uses the RAI to determine the VLR number. To get the VLR number for of a VLR that does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or to get the VLR number when the SGSN does not provide is not updated with functionality for Intra Domain Connection of RAN Nodes, the SGSN translates the current RAI to a VLR number via a translation table. An SGSN updated with that provides functionality for Intra Domain Connection of RAN Nodes, the SGSN translates the current RAI to a VLR number via a translation table. An SGSN updated with that provides functionality for Intra Domain Connection of RAN Nodes, the IMSI when looking up a translation table to determine the VLR number of a VLR that applies Intra Domain Connection (GSM only) cannot perform GPRS attach nor routeing area updates, only MSs in class-A mode of operation can perform these procedures. If a GPRS attach was made during a CS connection, the association shall be initiated by a combined RA / LA update after the CS connection has been released.

The association is updated on the following occasions:

- When an MS changes VLR.
- When an MS changes SGSN.

The association is not updated during a CS connection.

When the MS is in idle mode (see GSM 03.22 [7] and 3GPP TS 23.122 [7b]), the association is updated with the combined RA / LA updates procedure.

In relation to a CS connection, the association is managed in the following way:

MS in class-A or CS/PS mode of operation:

An MS in class-A or CS/PS mode of operation makes RA updates but no combined RA / LA updates during the CS connection. In the case when the MS changes SGSN, the SGSN (according to normal RA update procedures, see clause "Inter SGSN Routeing Area Update") updates the HLR and the GGSN, but not the VLR, about the new SGSN number.

In the case when the MS changes MSC during the CS connection, the subscriber data still remains in the old VLR until the CS connection is released and a combined RA / LA update or LA update is made. The association is also not updated during the CS connection.

After the CS connection has been released, a combined RA / LA update is performed (if there has been a change of RA, or if a GPRS attach was performed and the new cell indicates network operation mode I), and the association is updated according to combined RA / LA update procedures, see clause "Combined RA / LA Update Procedure". If the new cell indicates network operation mode II or III, then the MS performs an LA update.

MS in class-B mode of operation (GSM only):

An MS in class-B mode of operation does not make any RA updates during a CS connection. The SGSN number therefore remains the same during the CS connection and does not need to be updated in the VLR. In the case when the MS changes MSC during the CS connection, the subscriber data still remains in the old VLR until the CS connection has been released and a combined RA / LA update or LA update is made. Therefore, the VLR number remains the same during the CS connection. After the CS connection has been released, the MS performs an RA update and an LA update if the RA has changed and the new cell indicates network operation mode II or III, or a combined RA / LA update if the

RA has changed and the new cell indicates network operation mode I. The association is updated according to the combined RA / LA update procedures, see clauses "Inter SGSN Routeing Area Update" and "Combined RA / LA Update Procedure".

The SGSN - MSC/VLR association is removed at the following occasions:

- At IMSI detach.
- At GPRS detach.

When the MSC/VLR receives an LA update via the A or Iu interface from an MS for which an association exists, the MSC/VLR shall remove the association without notifying the SGSN. When the SGSN receives a (non-combined) RA update from an MS for which an association exists, the SGSN shall remove the association without notifying the MSC/VLR. When the MSC/VLR receives a BSSAP+ MS Unreachable message from the SGSN indicating that PPF is cleared, the state of the association shall not be changed at the MSC/VLR.

**** NEXT MODIFIED SECTION ****

6.10 Tunnelling of non-GSM Signalling Messages Function (GSM only)

Tunnelling of Messages (TOM) is an optional protocol layer that uses the LLC unacknowledged mode procedures to tunnel messages between the MS and the SGSN (see GSM 04.64). TOM uses two LLC SAPs for communication between the MS and the SGSN; one for high-priority messages and one for low-priority messages. A network that supports TIA/EIA-136 [49] shall support the TOM protocol and the Gs interface.

Upon receiving a non-GSM signalling message from an MS via the TOM protocol, the SGSN forwards the message to a non-GSM MSC/VLR using the BSSAP+ protocol (see GSM 09.18). The specific Gs interface used by the SGSN is determined by the:

- RAI associated with the current location of the MS<u>when the VLR does not apply the Intra Domain Connection</u>
 <u>of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide functionality for the Intra Domain</u>
 <u>Connection of RAN Nodes to Multiple CN Nodesthis feature</u>. When the an-SGSN provides is updated with
 <u>functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes to Multiple CN Nodes to Multiple CN Nodes to Multiple CN Nodes to Multiple to Multiple CN Nodes to Multiple to
 <u>determine the Gs interfaceVLR number of a VLR that applies Intra Domain Connection of RAN Nodes to
 <u>Multiple CN Nodes;</u> and
 </u></u>
- information in the TOM protocol header.

Upon receiving a non-GSM signalling message from a non-GSM MSC/VLR via the BSSAP+ protocol, the SGSN forwards the message to a specific MS using the TOM protocol. The specific MS is determined by the SGSN based on the content of the BSSAP+ header.

The control plane between an MS and a non-GSM MSC/VLR that uses tunnelling procedures for non-GSM signalling is shown in Figure 1.

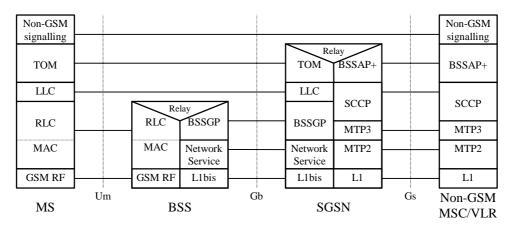


Figure 1: Control Plane MS - Non-GSM MSC/VLR

3GPP TSG-SA2 Meeting #20			Tdoc S2-012963 <u>Rev</u> (S2-01279										
					CR-Form-v4								
æ		23.060	CR	265		ж	ev	2 <u>34</u>	ж	Current versi		.2.0 or R5)	Ħ
For <u>HELP</u> on using this form, see bottom of this page or look at the pop-up text over the # symbols. Proposed change affects: # (U)SIM ME/UE Radio Access Network Core Network X													
Title:	æ		n the	Intersyste	em cha	ange				ue to the Intra I			
Source:	ж	L.M. Erics	son										
Work item co	de: #	IUFLEX								Date: ສ		October mber 20	

Category:	ដ <mark>B</mark>	Release: 🕱 REL-5
	Use one of the following categories:	Use <u>one</u> of the following releases:
	F (correction)	2 (GSM Phase 2)
	A (corresponds to a correction in an earlier rele	ease) R96 (Release 1996)
	B (addition of feature),	R97 (Release 1997)
	C (functional modification of feature)	R98 (Release 1998)
	D (editorial modification)	R99 (Release 1999)
	Detailed explanations of the above categories can	REL-4 (Release 4)
	be found in 3GPP <u>TR 21.900</u> .	REL-5 (Release 5)

Reason for change:	# 3GPP SA#13 has recently approved 3GPP TS 23.236 v.5.0.0 for "Intra Domain Connection of RAN nodes to multiple CN nodes". The impacts from this TS must be incorporated into 3GPP TS 23.060.			
Summary of changes	Changes are introduced to the intersystem change procedure.			
Summary of change.	Changes are introduced to the intersystem change procedure.			
Consequences if	# Incomplete description of the intersystem change procedure in 3GPP TS 23.060			
not approved:				
notappiereu				
Clauses affected:	光 6.13.1.1, 6.13.1.2, 6.13.2.1, 6.13.2.2			
Other specs	# Other core specifications #			
•				
affected:	Test specifications			
	O&M Specifications			
Other comments				
Other comments:	H and a second			

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

6.13 UMTS - GSM Intersystem Change

The UMTS - GSM intersystem change procedures may be supported for network elements conforming to GSM releases 97, 98, and 99, and to UMTS release 99. At intersystem change release 99 network elements shall use GTP release 97 or 98 on the Gn interface when interworking with release 97 or 98 network elements, respectively.

An intersystem change from UMTS to GSM or GSM to UMTS takes place when an MS supporting both UMTS and GSM changes the radio access technology. A prerequisite for an intersystem change is that the MS is GPRS-attached. The transition of the mobility management states is as specified for the corresponding mobility management procedures.

There is no transition of the session management states at an intersystem change.

6.13.1 Intra SGSN Intersystem Change

An SGSN that supports both the Gb and Iu-PS interfaces may support an intra-SGSN intersystem change if the radio access technology nodes serving the MS before and after the intersystem change are both served by this SGSN.

6.13.1.1 UMTS to GSM Intra SGSN Change

The intersystem change from UMTS to GSM takes place when an MS changes from UTRAN to GSM radio access. Depending on the PMM state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in PMM-IDLE state changes to the GSM radio access without changing the RA, the MS shall follow the selective RA update procedures, see clause "Selective RA Update".
- When an MS in PMM-IDLE state changes to the GSM radio access and the RA changes, the MS shall initiate the GPRS RA update procedure, see clause "Intra SGSN Routeing Area Update".
- When an MS in PMM-CONNECTED state changes to the GSM radio access, the MS shall initiate the GPRS RA update procedure independent of whether the RA has changed or not. The RA update procedure is either combined RA / LA update or only RA update.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request message indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

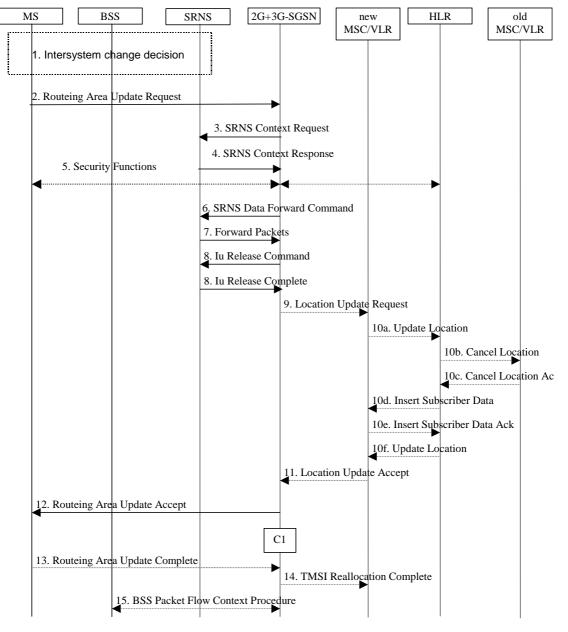


Figure 1: UMTS to GSM Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell that supports GSM radio technology, and stops transmission to the network.
- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) message to the 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA-update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attached requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the 2G+3G-SGSN.
- 3) If the MS is PMM-CONNECTED state, the 2G+3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS.

Upon reception of the SRNS Context Request message, the SRNS starts buffering and stops sending downlink PDUs to the MS. The SRNS responds with an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The GTP sequence numbers are included for each PDP context indicating the next insequence downlink GTP-PDU to be sent to the MS and the next in-sequence GTP PDU to be tunnelled to the GGSN. For each active PDP context, which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) and the downlink PDCP sequence number (PDCP-SNU). PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been

confirmed. The 2G+3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers of the respective 2G GPRS PDP contexts.

- 5) Security functions may be executed.
- 6) If the MS is PMM-CONNECTED, the 2G+3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. This informs the SRNS that the 2G+3G-SGSN is ready to receive data packets. Upon reception of SRNS Data Forward Command message from the 2G+3G-SGSN the SRNS shall start the data-forwarding timer.
- 7) For each RAB indicated by the SRNS Data Forward Command the SRNS starts duplicating and tunnelling the buffered GTP-PDUs back to the 2G+3G-SGSN. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and tunnelled back to the 2G+3G-SGSN together with their related downlink PDCP sequence numbers. The 2G+3G-SGSN converts the PDCP sequence numbers to SNDCP sequence number (by stripping off the eight most significant bits of the PDCP sequence numbers).
- 8) The 2G+3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 9) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, then the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. When the VLR does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN uses the RAI and a hash value from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes and when the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the asso
- 10)If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 11)The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.

- 12) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A logical link is established between the new 2G+3G-SGSN and the MS. 2G+3G-SGSN initiates the establishment procedure. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU)) message is returned to the MS. Receive N-PDU Number contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, these N-PDUs shall be discarded by the MS.13) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number (= converted PDCP-SND) contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, these N-PDUs shall be discarded by the 2G+3G-SGSN. The MS deducts Receive N-PDU Number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP. The new 2G-SGSN negotiates with the MS for each NSAPI the use of acknowledged or unacknowledged SNDCP regardless whether the SRNS used lossless PDCP or not.
- 14) The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 15) The 2G+3G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078:

- C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
- The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 1, the procedure returns as result "Continue".
- Then, the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 1, the procedure returns as result "Continue".

6.13.1.2 GSM to UMTS Intra-SGSN Change

The intersystem change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN. Depending on the GPRS mobility management state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in STANDBY state changes to UTRAN inside the current RA, the MS shall follow the selective RA update procedures, see clause "Selective RA Update".
- When an MS in STANDBY state changes to UTRAN and the RA changes, the MS shall initiate the UMTS RA update procedure, see clause "Routeing Area Update Procedure".
- When an MS in READY state changes to UTRAN independent of whether the RA has changed or not, the MS shall initiate the UMTS RA update procedure and afterwards initiate the RABs by the Service Request procedure, see clause "MS Initiated Service Request Procedure". The RA update procedure is either combined RA / LA update or only RA update.

If the network operates in mode I, an MS that is both PS-attached and CS-attached shall perform the Combined RA / LA Update procedure. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

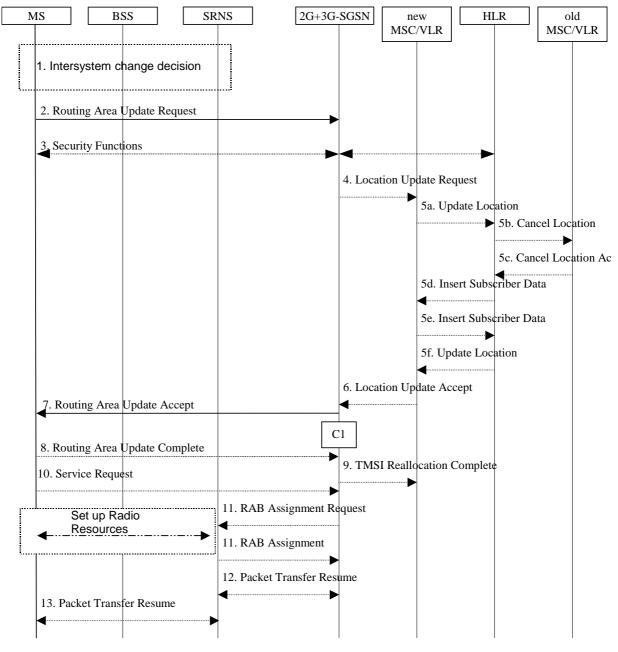


Figure 2: GSM to UMTS Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell that supports UMTS radio technology, and stops transmission to the network.
- 2) The MS initiates an RRC connection establishment and sends a Routeing Area Update Request (P-TMSI, Old RA, Old P-TMSI Signature, Update Type, CM) message to the combined 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested and also if the MS has a follow on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-onrequest indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNS shall add an identifier of the area where the message was received before passing the message to the 2G+3G-SGSN. The 2G+3G-SGSN stops transmission of N-PDUs to the MS.
- 3) Security functions may be executed.

- 4) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. When the VLR does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN uses the RAI and a hash value from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes and when the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the associati
- 5) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 6) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 7) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature) message is returned to the MS.The 2G+3G-SGSN derives for this intersystem change the corresponding PDCP sequence numbers from the N-PDU sequence numbers stored in the SGSN PDP contexts by adding eight most significant bits "1". These PDCP sequence numbers are stored in the SGSN PDP contexts.
- 8) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 10) If the MS has pending uplink data or signalling, it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 11) The 2G+3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers and stored in the PDP contexts in step 7). The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The SRNS responds with a RAB Assignment Response message.
- NOTE: The NSAPI value is carried in the RAB ID IE.
- 12) Traffic flow is resumed between the 2G+3G-SGSN and the SRNS. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled by the 2G+3G-SGSN to the SRNS together with their related N-PDU number (SNDCP sequence number). No PDCP sequence numbers shall be indicated for these N-PDUs. The SRNS shall discard all N-PDUs with N-PDU sequence numbers older than the eight least significant bits of PDCP-SND received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with sequence numbers older than the eight least

significant bits of the PDCP-SNU received from the SRNS. All other N-PDUs shall be transmitted to the SRNS. The SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

13) The traffic flow is resumed between the SRNS and the MS.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078:

- C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
 - The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once relative to the session. In Figure 2, the procedure returns as result "Continue".
- Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 2, the procedure returns as result "Continue".

**** NEXT MODIFIED SECTION ****

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSM Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSM takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN to GSM radio access and the GSM radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a GSM RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 3.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

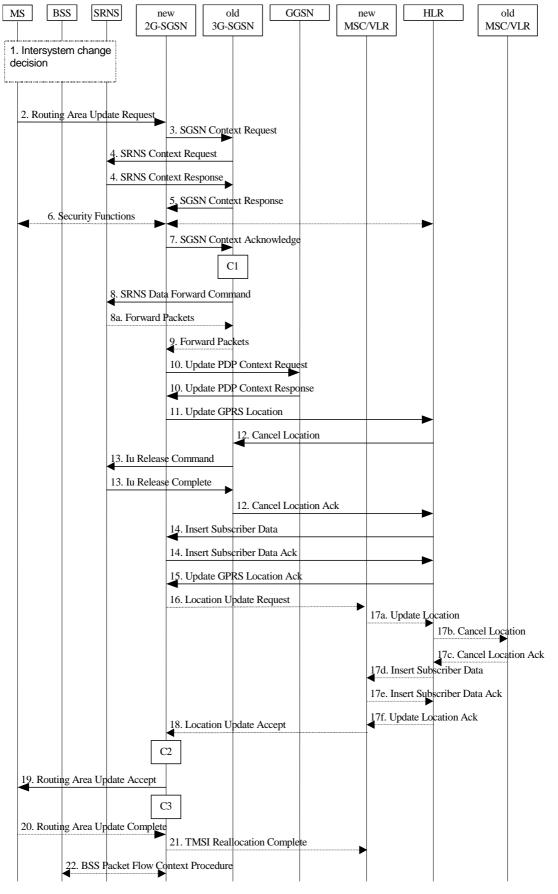


Figure 3: UMTS to GSM Inter-SGSN Change

1) The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports GSM radio technology, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, MS Network Capability) message to the new 2G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the new 2G-SGSN.
- 3) The new 2G-SGSN sends an SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) message to the old 3G-SGSN to get the MM and PDP contexts for the MS. If the old SGSN providesapplies, and the new SGSN applies provides functionality for, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the new SGSN may derive the old SGSN from the old RAI and the old P-TMSI (or TLLI) and send the SGSN Context Request message to this old SGSN. Otherwise-, the new SGSN derives the old SGSN from the old RAI. In any case the new SGSN will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the P-TMSI (or TLLI) and relay the message to that actual old SGSN. This SGSN, which is associated with the same pool area as the actual old SGSN, will determine the correct old SGSN from the P-TMSI (or TLLI) and relay the message to that SGSN, unless it is itself the correct old SGSN. The old 3G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 3G-SGSN. If the received old P-TMSI Signature does not match the stored value, the security functions in the new 2G-SGSN should be initiated. If the security functions authenticate the MS correctly, the new 2G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 3G-SGSN. MS Validated indicates that the new 2G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 2G-SGSN indicates that it has authenticated the MS correctly, the old 3G-SGSN starts a timer. If the MS is not known in the old 3G-SGSN, the old 3G-SGSN responds with an appropriate error cause.
- 4) If the MS is PMM-CONNECTED the old 3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS. Upon receipt of this message the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context, which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) downlink PDCP sequence number (PDCP-SND). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been confirmed. The 3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers and stores the N-PDU numbers in its PDP contexts..
- 5) The old 3G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. For each PDP context the old 3G-SGSN shall include the GTP sequence number for the next uplink GTP PDU to be tunnelled to the GGSN and the next donwlink GTP sequence number for the next in-sequence N-PDU to be sent to the MS. Each PDP Context also includes the SNDCP Send N-PDU Number (the value is 0) for the next in-sequence downlink N-PDU to be sent in acknowledged mode to the MS and the SNDCP Receive N-PDU Number (= converted PDCP-SNU) for the next in-sequence uplink N-PDU to be received in SNDCP acknowledged mode from the MS. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 6) Security functions may be executed.
- 7) The new 2G-SGSN sends an SGSN Context Acknowledge message to the old 3G-SGSN. This informs the old 3G-SGSN that the new 2G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a RA update procedure back to the old SGSN before completing the ongoing RA update procedure.
- 8) If the MS is in the PMM-CONNECTED state, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. For each indicated RAB the SRNS starts duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. For each radio bearer which uses lossless PDCP the SRNS shall start tunnelling the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs to the old 3G-SGSN together with their related downlink PDCP sequence numbers. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.

- 9) The old 3G-SGSN tunnels the GTP PDUs to the new 2G-SGSN. In the case of GTPv1, the conversion of PDCP sequence numbers to SNDCP sequence numbers (the eight most significant bits shall be stripped off) shall be done in the new SGSN. No N-PDU sequence numbers shall be indicated for these N-PDUs. If GTPv0 is used between the SGSNs, the conversion of PDCP sequence numbers to SNDCP numbers shall be done in the old 3G-SGSN (by stripping off the eight most significant bits).
- 10) The new 2G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.
- 11) The new 2G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 12) The HLR sends a Cancel Location (IMSI) message to the old 3G-SGSN. The old 3G-SGSN acknowledges with a Cancel Location Ack (IMSI) message. The old 3G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts shall be removed when the timer expires.
- 13) When the MS is PMM-CONNECTED, the old 3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 14) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 2G-SGSN. The 2G-SGSN constructs an MM context and PDP contexts for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 15) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 2G-SGSN.
- 16) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new 2G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides to Multiple CN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, and when the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI by the 2G-SGSN. The 2G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 14). The VLR creates or updates the association wi
- 17) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 18) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 2G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 19) The new 2G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the 2G-SGSN, or if subscription checking fails, the new 2G-SGSN rejects the routeing area update with

an appropriate cause. If all checks are successful, the new 2G-SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new 2G-SGSN and the MS. 2G-SGSN initiates the establishment procedure. The new 2G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU) message. Receive N-PDU Number contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, the MS shall discard these N-PDUs.

- 20) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number (= converted PDCP-SND)) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each lossless PDCP used by the MS before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs that were forwarded from the old 3G-SGSN, the new 2G-SGSN shall discard these N-PDUs. The MS deducts Receive N-PDU number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected insequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP. The new 2G-SGSN negotiates with the MS for each NSAPI the use of acknowledged or unacknowledged SNDCP regardless whether the SRNS used lossless PDCP or not.
- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.

22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

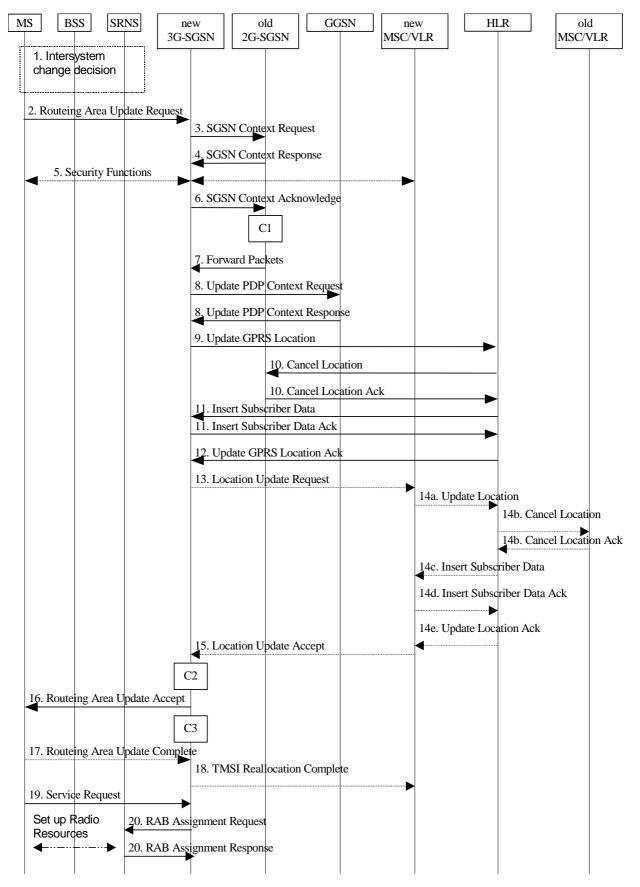
The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".


C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times once per PDP context. It returns as result "Continue".

6.13.2.2 GSM to UMTS Inter-SGSN Change

The inter-system change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN and the UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 4.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

1) The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports UMTS radio technology, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (P-TMSI, old RAI, old P-TMSI Signature, Update Type, CM, MS Network Capability) message to the new 3G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested, and also if the MS has a follow-on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS.
- 3) The new 3G-SGSN uses the old RAI received from the MS to derive the old 2G-SGSN address, and sends an SGSN Context Request (old RAI, old P-TMSI, New SGSN Address) message to the old 2G-SGSN to get the MM and PDP contexts for the MS. If the old SGSN providesapplies, and the new SGSN appliesprovides functionality for, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the new SGSN may derive the old SGSN from the old RAI and the old P-TMSI and send the SGSN Context Request message to this old SGSN. Otherwise-, the new SGSN derives the old SGSN from the old RAI. In any case the new SGSN will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the P-TMSI and relay the message to that actual old SGSN. This SGSN, which is associated with the same pool area as the actual old SGSN, will determine the correct old SGSN from the P-TMSI and relay the message to that SGSN, unless it is itself the correct old SGSN. The old 2G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 2G-SGSN. If the received old P-TMSI Signature does not match the stored value, the old 2G-SGSN should initiate the security functions in the new 3G-SGSN. If the security functions authenticate the MS correctly, the new 3G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 2G-SGSN. MS Validated indicates that the new 3G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 3G-SGSN indicates that it has authenticated the MS correctly, the old 2G-SGSN starts a timer and stops the transmission of N-PDUs to the MS.
- 4) The old 2G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. Each PDP Context includes the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. Each PDP Context also includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode SNDCP to the MS and the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode SNDCP from the MS. The new 3G-SGSN derives the corresponding PDCP sequence numbers from these N-PDU sequence numbers by adding eight most significant bits "1". These PDCP sequence numbers are stored in the 3G-SGSN PDP contexts. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 5) Security functions may be executed.
- 6) The new 3G-SGSN sends an SGSN Context Acknowledge message to the old 2G-SGSN. This informs the old 2G-SGSN that the new 3G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 7) The old 2G-SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new 3G-SGSN. Additional N-PDUs received from the GGSN before the timer described in step 3 expires are also duplicated and tunnelled to the new 3G-SGSN. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled together with their related SNDCP N-PDU sequence number. No PDCP sequence numbers shall be indicated for these N-PDUs. No N-PDUs shall be forwarded to the new 3G-SGSN after expiry of the timer described in step 3.
- 8) The new 3G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.
- 9) The new 3G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 10) The HLR sends a Cancel Location (IMSI, Cancellation Type) message to the old 2G-SGSN. The old 2G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the

MM and PDP contexts are removed when the timer expires. The old 2G-SGSN acknowledges with a Cancel Location Ack (IMSI) message.

- 11) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 3G-SGSN. The 3G-SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 3G-SGSN.
- 13) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the VLR does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the VLR does not apply the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR applies this feature, the SGSN uses the RAI and a hash value from the RAI. When the VLR applies this feature, the SGSN uses the RAI and a hash value from the RAI. When the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI by the 3G-SGSN. The 3G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 12). The VLR creates or updates the association with the 3G-SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new 3G-SGSN validate the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the 3G-SGSN, or if subscription checking fails, the new 3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 3G-SGSN constructs MM and PDP contexts for the MS. The new 3G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI signature) message.
- 17) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new 3G-SGSN sends TMSI Reallocation Complete message to the new VLR, if the MS confirms the VLR TMSI.
- 19) If the MS has uplink data or signalling pending it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 20) If the MS has sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4) and stored in the SGSN PDP contexts. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts

PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNDs. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNUs received from the SRNS. Other N-PDUs shall be transmitted to the SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

- They are called in the following order:- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. It returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context

This procedure is called several times: once per PDP context. It returns as result "Continue".

**** END OF MODIFICATIONS ****

3GPP TSG-SA2	Meeting #20 ctober 29 - November 2, 2001	Tdoc S2-012964 <u>Rev4</u> (S2-012792)				
CHANGE REQUEST						
¥	23.060 CR 266 * ev 234 * C	Current version: 4.2.0				
For <u>HELP</u> on u	sing this form, see bottom of this page or look at the p	pop-up text over the # symbols.				
Proposed change	affects: # (U)SIM ME/UE Radio Acce	ess Network Core Network X				
<i>Title:</i> ដ	Impacts on the RAU procedure due to the Intra Dor Multiple CN Nodes	main Connection of RAN Nodes to				
Source: अ	L.M. Ericsson					
Work item code:	IUFLEX	Date: # 31 st -October13th November 2001				
Category: ⊮	B F Use one of the following categories: F F (correction) A (corresponds to a correction in an earlier release) B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900.	Release: %REL-5Use one of the following releases: 2(GSM Phase 2)R96(Release 1996)R97(Release 1997)R98(Release 1998)R99(Release 1999)REL-4(Release 4)REL-5(Release 5)				
Reason for change	 # 3GPP SA#13 has recently approved 3GPP TS Connection of RAN nodes to multiple CN node be incorporated into 3GPP TS 23.060. 					
Summary of chang	ge: # Changes are introduced to the RAU procedure).				
Consequences if not approved:	Incomplete description of the RAU procedure i	n 3GPP TS 23.060				
Clauses affected:	% 6.9.1.2.2, 6.9.1.3.1, 6.9.1.3.2, 6.9.2.1					
Other specs affected:	%Other core specifications%Test specifications0&M Specifications					
Other comments:	X					

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

6.9.1 Location Management Procedures (GSM only)

6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in Figure 1.

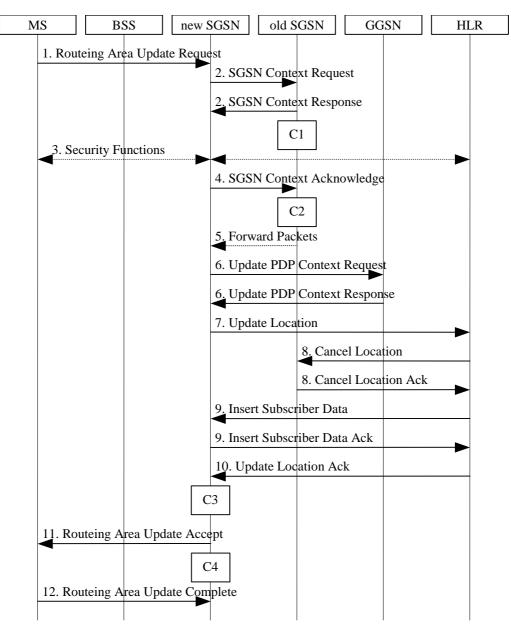


Figure 1: Inter SGSN Routeing Area Update Procedure

- 1) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, Classmark, DRX parameters and MS Network Capability) to the new SGSN. Update Type shall indicate RA update or periodic RA update. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN. Classmark contains the MS GPRS multislot capabilities and supported GPRS ciphering algorithms as defined in TS 24.008. DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.
- The new SGSN sends SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) to 2) the old SGSN to get the MM and PDP contexts for the MS. If the old SGSN providesapplies, and the new SGSN applies provides functionality for, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the new SGSN may derive the old SGSN from the old RAI and the old P-TMSI (or TLLI) and send the SGSN Context Request message to this old SGSN. Otherwise-, the new SGSN derives the old SGSN from the old RAI.- In any case the new SGSN will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the P-TMSI (or TLLI) and relay the message to that actual old SGSN. This SGSN₃ which is associated with the same pool area as the actual old SGSN, will determine the correct old SGSN from the P-TMSI (or TLLI) and relay the message to that SGSN, unless it is itself the correct old SGSN. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN stops assigning SNDCP N-PDU numbers to downlink N-PDUs received, and responds with SGSN Context Response (MM Context, PDP Contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN stores New SGSN Address, to allow the old SGSN to forward data packets to the new SGSN. Each PDP Context includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode to the MS, the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode from the MS, the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. The old SGSN starts a timer and stops the transmission of N-PDUs to the MS. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". Ciphering mode shall be set if ciphering is supported.

If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.

- 4) The new SGSN sends an SGSN Context Acknowledge message to the old SGSN. This informs the old SGSN that the new SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure. If the security functions do not authenticate the MS correctly, then the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 5) The old SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new SGSN. Additional N-PDUs received from the GGSN before the timer described in step 2 expires are also duplicated and tunnelled to the new SGSN. N-PDUs that were already sent to the MS in acknowledged mode and that are not yet acknowledged by the MS are tunnelled together with the SNDCP N-PDU number. No N-PDUs shall be forwarded to the new SGSN after expiry of the timer described in step 2.
- 6) The new SGSN sends Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return Update PDP Context Response (TEID).
- 7) The new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.

- 8) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM and PDP contexts. Otherwise, the contexts are removed only when the timer expires. This allows the old SGSN to complete the forwarding of N-PDUs. It also ensures that the MM and PDP contexts are kept in the old SGSN in case the MS initiates another inter-SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 9) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 10) The HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 11) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS, is not allowed to be attached in the SGSN, or if subscription checking fails, the new SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new SGSN and the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number). Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure.
- 12) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms reception of N-PDUs that were forwarded from the old SGSN, these N-PDUs shall be discarded by the new SGSN. LLC and SNDCP in the MS are reset.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, –, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS does not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in clause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN stops forwarding N-PDUs to the new SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

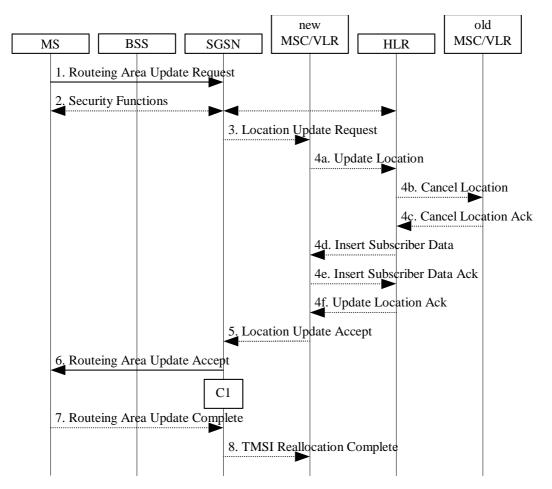
This procedure is called several times: once per PDP context. The procedure returns a sresult "Continue".

C2) CAMEL_GPRS_Detach

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".


C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

**** NEXT MODIFIED SECTION ****

6.9.1.3.1 Combined Intra SGSN RA / LA Update

The Combined RA / LA Update (intra SGSN) procedure is illustrated in Figure 2.

Figure 2: Combined RA / LA Update in the Case of Intra SGSN RA Update Procedure

- The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) to the SGSN. Update Type shall indicate combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN.
- 2) Security functions may be executed. This procedure is defined in clause "Security Function". If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.
- 3) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN does not provide this feature, the SGSN does not provide from the RAI. When the SGSN does not provide this feature, the SGSN does not provide from the RAI. When the SGSN does not provide this feature, the SGSN does not provide from the RAI. When the SGSN does not provide this feature, the SGSN does not provide from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes and when the VLR applies this feature, the SGSN uses the

<u>RAI and a hash value from the IMSI to determine the VLR number.</u> The VLR number is translated from the RAI via a table in the SGSN. The VLR creates or updates the association with the SGSN by storing SGSN Number.

- 4) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 5) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 6) The SGSN validates the MS's presence in the new RA. If due to regional subscription restrictions the MS cannot attach to the RA, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the SGSN updates the MM context for the MS. A new P-TMSI may be allocated. The SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 7) If a new P-TMSI or VLR TMSI was received, the MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 8) The SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful Location Update is performed.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078 C1:

- CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
 - The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 2, the procedure returns as result "Continue".
 - Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 2, the procedure returns as result "Continue".

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter-SGSN) procedure is illustrated in Figure 3.

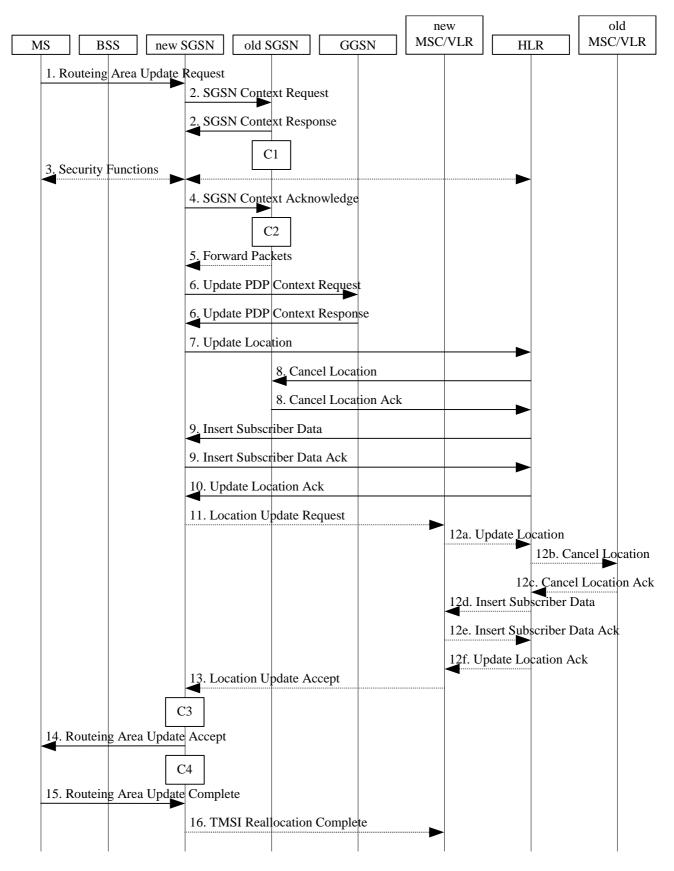


Figure 3: Combined RA / LA Update in the Case of Inter SGSN RA Update Procedure

- 1) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, Classmark, DRX parameters and MS Network Capability) to the new SGSN. Update Type shall indicate combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the SGSN. Classmark contains the MS GPRS multislot capabilities and supported GPRS ciphering algorithms as defined in 3GPP TS 24.008. DRX Parameters indicates whether or not the MS uses discontinuous and the DRX cycle length.
- 2) The new SGSN sends SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) to the old SGSN to get the MM and PDP contexts for the MS. If the old SGSN providesapplies, and the new SGSN provides functionality forapplies, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the new SGSN may derive the old SGSN from the old RAI and the old P-TMSI (or TLLI) and send the SGSN Context Request message to this old SGSN. Otherwise-, the new SGSN derives the old SGSN from the old RAI. In any case the new SGSN will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the P-TMSI (or TLLI) and relay the message to that actual old SGSN. This SGSN, which is associated with the same pool area as the actual old SGSN, will determine the correct old SGSN from the P-TMSI (or TLLI) and relay the message to that SGSN, unless it is itself the correct old SGSN. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN stops assigning SNDCP N-PDU numbers to downlink N-PDUs received, and responds with SGSN Context Response (MM Context, PDP Contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN stores New SGSN Address until the old MM context is cancelled, to allow the old SGSN to forward data packets to the new SGSN. Each PDP Context includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode to the MS, the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode from the MS, the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. The old SGSN starts a timer and stops the downlink transfer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". Ciphering mode shall be set if ciphering is supported. If the security functions fail (e.g. because the SGSN cannot determine the HLR address to establish the Send Authentication Info dialogue), the Inter SGSN RAU Update procedure fails. A reject shall be returned to the MS with an appropriate cause.
- 4) The new SGSN sends an SGSN Context Acknowledge message to the old SGSN. This informs the old SGSN that the new SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure. If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 5) The old SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new SGSN. Additional N-PDUs received from the GGSN before the timer described in step 2 expires are also duplicated and tunnelled to the new SGSN. N-PDUs that were already sent to the MS in acknowledged mode and that are not yet acknowledged by the MS are tunnelled together with the SNDCP N-PDU number. No N-PDUs shall be forwarded to the new SGSN after expiry of the timer described in step 2.
- 6) The new SGSN sends Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (TEID).
- 7) The new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 8) The HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM and PDP

contexts. Otherwise, the contexts are removed only when the timer expires. This allows the old SGSN to complete the forwarding of N-PDUs. It also ensures that the MM and PDP contexts are kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).

- 9) The HLR sends Insert Subscriber Data (IMSI, GPRS Subscription Data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 10) The HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 11) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes and when the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 9). The VLR creates or updates the association with the SGSN by storing SGSN Number.
- 12) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 13) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 14) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the SGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM and PDP contexts for the MS. A logical link is established between the new SGSN and the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature, Receive N-PDU Number). Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobileoriginated N-PDUs successfully transferred before the start of the update procedure.
- 15) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each acknowledged-mode NSAPI used by the MS, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms reception of N-PDUs that were forwarded from the old SGSN, these N-PDUs shall be discarded by the new SGSN. LLC and SNDCP in the MS are reset.
- 16) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in clause "SGSN-initiated PDP Context Deactivation Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN shall stop forwarding N-PDUs to the new SGSN.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-GPRS services until a successful location update is performed.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

```
C4) CAMEL_GPRS_Routeing_Area_Update_Context.
```

This procedure is called several times: once per PDP context. It returns as result "Continue".

**** NEXT MODIFIED SECTION ****

6.9.2 Location Management Procedures (UMTS only)

Refer to 3GPP TS 25.301 for further information on the location management procedures for the UMTS radio.

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

In this specification, only the Location Management procedures related to the CN are described. These procedures are:

- a routeing area update procedure; and
- Serving RNC relocation procedure.

An MS detects entering a new cell by comparing the cell identity identity with the cell identity stored in the MS. By comparing the RAI stored in the MS's MM context with the RAI received from the network, the MS detects that an RA update shall be performed. In RRC-CONNECTED mode (PMM-CONNECTED state or CS MM CONNECTED state), the MS is informed of RAI and Cell Identity by the serving RNC via an "MM information" message at the RRC layer. In RRC-IDLE state, the MS is informed of RAI and Cell Identity by the broadcast system information at the RRC layer.

In network mode of operation II, whenever an MS determines that it shall perform both an LA update and an RA update, the MS shall start the LA update first. The MS should start the RA update procedure before the LA update is completed.

6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection reestablishment" or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure 4.

NOTE 1: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see clause 6.1.2.4.1).

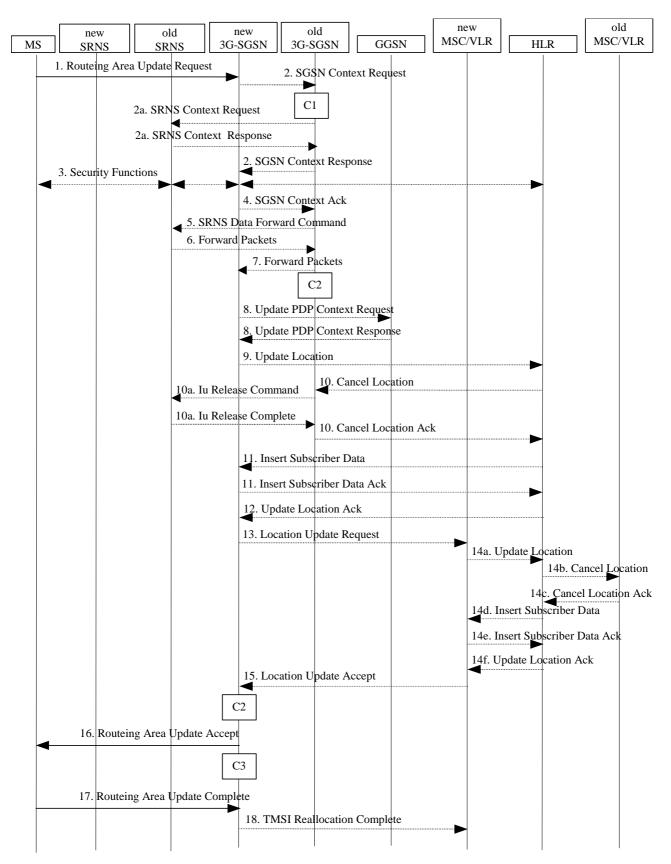


Figure 4: UMTS RA Update Procedure

- 1) The RRC connection is established, if not already done. The MS sends a Routeing Area Update Request message (P-TMSI, old RAI, old P-TMSI Signature, Update Type, follow on request, Classmark, DRX Parameters, MS Network Capability) to the new SGSN. The MS shall set a follow-on request if there is pending uplink traffic (signalling or user data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. Update Type shall indicate:
 - RA Update if the RA Update is triggered by a change of RA;
 - Periodic RA Update if the RA update is triggered by the expiry of the Periodic RA Update timer;
 - Combined RA / LA Update if the MS is also IMSI-attached and the LA update shall be performed in network operation mode I (see clause "Interactions Between SGSN and MSC/VLR"); or
 - Combined RA / LA Update with IMSI attach requested if the MS wants to perform an IMSI attach in network operation mode I.

The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS. Classmark is described in clause "MS Network Capability". DRX Parameters indicates whether or not the MS uses discontinuous reception and the DRX cycle length.

- NOTE 2: Sending the Routeing Area Update Request message to the SGSN triggers the establishment of a signalling connection between UTRAN and SGSN for the concerned MS.
- 2) If the RA update is an Inter-SGSN Routeing area update and if the MS was in PMM-IDLE state, the new SGSN sends an SGSN Context Request message (old P-TMSI, old RAI, old P-TMSI Signature) to the old SGSN to get the MM and PDP contexts for the MS. If the old SGSN providesapplies, and the new SGSN provides functionality forapplies, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the new SGSN may derive the old SGSN from the old RAI and the old P-TMSI and send the SGSN Context Request message to this old SGSN. Otherwise-, the new SGSN derives the old SGSN from the old RAI. In any case the new SGSN will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the P-TMSI and relay the message to that actual old SGSN. This SGSN, which is associated with the same pool area as the actual old SGSN, will determine the correct old SGSN from the P-TMSI and relay the message to that SGSN, unless it is itself the correct old SGSN. The old SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old SGSN. This should initiate the security functions in the new SGSN. If the security functions authenticate the MS correctly, the new SGSN shall send an SGSN Context Request (IMSI, old RAI, MS Validated) message to the old SGSN. MS Validated indicates that the new SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new SGSN indicates that it has authenticated the MS, the old SGSN responds with SGSN Context Response (Cause, IMSI, MM Context, PDP contexts). If the MS is not known in the old SGSN, the old SGSN responds with an appropriate error cause. The old SGSN starts a timer. The new SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 2a) If the MS is PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is in the PMM-CONNECTED state and the RAU was received over another Iu connection than the established one, the old SGSN sends an SRNS Context Request (IMSI) message to the old SRNS to retrieve the sequence numbers for the PDP context for inclusion in the SGSN Context Response message from the SRNS. Upon reception of this message, the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (IMSI, GTP-SNDs, GTP-SNUs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context using acknowledged mode, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU). PDCP-SNU shall be the next in-sequence PDCP sequence number each active radio bearer).
- 3) Security functions may be executed. These procedures are defined in clause "Security Function". If the security functions do not authenticate the MS correctly, the routeing area update shall be rejected, and the new SGSN shall send a reject indication to the old SGSN. The old SGSN shall continue as if the SGSN Context Request was never received.
- 4) If the RA update is an Inter-SGSN Routeing area update, the new SGSN sends an SGSN Context Acknowledge message to the old SGSN. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be

updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.

- 5) If the MS is in PMM-CONNECTED state in the old 3G-SGSN or, in case of an intra-SGSN RA update, if the MS is PMM connected and the RAU was received over another Iu connection than the established one, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
- 6) The SRNS shall start tunnelling the partly transmitted and the transmitted but not acknowledged PDCP-PDUs together with the PDCP downlink sequence number, and start duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN.
- 7) If the RA update is an Inter-SGSN RA Update, the old 3G-SGSN tunnels the GTP PDUs to the new 3G-SGSN.
- 8)If the RA update is an Inter-SGSN RA Update and if the MS wasnot in PMM-CONNECTED state in the new 3G-SGSN, the new SGSN sends Update PDP Context Request (new SGSN Address, QoS Negotiated, Tunnel Endpoint Identifier,) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (Tunnel Endpoint Identifier). Note: If the RA update is an Inter-SGSN routeing area update initiated by an MS in PMM-CONNECTED state in the new 3G-SGSN, the Update PDP Context Request message is sent as described in subclause "Serving RNS Relocation Procedures".
- 9) If the RA update is an Inter-SGSN RA Update, the new SGSN informs the HLR of the change of SGSN by sending Update Location (SGSN Number, SGSN Address, IMSI) to the HLR.
- 10) If the RA update is an nter-SGSN RA Update, the HLR sends Cancel Location (IMSI, Cancellation Type) to the old SGSN with Cancellation Type set to Update Procedure. If the timer described in step 2 is not running, the old SGSN removes the MM context. Otherwise, the contexts are removed only when the timer expires. It also ensures that the MM context is kept in the old SGSN in case the MS initiates another inter SGSN routeing area update before completing the ongoing routeing area update to the new SGSN. The old SGSN acknowledges with Cancel Location Ack (IMSI).
- 10a) On receipt of Cancel Location, if the MS is PMM-CONNECTED in the old 3G-SGSN, the old 3G-SGSN sends an Iu Release Command message to the old SRNC. When the data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 11) If the RA update is an nter-SGSN RA Update, the HLR sends Insert Subscriber Data (IMSI, subscription data) to the new SGSN. The new SGSN validates the MS's presence in the (new) RA. If due to regional subscription restrictions the MS cannot attach to the RA, the SGSN rejects the Routeing Area Update Request with an appropriate cause, and may return an Insert Subscriber Data Ack (IMSI, SGSN Area Restricted) message to the HLR. If all checks are successful, the SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) If the RA update is an Inter-SGSN RA Update, the HLR acknowledges the Update Location by sending Update Location Ack (IMSI) to the new SGSN.
- 13) If Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the association has to be established, and the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with ISI attach requested. Otherwise, Location Update Type shall indicate normal location update. When the SGSN does not provide functionality for the Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides function of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the SGSN provides functionality for Intra Domain Connection of RAN Nodes to Multiple CN Nodes, or when the SGSN does not provide this feature, the VLR number is derived from the RAI. When the VLR applies this feature, the SGSN uses the RAI and a hash value from the RAI. When the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR applies this feature, the SGSN uses the RAI and a hash value from the RAI. When the VLR applies this feature, the SGSN uses the RAI and a hash value from the IMSI to determine the VLR number. The VLR number is translated from the RAI via a table in the SGSN. The SGSN starts the location update procedure towards the new MSC/VLR upon

receipt of the first Insert Subscriber Data message from the HLR in step 8). The VLR creates or updates the association with the SGSN by storing SGSN Number.

- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the SGSN, or if subscription checking fails, the SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new SGSN establishes MM context for the MS. The new SGSN responds to the MS with Routeing Area Update Accept (P-TMSI, VLR TMSI, P-TMSI Signature).
- 17) The MS confirms the reallocation of the TMSIs by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new SGSN sends a TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- NOTE 3: Steps 14, 15, and 18 are performed only if step 12 is performed.

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

The CAMEL procedure call shalls be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection

This procedure is called several times: once per PDP context. The procedure returns as result "Continue".

C2) CAMEL_GPRS_Detach.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C4) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

**** END OF MODIFICATIONS ****

3GPP TSG-SA Kobe, Japan,		ting #20 er 29 - November 2, 2001	<i>Tdoc S2-012965<u>Rev4</u></i> (S2-012793)
		CHANGE REQUES	CR-Form-v4
¥	23	.060 CR 267 ^{# ev} 2 <u>34</u> ³	<pre>\$ Current version: 4.2.0 \$</pre>
For <u>HELP</u> o	n using t	this form, see bottom of this page or look at	the pop-up text over the X symbols.
Proposed chang	ge affec	ts: ೫ (U)SIM ME/UE Radio	Access Network Core Network X
Title:		pacts on the Suspend procedure due to the des to Multiple CN Nodes	Intra Domain Connection of RAN
Source:	ж <mark>L.№</mark>	1. Ericsson	
Work item code	:: ፝ <mark>IUF</mark>	FLEX	Date: # 31 st October 2001
Category:	Deta	one of the following categories: F (correction) A (corresponds to a correction in an earlier rele B (addition of feature), C (functional modification of feature) D (editorial modification) illed explanations of the above categories can bund in 3GPP <u>TR 21.900</u> .	Release: %REL-5Use one of the following releases: 2(GSM Phase 2)ase)R96(Release 1996)R97(Release 1997)R98(Release 1998)R99(Release 1999)REL-4(Release 4)REL-5(Release 5)
Reason for chai	nge: Ж	3GPP SA#13 has recently approved 3GP Connection of RAN nodes to multiple CN be incorporated into 3GPP TS 23.060.	
Summary of cha	ange: ೫	Changes are introduced to the Suspend p	procedure.
Consequences not approved:	if ¥	Incomplete description of the Suspend pro	ocedure in 3GPP TS 23.060
Clauses affecte	d: ೫	16.2.1.1.2, 16.2.1.2.2	
Other specs affected:	ж	Other core specifications#Test specificationsO&M Specifications	
Other comment	s: #		

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

16.2.1.1.2 Inter-SGSN Suspend and Resume procedure

The Suspend and Resume procedure for inter-SGSN is illustrated in Figure 1.

This describes the scenario where the old cell and the new cell are handled by different SGSN's, i.e. suspend message is received in an SGSN that is different from the SGSN currently handling the packet data transmission.

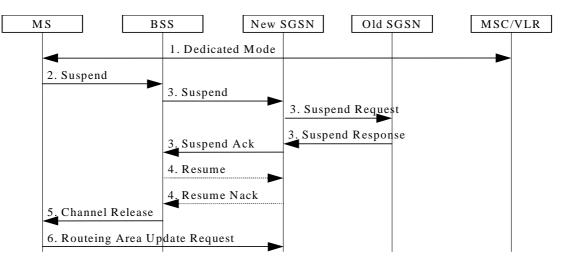


Figure 1: Suspend and Resume Procedure for inter-SGSN

- 1) During CS connection, a DTM MS performs handover from a cell supporting DTM to a cell not supporting DTM.
- 2) The MS sends an RR Suspend (TLLI, RAI) message to the BSS.
- 3) The BSS sends a Suspend (TLLI, RAI) message to the SGSN.
 - Since the SGSN that receives the Suspend message is not the one currently handling the packet data transmission, an indication to perform suspend will be sent to the old SGSN by means of a SUSPEND REQUEST message on the Gn interface. The address of the old SGSN is derived by "old RAI" received in Suspend message. If the SGSN that receives the Suspend message provides functionality for, and the old SGSN applies, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the SGSN that receives the Suspend message from the BSS may derive the old SGSN from the old RAI and the old TLLI and send the Suspend Request message to this old SGSN. Otherwise-, the SGSN that receives the Suspend message from the BSS derives the old SGSN from the old RAI. -In any case the SGSN that receives the Suspend message from the BSS will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the TLLI and relay the Suspend Request message to that SGSN, will determine the correct old SGSN from the TLLI and relay the Suspend Request message to that SGSN, unless it is itself the correct old SGSN.
 - The Old SGSN returns a SUSPEND RESPONSE.
 - The new SGSN then returns Suspend Ack to the BSS.
- 4) After CS connection is terminated, the BSS may send a Resume (TLLI, RAI) message to the new SGSN, but since resume is not needed against the old SGSN, the new SGSN acknowledges the resume by Resume Nack. (Resume is not needed against the old SGSN since the MS in this case always will perform an RA Update for updating of GPRS services when the CS connection is terminated and the MM context will be moved from the old to the new SGSN.)
- 5) The BSS sends an RR Channel Release message to the MS, indicating that the BSS has not successfully requested the SGSN to resume GPRS services for the MS. The MS leaves dedicated mode.

6) The MS shall resume GPRS services by sending a Routeing Area Update Request message to the SGSN, as described in subclause "Routeing Area Update Procedure".

**** NEXT MODIFIED SECTION ****

16.2.1.2.2 Inter-SGSN Suspend and Resume procedure

The Suspend and Resume procedure for inter SGSN is illustrated in Figure 2.

This describes the scenario when the suspend message is received in an SGSN that is different from the SGSN currently handling the packet data transmission and would be valid for at least the following cases:

- MS performs inter-system handover from UMTS to GSM during CS connection and the SGSN handling the GSM cell is different from the SGSN handling the UMTS cell, i.e. the 2G and 3GPP SGSNs are separated.

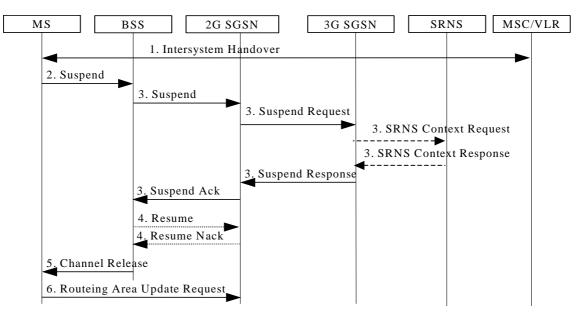


Figure 2: Suspend and Resume Procedure for inter-SGSN

- 1) During CS connection, the MS performs handover from UMTS to GSM, and the MS or the network limitations make it unable to support CS/PS mode of operation.
- 2) The MS sends an RR Suspend (TLLI, RAI) message to the BSS.
- 3) The BSS sends a Suspend (TLLI, RAI) message to the SGSN.
 - Since the SGSN that receives the Suspend message is not the one currently handling the packet data transmission, an indication to perform suspend will be sent to the 3G SGSN by means of a SUSPEND REQUEST message on the Gn interface. The address of the old SGSN is derived by "old RAI" received in the Suspend message. If the SGSN that receives the Suspend message provides functionality for, and the old SGSN applies, Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the SGSN that receives the Suspend message from the BSS may derive the old SGSN from the old RAI and the old TLLI and send the Suspend Request message to this old SGSN. Otherwise-, the SGSN that receives the Suspend message from the BSS will derive an SGSN that it believes is the old SGSN. This derived SGSN is itself the old SGSN, or it is associated with the same pool area as the actual old SGSN and it will determine the correct old SGSN from the TLLI and relay the Suspend Request message to that SGSN, will determine the correct old SGSN from the TLLI and relay the Suspend Request message to that SGSN, unless it is itself the correct old SGSN.
 - The 3G SGSN may request the SRNS to stop sending downlink PDU's by the SRNS Context Request message. Upon reception of the SRNS Context Request message, the SRNS starts buffering the downlink PDUs.

- The SRNS responds with an SRNS Context Response message.
- The 3G SGSN return a SUSPEND RESPONSE.
- The 2G SGSN then returns Suspend Ack to the BSS.
- 4) After CS connection is terminated, the BSS may send a Resume (TLLI, RAI) message to the 2G SGSN, but since resume is not needed against the 3G SGSN the 2G SGSN acknowledges the resume by Resume Nack. (Resume is not needed in this case since the MS always will perform an RA Update for updating of GPRS services when the CS connection is terminated and the MM context will be moved from 3G to 2G SGSN.)
- 5) The BSS sends an RR Channel Release message to the MS, indicating that the BSS has not successfully requested the SGSN to resume GPRS services for the MS.
- 6) The MS shall resume GPRS services by sending a Routeing Area Update Request message to the SGSN, as described in subclause " Inter System Change Procedure".

**** END OF MODIFICATIONS ****

3GPP TSG-SA2 Kobe, Japan, O		•		vembei	[.] 2, 2	001						Td		-012966 -012796)
				CHAN	IGE	R	EQ	UE	ST	•				CR-Form-v4
ж	23.	.060	CR	268		ж	ev	2	Ħ	Current	vers		4.2.0	æ
For <u>HELP</u> on	using t	his for	m, see	e bottom	of this	pag	e or	look	at th	e pop-up	text	ovei	r the ೫ sy	/mbols.
Proposed change	affect	ts: X	(U)	SIM	ME	/UE		Rad	io Ac	ccess Ne	tworl	<	Core N	letwork X
Title: 3				SRNS Re Multiple C			roce	dure	due	to the Int	tra Do	omai	in Conne	ction of
Source: ¥	B <mark>L.N</mark>	I. Erics	son											
Work item code: #	l IUF	LEX								Dat	te: #	31	st Octobe	r 2001
Category: ¥	Deta	F (corr A (corr B (add C (fund D (edit iled exp	ection) respon lition of ctional corial m olanatic	owing cate) ds to a co f feature), modificati odification ons of the TR 21.900	rrection on of fe n) above	n in a eature	e)			2 R9 R9 R9 R9 RE	<u>ne</u> of 6 7 8 9 :L-4	the fo (GSI (Rela (Rela (Rela (Rela (Rela	E L-5 Dilowing re M Phase 2 ease 1996 ease 1997 ease 1998 ease 1999 ease 4) ease 5)	;) ;) ;)
Reason for chang	'e: Ж	Conr	nectior	13 has re of RAN rated into	nodes	s to n	nultip	ole C						Domain s TS must
Summary of chan	ge: Ж	A sm	all up	date of th	<mark>e SRI</mark>	<mark>NS R</mark>	eloc	ation	proc	<mark>edure is</mark>	intro	duce	ed.	
Consequences if not approved:	Ħ	Incor	nplete	descript	ion of	the S	SRN	S Re	locat	ion proc	edure	e in 3	GPP TS	23.060
Clauses affected:	¥	6.9.2	<mark>.2.1, 6</mark>	8 <mark>.9.2.2.2,</mark>	<u>6.9.2</u> .	2.3								
Other specs affected:	ж	Τe	est spe	ore specif ecification pecificatio	IS	าร	ж							
Other comments:	ж													

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

6.9.2.2 Serving RNS Relocation Procedures

Serving RNS relocation procedures move the UTRAN to CN connection point at the UTRAN side of the source RNC to the target RNC. The Serving RNS Relocation Procedures, described in the following sub-clauses, may be performed as "Lossless SRNS Relocation", which means packet loss during the SRNS change is eliminated. For this purpose, the RNS and the MS have to provide PDCP layer functionality, which in the subsequent description is referred as the lossless PDCP. The source RNC decides to perform the Serving RNS Relocation Procedure as "Lossless SRNS Relocation" based on capabilities of the UE and the RNS and based on QoS parameters (e.g SDU error ratio).

For "Lossless SRNS Relocation", both the MS and the source RNS have to support and to use the lossless PDCP. When the SRNS changes, the old RNS forwards all received and not yet transferred downlink GTP-PDUs to the target RNS. GTP-PDUs forwarded to the target RNS indicate a PDCP sequence number if the contained N-PDUs were sent to the MS as a PDCP-SDUs, but are not yet acknowledged by lossless PDCP. The target RNS and the MS exchange respective sequence numbers of next expected PDCP-PDUs. This process indicates PDCP-PDUs that were already successfully transferred between the MS and the source RNS for downlink and uplink directions, respectively. This also confirms all N-PDUs (PDCP-SDUs) successfully transferred before the change of the SRNS. These N-PDUs are discarded by the MS and the target RNS, respectively. The target RNS identifies the forwarded GTP-PDUs containing confirmed N-PDUs by the PDCP sequence number in the GTP-PDU. All other N-PDUs have to be transmitted via the new MS – RNS link.

6.9.2.2.1 Serving SRNS Relocation Procedure after Soft Handover

This procedure is only performed for an MS in PMM-CONNECTED state where the Iur interface carries both the control signalling and the user data.

The Serving SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, from a "standing still position". In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects an Intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about new location of the MS.

Figure 1 shows user data routing when source SRNC and target RNC are connected to different SGSNs before SRNS relocation. Figure 2 shows the user data routing after SRNS Relocation procedure and Routeing Area Update procedure is completed. In case depicted in Figure 1 and Figure 2, the MS is in state PMM-CONNECTED.

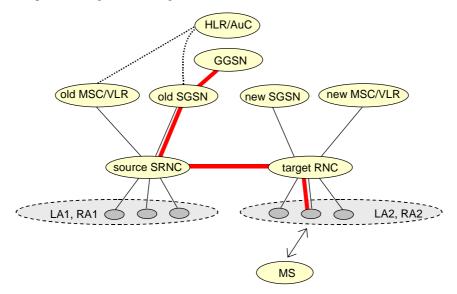


Figure 1: Before SRNS Relocation and Routeing Area Update

Before the SRNS Relocation procedure and RA update, the MS is registered in the old SGSN. The source RNC is acting as a serving RNC (SRNC).

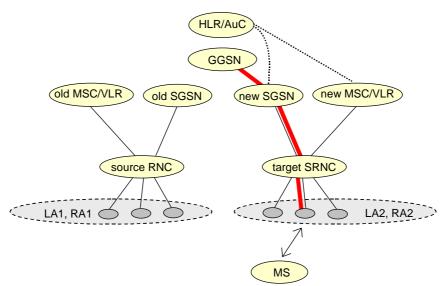


Figure 2: After SRNS Relocation and Routeing Area Update

After the SRNS Relocation procedure and RA update, the MS is registered in the new SGSN. The MS is in the state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as the serving RNC.

The Serving SRNS Relocation procedure is illustrated in Figure 3. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

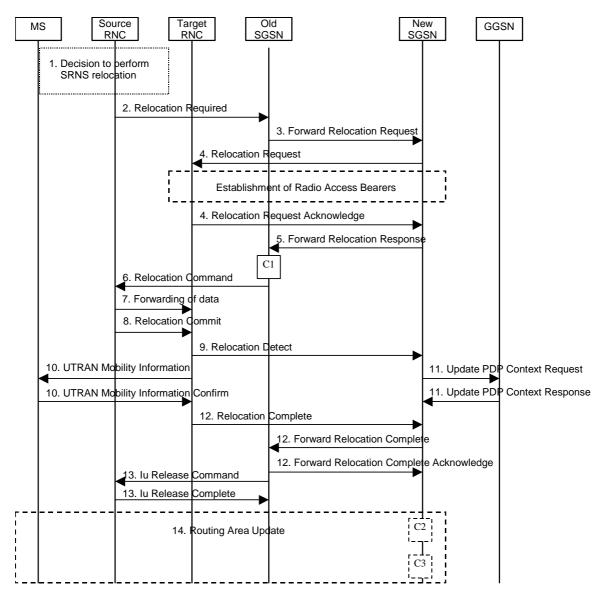


Figure 3: SRNS Relocation Procedure after soft handover

- 1) The source SRNC decides to perform/initiate SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between MS and source SRNC (data flows via the target RNC, which acts as a drift RNC); GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to target RNC transparent container) to the old SGSN. The source SRNC shall set the Relocation Type to "UE not involved". The Source SRNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation, the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN transparent container, RANAP Cause) to the new SGSN. For relocation to an area where Intra Domain Connection of RAN Nodes to Multiple CN Nodes is used, the old SGSN may if it provides Intra Domain Connection of RAN Nodes to Multiple CN Nodes -have multiple target SGSNs for each relocation target in a pool area, in which case the old SGSN will select one of them to become the new SGSN, as specified in 3GPP TS 23.236 [73]. The PDP context contains GGSN Address

for User Plane and Uplink TEID for Data (to which the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see the Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)"). The Forward Relocation Request message is applicable only in the case of inter-SGSN SRNS relocation.

- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source-RNC to target RNC transparent container, RABs to be setup) to the target RNC. Only the Iu Bearers of the RABs are setup between the target RNC and the new-SGSN as the existing Radio Bearers will be reallocated between the MS and the target RNC when the target RNC takes the role of the serving RNC. For each requested RAB, the RABs to be setup information elements shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data. After all necessary resources for accepted RABs including the Iu user plane are successfully allocated; the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and an Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. For each RAB to be set up, the target RNC may receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.
- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and RAB Setup Information) is sent from the new SGSN to old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e. the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and the RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (RABs to be released, and RABs subject to data forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from source SRNC to target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at IP layer towards the target RNC. The source RNC continues transmitting duplicates of downlink data and receiving uplink data. Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may start data forwarding (step 7) and send Relocation Commit message (step 8) almost simultaneously except in the delivery order required case where step 7 triggers step 8. Target RNC may send Relocation Detect message (step 9) and UTRAN Mobility Information message (step 10) at the same time. Hence, target RNC may receive UTRAN Mobility Information Confirm message (step 10) while data forwarding (step 7) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicate downlink data and receiving uplink data 8) Before sending the Relocation Commit the uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require delivery order. The source RNC shall start the data-forwarding timer. When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP_PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC. PDCP sequence numbers are only sent by the source RNC for radio bearers, which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink, respectively.

- 9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 10) The target SRNC sends a UTRAN Mobility Information message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

The target SRNC establishes and/or restarts the RLC, and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target SRNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile-terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the MS shall discard these packets.

Upon reception of the UTRAN Mobility Information message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If new the SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

For all RABs, the target RNC should:

start uplink reception of data and start transmission of uplink GTP-PDUs towards the new SGSN;

start processing the already buffered and the arriving downlink GTP-PDUs and start downlink transmission towards the MS.

- 11) Upon receipt of the Relocation Detect message, the CN may switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier).
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect and upon reception of Relocation Complete, the CN shall switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN shall signal to the old SGSN the completion of the SRNS relocation gas a Forward Relocation Complete message.
- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation; the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED mode.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach.

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result ""Continue"".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.2 Combined Hard Handover and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state in case the Iur interface is not available.

The Combined Hard Handover and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a hard handover decided by the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

If the target RNC is connected to a different SGSN than the source SRNC, an Inter-SGSN SRNS Relocation procedure is performed. This procedure is followed by an Inter-SGSN Routeing Area Update procedure.

Figure 4 shows the situation before a Combined Hard Handover and SRNS Relocation procedure when source and target RNC are connected to different SGSNs. Figure 5 shows the situation after the Combined Hard Handover and

SRNS Relocation procedure and RA update procedure have been completed. In the case described in Figure 4 and Figure 5 the MS is in PMM-CONNECTED state.

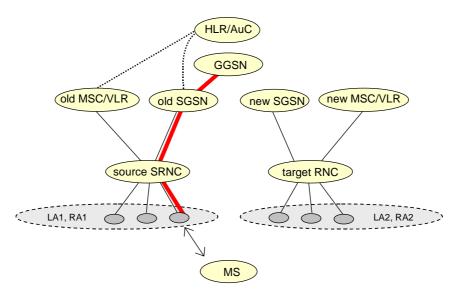


Figure 4: Before Combined Hard Handover and SRNS Relocation and Routeing Area Update

Before the SRNS Relocation and Routeing Area Update the MS is registered in the old SGSN and in the old MSC/VLR. The source RNC is acting as serving RNC.

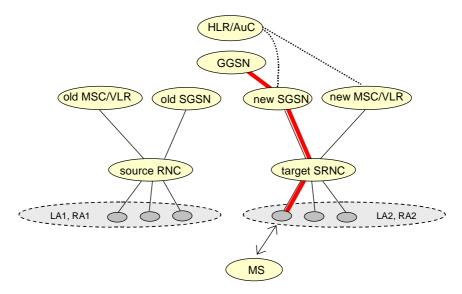


Figure 5: After Combined Hard Handover and SRNS Relocation and Routeing Area Update

After the SRNS relocation and RA update, the MS is registered in the new SGSN and in the new MSC/VLR. The MS is in state PMM-CONNECTED towards the new SGSN and in MM IDLE state towards the new MSC/VLR. The target RNC is acting as serving RNC.

The Combined Hard Handover and SRNS Relocation procedure for the PS domain is illustrated in Figure 6. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

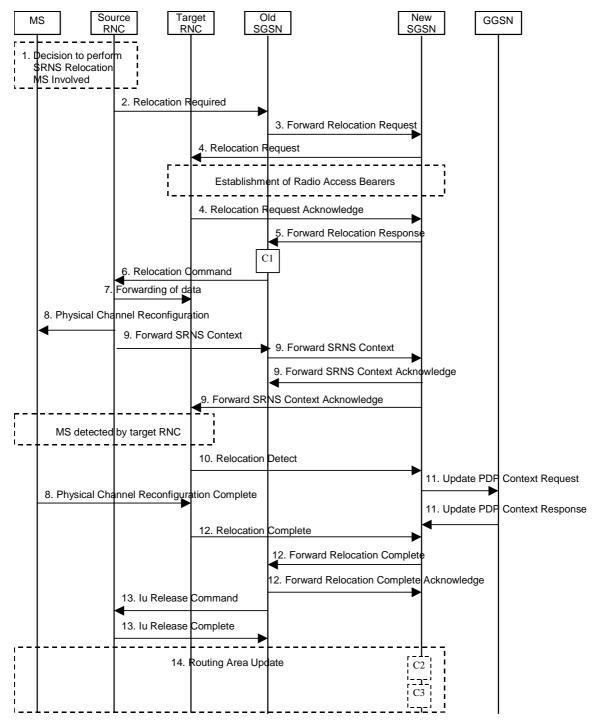


Figure 6: Combined Hard Handover and SRNS Relocation Procedure

- Based on measurement results and knowledge of the UTRAN topology, the source SRNC decides to initiate a combined hard handover and SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between the MS and the source SRNC (no drift RNC available); GTP-U tunnel(s) between the source SRNC and the old SGSN; GTP-U tunnel(s) between the old SGSN and the GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC To Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE Involved". Source RNC To Target RNC Transparent Container includes the necessary information for relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).

- 3) The old SGSN determines from the Target ID if the SRNS relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) to the new SGSN. For relocation to an area where Intra Domain Connection of RAN Nodes to Multiple CN Nodes is used, the old SGSN may if it provides Intra Domain Connection of RAN Nodes to Multiple CN Nodes -have multiple target SGSNs for each relocation target in a pool area, in which case the old SGSN will select one of them to become the new SGSN, as specified in 3GPP TS 23.236 [73]. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)"). The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.
- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC To Target RNC Transparent Container, RAB To Be Setup) to the target RNC. For each requested RAB to be established, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all the necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (Target RNC To Source RNC Transparent Container, RABs Setup, RABs Failed To Setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and the Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. The transparent container contains all radio-related information that the MS needs for the handover, i.e., a complete RRC message (e.g., Physical Channel Reconfiguration) to be sent transparently via CN and source SRNC to the MS. For each RAB to be set up, the target RNC may receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.

- 5) When resources for the transmission of user data between target RNC and new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response (Cause, UTRAN Transparent Container, RANAP Cause, Target-RNC Information) message is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e., the relocation resource allocation procedure is terminated successfully. UTRAN transparent container and RANAP Cause are information from the target RNC to be forwarded to the source SRNC. The Target RNC Information, one information element for each RAB to be set up, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (Target RNC To Source RNC Transparent Container, RABs To Be Released, RABs Subject To Data Forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begins the forwarding of data for the RABs to be subject for data forwarding.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may start data forwarding (step 7), send Physical Channel Reconfiguration message to MS (step 8) and forward SRNS Context message to the old SGSN (step 8) almost simultaneously.

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data.

Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

8) Before sending the Physical Channel Reconfiguration the uplink and downlink data transfer shall be suspended in the source SRNC for RABs, which require delivery order. When the source SRNC is ready, the source RNC shall trigger the execution of relocation of SRNS by sending to the MS the RRC message provided in the Target RNC to source RNC transparent container, e.g., a Physical Channel Reconfiguration (UE Information Elements, CN Information Elements) message. UE Information Elements include among others new SRNC identity and S-RNTI. CN Information Elements contain among others Location Area Identification and Routeing Area Identification.

Before the RRC message is sent (e,g, Physical Channel Reconfiguration) uplink and downlink data transfer in the source RNC shall be suspended for RABs which require to maintain the delivery order.

When the MS has reconfigured itself, it sends e.g., a Physical Channel Reconfiguration Complete message to the target SRNC. If the Forward SRNS Context message with the sequence numbers is received, the exchange of packets with the MS may start. If this message is not yet received, the target RNC may start the packet transfer for all RABs, which do not require maintaining the delivery order.

9) The source SRNC continues the execution of relocation of SRNS by sending a Forward SRNS Context (RAB Contexts) message to the target RNC via the old and the new SGSN, which is acknowledged by a Forward SRNS Context Acknowledge message. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are only sent by the source RNC for the radio bearers which used losslessPDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context uplink and downlink, respectively.

The target RNC establishes and/or restarts the RLC and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target RNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received by the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, then the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the MS shall discard these packets.

- 10) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE Involved", the relocation execution trigger may be received from the Uu interface; i.e., when target RNC detects the MS on the lower layers. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 11)Upon reception of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS relocation is an inter-SGSN SRNS relocation, the new SGSN sends an Update PDP Context Request (New SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) message to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.

- 12) When the target SRNC receives the Physical Channel Reconfiguration Complete message or the Radio Bearer Release Complete message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate a Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.
- 13)Upon receiving the Relocation Complete message or, if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired, the source RNC responds with an Iu Release Complete message.
- 14) After the MS has finished the reconfiguration procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
 - C2) CAMEL_GPRS_Routeing_Area_Update_Session.

In Figure 6, the procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.3 Combined Cell / URA Update and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state, where the Iur interface carries control signalling but no user data.

The Combined Cell / URA Update and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a cell re-selection in the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

Before the Combined Cell / URA Update and SRNS Relocation and the Routeing Area Update, the MS is registered in the old SGSN. The source RNC is acting as serving RNC.

After the Combined Cell / URA Update and SRNS Relocation and the Routeing Area Update, the MS is registered in the new SGSN. The MS is in state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as serving RNC.

The Combined Cell / URA Update and SRNS Relocation procedure for the PS domain is illustrated in Figure 7. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

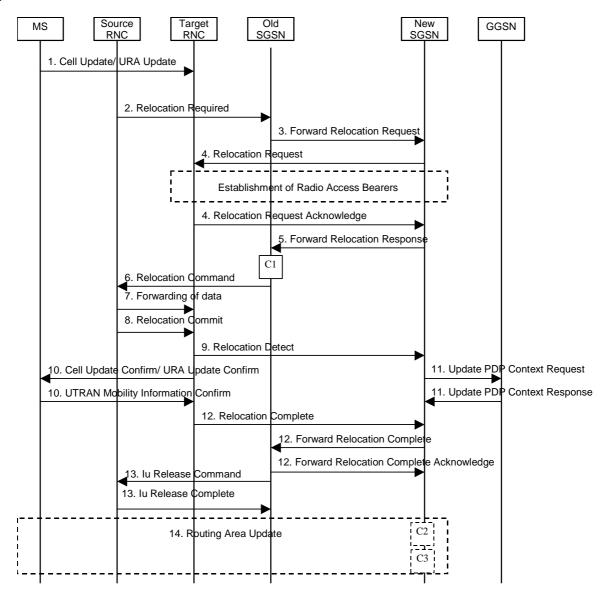


Figure 7: Combined Cell / URA Update and SRNS Relocation Procedure

- 1) The MS sends a Cell Update / URA Update message to the source SRNC (if the cell is located under another RNC the message is routed via the DRNC to SRNC over the Iur). The source SRNC decides whether or not to perform a combined cell / URA update and SRNS relocation towards the target RNC. The rest of this subclause describes the case where a combined cell / URA update and SRNS relocation applies. In this case no radio bearer is established between the source SRNC and the UE. Nonetheless the following tunnel(s) are established: GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE not involved". Source RNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality, and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In the case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) message to the new SGSN. For relocation to an area where Intra Domain Connection of RAN Nodes to Multiple CN Nodes is used, the old SGSN may if it provides Intra Domain Connection of RAN Nodes to Multiple CN

Nodes -have multiple target SGSNs for each relocation target in a pool area, in which case the old SGSN will select one of them to become the new SGSN, as specified in 3GPP TS 23.236 [73]. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN, see Routeing Area Update procedure in subclause "Location Management Procedures (UMTS only)". The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.

4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC to Target RNC Transparent Container, RABs To Be Setup) to the target RNC. For each requested RAB, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and a Iu Transport Association which corresponds to the downlink Tunnel Endpoint Identifier for user data. The target-RNC may simultaneously receive for each RAB to be set up downlink user packets both from the source SRNC and from the new SGSN.

After the new SGSN receives the Relocation Request Acknowledge message, the GTP-U tunnels are established between the target RNC and the new-SGSN.

- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and Target RNC Information) is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from the source SRNC the forwarded downlink packets, i.e., the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command (RABs to be released, and RABs subject to data forwarding) message to the source SRNC. The old SGSN decides the RABs subject to data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begin the forwarding of data for the RABs subject to data forwarding and starts the data-forwarding timer. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may send data forwarding (step 7) and start Relocation Commit message (step 8) almost simultaneously. Target RNC may send Relocation Detect message (step 9) and Cell Update Confirm/URA Update Confirm message (step 10) at the same time. Hence, target RNC may receive the UTRAN Mobility Information Confirm message from MS (step 10) while data forwarding (step 8) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data.

Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

8) Before sending the Relocation Commit the uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require delivery order.

When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP-PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are only sent by the source RNC for radio bearers, which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink respectively.

9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation

The target SRNC sends a Cell Update Confirm / URA Update Confirm message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

Upon reception of the Cell Update Confirm / URA Update Confirm message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If the new SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to the GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

The target SRNC and the MS exchange the PDCP sequence numbers; PDCP-SNU and PDCP-SND. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation procedure. If PDCP-SND confirms the reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the target SRNC shall discard these packets that were received in the source SRNC.

11)Upon receipt of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the

GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.

- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.
- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the Cell / URA update and RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL GPRS Routeing Area Update-Session

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

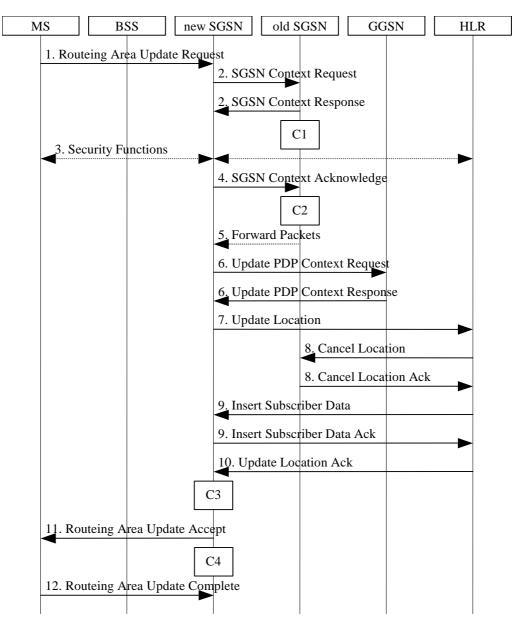
This procedure is called several times: once per PDP context. It returns as result "Continue". For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

**** END OF MODIFICATIONS ****

3GPP TSG-SA WG2 Meeting #20

Kobe, Japan, 20th Oct – 2nd Nov 2001

	CR-Form-v3					
CHANGE REQUEST						
ж 🛛	23.060 CR 281 ^{# rev} 2 [#] Current version: 4.2.0 [#]					
For HELP on usir	ng this form, see bottom of this page or look at the pop-up text over the st symbols.					
Proposed change aff	ects: # (U)SIM ME/UE Radio Access Network Core Network x					
Title: ೫	PDP context handling at Inter SGSN RA Update					
Source: #	Ericsson					
Work item code: #	TEI5 Date: # 30.10.2001					
Category: ೫	B Release: # REL-5					
D	Ise one of the following categories:Use one of the following releases:F (essential correction)2A (corresponds to a correction in an earlier release)R96B (Addition of feature),R97C (Functional modification of feature)R98D (Editorial modification)R99e found in 3GPP TR 21.900.REL-5					
Reason for change:	 If the new SGSN during an Inter SGSN RA Update procedure, can not support all the active PDP Contexts that are transferred from the old SGSN, then there is a problem for new SGSN to decide on which PDP Contexts to keep and which to delete. Due to this problem there are no guarantee that the subscriber will keep the PDP Context that he is currently using, ex. if he has ongoing a file transfer, mail downloading aso. Instead this currently used PDP Context may be deleted, and a PDP Context that is not 					
	 Instead this currently used PDP Context may be deleted, and a PDP Context that is not really needed for the moment might still be kept. Since it is only the old SGSN that have the needed information concerning the activity of the PDP contexts, there is a need for the new SGSN to get input from old SGSN before it decides on which PDP Contexts to delete. The old SGSN should therefore sort the active PDP context in such way that at least the PDP contexts with highest priority will continue to stay active even in the new SGSN. The algorithm used to make the prioritizing could be implementation dependent, but as an example at least the contexts that are most active for the moment should be kept. 					
Summary of change:	 It is proposed to make a minor modification to the GTP specification, stating that during the Inter SGSN RA Update procedure the PDP Contexts are sent in a prioritized order instead of randomly as today. The new SGSN can then just keep the number of PDP Contexts that it supports starting. 					


Consequences if not approved: * GPRS will be perceived as a bad service for the end user since there is a risk that the PDP context(s) currently in use doesn't remain active after roaming, and by that the application will be hanging.

from the top of the list and deactivate the rest.

Clauses affected:	£ 6.9.1.2.2; 6.9.1.3.2; 6.9.2.1; 6.13.2.1; 6.13.2.2
Other specs affected:	X Other core specifications X 29.060 Test specifications O &M Specifications X
Other comments:	X

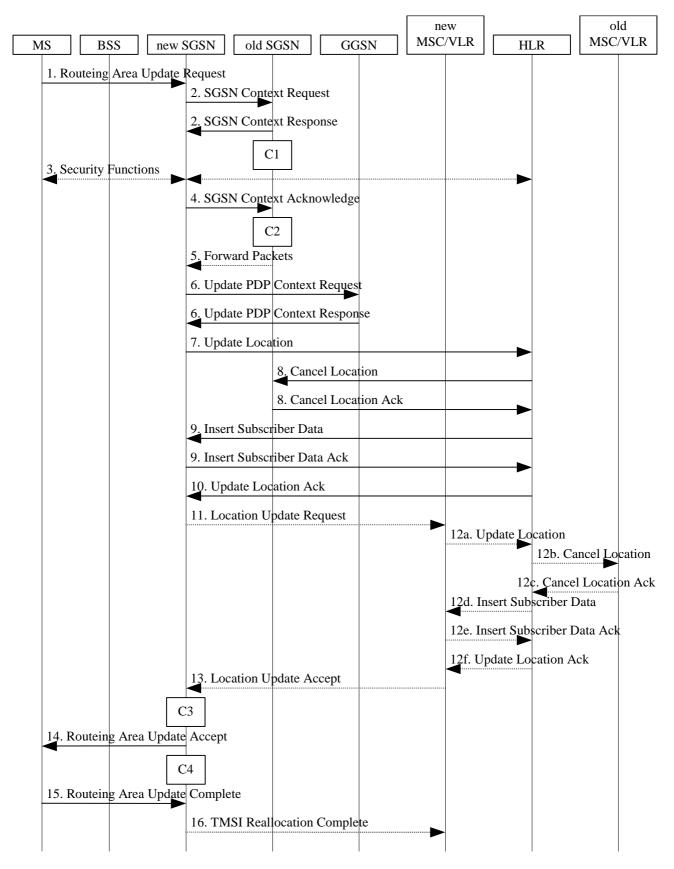
6.9.1.2.2 Inter SGSN Routeing Area Update

The Inter SGSN Routeing Area Update procedure is illustrated in Error! Not a valid bookmark self-reference.

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, , or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS does not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

The PDP Contexts shall be sent from old to new SGSN in a prioritized order, i.e. the most important PDP Context first in the SGSN Context Response message. (The prioritization method is implementation dependent, but should be based on the current activity.) In case the new SGSN is not able to maintain active all the PDP Contexts received from old SGSN, it should use the prioritisation sent by old SGSN as input when deciding which PDP contexts to maintain active and which ones to delete. If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.


If the timer described in step 2 expires and no Cancel Location (IMSI) was received from the HLR, the old SGSN stops forwarding N-PDUs to the new SGSN.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

6.9.1.3.2 Combined Inter SGSN RA / LA Update

The Combined RA / LA Update (inter-SGSN) procedure is illustrated in Figure .

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, or because the SGSN cannot determine the HLR address to establish the locating updating dialogue, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered-up.

The PDP Contexts shall be sent from old to new SGSN in a prioritized order, i.e. the most important PDP Context first in the SGSN Context Response message. (The prioritization method is implementation dependent, but should be based on the current activity.) In case the new SGSN is not able to maintain active all the PDP Contexts received from old SGSN, it should use the prioritisation sent by old SGSN as input when deciding which PDP contexts to maintain active and which ones to delete.

If the SGSN is unable to update the PDP context in one or more GGSNs, the SGSN shall deactivate the corresponding PDP contexts as described in subclause "PDP Context Deactivation Initiated by SGSN Procedure". This shall not cause the SGSN to reject the routeing area update.

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter IDLE state.

MANAMAMMANA MANAMAMMANA MANAMAMMANA MANAMAMMANA MANAMAMMANA MANAMAMMANA MANAMAMMANA MANAMAMMANA MANAMAMANA MANA

6.9.2.1 Routeing Area Update Procedure

A routeing area update takes place when an attached MS detects that it has entered a new RA or when the periodic RA update timer has expired or when RRC connection is released with cause "Directed Signalling connection re-establishment", or when the MS has to indicate new access capabilities to the network.

The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the GGSNs or the HLR about the new MS location. A periodic RA update is always an intra-SGSN routeing area update. If the network operates in mode I, an MS that is both GPRS-attached and IMSI-attached shall perform the Combined RA / LA Update procedures.

In Iu mode, an RA update is either an intra-SGSN or inter-SGSN RA update, either combined RA / LA update or only RA update, either initiated by an MS in PMM-CONNECTED (only valid after a Serving RNS Relocation Procedure, see sub-clause 6.9.2.2) or in PMM-IDLE state. All the RA update cases are contained in the procedure illustrated in Figure .

Note: The network may receive an RA update from a UE in PMM-CONNECTED state over a new Iu signalling connection. This could happen when the UE enters PMM-IDLE state on receipt of RRC Connection Release with cause "Directed Signalling connection re-establishment" and initiates an RA or Combined RA update procedure (see sub-clause 6.1.2.4.1).

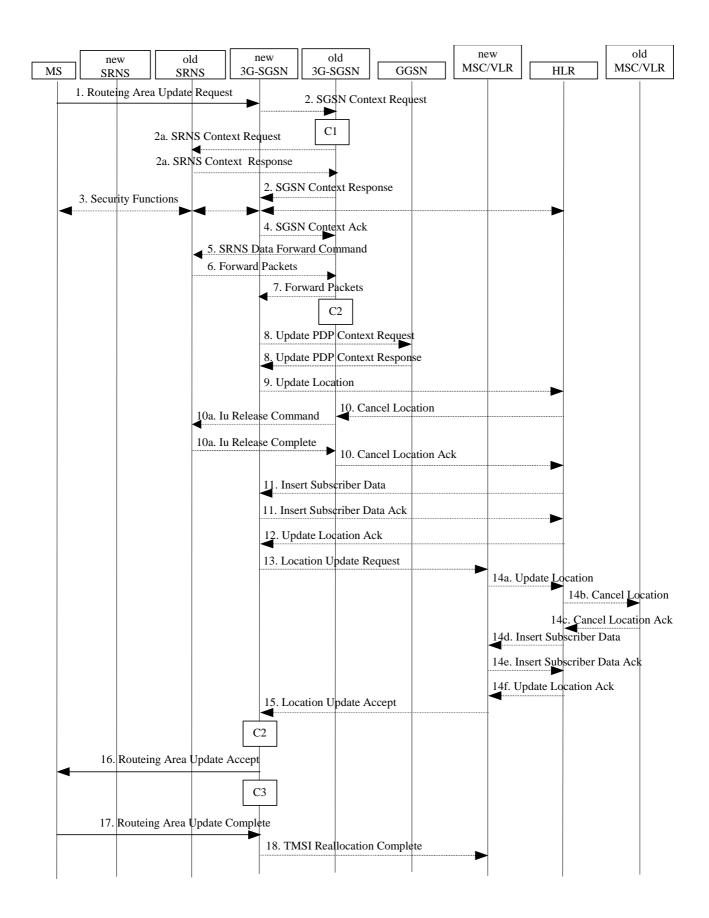


Figure 36: UMTS RA Update Procedure

Text not changed

In the case of a rejected routeing area update operation, due to regional subscription or roaming restrictions, the new SGSN shall not construct an MM context. A reject shall be returned to the MS with an appropriate cause. The MS shall not re-attempt a routeing area update to that RA. The RAI value shall be deleted when the MS is powered up.

The PDP Contexts shall be sent from old to new SGSN in a prioritized order, i.e. the most important PDP Context first in the SGSN Context Response message. (The prioritization method is implementation dependent, but should be based on the current activity.) In case the new SGSN is not able to maintain active all the PDP Contexts received from old SGSN, it should use the prioritisation sent by old SGSN as input when deciding which PDP contexts to maintain active and which ones to delete.

NOTE: In case MS was in PMM-CONNECTED state the PDP Contexts are sent already in the Forward Relocation Request message as described in subclause "Serving RNS relocation procedures".

If the routeing area update procedure fails a maximum allowable number of times, or if the SGSN returns a Routeing Area Update Reject (Cause) message, the MS shall enter PMM-DETACHED state.

If the Location Update Accept message indicates a reject, this should be indicated to the MS, and the MS shall not access non-PS services until a successful location update is performed.

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSM Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSM takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN to GSM radio access and the GSM radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a GSM RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 1.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

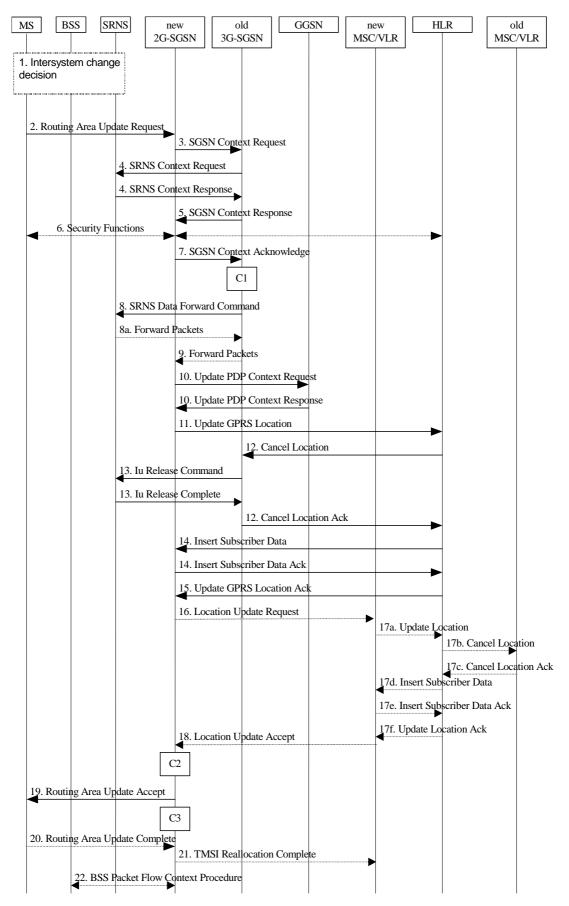


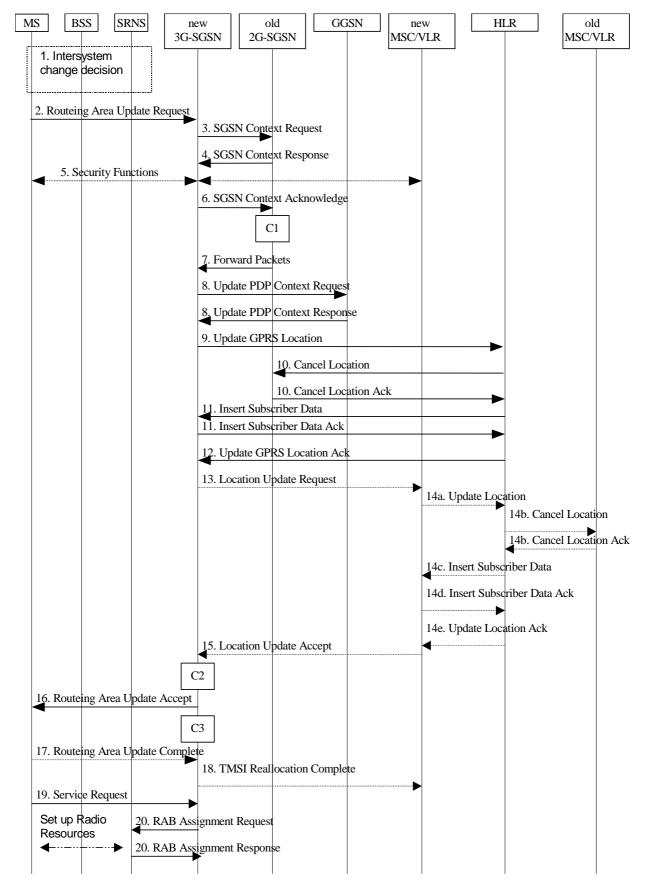
Figure 1: UMTS to GSM Inter-SGSN Change

Text not changed

- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- 22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

The PDP Contexts shall be sent from old to new SGSN in a prioritized order, i.e. the most important PDP Context first in the SGSN Context Response message. (The prioritization method is implementation dependent, but should be based on the current activity.) In case the new SGSN is not able to maintain active all the PDP Contexts received from old SGSN, it should use the prioritisation sent by old SGSN as input when deciding which PDP contexts to maintain active and which ones to delete.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:


C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

6.13.2.2 GSM to UMTS Inter-SGSN Change

The inter-system change from GSM to UMTS takes place when a GPRS-attached MS changes from GSM radio access to UTRAN and the UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 2.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Text not changed

20) If the MS has sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4) and stored in the SGSN PDP contexts. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNUs received from the SRNS. Other N-PDUs shall be transmitted to the SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

The PDP Contexts shall be sent from old to new SGSN in a prioritized order, i.e. the most important PDP Context first in the SGSN Context Response message. (The prioritization method is implementation dependent, but should be based on the current activity.) In case the new SGSN is not able to maintain active all the PDP Contexts received from old SGSN, it should use the prioritisation sent by old SGSN as input when deciding which PDP contexts to maintain active and which ones to delete.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

- They are called in the following order:- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. It returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session

3GPP TSG-SA2 Meeting #21
Cancun, Mexico, 26 th - 29 th November 2001

T	doc S2-013499
	(52-013300)

									15555)	
		(CHANGE	R	EC	UE	ST			CR-Form-v4
ж	23.060	CR	294	Ħ	ev	1	¥	Current version:	4.2.0 (for R5)	ж
For <u>H</u>	IELP on using this for	m, see	e bottom of this	s pag	ge ol	r look a	at th	e pop-up text ove	r the ж syn	nbols.
Propose	d change affects: ೫	(U)	SIM ME	/UE		Radi	io Ad	ccess Network X	Core Ne	twork X

Title:	Changes on the Gb interface due to the Intra Domain Connection of RAN Nodes to Multiple CN Nodes				
Source:	ж	L.M. Ericsson			
Work item code	: X	IUFLEX	Date: ೫	18 th October 2001	
Category: #		В	<i>Release:</i>	REL-5	
		Use one of the following categories:	Use <u>one</u> of	the following releases:	
		F (correction)	2	(GSM Phase 2)	
		A (corresponds to a correction in an earlier release	e) R96	(Release 1996)	
		B (addition of feature),	R97	(Release 1997)	
		C (functional modification of feature)	R98	(Release 1998)	
		D (editorial modification)	R99	(Release 1999)	
		Detailed explanations of the above categories can	REL-4	(Release 4)	
		be found in 3GPP TR 21.900.	REL-5	(Release 5)	

Reason for change:	3GPP SA#13 has recently approved 3GPP TS 23.236 v.2.1.0 for "Intra Domain Connection of RAN nodes to multiple CN nodes". The impacts from this TS must be incorporated into 3GPP TS 23.060.
Summary of change:	# Changes are introduced to the Gb interface.
Consequences if not approved:	# Incomplete description of the Gb interface in 3GPP TS 23.060
Clauses affected:	% 12.6.3, 12.6.3.3, 12.6.3.4
Other specs affected:	# Other core specifications # Test specifications O&M Specifications
Other comments:	¥

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

**** FIRST MODIFIED SECTION ****

12.6.3 BSS GPRS Protocol

The primary function of BSSGP is to provide the radio-related, QoS, and routeing information that is required to transmit user data between a BSS and an SGSN. In the BSS, it acts as an interface between LLC frames and RLC/MAC blocks. In the SGSN, it forms an interface between RLC/MAC-derived information and LLC frames. A secondary function is to enable two physically distinct nodes, the SGSN and the BSS, to operate node management control functions.

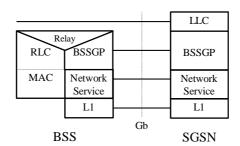


Figure 1: BSSGP Protocol Position

There is a one-to-one relationship between the BSSGP protocol in the SGSN and in the BSS. If one SGSN handles multiple BSSs, the SGSN has to have one BSSGP protocol machine for each BSS. If the BSS applies Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the BSS must have one BSSGP protocol machine for each SGSN forto which it applies Intra Domain Connection of RAN Nodes to Multiple CN Nodes to Multiple CN Nodes.

The main functions of the BSSGP protocol are to:

- provide a connection-less link between the SGSN and the BSS;
- transfer data unconfirmed between the SGSN and the BSS;
- provide tools for bi-directional control of the flow of data between the SGSN and the BSS;
- handle paging requests from the SGSN to the BSS;
- give support for flushing of old messages in the BSS e.g. when an MS changes BSS; and
- support multiple layer 2 links between the SGSN and one BSS.

BSSGP is defined in GSM 08.18 [21].

**** NEXT MODIFIED SECTION ****

12.6.3.3 BVCI Contexts in BSS and in SGSN

A BVCI context in the BSS consists of at least one queue for LLC PDUs and of the available radio resource capacity that is available on a radio cell for one SGSN. If the BSS applies Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the BSS must share the total available radio resource capacity for a radio cell between all the BVCI contexts representing this radio cell, where each of these BVCI contexts represents the radio cell for one SGSN.

The BVCI context in the BSS is allocated for each cell supporting GPRS. For each new GPRS cell introduced in the BSS area, a new BVCI context shall be allocated. If the BSS applies Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the BSS must have for each cell supporting GPRS and belonging to one pool area, one BVCI context for each of the SGSNs associated with this pool area.

In the SGSN, the BVCI context consists of at least one queue for LLC PDUs and the allowed throughput on BSSGP. The allowed throughput is updated by BSSGP flow control messages.

12.6.3.4 Flow Control Between SGSN and BSS over the Gb Interface

The flow control mechanism controls the loading of the BSS LLC PDU queues per BVCI and per MS between the SGSN and the BSS in the downlink direction. No flow control is performed in the uplink direction. Buffers and link capacity shall be dimensioned to avoid loss of uplink data.

The downlink flow control mechanism is based on the following principles:

- In the SGSN, queues for LLC PDUs are provided per BVCI. These queues may be split further, e.g. per MS or per packet flow. The SGSN shall pass LLC PDUs to LLC via BSSGP to the BSS as long as the allowed BSSGP throughput is not exceeded. The allowed BSSGP throughput is given per BVCI and for a single MS on that BVCI. The SGSN schedules the BSSGP downlink traffic of all MSs of a BVCI according to the maximum and guaranteed bitrate attributes and to the QoS profile related to each LLC PDU. The scheduling algorithm is implementation dependent.
- In the BSS, queues per BVCI context are provided at the BSSGP level. These queues may be split further, e.g. per MS or per packet flow. Depending on the queuing conditions and the available radio resource capacity in the cell, the BSS indicates the allowed BSSGP throughput per BVCI context and the default allowed BSSGP throughput for each individual MS of that BVCI context by BSSGP flow control messages to the SGSN. Additionally, the BSS may change the allowed BSSGP throughput for an individual MS by a BSSGP flow control message. As more than one SGSN may send downlink data at the same time for a radio cell or a BVCI when the BSS applies Intra Domain Connection of RAN Nodes to Multiple CN Nodes, the BSS has to share the total possible downlink traffic between the SGSNs that can access a BVCI radio cell. The BSS should use the existing flow control procedure on BVCI level to control each of the SGSNs in a way not to violate the total possible traffic for the BVCI radio cell. How the BSCBSS decides to share the downlink traffic between each of the SGSNs is an implementation specific issue.

**** END OF MODIFICATIONS ****

Tdoc S2- <mark>013337</mark> 013554
revision of Tdoc S2-013046r2

		(CHAN	IGE	REC	UE	ST				CR-Form-v4
¥	23.060	CR	276	9	€ ev	4	ж	Current vers	ion:	4.2.0	ж
For <u>HELP</u> on us	sing this for	m, see	bottom	of this p	bage or	[,] look	at th	e pop-up text	over	the ¥ syr	nbols.
Proposed change a	ffects: ೫	(U)	SIM	ME/L	JE X	Rad	io Ac	cess Networl	< X	Core Ne	etwork X
Title: ដ	Handover a	and Ce	ell Resele	ection p	rocedu	res fo	r GE	RAN lu mode	•		
Source: ೫	Nokia <u>, Sie</u>	<u>mens</u>									
Work item code: %	TEI5							Date: ೫	28.	11.01	
	Use <u>one</u> of F (con A (cor B (ado C (fun	rection) respond lition of ctional torial m planatio	ds to a co feature), modificati odification ns of the	orrection ion of fea n) above c	ature)		elease	Release: % Use <u>one</u> of 2 e) R96 R97 R98 R99 REL-4 REL-5	the fo. (GSN (Rele (Rele (Rele (Rele (Rele		eases:
Reason for change			roduces for GER				ges 1	to Handover a	and C	ell Resele	ection
Summary of change	e: #										
Consequences if not approved:		lignme ificatio		060 wit	h respe	ect to	other	3GPP TSG	GERA	N and TS	SG RAN
Clauses affected:	೫ <mark>3.1;</mark>	3.2; 6.9	9 <mark>.2; 6.13</mark>								
Other specs affected:	Te	est spe	re specif cificatior ecificatio	าร	s	ß					
Other comments:	ж										

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: <u>http://www.3gpp.org/3G_Specs/CRs.htm</u>. Below is a brief summary:

- 1) Fill out the above form. The symbols above marked **#** contain pop-up help information about the field that they are closest to.
- 2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under <u>ftp://ftp.3gpp.org/specs/</u> For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.
- 3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

First modified section

3 Definitions, abbreviations and symbols

3.1 Definitions

Definitions can be found in 3G TS 22.060 and 3G TS 25.401. For the purposes of the present document, the additional definitions apply:

GPRS: Packet Services for GSM, UMTS or GERAN systems.

(**GSM only**): indicates that this (sub)clause or paragraph applies only to a GSM system or a GERAN system. For multisystem cases, the current serving radio access network determines its type.

(UTRAN only): indicates that this (sub)clause or paragraph applies only to a UMTS system. For multi-system cases, the current serving radio access network determines its type.

In-A/Gb mode: indicates that this (sub)clause or paragraph applies only to a system or sub-system which operate in A/Gb mode of operation, i.e. with a functional division that is in accordance with the use of an A or a Gb interface between the radio access network and the core network.

In-Iu mode: indicates that this subclause, clause or paragraph applies only to a system or a sub-system which operates in Iu mode of operation, i.e. with a functional division that is in accordance with the use of an Iu-CS or Iu-PS interface between the radio access network and the core network.

Inter-system change: change <u>of an MS</u> from A/Gb mode to Iu mode of operation and vice versaof radio access between different radio access technologies such as GSM and UMTS.

MS: this specification makes no distinction between MS and UE.

2G- / **3G-:** prefixes 2G- and 3G- refer to functionality that supports only GSM or UMTS, respectively, e.g., 2G-SGSN refers only to the GSM functionality of an SGSN. When the prefix is omitted, reference is made independently from the GSM or UMTS functionality.

3.2 Abbreviations

Applicable abbreviations can be found in GSM 01.04 [1] and 3GPP 21.905 [9]. For the purposes of the present document the following abbreviations apply:

AAL5	ATM Adaptation Layer type 5
APN	Access Point Name
ATM	Asynchronous Transfer Mode
AUTN	Authentication Token
BG	Border Gateway
BSSAP+	Base Station System Application Part +
BSSGP	Base Station System GPRS Protocol
BVCI	BSSGP Virtual Connection Identifier
CCU	Channel Codec Unit
CDR	Call Detail Record
CGF	Charging Gateway Functionality
CGI	Cell Global Identification
CK	Cipher Key
CMM	Circuit Mobility Management
CS	Circuit Switched
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
DTM	Discontinuous Transfer Mode
EGPRS	Enhanced GPRSESP Encapsulating Security Payload
GEA	GPRS Encryption Algorithm

<u>GERAN</u> GGSN	GSM EDGE Radio Access Network Gateway GPRS Support Node
GMM/SM	GPRS Mobility Management and Session Management
GPRS-SSF	GPRS Service Switching Function
GPRS-CSI	GPRS CAMEL Subscription Information
GRA	GERAN Registration Area
GSM-SCF	GSM Service Control Function
GSIM-SCI ^A	GSM Service Identity Module
	•
GSN	GPRS Support Node
GTP CTD C	GPRS Tunnelling Protocol
GTP-C	GTP Control Plane GTP User Plane
GTP-U	
ICMP	Internet Control Message Protocol
IETF	Internet Engineering Task Force
IK	Integrity Key
IP	Internet Protocol
IPv4	Internet Protocol version 4
IPv6	Internet Protocol version 6
IPX	Internet Packet eXchange
ISP	Internet Service Provider
KSI	Key Set Identifier
L2TP	Layer-2 Tunnelling Protocol
LL-PDU	LLC PDU
LLC	Logical Link Control
MAC	Medium Access Control
MIP	Mobile IP
MNRF	Mobile station Not Reachable Flag
MNRG	Mobile station Not Reachable for GPRS flag
MNRR	Mobile station Not Reachable Reason
MTP2	Message Transfer Part layer 2
MTP3	Message Transfer Part layer 3
NGAF	Non-GPRS Alert Flag
N-PDU	Network Protocol Data Unit
NS	Network Service
NSAPI	Network layer Service Access Point Identifier
NSS	Network SubSystem
ODB	Operator Determined Barring
P-TMSI	Packet TMSI
PCU	Packet Control Unit
PDCH	Packet Data CHannel
PDCP	Packet Data Convergence Protocol
PDN	Packet Data Network
PDP	Packet Data Protocol, e.g. IP
PDU	Protocol Data Unit
PMM	Packet Mobility Management
PPF	Paging Proceed Flag
PPP	Point-to-Point Protocol
PTP	Point To Point
PVC	Permanent Virtual Circuit
RA	Routeing Area
RAB	Radio Access Bearer
RAC	Routeing Area Code
RAL	Routeing Area Identity
RANAP	Radio Access Network Application Protocol
RAU	
	Routeing Area Update Radio Link Control
RLC	
RNC	Radio Network Controller
RNS	Radio Network Subsystem
RNTI	Radio Network Temporary Identity
RRC	Radio Resource Control
<u>SBSC</u>	Serving Base Station Controller
SBSS	Serving BSS
SGSN	Serving GPRS Support Node

SM-SC SMS-GMSC SMS-IWMSC SN-PDU SNDC SNDCP SPI SRNC SRNS TCAP TCP TFT TEID TLLI TOM TOS TRAU UDP UEA	Short Message service Service Centre Short Message Service Gateway MSC Short Message Service Interworking MSC SNDCP PDU SubNetwork Dependent Convergence SubNetwork Dependent Convergence Protocol Security Parameter Index Serving RNC Serving RNS Transaction Capabilities Application Part Transmission Control Protocol Traffic Flow Template Tunnel Endpoint IDentifier Temporary Logical Link Identity Tunnelling Of Messages Type of Service Transcoder and Rate Adaptor Unit User Datagram Protocol UMTS Encryption Algorithm
	-
UIA	UMTS Integrity Algorithm
URA	UTRAN Registration Area
USIM	User Service Identity Module
UTRAN	UMTS Terrestrial Radio Access Network

Next modified section

6.9.2 Location Management Procedures (UMTS <u>lu-mode</u> only)

In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

Refer to 3GPP TS 25.301 for further information on the location management procedures for the UMTS radio.

The PLMN shall provide information for the MS to be able to:

- detect when it has entered a new cell or a new RA; and
- determine when to perform periodic RA updates.

In this specification, only the Location Management procedures related to the CN are described. These procedures are:

- a routeing area update procedure; and
- Serving RNC relocation procedure.

An MS detects entering a new cell by comparing the cell identity identity with the cell identity stored in the MS. By comparing the RAI stored in the MS's MM context with the RAI received from the network, the MS detects that an RA update shall be performed. In RRC-CONNECTED mode (PMM-CONNECTED state or CS MM CONNECTED state), the MS is informed of RAI and Cell Identity by the serving RNC via an "MM information" message at the RRC layer. In RRC-IDLE state, the MS is informed of RAI and Cell Identity by the broadcast system information at the RRC layer.

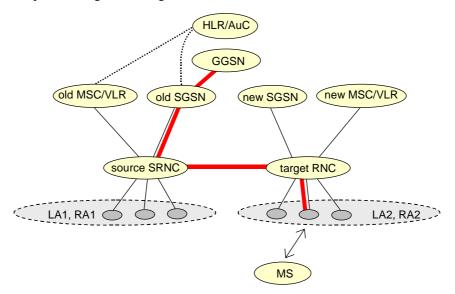
In network mode of operation II, whenever an MS determines that it shall perform both an LA update and an RA update, the MS shall start the LA update first. The MS should start the RA update procedure before the LA update is completed.

Next modified section

6.9.2.2 Serving RNS Relocation Procedures

In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

Serving RNS relocation procedures move the UTRAN to CN connection point at the UTRAN side of the source RNC to the target RNC. The Serving RNS Relocation Procedures, described in the following sub-clauses, may be performed as "Lossless SRNS Relocation", which means packet loss during the SRNS change is eliminated. For this purpose, the RNS and the MS have to provide PDCP layer functionality, which in the subsequent description is referred as the lossless PDCP. The source RNC decides to perform the Serving RNS Relocation Procedure as "Lossless SRNS Relocation" based on capabilities of the UE and the RNS and based on QoS parameters (e.g SDU error ratio).


For "Lossless SRNS Relocation", both the MS and the source RNS have to support and to use the lossless PDCP. When the SRNS changes, the old RNS forwards all received and not yet transferred downlink GTP-PDUs to the target RNS. GTP-PDUs forwarded to the target RNS indicate a PDCP sequence number if the contained N-PDUs were sent to the MS as a PDCP-SDUs, but are not yet acknowledged by lossless PDCP. The target RNS and the MS exchange respective sequence numbers of next expected PDCP-PDUs. This process indicates PDCP-PDUs that were already successfully transferred between the MS and the source RNS for downlink and uplink directions, respectively. This also confirms all N-PDUs (PDCP-SDUs) successfully transferred before the change of the SRNS. These N-PDUs are discarded by the MS and the target RNS, respectively. The target RNS identifies the forwarded GTP-PDUs containing confirmed N-PDUs by the PDCP sequence number in the GTP-PDU. All other N-PDUs have to be transmitted via the new MS – RNS link

6.9.2.2.1 Serving SRNS Relocation Procedure after Soft Handover

This procedure is only performed for an MS in PMM-CONNECTED state where the Iur interface carries both the control signalling and the user data. This procedure is not applicable for GERAN.

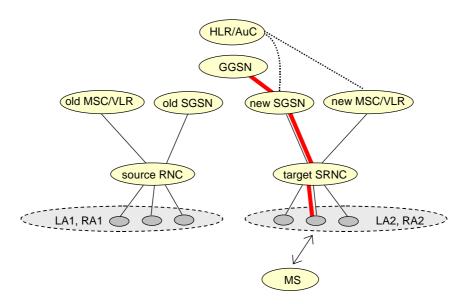

The Serving SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, from a "standing still position". In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects an Intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about new location of the MS.

Figure shows user data routing when source SRNC and target RNC are connected to different SGSNs before SRNS relocation. Figure 1 shows the user data routing after SRNS Relocation procedure and Routeing Area Update procedure is completed. In case depicted in Figure 1, the MS is in state PMM-CONNECTED.

Figure 337: Before SRNS Relocation and Routeing Area Update

Before the SRNS Relocation procedure and RA update, the MS is registered in the old SGSN. The source RNC is acting as a serving RNC (SRNC).

6

Figure 1: After SRNS Relocation and Routeing Area Update

After the SRNS Relocation procedure and RA update, the MS is registered in the new SGSN. The MS is in the state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as the serving RNC.

The Serving SRNS Relocation procedure is illustrated in Figure 2. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation.

7

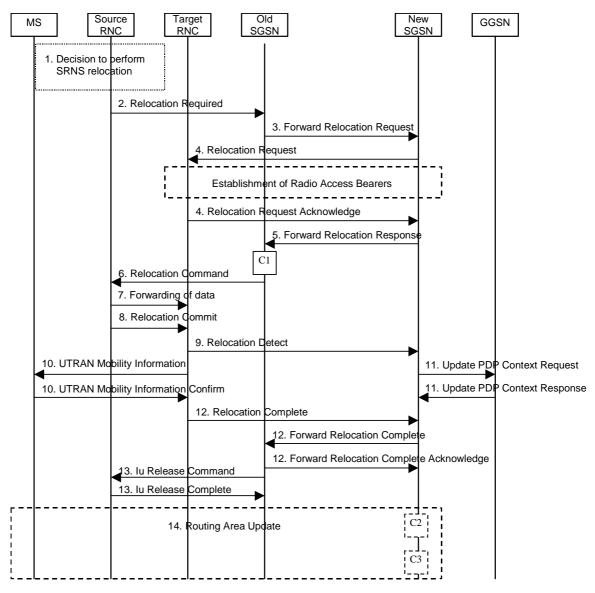


Figure 2: SRNS Relocation Procedure after soft handover

- 1) The source SRNC decides to perform/initiate SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between MS and source SRNC (data flows via the target RNC, which acts as a drift RNC); GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to target RNC transparent container) to the old SGSN. The source SRNC shall set the Relocation Type to "UE not involved". The Source SRNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation, the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN transparent container, RANAP Cause) to the new SGSN. The PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to which the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see the Routeing Area Update procedure in subclause "Location Management Procedures (<u>Iu modeUMTS</u> only)"). The Forward Relocation Request message is applicable only in the case of inter-SGSN SRNS relocation.

- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source-RNC to target RNC transparent container, RABs to be setup) to the target RNC. Only the Iu Bearers of the RABs are setup between the target RNC and the new-SGSN as the existing Radio Bearers will be reallocated between the MS and the target RNC when the target RNC takes the role of the serving RNC. For each requested RAB, the RABs to be setup information elements shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data. After all necessary resources for accepted RABs including the Iu user plane are successfully allocated; the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and an Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. For each RAB to be set up, the target RNC may receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.
- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and RAB Setup Information) is sent from the new SGSN to old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e. the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and the RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (RABs to be released, and RABs subject to data forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from source SRNC to target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begin the forwarding of data for the RABs to be subject for data forwarding. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at IP layer towards the target RNC. The source RNC continues transmitting duplicates of downlink data and receiving uplink data. Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may start data forwarding (step 7) and send Relocation Commit message (step 8) almost simultaneously except in the delivery order required case where step 7 triggers step 8. Target RNC may send Relocation Detect message (step 9) and UTRAN Mobility Information message (step 10) at the same time. Hence, target RNC may receive UTRAN Mobility Information Confirm message (step 10) while data forwarding (step 7) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicate downlink data and receiving uplink data

8) Before sending the Relocation Commit the uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require delivery order. The source RNC shall start the data-forwarding timer. When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the Iur interface. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP PDUs next to be transmitted in the uplink and downlink directions and the next

PDCP sequence numbers that would have been used to send and receive data from the MS. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC. PDCP sequence numbers are only sent by the source RNC for radio bearers, which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink, respectively.

- 9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 10) The target SRNC sends a UTRAN Mobility Information message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be co-ordinated in all Iu signalling connections existing for the MS.

The target SRNC establishes and/or restarts the RLC, and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target SRNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile-terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC. PDCP-SNU confirms reception of packets that were received in the source SRNC, the MS shall discard these packets.

Upon reception of the UTRAN Mobility Information message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If new the SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

For all RABs, the target RNC should:

start uplink reception of data and start transmission of uplink GTP-PDUs towards the new SGSN;

start processing the already buffered and the arriving downlink GTP-PDUs and start downlink transmission towards the MS.

- 11)Upon receipt of the Relocation Detect message, the CN may switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier).
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC—ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect and upon reception of Relocation Complete, the CN shall switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN shall signal to the old SGSN the completion of the SRNS relocation gas a Forward Relocation Complete message.

- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation; the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (<u>Iu modeUMTS</u> only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED mode.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach.

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result ""Continue"".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.2 Combined Hard Handover and SRNS Relocation Procedure

This procedure is only performed for an MS in PMM-CONNECTED state in case the Iur interface is not available. In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving a mobile in Iu mode.

The Combined Hard Handover and SRNS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a hard handover decided by the UTRAN. In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

If the target RNC is connected to a different SGSN than the source SRNC, an Inter-SGSN SRNS Relocation procedure is performed. This procedure is followed by an Inter-SGSN Routeing Area Update procedure.

Figure 3 shows the situation before a Combined Hard Handover and SRNS Relocation procedure when source and target RNC are connected to different SGSNs. Figure 4 shows the situation after the Combined Hard Handover and SRNS Relocation procedure and RA update procedure have been completed. In the case described in Figure 3 and Figure 4 the MS is in PMM-CONNECTED state. Both figures are also applicable to BSS to RNS relocation and vice-versa, as well as for BSS to BSS relocation.

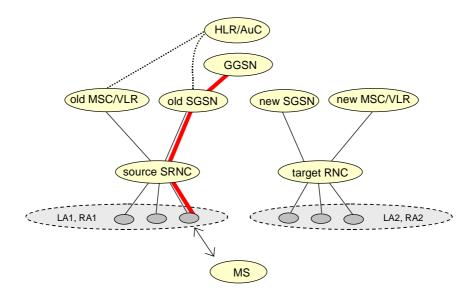


Figure 3: Before Combined Hard Handover and SRNS Relocation and Routeing Area Update

Before the SRNS Relocation and Routeing Area Update the MS is registered in the old SGSN and in the old MSC/VLR. The source RNC is acting as serving RNC.

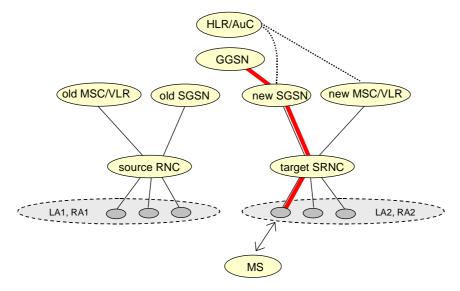
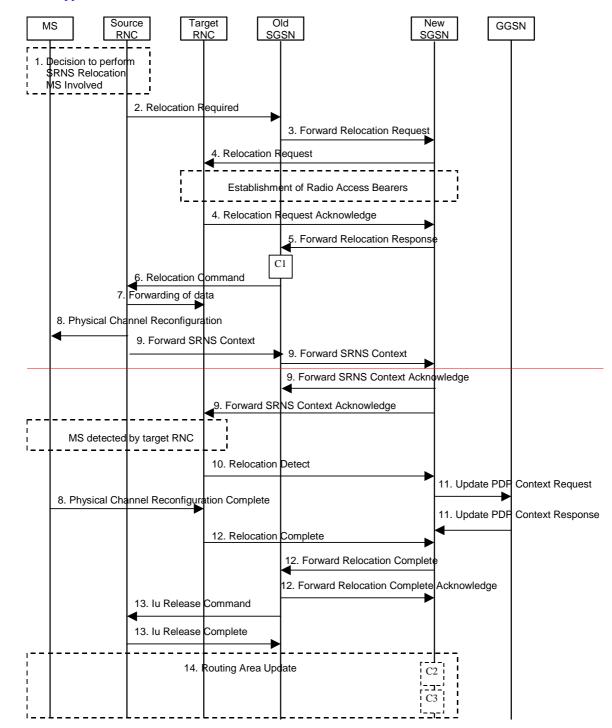




Figure 4: After Combined Hard Handover and SRNS Relocation and Routeing Area Update

After the SRNS relocation and RA update, the MS is registered in the new SGSN and in the new MSC/VLR. The MS is in state PMM-CONNECTED towards the new SGSN and in MM IDLE state towards the new MSC/VLR. The target RNC is acting as serving RNC.

The Combined Hard Handover and SRNS Relocation procedure for the PS domain is illustrated in Figure 5. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation. <u>Furthermore, this signalling</u> flow is also applicable for BSS to RNS relocation and vice-versa, as well as BSS to BSS relocation.

Error! No text of specified style in document.

- Based on measurement results and knowledge of the UTRAN topology, the source SRNC decides to initiate a combined hard handover and SRNS relocation. At this point both uplink and downlink user data flows via the following tunnel(s): Radio Bearer between the MS and the source SRNC (no drift RNC available); GTP-U tunnel(s) between the source SRNC and the old SGSN; GTP-U tunnel(s) between the old SGSN and the GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC To Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE Involved". Source RNC To Target RNC Transparent Container includes the necessary information for relocation co-ordination, security functionality and RRC protocol context information (including MS Capabilities).

- 3) The old SGSN determines from the Target ID if the SRNS relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request message (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN (see Routeing Area Update procedure in subclause "Location Management Procedures (UMTS-Iu mode only)"). The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.
- 4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC To Target RNC Transparent Container, RAB To Be Setup) to the target RNC. For each requested RAB to be established, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all the necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (Target RNC To Source RNC Transparent Container, RABs Setup, RABs Failed To Setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and the Iu Transport Association, which corresponds to the downlink Tunnel Endpoint Identifier for user data. The transparent container contains all radio-related information that the MS needs for the handover, i.e., a complete RRC message (e.g., Physical Channel Reconfiguration in UTRAN case, or Handover From UTRAN, or Handover Command in GERAN Iu mode case) to be sent transparently via CN and source SRNC to the MS. For each RAB to be set up, the target RNC may receive simultaneously downlink user packets both from the source SRNC and from the new SGSN.

- 5) When resources for the transmission of user data between target RNC and new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response (Cause, UTRAN Transparent Container, RANAP Cause, Target-RNC Information) message is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from source SRNC the forwarded downlink PDUs, i.e., the relocation resource allocation procedure is terminated successfully. UTRAN transparent container and RANAP Cause are information from the target RNC to be forwarded to the source SRNC. The Target RNC Information, one information element for each RAB to be set up, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command message (Target RNC To Source RNC Transparent Container, RABs To Be Released, RABs Subject To Data Forwarding) to the source SRNC. The old SGSN decides the RABs to be subject for data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink user data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begins the forwarding of data for the RABs to be subject for data forwarding.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may start data forwarding (step 7), send <u>the RRCPhysical Channel Reconfiguration</u> message to MS (step 8) and forward SRNS Context message to the old SGSN (step <u>98</u>) almost simultaneously.

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data.

Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

8) Before sending the Physical Channel ReconfigurationRRC message the uplink and downlink data transfer shall be suspended in the source SRNC for RABs, which require delivery order. The RRC message is for example Physical Channel Reconfiguration for RNS to RNS relocation, or Intersystem to UTRAN Handover for BSS to RNS relocation, or Handover from UTRAN Command for BSS relocation, or Handover Command for BSS to BSS relocation. When the source SRNC is ready, the source RNC shall trigger the execution of relocation of SRNS by sending to the MS the RRC message provided in the Target RNC to source RNC transparent container, e.g., a Physical Channel Reconfiguration (UE Information Elements, CN Information Elements) message. UE Information Elements include among others new SRNC identity and S-RNTI. CN Information Elements contain among others Location Area Identification and Routeing Area Identification. Before the RRC message is sent (e.g., Physical Channel Reconfiguration uplink and downlink data transfer in the source RNC shall be suspended for RABs which require to maintain the delivery order.

When the MS has reconfigured itself, it sends <u>an RRC message e.g.</u>, a Physical Channel Reconfiguration Complete message to the target SRNC. If the Forward SRNS Context message with the sequence numbers is received, the exchange of packets with the MS may start. If this message is not yet received, the target RNC may start the packet transfer for all RABs, which do not require maintaining the delivery order.

9) The source SRNC continues the execution of relocation of SRNS by sending a Forward SRNS Context (RAB Contexts) message to the target RNC via the old and the new SGSN, which is acknowledged by a Forward SRNS Context Acknowledge message. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. PDCP sequence numbers are only sent by the source RNC for the radio bearers which used losslessPDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context uplink and downlink, respectively.

The target RNC establishes and/or restarts the RLC and exchanges the PDCP sequence numbers (PDCP-SNU, PDCP-SND) between the target RNC and the MS. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received by the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation. If PDCP-SND confirms reception of packets that were forwarded from the source SRNC, then the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected insequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the SRNC relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the MS shall discard these packets.

- 10) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE Involved", the relocation execution trigger may be received from the Uu interface; i.e., when target RNC detects the MS on the lower layers. When the Relocation Detect message is sent, the target RNC shall start SRNC operation.
- 11)Upon reception of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS relocation is an inter-SGSN SRNS relocation, the new SGSN sends an Update PDP Context Request (New SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) message to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.
- 12) When the target SRNC receives the <u>appropriate RRC message, e.g.</u> Physical Channel Reconfiguration Complete message or the Radio Bearer Release Complete message in <u>UTRAN case</u>, or the <u>Handover To UTRAN</u> <u>Complete message or Handover Complete message in GERAN case</u>, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate a Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from source RNC to target SRNC. If the SRNS Relocation is an inter-SGSN SRNS

relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.

- 13)Upon receiving the Relocation Complete message or, if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired, the source RNC responds with an Iu Release Complete message.
- 14) After the MS has finished the reconfiguration procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (<u>Iu modeUMTS</u> only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- -The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- -Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

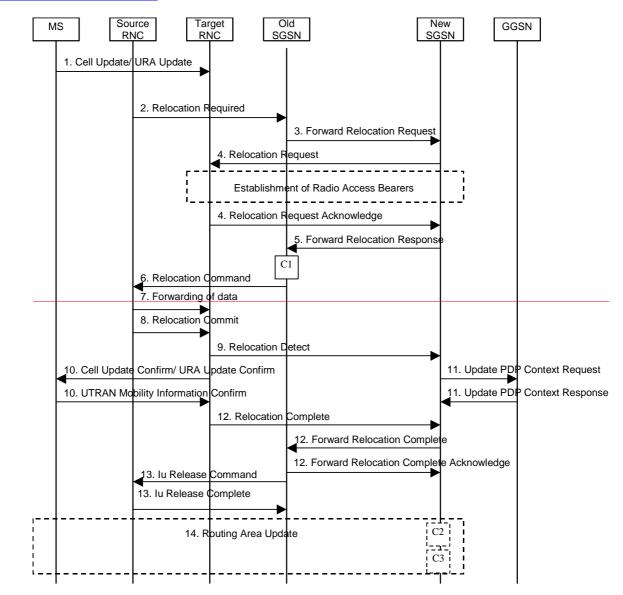
In Figure 5, the procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue".

For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

6.9.2.2.3 Combined Cell / URA Update and SRNS Relocation Procedure


This procedure is only performed for an MS in PMM-CONNECTED state, where the Iur<u>/Iur-g</u> interface carries control signalling but no user data. In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

The Combined Cell / URA Update and SRNS Relocation or Combined Cell/GRA Update and SBSS Relocation procedure is used to move the UTRAN to CN connection point at the UTRAN side from the source SRNC to the target RNC, while performing a cell re-selection in the UTRAN In the procedure, the Iu links are relocated. If the target RNC is connected to the same SGSN as the source SRNC, an Intra-SGSN SRNS Relocation procedure is performed. If the routeing area is changed, this procedure is followed by an Intra-SGSN Routeing Area Update procedure. The SGSN detects that it is an intra-SGSN routeing area update by noticing that it also handles the old RA. In this case, the SGSN has the necessary information about the MS and there is no need to inform the HLR about the new MS location.

Before the Combined Cell / URA Update and SRNS Relocation <u>or Combined Cell/GRA Update and SBSS Relocation</u> and <u>before</u> the Routeing Area Update, the MS is registered in the old SGSN. The source RNC is acting as serving RNC <u>or serving BSS</u>.

After the Combined Cell / URA Update and SRNS Relocation <u>or Combined Cell/GRA Update and SBSS Relocation</u> and <u>after</u> the Routeing Area Update, the MS is registered in the new SGSN. The MS is in state PMM-CONNECTED towards the new SGSN, and the target RNC is acting as serving RNC.

The Combined Cell / URA Update and SRNS Relocation <u>or Combined Cell/GRA Update and SBSS relocation</u> procedure for the PS domain is illustrated in Figure 6. The sequence is valid for both intra-SGSN SRNS relocation and inter-SGSN SRNS relocation. <u>This signalling flow is also applicable to BSS to RNS relocation and vice-versa, as well</u> as for BSS to BSS relocation.

Error! No text of specified style in document.

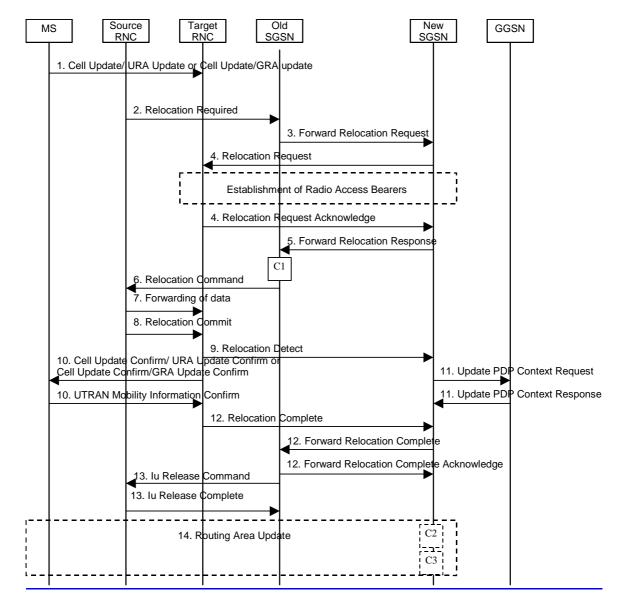


Figure 6: Combined Cell / URA Update and SRNS Relocation Procedure

- The MS sends a Cell Update / URA Update or a Cell Update / GRA Update message to the source SRNC (if the cell is located under another RNC the message is routed via the DRNC to SRNC over the Iur). The source SRNC decides whether or not to perform a combined cell / URA update and SRNS relocation towards the target RNC. The rest of this subclause describes the case where a combined cell / URA update and SRNS relocation applies. In this case no radio bearer is established between the source SRNC and the UE. Nonetheless the following tunnel(s) are established: GTP-U tunnel(s) between source SRNC and old-SGSN; GTP-U tunnel(s) between old-SGSN and GGSN.
- 2) The source SRNC sends a Relocation Required message (Relocation Type, Cause, Source ID, Target ID, Source RNC to Target RNC Transparent Container) to the old SGSN. The source SRNC shall set Relocation Type to "UE not involved". Source RNC to Target RNC Transparent Container includes the necessary information for Relocation co-ordination, security functionality, and RRC protocol context information (including MS Capabilities).
- 3) The old SGSN determines from the Target ID if the SRNS Relocation is intra-SGSN SRNS relocation or inter-SGSN SRNS relocation. In the case of inter-SGSN SRNS relocation the old SGSN initiates the relocation resource allocation procedure by sending a Forward Relocation Request (IMSI, Tunnel Endpoint Identifier Signalling, MM Context, PDP Context, Target Identification, UTRAN Transparent Container, RANAP Cause) message to the new SGSN. PDP context contains GGSN Address for User Plane and Uplink TEID for Data (to this GGSN Address and Uplink TEID for Data, the old SGSN and the new SGSN send uplink packets). At the same time a timer is started on the MM and PDP contexts in the old SGSN, see Routeing Area Update procedure in subclause "Location Management Procedures (UMTSIu mode only)". The Forward Relocation Request message is applicable only in case of inter-SGSN SRNS relocation.

Error! No text of specified style in document.

4) The new SGSN sends a Relocation Request message (Permanent NAS UE Identity, Cause, CN Domain Indicator, Source RNC to Target RNC Transparent Container, RABs To Be Setup) to the target RNC. For each requested RAB, RABs To Be Setup shall contain information such as RAB ID, RAB parameters, Transport Layer Address, and Iu Transport Association. The RAB ID information element contains the NSAPI value, and the RAB parameters information element gives the QoS profile. The Transport Layer Address is the SGSN Address for user data, and the Iu Transport Association corresponds to the uplink Tunnel Endpoint Identifier Data.

After all necessary resources for accepted RABs including the Iu user plane are successfully allocated, the target RNC shall send the Relocation Request Acknowledge message (RABs setup, RABs failed to setup) to the new SGSN. Each RAB to be setup is defined by a Transport Layer Address, which is the target RNC Address for user data, and a Iu Transport Association which corresponds to the downlink Tunnel Endpoint Identifier for user data. The target-RNC may simultaneously receive for each RAB to be set up downlink user packets both from the source SRNC and from the new SGSN.

After the new SGSN receives the Relocation Request Acknowledge message, the GTP-U tunnels are established between the target RNC and the new-SGSN.

- 5) When resources for the transmission of user data between the target RNC and the new SGSN have been allocated and the new SGSN is ready for relocation of SRNS, the Forward Relocation Response message (Cause, RANAP Cause, and Target RNC Information) is sent from the new SGSN to the old SGSN. This message indicates that the target RNC is ready to receive from the source SRNC the forwarded downlink packets, i.e., the relocation resource allocation procedure is terminated successfully. RANAP Cause is information from the target RNC to be forwarded to the source SRNC. The RAB Setup Information, one information element for each RAB, contains the RNC Tunnel Endpoint Identifier and RNC IP address for data forwarding from the source SRNC to the target RNC. If the target RNC or the new SGSN failed to allocate resources, the RAB Setup Information element contains only NSAPI indicating that the source SRNC shall release the resources associated with the NSAPI. The Forward Relocation Response message is applicable only in case of inter-SGSN SRNS relocation.
- 6) The old SGSN continues the relocation of SRNS by sending a Relocation Command (RABs to be released, and RABs subject to data forwarding) message to the source SRNC. The old SGSN decides the RABs subject to data forwarding based on QoS, and those RABs shall be contained in RABs subject to data forwarding. For each RAB subject to data forwarding, the information element shall contain RAB ID, Transport Layer Address, and Iu Transport Association. These are the same Transport Layer Address and Iu Transport Association that the target RNC had sent to new SGSN in Relocation Request Acknowledge message, and these are used for forwarding of downlink N-PDU from the source SRNC to the target RNC. The source SRNC is now ready to forward downlink data directly to the target RNC over the Iu interface. This forwarding is performed for downlink user data only.
- 7) The source SRNC may, according to the QoS profile, begin the forwarding of data for the RABs subject to data forwarding and starts the data-forwarding timer. The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the data exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC.

Note: The order of steps, starting from step 7 onwards, does not necessarily reflect the order of events. For instance, source RNC may send data forwarding (step 7) and start Relocation Commit message (step 8) almost simultaneously. Target RNC may send Relocation Detect message (step 9) and Cell Update Confirm/URA Update Confirm (or Cell Update Confirm/GRA Update Confirm) message (step 10) at the same time. Hence, target RNC may receive the UTRAN or <u>GERAN</u> Mobility Information Confirm message from MS (step 10) while data forwarding (step 8) is still underway, and before the new SGSN receives Update PDP Context Response message (step 11).

The data forwarding at SRNS relocation shall be carried out through the Iu interface, meaning that the GTP-PDUs exchanged between the source SRNC and the target RNC are duplicated in the source SRNC and routed at the IP layer towards the target RNC. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and routed at IP layer towards the target RNC together with their related downlink PDCP sequence numbers. The source RNC continues transmitting duplicates of downlink data and receiving uplink data.

Before the serving RNC role is not yet taken over by target RNC and when downlink user plane data starts to arrive to target RNC, the target RNC may buffer or discard arriving downlink GTP-PDUs according to the related QoS profile.

8) Before sending the Relocation Commit the uplink and downlink data transfer in the source, SRNC shall be suspended for RABs, which require delivery order.

When the source SRNC is ready, the source SRNC shall trigger the execution of relocation of SRNS by sending a Relocation Commit message (SRNS Contexts) to the target RNC over the <u>UTRAN</u> Iur interface or over the <u>GERAN Iur-g interface, respectively</u>. The purpose of this procedure is to transfer SRNS contexts from the source RNC to the target RNC, and to move the SRNS role from the source RNC to the target RNC. SRNS contexts are sent for each concerned RAB and contain the sequence numbers of the GTP-PDUs next to be transmitted in the uplink and downlink directions and the next PDCP sequence numbers that would have been used to send and receive data from the MS. . PDCP sequence numbers are only sent by the source RNC for radio bearers, which used lossless PDCP [57]. The use of lossless PDCP is selected by the RNC when the radio bearer is set up or reconfigured. For PDP context(s) using delivery order not required (QoS profile), the sequence numbers of the GTP-PDUs next to be transmitted are not used by the target RNC.

If delivery order is required (QoS profile), consecutive GTP-PDU sequence numbering shall be maintained throughout the lifetime of the PDP context(s). Therefore, during the entire SRNS relocation procedure for the PDP context(s) using delivery order required (QoS profile), the responsible GTP-U entities (RNCs and GGSN) shall assign consecutive GTP-PDU sequence numbers to user packets belonging to the same PDP context for uplink and downlink respectively.

9) The target RNC shall send a Relocation Detect message to the new SGSN when the relocation execution trigger is received. For SRNS relocation type "UE not involved", the relocation execution trigger is the reception of the Relocation Commit message from the Iur interface. When the Relocation Detect message is sent, the target RNC shall start SRNC operation

10) The target SRNC sends a Cell Update Confirm / URA Update Confirm or Cell Update Confirm / GRA Update Confirm message. This message contains UE information elements and CN information elements. The UE information elements include among others new SRNC identity and S-RNTI. The CN information elements contain among others Location Area Identification and Routeing Area Identification. The procedure shall be coordinated in all Iu signalling connections existing for the MS.

Upon reception of the Cell Update Confirm / URA Update Confirm <u>or Cell Update Confirm / GRA Update</u> <u>Confirm</u> message the MS may start sending uplink user data to the target SRNC. When the MS has reconfigured itself, it sends the UTRAN Mobility Information Confirm message to the target SRNC. This indicates that the MS is also ready to receive downlink data from the target SRNC.

If the new SGSN has already received the Update PDP Context Response message from the GGSN, it shall forward the uplink user data to the GGSN over this new GTP-U tunnel. Otherwise, the new SGSN shall forward the uplink user data to that GGSN IP address and TEID(s), which the new SGSN had received earlier by the Forward Relocation Request message.

The target SRNC and the MS exchange the PDCP sequence numbers; PDCP-SNU and PDCP-SND. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP in the source RNC. PDCP-SND confirms all mobile terminated packets successfully transferred before the SRNC relocation procedure. . If PDCP-SND confirms the reception of packets that were forwarded from the source SRNC, the target SRNC shall discard these packets. PDCP-SNU is the PDCP sequence number for the next expected in-sequence uplink packet to be received in the RNC per radio bearer, which used lossless PDCP in the source RNC. PDCP-SNU confirms all mobile originated packets successfully transferred before the relocation. If PDCP-SNU confirms all mobile originated packets successfully transferred before the relocation. If PDCP-SNU confirms reception of packets that were received in the source SRNC, the target SRNC shall discard these packets that were received in the source SRNC.

- 11)Upon receipt of the Relocation Detect message, the CN may switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter-SGSN SRNS relocation, the new SGSN sends Update PDP Context Request messages (new SGSN Address, SGSN Tunnel Endpoint Identifier, QoS Negotiated) to the GGSNs concerned. The GGSNs update their PDP context fields and return an Update PDP Context Response (GGSN Tunnel Endpoint Identifier) message.
- 12) When the target SRNC receives the UTRAN Mobility Information Confirm message, i.e. the new SRNC-ID + S-RNTI are successfully exchanged with the MS by the radio protocols, the target SRNC shall initiate the Relocation Complete procedure by sending the Relocation Complete message to the new SGSN. The purpose of the Relocation Complete procedure is to indicate by the target SRNC the completion of the relocation of the SRNS to the CN. If the user plane has not been switched at Relocation Detect, the CN shall upon reception of Relocation Complete switch the user plane from the source RNC to the target SRNC. If the SRNS Relocation is an inter SGSN SRNS relocation, the new SGSN signals to the old SGSN the completion of the SRNS relocation procedure by sending a Forward Relocation Complete message.

- 13)Upon receiving the Relocation Complete message or if it is an inter-SGSN SRNS relocation, the Forward Relocation Complete message, the old SGSN sends an Iu Release Command message to the source RNC. When the RNC data-forwarding timer has expired the source RNC responds with an Iu Release Complete.
- 14) After the MS has finished the Cell / URA update or the Cell / GRA update and RNTI reallocation procedure and if the new Routeing Area Identification is different from the old one, the MS initiates the Routeing Area Update procedure. See subclause "Location Management Procedures (UMTS-Iu mode only)". Note that it is only a subset of the RA update procedure that is performed, since the MS is in PMM-CONNECTED state.

The CAMEL procedure calls shall be performed, see referenced procedures in 3G TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL GPRS Routeing Area Update-Session

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times: once per PDP context. It returns as result "Continue". For C2 and C3: refer to Routing Area Update procedure description for detailed message flow.

Next modified section

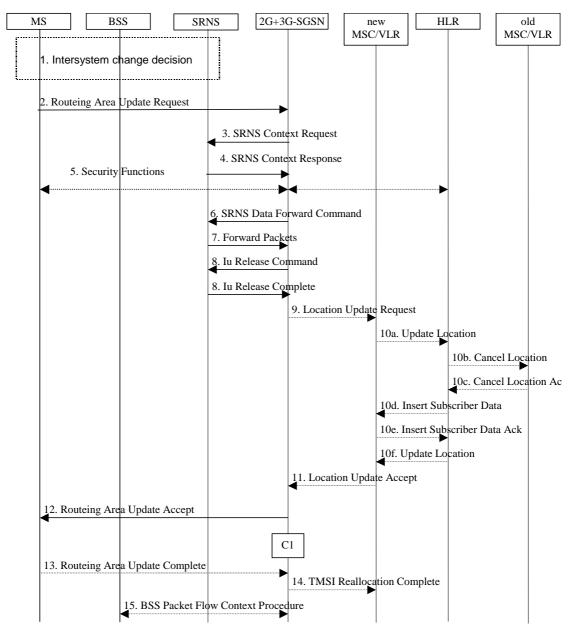
6.13 UMTS -_ GSMIntersystem Change

The UMTS - GSM intersystem change procedures may be supported for network elements conforming to GSM releases 97, 98, and 99, and to UMTS release 99. At intersystem change release 99 network elements shall use GTP release 97 or 98 on the Gn interface when interworking with release 97 or 98 network elements, respectively.

An intersystem change from UMTS to GSM or GSM to UMTS takes place when an MS <u>changes between supporting</u> both <u>Iu mode and A/Gb mode of operation</u> UMTS and GSM changes the radio access technology. A prerequisite for an intersystem change is that the MS is GPRS-attached. The transition of the mobility management states is as specified for the corresponding mobility management procedures.

There is no transition of the session management states at an intersystem change.

6.13.1 Intra SGSN Intersystem Change


An SGSN that supports both the Gb and Iu-PS interfaces may support an intra-SGSN intersystem change if the radio access technology nodes serving the MS before and after the intersystem change are both served by this SGSN.

6.13.1.1 UMTS to GSMIu mode to A/Gb mode Intra SGSN Change

The intersystem change from UMTS to GSMIu mode to A/Gb mode takes place when an MS changes from UTRAN<u>or</u> GERAN Iu mode to GSM radio access A/Gb mode. Depending on the PMM state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in PMM-IDLE state changes to the GSM radio access A/Gb mode without changing the RA, the MS shall follow the selective RA update procedures, see clause "Selective RA Update".
- When an MS in PMM-IDLE state changes to the <u>A/Gb mode GSM radio access</u> and the RA changes, the MS shall initiate the GPRS RA update procedure, see clause "Intra SGSN Routeing Area Update".
- When an MS in PMM-CONNECTED state changes to the <u>A/Gb modeGSM radio access</u>, the MS shall initiate the GPRS RA update procedure independent of whether the RA has changed or not. The RA update procedure is either combined RA / LA update or only RA update.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request message indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.-In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

Figure 7: UMTS to GSMIu mode to A/Gb mode Intra SGSN Change

- 1) The MS or BSS or UTRAN decides to perform an intersystem change which makes the MS switch to a new cell where A/Gb mode has to be used that supports GSM radio technology, and stops transmission to the network.
- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type) message to the 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA-update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attached requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the 2G+3G-SGSN.
- 3) If the MS is PMM-CONNECTED state, the 2G+3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS.

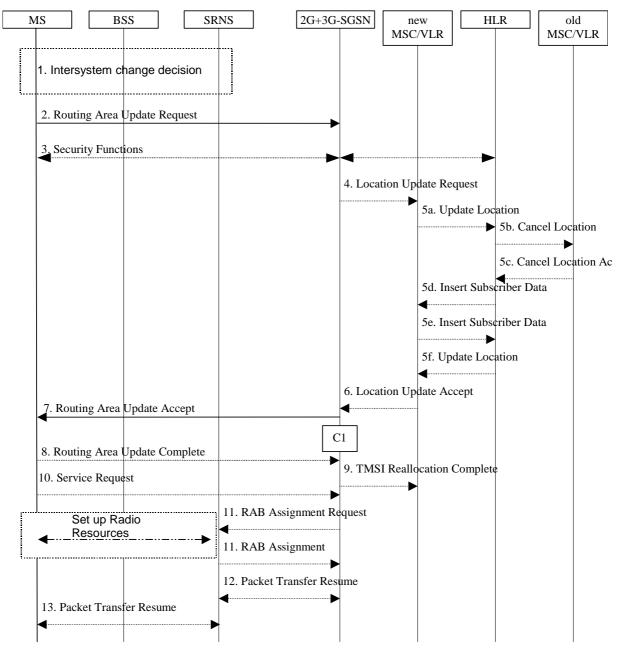
Upon reception of the SRNS Context Request message, the SRNS starts buffering and stops sending downlink PDUs to the MS. The SRNS responds with an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The GTP sequence numbers are included for each PDP context indicating the next insequence downlink GTP-PDU to be sent to the MS and the next in-sequence GTP PDU to be tunnelled to the GGSN. For each active PDP context, which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) and the downlink PDCP sequence number (PDCP-SNU) and the downlink PDCP sequence uplink packet to be received in from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been confirmed. The 2G+3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers of the respective 2G GPRS PDP contexts.

- 5) Security functions may be executed.
- 6) If the MS is PMM-CONNECTED, the 2G+3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. This informs the SRNS that the 2G+3G-SGSN is ready to receive data packets. Upon reception of SRNS Data Forward Command message from the 2G+3G-SGSN the SRNS shall start the data-forwarding timer.
- 7) For each RAB indicated by the SRNS Data Forward Command the SRNS starts duplicating and tunnelling the buffered GTP-PDUs back to the 2G+3G-SGSN. For each radio bearer which uses lossless PDCP the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs are duplicated and tunnelled back to the 2G+3G-SGSN together with their related downlink PDCP sequence numbers. The 2G+3G-SGSN converts the PDCP sequence numbers to SNDCP sequence number (by stripping off the eight most significant bits of the PDCP sequence numbers).
- 8) The 2G+3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 9) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, then the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the association with the 2G+3G-SGSN by storing the SGSN Number.
- 10) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 11)The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.

- 12) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A logical link is established between the new 2G+3G-SGSN and the MS. 2G+3G-SGSN initiates the establishment procedure. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU)) message is returned to the MS. Receive N-PDU Number contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, these N-PDUs shall be discarded by the MS.13) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number) message to the SGSN. Receive N-PDU Number (= converted PDCP-SND) contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, these N-PDUs shall be discarded by the 2G+3G-SGSN.The MS deducts Receive N-PDU Number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected in-sequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP. The new 2G-SGSN negotiates with the MS for each NSAPI the use of acknowledged or unacknowledged SNDCP regardless whether the SRNS used lossless PDCP or not.
- 14) The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 15) The 2G+3G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078:

- C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.
- The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once per session. In Figure 7, the procedure returns as result "Continue".
- Then, the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 7, the procedure returns as result "Continue".


6.13.1.2 GSM to UMTSA/Gb mode to lu mode Intra-SGSN Change

The intersystem change from <u>GSM-A/Gb mode</u> to <u>UMTS-Iu mode</u> takes place when a GPRS-attached MS changes from <u>GSM radio accessfrom A/Gb mode</u> to <u>GERAN or UTRAN Iu mode</u><u>UTRAN</u>. Depending on the GPRS mobility management state before the intersystem change and whether the RA is changed or not, one of the following procedures is initiated by the MS:

- When an MS in STANDBY state changes to UTRAN <u>Iu mode</u> inside the current RA, the MS shall follow the selective RA update procedures, see clause "Selective RA Update".
- When an MS in STANDBY state changes to <u>Iu modeUTRAN</u> and the RA changes, the MS shall initiate the UMTS RA update procedure, see clause "Routeing Area Update Procedure".
- When an MS in READY state changes to <u>Iu mode</u>UTRAN independent of whether the RA has changed or not, the MS shall initiate the <u>Iu mode</u>UMTS RA update procedure and afterwards initiate the RABs by the Service Request procedure, see clause "MS Initiated Service Request Procedure". The RA update procedure is either combined RA / LA update or only RA update.

If the network operates in mode I, an MS that is both PS-attached and CS-attached shall perform the Combined RA / LA Update procedure. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection. In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

25

Figure 8: GSM to UMTSA/Gb mode to lu mode Intra SGSN Change

- The MS or BSS or the UTRAN decides to perform an intersystem change which makes the MS switch to a new cell where Iu mode has to be used that supports UMTS radio technology, and stops transmission to the network.
- 2) The MS initiates an RRC connection establishment and sends a Routeing Area Update Request (P-TMSI, Old RA, Old P-TMSI Signature, Update Type, CM) message to the combined 2G+3G-SGSN. Update Type shall indicate RA update or combined RA / LA update or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested and also if the MS has a follow on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-onrequest indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNS shall add an identifier of the area where the message was received before passing the message to the 2G+3G-SGSN. The 2G+3G-SGSN stops transmission of N-PDUs to the MS.
- 3) Security functions may be executed.

- 4) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the 2G+3G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G+3G-SGSN. The VLR creates or updates the association with the 2G+3G-SGSN by storing SGSN Number.
- 5) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the data in the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 6) The new VLR allocates a new VLR TMSI and responds with Location Update Accept (VLR TMSI) to the 2G+3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 7) The 2G+3G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the RA, or if subscription checking fails, the 2G+3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the 2G+3G-SGSN updates MM and PDP contexts for the MS. A new P-TMSI may be allocated. A Routeing Area Update Accept (P-TMSI, P-TMSI Signature) message is returned to the MS.The 2G+3G-SGSN derives for this intersystem change the corresponding PDCP sequence numbers from the N-PDU sequence numbers stored in the SGSN PDP contexts by adding eight most significant bits "1". These PDCP sequence numbers are stored in the SGSN PDP contexts.
- 8) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- The 2G+3G-SGSN sends a TMSI Reallocation Complete message to the VLR if the MS confirms the VLR TMSI.
- 10) If the MS has pending uplink data or signalling, it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 11) The 2G+3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers and stored in the PDP contexts in step 7). The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The SRNS responds with a RAB Assignment Response message.
- NOTE: The NSAPI value is carried in the RAB ID IE.
- 12) Traffic flow is resumed between the 2G+3G-SGSN and the SRNS. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled by the 2G+3G-SGSN to the SRNS together with their related N-PDU number (SNDCP sequence number). No PDCP sequence numbers shall be indicated for these N-PDUs. The SRNS shall discard all N-PDUs with N-PDU sequence numbers older than the eight least significant bits of PDCP-SND received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with sequence numbers older than the eight least significant all N-PDUs with sequence numbers older than the eight least significant bits of PDCP-SND received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with sequence numbers older than the eight least significant bits of the PDCP-SNU received from the SRNS. All other N-PDUs shall be transmitted to the SRNS. The SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

13)The traffic flow is resumed between the SRNS and the MS.

The CAMEL procedure calls shall be performed, see referenced procedure in 3GPP TS 23.078:

C1) CAMEL_GPRS_Routeing_Area_Update_Session and CAMEL_GPRS_Routeing_Area_Update_Context.

- The procedure CAMEL_GPRS_Routeing_Area_Update_Session is called once relative to the session. In Figure 8, the procedure returns as result "Continue".
- Then the procedure CAMEL_GPRS_Routeing_Area_Update_Context is called once per PDP context. In Figure 8, the procedure returns as result "Continue".

6.13.1.3 Selective RA Update

The MS shall use the following procedures when in STANDBY or PMM-IDLE state.

Note that upon expiry of the periodic RA update timer, the MS shall carry out the periodic routeing area update procedure.

6.13.1.3.1 Uplink Signalling or Data Transmission

In STANDBY or PMM-IDLE state the MS shall not perform an RA update procedure until uplink data or signalling information is to be sent from the MS.

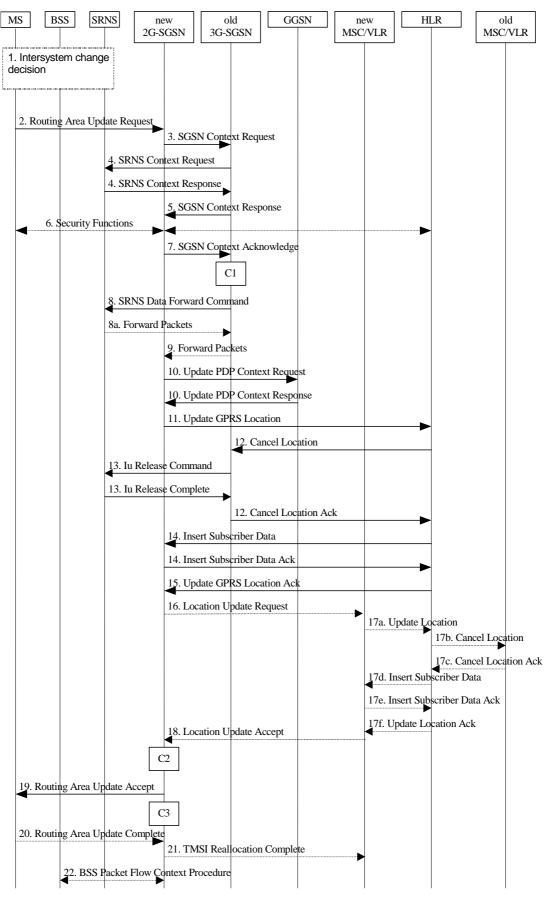
If the MS is in the same <u>mode (A/Gb mode or Iu mode)access network</u> as when it last sent data or signalling, the procedures defined for that <u>modeaccess system</u> shall be followed. This shall be the sending of an LLC PDU in <u>A/Gb</u> <u>modeGPRS</u>, or for example sending of a Service Request message in Iu mode.

If the MS is in a different <u>mode (A/Gb mode or Iu mode)</u> access network as when it last sent data or signalling, the RA update procedure shall be performed before the sending of data or signalling. The RA update procedure needs not be performed if the signalling message is a power-off detach.

6.13.1.3.2 Downlink Signalling or Data Transmission

If the 2G+3G-SGSN receives data for an MS in STANDBY or PMM-IDLE state, the SGSN shall page in the RA where the MS is located. This may include both $A/Gb \mod 2G$ and $Iu \mod 3GPP$ cells.

If the MS receives this page in the same mode (A/Gb mode or Iu mode)access network as when it last sent data or signalling, the procedures defined for that modeaccess system should be followed. This shall be the sending of an LLC PDU in a GSM cell where the MS has to use A/Gb mode or, for example, sending of a Service Request message in a UMTS cell where the MS has to use Iu mode.


If the MS receives this page in a different <u>mode (A/Gb mode or Iu mode)</u> access network as when it last sent data or signalling, the RA update procedure shall be performed. The $\frac{2G+3G}{2G+3G}$ -SGSN shall accept this RAU as a valid response.

6.13.2 Inter-SGSN Inter-system Change

6.13.2.1 UMTS to GSMIu mode to A/Gb mode Inter-SGSN Change

An inter-SGSN inter-system change from UMTS to GSMIu mode to A/Gb mode takes place when an MS in PMM-IDLE or PMM-CONNECTED state changes from UTRAN or GERAN Iu mode to A/Gb mode GSM radio access and the GSM-A/Gb mode radio access node serving the MS is served by a different SGSN. In this case, the RA changes. Therefore, the MS shall initiate a A/Gb mode GSM-RA update procedure. The RA update procedure is either combined RA / LA update or only RA update. These RA update cases are illustrated in Figure 9. In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

A combined RA / LA update takes place in network operation mode I when the MS enters a new RA or when a GPRSattached MS performs IMSI attach. The MS sends a Routeing Area Update Request indicating that an LA update may also need to be performed, in which case the SGSN forwards the LA update to the VLR. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

Figure 9: UMTS to GSM lu mode to A/Gb mode Inter-SGSN Change

 The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports GSM radio technology where A/Gb mode has to be used, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (old RAI, old P-TMSI Signature, Update Type, MS Network Capability) message to the new 2G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested. The BSS shall add the Cell Global Identity including the RAC and LAC of the cell where the message was received before passing the message to the new 2G-SGSN.
- 3) The new 2G-SGSN sends an SGSN Context Request (old RAI, TLLI, old P-TMSI Signature, New SGSN Address) message to the old 3G-SGSN to get the MM and PDP contexts for the MS. The old 3G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 3G-SGSN. If the received old P-TMSI Signature does not match the stored value, the security functions in the new 2G-SGSN should be initiated. If the security functions authenticate the MS correctly, the new 2G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 3G-SGSN. MS Validated indicates that the new 2G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 2G-SGSN indicates that it has authenticated the MS correctly, the old 3G-SGSN starts a timer. If the MS is not known in the old 3G-SGSN, the old 3G-SGSN responds with an appropriate error cause.
- 4) If the MS is PMM-CONNECTED the old 3G-SGSN sends an SRNS Context Request (IMSI) message to the SRNS. Upon receipt of this message the SRNS buffers and stops sending downlink PDUs to the MS and returns an SRNS Context Response (GTP-SNDs, GTP-SNUs, PDCP-SNDs, PDCP-SNUs) message. The SRNS shall include for each PDP context the next in-sequence GTP sequence number to be sent to the MS and the GTP sequence number of the next uplink PDU to be tunnelled to the GGSN. For each active PDP context, which uses lossless PDCP, the SRNS also includes the uplink PDCP sequence number (PDCP-SNU) downlink PDCP sequence number (PDCP-SND). PDCP-SNU shall be the next in-sequence PDCP sequence number expected from the MS. PDCP-SND is the PDCP sequence number for the first downlink packet for which successful transmission has not been confirmed. The 3G-SGSN shall strip off the eight most significant bits of the passed PDCP sequence numbers, thus converting them to SNDCP N-PDU numbers and stores the N-PDU numbers in its PDP contexts..
- 5) The old 3G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. For each PDP context the old 3G-SGSN shall include the GTP sequence number for the next uplink GTP PDU to be tunnelled to the GGSN and the next donwlink GTP sequence number for the next in-sequence N-PDU to be sent to the MS. Each PDP Context also includes the SNDCP Send N-PDU Number (the value is 0) for the next in-sequence downlink N-PDU to be sent in acknowledged mode to the MS and the SNDCP Receive N-PDU Number (= converted PDCP-SNU) for the next in-sequence uplink N-PDU to be received in SNDCP acknowledged mode from the MS. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 6) Security functions may be executed.
- 7) The new 2G-SGSN sends an SGSN Context Acknowledge message to the old 3G-SGSN. This informs the old 3G-SGSN that the new 2G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a RA update procedure back to the old SGSN before completing the ongoing RA update procedure.
- 8) If the MS is in the PMM-CONNECTED state, the old 3G-SGSN sends an SRNS Data Forward Command (RAB ID, Transport Layer Address, Iu Transport Association) message to the SRNS. For each indicated RAB the SRNS starts duplicating and tunnelling the buffered GTP PDUs to the old 3G-SGSN. For each radio bearer which uses lossless PDCP the SRNS shall start tunnelling the GTP-PDUs related to transmitted but not yet acknowledged PDCP-PDUs to the old 3G-SGSN together with their related downlink PDCP sequence numbers. Upon receipt of the SRNS Data Forward Command message from the 3G-SGSN, the SRNS shall start the data-forwarding timer.
- 9) The old 3G-SGSN tunnels the GTP PDUs to the new 2G-SGSN. In the case of GTPv1, the conversion of PDCP sequence numbers to SNDCP sequence numbers (the eight most significant bits shall be stripped off) shall be done in the new SGSN. No N-PDU sequence numbers shall be indicated for these N-PDUs. If GTPv0 is used between the SGSNs, the conversion of PDCP sequence numbers to SNDCP numbers shall be done in the old 3G-SGSN (by stripping off the eight most significant bits).
- 10) The new 2G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.

- 11) The new 2G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 12) The HLR sends a Cancel Location (IMSI) message to the old 3G-SGSN. The old 3G-SGSN acknowledges with a Cancel Location Ack (IMSI) message. The old 3G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts shall be removed when the timer expires.
- 13) When the MS is PMM-CONNECTED, the old 3G-SGSN sends an Iu Release Command message to the SRNS. When the RNC data-forwarding timer has expired, the SRNS responds with an Iu Release Complete message.
- 14) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 2G-SGSN. The 2G-SGSN constructs an MM context and PDP contexts for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 15) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 2G-SGSN.
- 16) If the association has to be established i.e. if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new 2G-SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 2G-SGSN. The 2G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 14). The VLR creates or updates the association with the 2G-SGSN by storing SGSN Number.
- 17) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 18) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 2G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 19) The new 2G-SGSN validates the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the 2G-SGSN, or if subscription checking fails, the new 2G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 2G-SGSN constructs MM and PDP contexts for the MS. A logical link is established between the new 2G-SGSN and the MS. 2G-SGSN initiates the establishment procedure. The new 2G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI Signature, Receive N-PDU Number (= converted PDCP-SNU) message. Receive N-PDU Number contains the acknowledgements for each NSAPI which used lossless PDCP before the start of the update procedure, thereby confirming all mobile-originated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs, the MS shall discard these N-PDUs.
- 20) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete (Receive N-PDU Number (= converted PDCP-SND)) message to the SGSN. Receive N-PDU Number contains the acknowledgements for each lossless PDCP used by the MS before the start of the update procedure, thereby confirming all mobile-terminated N-PDUs successfully transferred before the start of the update procedure. If Receive N-PDU Number confirms the reception of N-PDUs that were forwarded from the old 3G-SGSN, the new 2G-SGSN shall discard these N-PDUs. The MS deducts Receive N-PDU number from PDCP-SND by stripping off the eight most significant bits. PDCP-SND is the PDCP sequence number for the next expected insequence downlink packet to be received in the MS per radio bearer, which used lossless PDCP. The new 2G-

- SGSN negotiates with the MS for each NSAPI the use of acknowledged or unacknowledged SNDCP regardless whether the SRNS used lossless PDCP or not.
- 21) The new 2G-SGSN sends TMSI Reallocation Complete message to the new VLR if the MS confirms the VLR TMSI.
- 22) The 2G-SGSN and the BSS may execute the BSS Packet Flow Context procedure.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

C1) CAMEL_GPRS_PDP_Context_Disconnection and CAMEL_GPRS_Detach

They are called in the following order:

- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. The procedure returns as result "Continue".
- C2) CAMEL_GPRS_Routeing_Area_Update_Session.

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context.

This procedure is called several times once per PDP context. It returns as result "Continue".

6.13.2.2 GSM to UMTSA/Gb mode to lu mode Inter-SGSN Change

The inter-system change from GSM to UMTSA/Gb mode to Iu mode takes place when a GPRS-attached MS changes from GSM radio access A/Gb mode to UTRAN or GERAN Iu -mode and the new UTRAN node serving the MS is served by a different SGSN. In this case the RA changes. Therefore, the MS shall initiate a UMTS-Iu mode RA update procedure by establishing an RRC connection and initiating the RA update procedure. The RA update procedure is either combined RA / LA update or only RA update, these RA update cases are illustrated in Figure 10. In the context of this specification, the terms RNS or RNC refer also to a GERAN BSS or BSC (respectively) when serving an MS in Iu mode.

If the network operates in mode I, then an MS, that is both PS-attached and CS-attached, shall perform the Combined RA / LA Update procedures. This concerns only idle mode (see 3GPP TS 23.122), as no combined RA / LA updates are performed during a CS connection.

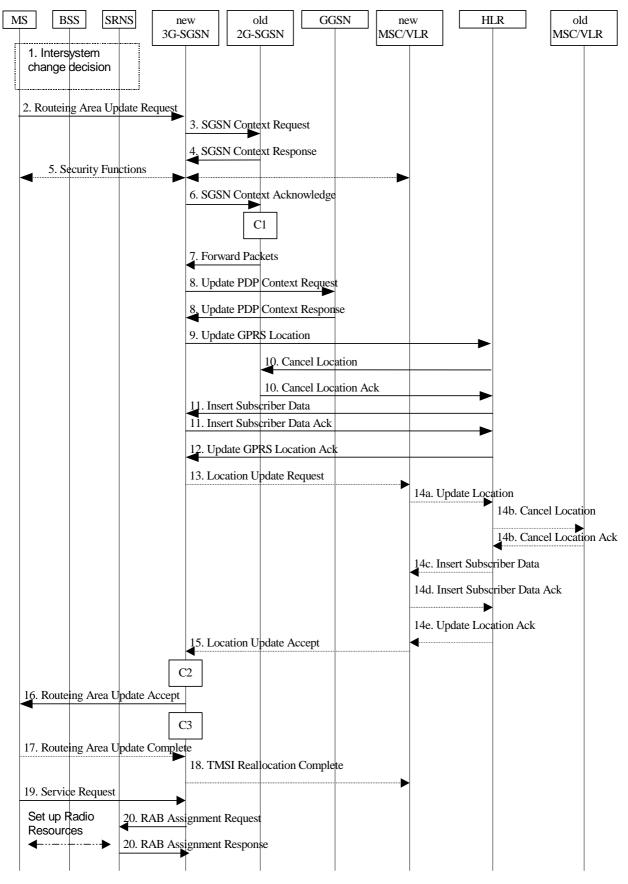


Figure 10: GSM to UMTSA/Gb mode to lu mode Inter SGSN Change

 The MS or BSS or UTRAN decides to perform an inter-system change, which makes the MS switch to a new cell that supports UMTS radio technology where Iu mode has to be used, and stops transmission to the network.

- 2) The MS sends a Routeing Area Update Request (P-TMSI, old RAI, old P-TMSI Signature, Update Type, CM, MS Network Capability) message to the new 3G-SGSN. Update Type shall indicate RA update or combined RA / LA update, or, if the MS wants to perform an IMSI attach, combined RA / LA update with IMSI attach requested, and also if the MS has a follow-on request, i.e. if there is pending uplink traffic (signalling or data). The SGSN may use, as an implementation option, the follow-on request indication to release or keep the Iu connection after the completion of the RA update procedure. The SRNC shall add the Routeing Area Identity including the RAC and LAC of the area where the MS is located before forwarding the message to the 3G-SGSN. This RA identity corresponds to the RAI in the MM system information sent by the SRNC to the MS.
- 3) The new 3G-SGSN uses the old RAI received from the MS to derive the old 2G-SGSN address, and sends an SGSN Context Request (old RAI, old P-TMSI, New SGSN Address) message to the old 2G-SGSN to get the MM and PDP contexts for the MS. The old 2G-SGSN validates the old P-TMSI Signature and responds with an appropriate error cause if it does not match the value stored in the old 2G-SGSN. If the received old P-TMSI Signature does not match the stored value, the old 2G-SGSN should initiate the security functions in the new 3G-SGSN. If the security functions authenticate the MS correctly, the new 3G-SGSN shall send an SGSN Context Request (old RAI, TLLI, MS Validated, New SGSN Address) message to the old 2G-SGSN. MS Validated indicates that the new 3G-SGSN has authenticated the MS. If the old P-TMSI Signature was valid or if the new 3G-SGSN indicates that it has authenticated the MS correctly, the old 2G-SGSN starts a timer and stops the transmission of N-PDUs to the MS.
- 4) The old 2G-SGSN responds with an SGSN Context Response (MM Context, PDP Contexts) message. Each PDP Context includes the GTP sequence number for the next downlink N-PDU to be sent to the MS and the GTP sequence number for the next uplink N-PDU to be tunnelled to the GGSN. Each PDP Context also includes the SNDCP Send N-PDU Number for the next downlink N-PDU to be sent in acknowledged mode SNDCP to the MS and the SNDCP Receive N-PDU Number for the next uplink N-PDU to be received in acknowledged mode SNDCP from the MS. The new 3G-SGSN derives the corresponding PDCP sequence numbers from these N-PDU sequence numbers by adding eight most significant bits "1". These PDCP sequence numbers are stored in the 3G-SGSN PDP contexts. The new 3G-SGSN shall ignore the MS Network Capability contained in MM Context of SGSN Context Response only when it has previously received an MS Network Capability in the Routeing Area Request.
- 5) Security functions may be executed.
- 6) The new 3G-SGSN sends an SGSN Context Acknowledge message to the old 2G-SGSN. This informs the old 2G-SGSN that the new 3G-SGSN is ready to receive data packets belonging to the activated PDP contexts. The old SGSN marks in its context that the MSC/VLR association and the information in the GGSNs and the HLR are invalid. This triggers the MSC/VLR, the GGSNs, and the HLR to be updated if the MS initiates a routeing area update procedure back to the old SGSN before completing the ongoing routeing area update procedure.
- 7) The old 2G-SGSN duplicates the buffered N-PDUs and starts tunnelling them to the new 3G-SGSN. Additional N-PDUs received from the GGSN before the timer described in step 3 expires are also duplicated and tunnelled to the new 3G-SGSN. N-PDUs that were already sent to the MS in acknowledged mode SNDCP and that are not yet acknowledged by the MS are tunnelled together with their related SNDCP N-PDU sequence number. No PDCP sequence numbers shall be indicated for these N-PDUs. No N-PDUs shall be forwarded to the new 3G-SGSN after expiry of the timer described in step 3.
- 8) The new 3G-SGSN sends an Update PDP Context Request (new SGSN Address, TEID, QoS Negotiated) message to each GGSN concerned. Each GGSN updates its PDP context fields and returns an Update PDP Context Response (TEID) message.
- 9) The new 3G-SGSN informs the HLR of the change of SGSN by sending an Update GPRS Location (SGSN Number, SGSN Address, IMSI) message to the HLR.
- 10) The HLR sends a Cancel Location (IMSI, Cancellation Type) message to the old 2G-SGSN. The old 2G-SGSN removes the MM and PDP contexts if the timer described in step 3 is not running. If the timer is running, the MM and PDP contexts are removed when the timer expires. The old 2G-SGSN acknowledges with a Cancel Location Ack (IMSI) message.
- 11) The HLR sends an Insert Subscriber Data (IMSI, GPRS Subscription Data) message to the new 3G-SGSN. The 3G-SGSN constructs an MM context for the MS and returns an Insert Subscriber Data Ack (IMSI) message to the HLR.
- 12) The HLR acknowledges the Update GPRS Location by returning an Update GPRS Location Ack (IMSI) message to the new 3G-SGSN.

- 13) If the association has to be established, if Update Type indicates combined RA / LA update with IMSI attach requested, or if the LA changed with the routeing area update, the new SGSN sends a Location Update Request (new LAI, IMSI, SGSN Number, Location Update Type) to the VLR. Location Update Type shall indicate IMSI attach if Update Type in step 1 indicated combined RA / LA update with IMSI attach requested. Otherwise, Location Update Type shall indicate normal location update. The VLR number is translated from the RAI by the 3G-SGSN. The 3G-SGSN starts the location update procedure towards the new MSC/VLR upon receipt of the first Insert Subscriber Data message from the HLR in step 12). The VLR creates or updates the association with the 3G-SGSN by storing SGSN Number.
- 14) If the subscriber data in the VLR is marked as not confirmed by the HLR, the new VLR informs the HLR. The HLR cancels the old VLR and inserts subscriber data in the new VLR (this signalling is not modified from existing GSM signalling and is included here for illustrative purposes):
 - a) The new VLR sends an Update Location (new VLR) to the HLR.
 - b) The HLR cancels the data in the old VLR by sending Cancel Location (IMSI) to the old VLR.
 - c) The old VLR acknowledges with Cancel Location Ack (IMSI).
 - d) The HLR sends Insert Subscriber Data (IMSI, GSM subscriber data) to the new VLR.
 - e) The new VLR acknowledges with Insert Subscriber Data Ack (IMSI).
 - f) The HLR responds with Update Location Ack (IMSI) to the new VLR.
- 15) The new VLR allocates a new TMSI and responds with Location Update Accept (VLR TMSI) to the 3G-SGSN. VLR TMSI is optional if the VLR has not changed.
- 16) The new 3G-SGSN validate the MS's presence in the new RA. If due to roaming restrictions the MS cannot attach to the 3G-SGSN, or if subscription checking fails, the new 3G-SGSN rejects the routeing area update with an appropriate cause. If all checks are successful, the new 3G-SGSN constructs MM and PDP contexts for the MS. The new 3G-SGSN responds to the MS with a Routeing Area Update Accept (P-TMSI, P-TMSI signature) message.
- 17) The MS acknowledges the new P-TMSI by returning a Routeing Area Update Complete message to the SGSN.
- 18) The new 3G-SGSN sends TMSI Reallocation Complete message to the new VLR, if the MS confirms the VLR TMSI.
- 19) If the MS has uplink data or signalling pending it shall send a Service Request (P-TMSI, RAI, CKSN, Service Type) message to the SGSN. Service Type specifies the requested service. Service Type shall indicate one of the following: Data or Signalling.
- 20) If the MS has sent the Service Request, the new 3G-SGSN requests the SRNS to establish a radio access bearer by sending a RAB Assignment Request (RAB ID(s), QoS Profile(s), GTP-SNDs, GTP-SNUs, PDCP-SNUs) message to the SRNS. The PDCP sequence numbers are derived from the N-PDU sequence numbers in step 4) and stored in the SGSN PDP contexts. The SRNS sends a Radio Bearer Setup Request (PDCP-SNUs) message to the MS. The MS responds with a Radio Bearer Setup Complete (PDCP-SNDs) message. The MS deducts PDCP-SND from its Receive N-PDU Number by adding eight most significant bits "1". The SRNS responds with a RAB Assignment Response message. The SRNS shall discard all N-PDUs tunnelled from the SGSN with N-PDU sequence numbers older than the eight least significant bits of the PDCP-SNDs received from the MS. Other N-PDUs shall be transmitted to the MS. The MS shall discard all N-PDUs with SNDCP sequence numbers older than the eight least significant bits of the PDCP-SNDs. Other N-PDUs shall be transmitted to the SRNS. The SRNS negotiates with the MS for each radio bearer the use of lossless PDCP or not regardless whether the old 2G-SGSN used acknowledged or unacknowledged SNDCP for the related NSAPI or not.

NOTE: The NSAPI value is carried in the RAB ID IE.

The CAMEL procedure calls shall be performed, see referenced procedures in 3GPP TS 23.078:

- They are called in the following order:- The CAMEL_GPRS_PDP_Context_Disconnection procedure is called several times: once per PDP context. The procedure returns as result "Continue".
- Then the CAMEL_GPRS_Detach procedure is called once. It returns as result "Continue".

C2) CAMEL_GPRS_Routeing_Area_Update_Session

The procedure returns as result "Continue".

C3) CAMEL_GPRS_Routeing_Area_Update_Context

This procedure is called several times: once per PDP context. It returns as result "Continue".

1

		CR-Form-v3		
	23.060 CR 297 rev -	Current version: 4.2.0		
For <u>HELP</u> on	using this form, see bottom of this page or look at	the pop-up text over the symbols.		
Proposed change	affects: (U)SIM ME/UE Radio A	ccess Network X Core Network X		
Title:	External Network Assisted Cell Change (NACC)	in GERAN R5		
Source:	Ericsson			
Work item code:	GERAN Improvements 2	Date: 26 October 2001		
Category:	В	Release: REL-5		
Use one of the following categories:Use one of the following releaseF (essential correction)2A (corresponds to a correction in an earlier release)R96B (Addition of feature),R97C (Functional modification of feature)R98D (Editorial modification)R99D tetailed explanations of the above categories canREL-4be found in 3GPP TR 21.900.REL-5				
was introduced. The feature minimizes the service outage time when a GPF in packet transfer mode re-selects cell. As the feature in REL-4 only support RAN (BSC) cell changes, and as the number of inter RAN cell changes can frequent occurrence in some network configurations, the extension of the fea- to cover also inter RAN cell changes is here proposed.				
Summary of change: When system information vital for cell re-selection is changed in a cell with external neighbouring cells, the updated system information is sent from the originating RAN node to the RAN node controlling the external neighbouring in a new container message (RAN-INFORMATION). The SGSN may either the container to a receiving RAN node (intra SGSN) or tunnel the container message over GTP to another SGSN which then in turn has to send the container message to the addressed RAN via the Gb interface. The receiving RAN may then, if requested, acknowledge the reception back the originating RAN node. As a container message between RAN nodes can be used by different futur applications, a generic transport mechanism is proposed where only the container units inside the message is application dependent.				
Consequences if not approved:	The Network Assisted Cell Change procedu intra-BSC cell re-selection.	ure will only support MSs performing		
Clauses affected:	3.2, 8.1.5			
Other specs		TR xx.yyy (External NACC), TS (GTP), TS 48.018 (BSSGP).		
affected:	Test specifications O&M Specifications			
Other comments:				

3 Definitions, abbreviations and symbols

3.2 Abbreviations

Applicable abbreviations can be found in GSM 01.04[1]. For the purposes of the present document the following abbreviations apply:

AAL5	ATM Adaptation Layer type 5
APN	Access Point Name
ATM	Asynchronous Transfer Mode
AUTN	Authentication Token
BG	Border Gateway
BSSAP+	Base Station System Application Part +
BSSGP	Base Station System GPRS Protocol
BVCI	BSSGP Virtual Connection Identifier
CCU	Channel Codec Unit
CDR	Call Detail Record
CGF	Charging Gateway Functionality
CGI	Cell Global Identification
CK	Cipher Key
CMM	Circuit Mobility Management
CS	Circuit Switched
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
DTM	Discontinuous Transfer Mode
EGPRS	Enhanced GPRS
ESP	Encapsulating Security Payload
GEA	GPRS Encryption Algorithm
GGSN	Gateway GPRS Support Node
GMM/SM	GPRS Mobility Management and Session Management
GPRS-SSF	GPRS Service Switching Function
GPRS-CSI	GPRS CAMEL Subscription Information
GSM-SCF	GSM Service Control Function
GSM-SCF GSIM	
	GSM Service Identity Module
GSN GTP	GPRS Support Node
	GPRS Tunnelling Protocol
GTP-C	GTP Control Plane GTP User Plane
GTP-U ICMP	
	Internet Control Message Protocol
IETF IK	Internet Engineering Task Force
IR IP	Integrity Key Internet Protocol
IP IPv4	
	Internet Protocol version 4 Internet Protocol version 6
IPv6	
IPX	Internet Packet eXchange
ISP	Internet Service Provider
KSI L2TP	Key Set Identifier
	Layer-2 Tunnelling Protocol
LL-PDU LLC	LLC PDU Logical Link Control
MAC	Medium Access Control
MIP	Mobile IP
MNRF MNRG	Mobile station Not Reachable Flag Mobile station Not Reachable for GPRS flag
MNRG MNRR	Mobile station Not Reachable Reason
MTP2	
MTP2 MTP3	Message Transfer Part layer 2 Message Transfer Part layer 3
NGAF	Non-GPRS Alert Flag
INUAL	

2

3GPP TSG SA2 #21 26 – 30 November, 2001

Tdoc S2- 013596 (S2- 013500)

20 30 110	vennoer, zu
Cancun, Mexico	
NACC	Network
NS	Network

NACC	Network Assisted Cell Change
NS	Network Service
NSAPI	Network layer Service Access Point Identifier
NSS	Network SubSystem
ODB	Operator Determined Barring
P-TMSI	Packet TMSI
PCU	Packet Control Unit
PDCH	Packet Data CHannel
PDCP	Packet Data Convergence Protocol
PDN	Packet Data Network
PDP	Packet Data Protocol, e.g., IP
PDU	Protocol Data Unit
PMM	Packet Mobility Management
PPF	Paging Proceed Flag
PPP	Point-to-Point Protocol
PTP	Point To Point
PVC	Permanent Virtual Circuit
RA	Routeing Area
RAB	Radio Access Bearer
RAC	Routeing Area Code
RAI	Routeing Area Identity
RANAP	Radio Access Network Application Protocol
RAU	Routeing Area Update
RLC	Radio Link Control
RNC	Radio Network Controller
RNS	Radio Network Subsystem
RNTI	Radio Network Temporary Identity
RRC	Radio Resource Control
SGSN	Serving GPRS Support Node
SM	Short Message
SM-SC	Short Message service Service Centre
SMS-GMSC	Short Message Service Gateway MSC
SMS-IWMSC	Short Message Service Interworking MSC
SN-PDU	SNDCP PDU
SNDC	SubNetwork Dependent Convergence
SNDCP	SubNetwork Dependent Convergence Protocol
SPI	Security Parameter Index
SRNC	Serving RNC
TCAP	Transaction Capabilities Application Part
TCP	Transmission Control Protocol
TFT	Traffic Flow Template
TEID	Tunnel Endpoint IDentifier
TLLI	Temporary Logical Link Identity
TOM	Tunnelling Of Messages
TOS	Type of Service
TRAU	Transcoder and Rate Adaptor Unit
UDP	User Datagram Protocol
UEA	UMTS Encryption Algorithm
UIA	UMTS Integrity Algorithm
URA	UTRAN Registration Area
USIM	User Service Identity Module
	UMTS Terrestrial Radio Access Network
UTRAN	UNITS TEHESHIAI RAUIO ACCESS NELWORK

8 Radio Resource Functionality

8.1 Radio Resource Functionality (GSM only)

8.1.1 Cell Selection and Reselection

An MS (in any mode of operation - A, B, or C) cannot camp on more than one cell. If the MS is in idle mode, see 3G TS 23.022, it shall use cell selection and reselection procedures as described in GSM 03.64 and specified in GSM 03.22 and GSM 05.08 [16b].

*** Next modified section ***

8.1.5 External Network Assisted Cell Change (NACC) A/Gb mode only.

8.1.5.1 General

The SGSN and BSC may provide the external NACC function. An MS in GPRS packet transfer mode may get network support in order to This function reduces the service outage time at cell re-selection. The support is given as system information for the target cell before the cell re-selection is performed. For the inter BSC case, changes in system information for a cell with external neighbouring cells will result in transfer of the information from the source BSC to the destination BSC responsible for the external neighbouring cells.

The information is transferred in containers from the source BSC to the destination BSC by use of the generic RAN Information Send procedure. The RAN Information Send procedure may include acknowledgement to secure the endto-end transport via multiple intermediate nodes. A BSC may also request information from another BSC by use of the RAN Information Request procedure which might be applicable e.g. at BSC restart procedure.

The interfaces which will be used for the CN transport are the Gb (BSSGP) and the Gn (GTP) interfaces. The information in the container shall be transparent for the Core Network. An SGSN supporting external NACC provides addressing, routeing and relay functions.

8.1.5.2 Addressing, routeing and relaying

8.1.5.2.1 Addressing

All the messages used for the exchange of NACC related information contain in their header the addresses of the source and destination BSSs. Source and destination address have the same format. They contain Each address contains:

- Mobile Country Code (MCC)
- Mobile Network Code (MNC)
- Location Area Code (LAC)
- Routeing Area Code (RAC)
- Cell Identity (CI)

8.1.5.2.2 Routeing

The following description applies to all the messages used for the exchange of NACC related information.

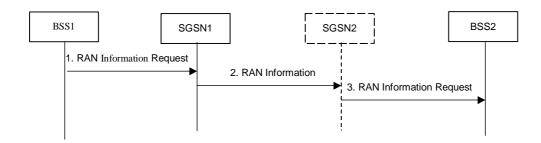
The source BSS sends a message on the Gb interface to its SGSN including the source and destination addresses. From the Routeing Area Identity (MCC+MNC+LAC+RAC) of the destination BSS address, the SGSN shall decide whether or not it is connected to the destination BSS.

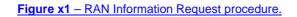
3GPP TSG SA2 #21 26 – 30 November, 2001

Tdoc S2- 013596 (S2- 013500)

Cancun. Mexico

If the SGSN is not connected to the destination BSS, then it shall use the RAI to route the message to the correct SGSN via the Gn interface.


The SGSN connected to the destination BSS decides which BSS to send it to based on the CI of the destination address.


8.1.5.2.3 Relaying

The SGSN performs relaying between BSSGP messages and GTP messages.

8.1.5.3 RAN Information Request procedure

The RAN Information Request procedure is illustrated in Figure x1.

- The RAN Information Request procedure is initiated by the BSS1 by sending the RAN INFORMATION
 <u>REQUEST message with the application information and with the message header including the addresses of the</u>
 source and destination BSSs. The destination BSS is the BSS2 from which the information is required.
- 2) The SGSN1 determines from the Routeing Area Identity (MCC+MNC+LAC+RAC) in the address of BSS2 whether or not it is connected to BSS2. If the SGSN1 is not directly connected to BSS2, then it shall use the RAI to route the message to SGSN2 via the Gn interface.

3) The SGSN2 sends the message to BSS2 via the Gb interface based on the CI of the destination address.

The RAN Information Request procedure initiates the RAN Information send procedure as described in clause 8.1.5.4.

8.1.5.4 RAN Information Send procedure

This procedure may be event triggered (e.g. change of System Information) or scheduled (e.g. by a RAN Information Request procedure). The RAN Information Send procedure is illustrated in Figure x2.

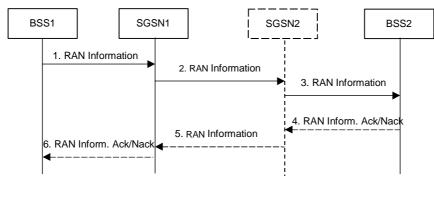


Figure x12 – RAN Information Send procedure.

5

3GPP TSG SA2 #21 26 – 30 November, 2001

Cancun, Mexico

1) The RAN Information Send procedure is initiated by the BSS1 when it has information to be sent,- previously requested by a RAN Information Request procedure (see sub-clase 8.1.5.3). The procedure is initiated by sending a RAN INFORMATION message with application information and with the message header including the addresses of the source and destination BSSs. The destination BSS is the BSS2 to which the information is sent.

6

- 2) The SGSN1 determines from the Routeing Area Identity (MCC+MNC+LAC+RAC), whether or not it is connected to BSS2. If the SGSN1 is not directly connected to BSS2, then it shall use the RAI to route the message to SGSN2 via the Gn interface.
- 3) The SGSN2 sends the message to BSS2 via the Gb interface based on the CI of the destination address. The RAN INFORMATION message received at the BSS2 containes an indication of whether or not acknowledgement is needed. If such indication is not present, the procedure concludes.
- 4) If the RAN INFORMATION message requests for acknowledgement, the BSS2 shall send a RAN INFORMATION ACK/NACK message to its SGSN via the Gb interface.
- 5) The SGSN2 determines from the Routeing Area Identity (MCC+MNC+LAC+RAC) of the destination BSS address, whether or not it is connected to BSS1. If the SGSN2 is not directly connected to BSS1, then it shall use the RAI to route the message to SGSN1 via the Gn interface
- 6) The SGSN1 sends the message to BSS1 via the Gb interface based on the CI of the destination address. The RAN Information Send procedure is completed when the BSS1 receives the RAN INFORMATION ACK/NACK message.