
Technical Specification Group Services and System Aspects TSGS#14(01)0620
Meeting #14, Kyoto, Japan, 17-20 December 2001

Source: SA WG3

Title: 2 CR to 35.201: Correct the maximum input message length for f8
and f9 (Rel-99 and Rel-4)

Document for: Approval

Agenda Item: 7.3.3

Spec CR Rev Phase Cat Subject Version-
Current

Version
-New

Doc-2nd-
Level

35.201 001 Rel-99 F Correct the maximum input message length for f8 and
f9

3.1.2 3.2.0 S3-010689

35.201 002 Rel-4 A Correct the maximum input message length for f8 and
f9

4.0.0 4.1.0 S3-010690

CR page 1

3GPP TSG SA WG3 Security — S3#21 S3-010689

27- 30 November, 2001

Sophia Antipolis, France
CR-Form-v4

CHANGE REQUEST

a 35.201 CR 001 a rev - a Current version: 3.1.2 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE X Radio Access Network X Core Network

Title: a Correct the maximum input message length for f8 and f9

Source: a SA WG3

Work item code:a Security Date: a 29 November 2001

Category: a F Release: a R99
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a The f8 maximum input message length is too low.

There is no message size limitation for f9.

Summary of change:a Bring TS 35.201 inline with TS 33.105

Consequences if a

not approved:
Inconsistent specifications and risk of f8/f9 implementations that take 5114 bit as
an upper limit.

Clauses affected: a 2.1; 2.3; 3; 4

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

CR page 2

****** First Modification ******

2 Introductory information

2.1 Introduction
Within the security architecture of the 3GPP system there are two standardised algorithms: A
confidentiality algorithm f8, and an integrity algorithm f9. These algorithms are fully specified here. Each
of these algorithms is based on the KASUMI algorithm that is specified in a companion document[4].
KASUMI is a block cipher that produces a 64-bit output from a 64-bit input under the control of a 128-bit
key.

The confidentiality algorithm f8 is a stream cipher that is used to encrypt/decrypt blocks of data under a
confidentiality key CK. The block of data may be between 1 and 200005114 bits long. The algorithm uses
KASUMI in a form of output-feedback mode as a keystream generator.

The integrity algorithm f9 computes a 32-bit MAC (Message Authentication Code) of a given input
message using an integrity key IK. The approach adopted uses KASUMI in a form of CBC-MAC mode.

****** Next Modification ******

2.3 List of Variables
A, B are 64-bit registers that are used within the f8 and f9 functions to hold intermediate

values.

BEARER a 5-bit input to the f8 function.

BLKCNT a 64-bit counter used in the f8 function.

BLOCKS an integer variable indicating the number of successive applications of KASUMI that
need to be performed, for both the f8 and f9 functions.

CK a 128-bit confidentiality key.

COUNT a 32-bit time variant input to both the f8 and f9 functions.

DIRECTION a 1-bit input to both the f8 and f9 functions indicating the direction of transmission
(uplink or downlink).

FRESH a 32-bit random input to the f9 function.

IBS the input bit stream to the f8 function.

IK a 128-bit integrity key.

KM a 128-bit constant that is used to modify a key. This is used in both the f8 and f9
functions. (It takes a different value in each function).

KS[i] is the ith bit of keystream produced by the keystream generator.

CR page 3

KSBi is the ith block of keystream produced by the keystream generator. Each block of
keystream comprises 64 bits.

LENGTH is an input to the f8 and f9 functions. It specifies the number of bits in the input
bitstream (1-5114).

MAC-I is the 32-bit message authentication code (MAC) produced by the integrity function
f9.

MESSAGE is the input bitstream of LENGTH bits that is to be processed by the f9 function.

OBS the output bit streams from the f8 function.

PS is the input padded string processed by the f9 function.

REGISTER is a 64-bit value that is used within the f8 function.

3 Confidentiality algorithm f8

3.1 Introduction
The confidentiality algorithm f8 is a stream cipher that encrypts/decrypts blocks of data between 1 and
200005114 bits in length.

3.2 Inputs and Outputs
The inputs to the algorithm are given in table 1, the output in table 2:

Table 1: f8 inputs

Parameter Size (bits) Comment
COUNT 32 Frame dependent input

COUNT[0]…COUNT[31]
BEARER 5 Bearer identity BEARER[0]…BEARER[4]
DIRECTION 1 Direction of transmission DIRECTION[0]
CK 128 Confidentiality key CK[0]….CK[127]
LENGTH X181 The number of bits to be encrypted/decrypted

(1-200005114)
IBS 1-200005114 Input bit stream IBS[0]….IBS[LENGTH-1]

Table 2: f8 output

Parameter Size (bits) Comment
OBS 1-200005114 Output bit stream OBS[0]….OBS[LENGTH-1]

3.3 Components and Architecture
(See fig 1 Annex A)

1 X18 is a parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a 32-bit integer.

CR page 4

The keystream generator is based on the block cipher KASUMI that is specified in [4]. KASUMI is used
in a form of output-feedback mode and generates the output keystream in multiples of 64-bits.

The feedback data is modified by static data held in a 64-bit register A, and an (incrementing) 64-bit
counter BLKCNT.

3.4 Initialisation
In this section we define how the keystream generator is initialised with the key variables before the
generation of keystream bits.

We set the 64-bit register A to COUNT || BEARER || DIRECTION || 0…0

(left justified with the right most 26 bits set to 0).

i.e. A = COUNT[0]…COUNT[31] BEARER[0]…BEARER[4] DIRECTION[0] 0…0

We set counter BLKCNT to zero.

We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB0 to zero.

One operation of KASUMI is then applied to the register A, using a modified version of the confidentiality
key.

A = KASUMI[A]CK ⊕ KM

3.5 Keystream Generation
Once the keystream generator has been initialised in the manner defined in section 3.4, it is ready to be
used to generate keystream bits. The plaintext/ciphertext to be encrypted/decrypted consists of LENGTH
bits (1-200005114) whilst the keystream generator produces keystream bits in multiples of 64 bits.
Between 0 and 63 of the least significant bits are discarded from the last block depending on the total
number of bits required by LENGTH.

So let BLOCKS be equal to (LENGTH/64) rounded up to the nearest integer. (For instance, if LENGTH
= 128 then BLOCKS = 2; if LENGTH = 129 then BLOCKS = 3.)

To generate each keystream block (KSB) we perform the following operation:

For each integer n with 1 � n � BLOCKS we define:

KSBn = KASUMI[A ⊕ BLKCNT ⊕ KSBn-1]CK

where BLKCNT = n-1

The individual bits of the keystream are extracted from KSB1 to KSBBLOCKS in turn, most significant bit
first, by applying the operation:

For n = 1 to BLOCKS, and for each integer i with 0 ≤ i ≤ 63 we define:

KS[((n-1)*64)+i] = KSBn[i]

CR page 5

3.6 Encryption/Decryption
Encryption/decryption operations are identical and are performed by the exclusive-OR of the input data
(IBS) with the generated keystream (KS).

For each integer i with 0 ≤ i ≤ LENGTH-1 we define:

OBS[i] = IBS[i] ⊕ KS[i]

4 Integrity algorithm f9

4.1 Introduction
The integrity algorithm f9 computes a Message Authentication Code (MAC) on an input message under an
integrity key IK. The message may be between 1 and 5114 bits in length. There is no limitation on the
input message length of the f9 algorithm.

For ease of implementation the algorithm is based on the same block cipher (KASUMI) as is used by the
confidentiality algorithm f8.

4.2 Inputs and Outputs
The inputs to the algorithm are given in table 3, the output in table 4:

Table 3: f9 inputs

Parameter Size (bits) Comment
COUNT-I 32 Frame dependent input COUNT-I[0]…COUNT-I[31]
FRESH 32 Random number FRESH[0]…FRESH[31]
DIRECTION 1 Direction of transmission DIRECTION[0]
IK 128 Integrity key IK[0]…IK[127]
LENGTH X192 The number of bits to be ‘MAC’d
MESSAGE LENGTH Input bit stream

Table 4: f9 output

Parameter Size (bits) Comment
MAC-I 32 Message authentication code MAC-I[0]…MAC-I[31]

4.3 Components and Architecture
(See fig 2 Annex A)

The integrity function is based on the block cipher KASUMI that is specified in [4]. KASUMI is used in a
chained mode to generate a 64-bit digest of the message input. Finally the leftmost 32-bits of the digest are
taken as the output value MAC-I.

2 X19 is a parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a 32-bit integer.

CR page 6

4.4 Initialisation
In this section we define how the integrity function is initialised with the key variables before the
calculation commences.

We set the working variables: A = 0
and B = 0

We set the key modifier KM to 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We concatenate COUNT, FRESH, MESSAGE and DIRECTION. We then append a single ‘1’ bit,
followed by between 0 and 63 ‘0’ bits so that the total length of the resulting string PS (padded string) is an
integral multiple of 64 bits, i.e.:

PS = COUNT[0]…COUNT[31] FRESH[0]…FRESH[31] MESSAGE[0]…
MESSAGE[LENGTH-1] DIRECTION[0] 1 0*

Where 0* indicates between 0 and 63 ‘0’ bits.

4.5 Calculation
We split the padded string PS into 64-bit blocks PSi where:

PS = PS0 || PS1 || PS2 || …. || PSBLOCKS-1

We perform the following operations for each integer n with 0 � n � BLOCKS-1:

A = KASUMI[A ⊕ PSn]IK

B = B ⊕ A

Finally we perform one more application of KASUMI using a modified form of the integrity key IK.

B = KASUMI[B]IK ⊕ KM

The 32-bit MAC-I comprises the left-most 32 bits of the result.

MAC-I = lefthalf[B]

i.e. For each integer i with 0 ≤ i ≤ 31 we define:

MAC-I[i] = B[i].

Bits B[32]…B[63] are discarded.

CR page 1

3GPP TSG SA WG3 Security — S3#21 S3-010681

27- 30 November, 2001

Sophia Antipolis, France
CR-Form-v4

CHANGE REQUEST

a 35.201 CR 002 a rev - a Current version: 4.0.0 a

For HELP on using this form, see bottom of this page or look at the pop-up text over the a symbols.

Proposed change affects: a (U)SIM ME/UE X Radio Access Network X Core Network

Title: a Correct the maximum input message length for f8 and f9

Source: a SA WG3

Work item code:a SEC1 Date: a 29 November 2001

Category: a A Release: a REL-4
Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
REL-4 (Release 4)
REL-5 (Release 5)

Reason for change: a The f8 maximum input message length is too low: 5114 shall be enhanced to
20000.

There is no message size limitation for f9.

Summary of change:a Bring TS 35.201 inline with TS 33.105

Consequences if a

not approved:
Inconsistent specifications and risk of f8/f9 implementations that take 5114 bit as
an upper limit.

Clauses affected: a 2.1; 2.3; 3; 4

Other specs a Other core specifications a

affected: Test specifications
 O&M Specifications

Other comments: a

CR page 2

****** First Modification ******

2 Introductory information

2.1 Introduction
Within the security architecture of the 3GPP system there are two standardised algorithms: A
confidentiality algorithm f8, and an integrity algorithm f9. These algorithms are fully specified here. Each
of these algorithms is based on the KASUMI algorithm that is specified in a companion document[4].
KASUMI is a block cipher that produces a 64-bit output from a 64-bit input under the control of a 128-bit
key.

The confidentiality algorithm f8 is a stream cipher that is used to encrypt/decrypt blocks of data under a
confidentiality key CK. The block of data may be between 1 and 200005114 bits long. The algorithm uses
KASUMI in a form of output-feedback mode as a keystream generator.

The integrity algorithm f9 computes a 32-bit MAC (Message Authentication Code) of a given input
message using an integrity key IK. The approach adopted uses KASUMI in a form of CBC-MAC mode.

****** Next Modification ******

2.3 List of Variables
A, B are 64-bit registers that are used within the f8 and f9 functions to hold intermediate

values.

BEARER a 5-bit input to the f8 function.

BLKCNT a 64-bit counter used in the f8 function.

BLOCKS an integer variable indicating the number of successive applications of KASUMI that
need to be performed, for both the f8 and f9 functions.

CK a 128-bit confidentiality key.

COUNT a 32-bit time variant input to both the f8 and f9 functions.

DIRECTION a 1-bit input to both the f8 and f9 functions indicating the direction of transmission
(uplink or downlink).

FRESH a 32-bit random input to the f9 function.

IBS the input bit stream to the f8 function.

IK a 128-bit integrity key.

KM a 128-bit constant that is used to modify a key. This is used in both the f8 and f9
functions. (It takes a different value in each function).

KS[i] is the ith bit of keystream produced by the keystream generator.

CR page 3

KSBi is the ith block of keystream produced by the keystream generator. Each block of
keystream comprises 64 bits.

LENGTH is an input to the f8 and f9 functions. It specifies the number of bits in the input
bitstream (1-5114) .

MAC-I is the 32-bit message authentication code (MAC) produced by the integrity function
f9.

MESSAGE is the input bitstream of LENGTH bits that is to be processed by the f9 function.

OBS the output bit streams from the f8 function.

PS is the input padded string processed by the f9 function.

REGISTER is a 64-bit value that is used within the f8 function.

3 Confidentiality algorithm f8

3.1 Introduction
The confidentiality algorithm f8 is a stream cipher that encrypts/decrypts blocks of data between 1 and
200005114 bits in length.

3.2 Inputs and Outputs
The inputs to the algorithm are given in table 1, the output in table 2:

Table 1: f8 inputs

Parameter Size (bits) Comment
COUNT 32 Frame dependent input

COUNT[0]…COUNT[31]
BEARER 5 Bearer identity BEARER[0]…BEARER[4]
DIRECTION 1 Direction of transmission DIRECTION[0]
CK 128 Confidentiality key CK[0]….CK[127]
LENGTH X181 The number of bits to be encrypted/decrypted

(1-200005114)
IBS 1-200005114 Input bit stream IBS[0]….IBS[LENGTH-1]

Table 2: f8 output

Parameter Size (bits) Comment
OBS 1-200005114 Output bit stream OBS[0]….OBS[LENGTH-1]

3.3 Components and Architecture
(See fig 1 Annex A)

1 X18 is a parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a 32-bit integer.

CR page 4

The keystream generator is based on the block cipher KASUMI that is specified in [4]. KASUMI is used
in a form of output-feedback mode and generates the output keystream in multiples of 64-bits.

The feedback data is modified by static data held in a 64-bit register A, and an (incrementing) 64-bit
counter BLKCNT.

3.4 Initialisation
In this section we define how the keystream generator is initialised with the key variables before the
generation of keystream bits.

We set the 64-bit register A to COUNT || BEARER || DIRECTION || 0…0

(left justified with the right most 26 bits set to 0).

i.e. A = COUNT[0]…COUNT[31] BEARER[0]…BEARER[4] DIRECTION[0] 0…0

We set counter BLKCNT to zero.

We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB0 to zero.

One operation of KASUMI is then applied to the register A, using a modified version of the confidentiality
key.

A = KASUMI[A]CK ⊕ KM

3.5 Keystream Generation
Once the keystream generator has been initialised in the manner defined in section 3.4, it is ready to be
used to generate keystream bits. The plaintext/ciphertext to be encrypted/decrypted consists of LENGTH
bits (1-200005114) whilst the keystream generator produces keystream bits in multiples of 64 bits.
Between 0 and 63 of the least significant bits are discarded from the last block depending on the total
number of bits required by LENGTH.

So let BLOCKS be equal to (LENGTH/64) rounded up to the nearest integer. (For instance, if LENGTH
= 128 then BLOCKS = 2; if LENGTH = 129 then BLOCKS = 3.)

To generate each keystream block (KSB) we perform the following operation:

For each integer n with 1 � n � BLOCKS we define:

KSBn = KASUMI[A ⊕ BLKCNT ⊕ KSBn-1]CK

where BLKCNT = n-1

The individual bits of the keystream are extracted from KSB1 to KSBBLOCKS in turn, most significant bit
first, by applying the operation:

For n = 1 to BLOCKS, and for each integer i with 0 ≤ i ≤ 63 we define:

KS[((n-1)*64)+i] = KSBn[i]

CR page 5

3.6 Encryption/Decryption
Encryption/decryption operations are identical and are performed by the exclusive-OR of the input data
(IBS) with the generated keystream (KS).

For each integer i with 0 ≤ i ≤ LENGTH-1 we define:

OBS[i] = IBS[i] ⊕ KS[i]

4 Integrity algorithm f9

4.1 Introduction
The integrity algorithm f9 computes a Message Authentication Code (MAC) on an input message under an
integrity key IK. The message may be between 1 and 5114 bits in length. There is no limitation on the
input message length of the f9 algorithm.

For ease of implementation the algorithm is based on the same block cipher (KASUMI) as is used by the
confidentiality algorithm f8.

4.2 Inputs and Outputs
The inputs to the algorithm are given in table 3, the output in table 4:

Table 3: f9 inputs

Parameter Size (bits) Comment
COUNT-I 32 Frame dependent input COUNT-I[0]…COUNT-I[31]
FRESH 32 Random number FRESH[0]…FRESH[31]
DIRECTION 1 Direction of transmission DIRECTION[0]
IK 128 Integrity key IK[0]…IK[127]
LENGTH X192 The number of bits to be ‘MAC’d
MESSAGE LENGTH Input bit stream

Table 4: f9 output

Parameter Size (bits) Comment
MAC-I 32 Message authentication code MAC-I[0]…MAC-I[31]

4.3 Components and Architecture
(See fig 2 Annex A)

The integrity function is based on the block cipher KASUMI that is specified in [4]. KASUMI is used in a
chained mode to generate a 64-bit digest of the message input. Finally the leftmost 32-bits of the digest are
taken as the output value MAC-I.

2 X19 is a parameter whose value is yet to be defined. In the sample C-code we treat LENGTH as a 32-bit integer.

CR page 6

4.4 Initialisation
In this section we define how the integrity function is initialised with the key variables before the
calculation commences.

We set the working variables: A = 0
and B = 0

We set the key modifier KM to 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

We concatenate COUNT, FRESH, MESSAGE and DIRECTION. We then append a single ‘1’ bit,
followed by between 0 and 63 ‘0’ bits so that the total length of the resulting string PS (padded string) is an
integral multiple of 64 bits, i.e.:

PS = COUNT[0]…COUNT[31] FRESH[0]…FRESH[31] MESSAGE[0]…
MESSAGE[LENGTH-1] DIRECTION[0] 1 0*

Where 0* indicates between 0 and 63 ‘0’ bits.

4.5 Calculation
We split the padded string PS into 64-bit blocks PSi where:

PS = PS0 || PS1 || PS2 || …. || PSBLOCKS-1

We perform the following operations for each integer n with 0 � n � BLOCKS-1:

A = KASUMI[A ⊕ PSn]IK

B = B ⊕ A

Finally we perform one more application of KASUMI using a modified form of the integrity key IK.

B = KASUMI[B]IK ⊕ KM

The 32-bit MAC-I comprises the left-most 32 bits of the result.

MAC-I = lefthalf[B]

i.e. For each integer i with 0 ≤ i ≤ 31 we define:

MAC-I[i] = B[i].

Bits B[32]…B[63] are discarded.

	SP-010620_CRs_to_35201_R99_R4.doc
	/35201CR001_S3-010689_size R99.doc
	/35201CR002_S3-010690_size R4.doc

