
Title: Formal Analysis of the 3G Authentication Protocol
with Modified Sequence Number Management

1 Introduction

TLA is a specification language for the compositional specification and verification
of distributed programs. The complete protocol was specified in TLA [1], a formal
language used mainly for writing specifications of concurrent systems and proving
properties of the system. TLA is a state based, first-order temporal logic. The main
part of a specification of a system is typically given by a set of events or transitions,
each one being a first-order logic predicate that describes the relation between the
variables in one state and the next. The specification is completed by expressing
the conditions under which the system should start (initial condition) and how a
part of the system will eventually respond or act, the so called fairness properties.

The goal of this paper is to give a formal description of the specification of the
protocol, of the assumptions, failure models, properties of the system or parts of
the system, scenarios and theorems in TLA.

The first theorem presented has the following form: if some conditions on the observ-
able behavior hold during a certain period of time, then at the end of that interval
some condition on the internal state of the system holds. We call those conditions
on observable behavior scenarios (examples: loss of messages, crashes, etc.) and the
conditions on the internal state of the system (example: synchronicity of counters)
we simply call (internal) conditions of the system. Therefore, the first theorem may
be expressed as follows: if a certain scenario holds, then a certain condition of the
system is true. Other theorems have the following form: if a certain condition of the
system is not true at certain time but from that time on a ”good” scenario holds,
the missing condition will become true again.

2 The TLA Notation

The simplest use of TLA is to describe a system as a set of initial conditions, Init,
together with an “evolution” equation, S. This resembles the way a physicist models
a continuous system by initial conditions and a differential equation. A state of the
system is any set of values (valuation) for some variables {x1, x2, . . . , xn}. Let us call
x the tuple x = (x1, x2, . . . , xn). The formula Init = Init(x) is a (first order or higher
order) formula of predicate logic on x1, x2, . . . , xn, stating the conditions in which
the system starts. The formula S relates two states. Using “primed” versions of the
variables xi, (that is, using fresh variables x′i of the same type as xi), S = S(x, x′)
is a formula on the set {x1, x2, . . . , xn, x

′
1, x
′
2, . . . , x

′
n}.

In TLA this discrete dynamical system is written as:

A :⇔ Init ∧ tu[S]x

The symbol tu is read: “box” or “always”. [S]x is just an abbreviation of S ∨x′ = x.
Using the convention xl:⇔ x′ 6= x, [S]x is equivalent to xl⇒ S. We will write

A :⇔ Init ∧ tu(xl⇒ S)

A sequence (π1, π2, . . . , πn, . . .) of states satisfies A if and only if π1 satisfies Init,
and each pair (πi, πi+1) satisfies S or πi is equal to πi+1). (This is a so called

“stutter step”). This is exactly the purpose of writing the subindex x in [S]x (or
the condition xl in (xl⇒ S): allowing stuttering steps. This is quite reasonable:
without introducing a global “clock”, you may view the system as a set of modules
each of which is governed by an equation of the form

Ai :⇔ Init(Xi) ∧ tu(Xil⇒ S(X̃i, X̃
′
i))

where Xi, X̃i are subsets of {x1, x2, . . . , xn} (or subtuples of x). Then the whole
system is given by the conjunction:

A =
∧
i

Init(Xi) ∧
∧
i

tu(Xil⇒ S(X̃i, X̃
′
i))

We will describe the different versions (scenarios) of the system by formulasAnormal,
Acritical, Aincorr of this type. More precisely, we will introduce transition relations,
(N with some indexes) of the form N :⇔ (Xil⇒ S(X̃i, X̃

′
i)) to build up (using

conjunction or all-quantification) the formulas A.

Our modules do not (explicitely) share variables, but communicate via “actions”
(events or messages). This may be modeled in TLA by introducing a variable for
each message. The variable changes exactly when the message (or event) happens.
Therefore if In is an input message with parameter x then In(x) happens exactly
when a suitable variable nIn(x) changes:

In(x)⇔ nIn(x)l

Typically, the next step relations N that we will use are of the form1:

N :⇔ In(x) ∧ cond⇒ Out(g(x)) ∧ y′ = f(x, y)

(if the input In(x) happens and the conditions cond are true, the module produces
the output Out(y), with y = g(x) and changes the local variable y according to
formula f) or of the form:

N :⇔ Out(y)⇒ In or : N :⇔ yl⇒ In

(if the output Out(y) happens (or y changes), the only reason is that In(x) has also
happened. The “dummy” variable “x” or “y” in those formulas is not a variable of
the system: the formula N :⇔ In(x)∧ cond⇒ . . . is equivalent to N :⇔ ∀x In(x)∧
cond⇒

3 Notation

In this section we set our notation for the specification. First, we list the data types
or, more properly, domains that will be used in the sequel. This also includes the
introduction of constants and functions. Then we introduce the variables of the
program that we are interested in. We conclude this section by introducing some
notation for the “messages” and “events” of the program.

1If S is of the form cond⇒ S1, then [S]x is equivalent to xl ∧cond⇒ S1.

3.1 Domains, Constants and Functions

The domains (“data types”) that we need are:

IB = {0, 1}
IN = {1, 2, 3, . . . }

= the set of natural numbers
SEQ := {1, . . . ,MaxSEQ} ⊆ IN

= the set of possible values for the sequence number
SN = the identifier set of possible service networks
RAND = the set of possible values for the random numbers
AUT N = the set of possible values for the variable AUTN
AV = the set of admissible authentication vectors
CHAL = the set of admissible authentication challenges
RESPA = the set of admissible authentication responses
RESPJ = the set of admissible authentication reject responses
RESPS = the set of admissible authentication synchronisation

fail responses
FAIL := {Loss,DB,Crash,Steal,Race}

For boolean variables x or boolean-valued functions f (i.e., with domain IB) we will
use the following shorthand, if no confusion arises: instead of writing x = 0, f(v) = 0
or x = 1, f(v) = 1 we will write simply ¬x,¬f(v), or x, f(v) respectively. The
numerical constants that we need are:

MaxSEQ = the maximal possible value for the sequence number.
∆ = the normal maximal difference between the counters

seqMS and seqHE .

N = the maximal increment of seqHE when a batch of
authentication vectors is produced.
N is much smaller than ∆, we will assume: N < ∆/2.

In the specification in [2], (together with the CRs [3], [4],and [5] ac-
cepted at 3GPPSA3 London meeting) an AV is a tuple (“vector”) AV =
(Rand, resp, CK, IK, seq ⊕ AK,MODE,MAC). The only values that we are ex-
plicitly interested in are: Rand, resp and seq. We will not use the components
CK, IK in this specification, and we abstract away from MODE (say, this is
part of the user ID and this is encoded in the secret key K). The secret key K
as well as the mac MAC are only used implicitly to define further functions, as
will become clear below. Instead of assuming that Rand, resp and seq are com-
ponents of AV, we assume the existence of functions: RandAV : AV 7→ Rand,
Resp

AV
: AV 7→ resp, and Seq

AV
: AV 7→ seq. The service network, SN receives

from the home environment the complete AV and sends to MS, the mobile station,
chall := Chall(AV) (in the original specification, chall is part of the authentication
vector: = (Rand, seq⊕AK,MODE,MAC)). The MS is able to check the consistency
of the challenge chall and to calculate the original parameter resp of the AV. Thus we
assume the existence of functions: conschall (to check the consistency of chall) and
Resp

chall
(to calculate resp, given chall). (Those functions, and most of the ones that

we will introduce now, depend on the secret key K; the function conschall depends
also in particular on the parameter MAC). Further, the MS is able to calculate the

sequence number seq with a function Seq
MS

applied to chall, and, in case some-
thing goes wrong, also the responses RejResp(chall) and SynResp(la chall ,chall)
for an user authentication reject or user authentication synchronisation failure. In
this last case, in the response SynResp=SynResp(la chall ,chall) the current value
of the sequence number of the MS (= the sequence number of la chall , as will
be explained later) is encoded. The home environment HE is able to decode this
value via a function Seq

MS
and to verify the freshness of the response SynResp

sent by the mobile station, comparing it to the random number Rand used by the
SN in the last challenge. We call this verification function verif . In the case of a
normal response, the SN uses a function consres to check that the response resp
is consistent with the challenge Chall(AV). Also, let consAV(AV) denote that the
authentication vector AV is consistent. Last, let synchr be the function used by the
MS to determine if the two sequence numbers, seqMS , seq are or not “synchronous”,
(seqMS is the sequence number in the MS, and seq is the sequence number of the
challenge). What “synchronous” exactly means, is for the most part of the specifica-
tion, irrelevant, except that 1. if not too many AVs get lost, then all new challenges
are synchronous, and 2. old (for instance, used or lost) challenges become non-
synchronous with the passage of time or with successful authentications. But for
the statements and proofs of the properties of the system, we will assume that
synchr(seq1, seq2) := (seq1 < seq2) ∧ (seq2 < seq1 + ∆).

The (constant, i.e rigid) functions that we need are:

Seq
AV

: AV → SEQ
Seq

ch
: CHAL → SEQ

Seq
MS

: RESPS → SEQ
Chall : AV → CHAL
Resp

AV
: AV → RESPA

Resp
ch

: CHAL → RESPA
RandAV : AV → RAND
Randch : CHAL → RAND
RejResp : CHAL → RESPJ
SynResp : CHAL× CHAL → RESPS
consAV : AV → IB
conschall : CHAL → IB
consres : CHAL×RESPA → IB
synchr : SEQ × SEQ → IB
verif : RESPS ×RAND → IB

The function Seq
AV

defines a transitive, irreflexive relation ≺ in AV:

AV1 ≺ AV2 :⇔ Seq
AV

(AV1) < Seq
AV

(AV2)

We will assume some properties of these functions. First, the trivial commutations:

Seq
ch
◦ Chall = Seq

AV

Resp
ch
◦ Chall = Resp

AV

Randch ◦ Chall = RandAV

At its proper place, in Sections 4 and 6 (in the definitions of NHE
normal and NHE

critical),
it will be assumed that any AV generated by the HE is consistent.

Now, if AV is consistent, then its challenge is also consistent and also consistent
to its corresponding response. One challenge has only one consistent corresponding
response.

consAV(AV)⇒ conschall(Chall(AV)) ∧ consres(Chall(AV), Resp(AV))

consres(chall, resp) ∧ resp1 6= resp⇒ ¬consres(chall, resp1)
verif (SynResp,Rand)⇔

∃AV,chall1 SynResp = SynResp(chall1, Chall(AV)) ∧ Rand = Rand(AV)

Seq
MS

(SynResp(chall1, chall2)) = Seq
ch

(chall1)

In the sequel, if no confusion arises, we omit the subscripts, writing Seq instead of
Seq

ch
, Seq

AV
or Seq

MS
, Resp instead of Resp

ch
or Resp

AV
, Rand instead of Randch

or RandAV and cons instead of consAV , conschall or consres.

3.2 The variables of the system

First let us introduce some rather standard notation for two higher-order constructs
that we need: AV∗ is the set of all words AV1 AV2 AV3 . . .AVn built with “letters”
from AV: AVi ∈ AV. The basic operations in this domain are: Head : AV∗ → AV
that chooses the first letter of the word: Head(AV1 AV2 AV3 . . .AVn) = AV1

and Tail : AV∗ → AV∗ is the rest of word: Tail(AV1 AV2 AV3 . . .AVn) =
(AV2 AV3 . . .AVn). ε is the empty word. On the other hand ℘(AV) is the power-set
of AV: the set of all subsets of AV.

The variables that we will need are:

seqHE : SEQ
DB : SN → AV∗ called the database of AVs
la chall : CHAL the last accepted challenge, that is, the

last challenge accepted by the MS

Thus, for SN in SN , the database DB(SN) of AVs stored in the node SN is a word
AV1 AV2 AV3 . . .AVn of authentication vectors AVi. We will denote by Set(ω) the
set {AV1,AV2,AV3, . . .AVn} of letters in the word ω = AV1 AV2 AV3 . . .AVn . By
abuse of notation we will use sometimes DB(SN) in a context where a set is expected
instead of a word, meaning : Set(DB(SN)). Thus . . . ∪DB(SN) is . . . ∪Set(DB(SN))
and . . . ⊆ DB(SN) is . . . ⊆ Set(DB(SN)).

The auxiliary variables, defined later in Sections 4 and 6 are:

Gen : ℘(AV) the set of generated AVs
Used : ℘(AV) the set of used (sent) AVs
StolenHE : ℘(AV) the set of AVs that were stolen in the HE
StolenSN : ℘(AV) the set of AVs that were stolen in an SN
Stolen : ℘(AV) the set of stolen AVs
Accepted : ℘(AV) the set of AVs accepted by the MS
Succsessful : ℘(AV) the set of AVs accepted by the MS and correctly replied
Lost : ℘(AV) the set of lost AVs
last SN : SN in normal behavior, the SN where the user is registered.
curr SN : ℘(SN) the current set of SNs where the user is registered

in normal behavior, it is {last SN }, in incorrect behavior
it may contain no or several SNs.

Definition 3.1. The state functions are:

seqMS := Seq(la chall) : SEQ

Definition 3.2.

Init :⇔ seqMS = 0 ∧ seqHE = 0 ∧ ∀SN DB(SN) = ε ∧ Stolen = ∅

3.3 The Messages: the Transitions of the System

There is a simple way of modeling the occurrence of messages in a purely state-based
approach like TLA: for each message or event Message X introduce a variable nX
that changes exactly when Message X occurs. For convenience, if Message X is
a message with parameters of types X1,X2, . . . ,Xn we take the variable nX to be of
type X1×X2×. . .Xn → IN. nX(x1, x2, . . . xn) may for instance count (in IN or modulo
a convenient number) how often the message (or event) Message X with parame-
ters x1, x2, . . . xn happens. Instead of using the variable nX in our specification, we
introduce a new predicate, say X(x1, x2, . . . xn), which is an abbreviation:

X(x1, x2, . . . xn) :⇔ nX(x1, x2, . . . xn)l

(If x is a variable, we denote by xl the transition predicate x′ 6= x.)

If Message X is a message between SN and MS, then this message may get lost.
Therefore, we have to distinguish the two events: sending Message X and receiving
Message X, which may happen independently of each other.

For instance, User Authent. Request gives rise to two different events, User

Authent. Request Send (short: UARs) and User Authent. Request Re-

ceive (UARr):

1. Normally, if a UARs happens, then a UARr also happens, with the same
parameters.

2. Due to an attack, the UARr may contain different parameters than the cor-
responding Send.

3. A sent UARs may get lost in the transmission channel, thus producing no
UARr event.

4. Due to an attack, the USIM may receive a UARr that was not sent at all by
the SN.

The SN receives (or produces) a Time Out, if the response to the User Authent.

Request Send is lost or delayed MvAV (“Move Authentication Vectors”) is the
closed action of Send ID Req and Send ID Resp.

Message Trans. Param. Param. Var.
Pred. Name Type Name

Authent. Data Request ADR0 SN SN nADR,0
(no syn. fail)

Authent. Data Request ADR1 (SynResp, (RESPS , nADR,1
(syn. fail) Rand, RAND,

SN) SN)

Authent. Data Response ADS (AVs new, (AV∗, nADS
SN) SN)

User Authent. Request UARs (chall, (CHAL nUAR,s
SN) SN)

UARr (chall, (CHAL nUAR,r
SN) SN)

User Authent. Response UASs (resp, (RESPA nUAS,s
SN) SN)

UASr (resp, (RESPA nUAS,r
SN) SN)

User Authent. Reject UAJs (RejResp, (RESPJ nUAJ,s
SN) SN)

UAJr (RejResp, (RESPJ nUAJ,r
SN) SN)

User Authent. UASFs (SynResp, (RESPS nUASF,s
Synchron. Fail Indication SN) SN)

UASFr (SynResp, (RESPS nUASF,r
SN) SN)

Table 1: Messages of the Protocol

Message Trans. Param. Param. Var.
or Event Pred. Name Type Name

Location Update Request LUR SN SN nLUR,s
SN1 SN

Cancel Location CanLocs SN SN nCanLoc,s
CanLocr SN SN nCanLoc,r

Move AVs MvAV SN SN nMvAV
(Send ID Req SN1 SN
and Send ID Resp)

Time Out TiO SN SN nTiO

Table 2: Messages or Events outside of the protocol

Definition 3.3. (The Messages)

ADR0(SN) :⇔ nADR,0(SN)l
ADR1(SynResp,Rand,SN) :⇔ nADR,1(SynResp,Rand,SN)l
ADS(AVs new,SN) :⇔ nADS(AVs new,SN)l
UARs(chall,SN) :⇔ nUAR,s(chall,SN)l
UARr(chall,SN) :⇔ nUAR,r(chall,SN)l
UASs(resp,SN) :⇔ nUAS,s(resp,SN)l
UASr(resp,SN) :⇔ nUAS,r(resp,SN)l
UAJs(RejResp,SN) :⇔ nUAJ,s(RejResp,SN)l
UAJr(RejResp,SN) :⇔ nUAJ,r(RejResp,SN)l
UASFs(SynResp,SN) :⇔ nUASF,s(SynResp,SN)l
UASFr(SynResp,SN) :⇔ nUASF,r(SynResp,SN)l
LUR(SN,SN1) :⇔ nLUR(SN,SN1)l
CanLocs(SN) :⇔ nCanLoc,s(SN)l
CanLocr(SN) :⇔ nCanLoc,r(SN)l
MvAV(SN,SN1) :⇔ nMvAV(SN,SN1)l
TiO(SN) :⇔ nTiO(SN)l

By abuse of notation, we will use the predicates ADR0,ADR1,ADS, . . . without
parameters to intend an implicit existential quantification:

Convention 3.1.

ADR0 :⇔ ∃SN ADR0(SN)
ADR1 :⇔ ∃SynResp,Rand,SN ADR1(SynResp,Rand,SN)
ADS :⇔ ∃AVs new,SN ADS(AVs new,SN)
. . .

Further we will use the predicates ADR1(SN),ADS(SN), . . . without other param-
eters to intend an implicit existential quantification over the non mentioned param-
eters:

Convention 3.2.

ADR1(SN) :⇔ ∃SynResp,Rand ADR1(SynResp,Rand,SN)
ADS(SN) :⇔ ∃AVs new ADS(AVs new,SN)

. . .

We will not really use the variables nADR,0(SN), etc. any further. Their only purpose
is to accommodate to TLA. One note on TLA: instead of using the conventional
syntax [A]x of TLA, we prefer the equivalent more readable form: xl⇒ A.
Notice also that xl ∧P ⇒ A is [P ⇒ A]x

It is impossible that a message Message X happens at the same time with two
different sets of parameters: X(x1, x2, . . . xn) ∧ X(y1, y2, . . . yn) ∧ (x1, x2, . . . xn) 6=

(y1, y2, . . . yn):

Ainterleavenormal :⇔
tu(∀SN,SynResp,Rand,AVs new,chall,resp,RejResp,SynResp

∀SN1,SynResp1,Rand1,AVs new1,chall1,resp1,RejResp1,SynResp1

∧ADR0(SN) ∧ADR0(SN1)⇒ SN = SN1

∧ADR1(SynResp,Rand,SN) ∧ADR1(SynResp1,Rand1,SN1)
⇒ SynResp = SynResp1 ∧ Rand = Rand1 ∧ SN = SN1

∧ADS(AVs new,SN) ∧ADS(AVs new1,SN1)
⇒ AVs new = AVs new1 ∧ SN = SN1

∧UARs(chall,SN) ∧UARs(chall1,SN1)
⇒ chall = chall1 ∧ SN = SN1

∧UARr(chall,SN) ∧UARr(chall1,SN1)
⇒ chall = chall1 ∧ SN = SN1

∧UASs(resp,SN) ∧UASs(resp1,SN1)
⇒ resp = resp1 ∧ SN = SN1

∧UASr(resp,SN) ∧UASr(resp1,SN1)
⇒ resp = resp1 ∧ SN = SN1

∧UAJs(RejResp,SN) ∧UAJs(RejResp1,SN1)
⇒ RejResp = RejResp1 ∧ SN = SN1

∧UAJr(RejResp,SN) ∧UAJr(RejResp1,SN1)
⇒ RejResp = RejResp1 ∧ SN = SN1

∧UASFs(SynResp,SN) ∧UASFs(SynResp1,SN1)
⇒ SynResp = SynResp1 ∧ SN = SN1

∧UASFr(SynResp,SN) ∧UASFr(SynResp1,SN1)
⇒ SynResp = SynResp1 ∧ SN = SN1

∧UASs ⇒ ¬UAJs ∧ ¬UASFs

∧UAJs ⇒ ¬UASs ∧ ¬UASFs

∧UASFs ⇒ ¬UASs ∧ ¬UAJs)

4 Transitions of the normal System

4.1 Changing the Location

Let us first define the auxiliary variable curr SN : ℘(SN) in the following way:

ACurrSNnormal :⇔
∧ ∃SN curr SN = {SN}
tu(∧ curr SNl ⇒ LUR ∨ CanLoc

∧ LUR(SN,SN1) ∧ CanLoc(SN2)⇒
curr SN ′ = (curr SN \ {SN2}) ∪ {SN1}

∧ LUR(SN,SN1) ∧ ¬CanLoc⇒
curr SN ′ = curr SN ∪ {SN1}

∧ CanLoc(SN) ∧ ¬LUR⇒
curr SN ′ = (curr SN \ {SN}))

The intuition is that, under ideal2 behavior, a LUR(SN,SN1) implies a
CanLoc(SN). In this case, in the set of current SNs the old SN, SN, is replaced by
the new one, SN1: curr SN ′ = (curr SN \ {SN})∪ {SN1}. Thus curr SN would al-
ways be a singleton. We will allow in normal conditions that a CanLoc(SN) occurs
without a LUR(SN,SN1), thus curr SN is always a singleton or empty. In more
critical situations we will allow curr SN to be an arbitrary (finite) set: it is the set
of SNs for which a LUR(SN,SN1) has not been followed by a CanLoc(SN).

With this definition, our specification of the location update step may be written
as:

NLU
normal :⇔
∧ curr SN ′ = ∅ ∨ ∃SN0 curr SN ′ = {SN0}
∧ LUR(SN,SN1)⇒MvAV(SN,SN1) ∨DB ′(SN1) = ε

∧ MvAV(SN,SN1)⇒ LUR(SN,SN1)
∧ ADS⇒ curr SN ′ = curr SN

∧ MvAV(SN,SN1)⇒∧DB ′(SN1) = DB(SN)
∧DB ′(SN) = ε

∧ ∀SN2 (SN2 6= SN ∧ SN2 6= SN1 ⇒
DB ′(SN2) = DB ′(SN2))

The five points in this requirement are:
first, as explained before, a CanLoc may happen without a LUR, (resulting in
curr SN ′ = ∅). On the other hand, a LUR can happen without a CanLoc only if
curr SN = ∅, (resulting in curr SN ′ being a singleton, that is, ∃SN0 curr SN ′ =
{SN0}), or in other words, if CanLoc has already happened. In any case, both a
LUR and its corresponding CanLoc can happen simultaneously.
Second, a LUR may trigger a MvAV, but not necessarily; if no MvAV happens,
then DB ′(SN1) = ε. If MvAV happens, then DB ′(SN1) = DB(SN). Thus, in any
case, any old existing AVs are to be discarded.
Third, a MvAV is always produced by a LUR.
Fourth, no race condition happens. This type of race condition will be discussed
later in Section 6.
And last, when a MvAV happens, the AVs of the old SN are moved to the new SN.

Let us now define the auxiliary variable last SN : SN in the following way:

ALastSNnormal :⇔
∧ curr SN = {last SN }
∧ tu(∧ last SNl ⇒ curr SNl

∧ ∀SN0 (curr SNl ∧ curr SN ′ = {SN0} ⇒ last SN ′ = SN0)
∧ (curr SNl ∧ ∀SN0 curr SN ′ 6= {SN0})⇒ last SN ′ = last SN)

Notice that we in the context of tuNLU
normal the predicate ∀SN0 curr SN ′ 6= {SN0} in

the last line of the last formula, is equivalent to curr SN ′ = ∅. Thus, in this context,
even if curr SN is empty, last SN is the last SN where the user was registered.

4.2 The Serving Network

Let us consider first the Authent. Data Request with the synchronisation flag
turned off (ADR0, that is, no synchronisation fail has happened). The reason for

2We do not model explicitly “ideal behavior”. We let our best scenario, “normal behavior”, to
contain already “normal” errors, like an LUR without a CanLoc.

issuing this message is that the SN has only few or no authentication vectors left.
For simplicity, we assume the last case, i.e., ADR0 ⇒ DB(SN) = ε.

On the other hand, the only reason for asking Authent. Data Request with the
synchronisation flag turned on (ADR1), is that a synchronisation fail has happened,
or, more precisely, a UASF has been obtained as response to a UARs.

The SN reacts to Authent. Data Response by updating the database of AVs
(DB(SN)).

When the SN sends a User Authent. Request Send, it updates the database of
AVs by deleting the first AV in the list DB(SN). (This AV is now the “current AV”,
and the values are used to compare with the expected response, UASr(resp,SN)).
If, sending a user authentication request, no answer (UASr or UAJr or UASFr)
is received, then a TiO happens.

N SN
normal :⇔
∧ ADR0(SN)⇒ DB(SN) = ε ∧ SN ∈ curr SN
∧ ADR1(SynResp,Rand,SN)⇒

∧ UASFr(SynResp,SN)
∧ SN ∈ curr SN
∧ ∃AV (UARs(Chall(AV),SN) ∧ Rand = Rand(AV))

∧ ADS(AVs new,SN)⇒∧ AVs new 6= ε⇒ DB ′(SN) = AVs new

∧ AVs new = ε⇒ DB ′(SN) = DB(SN)

∧ UARs(chall,SN)⇒∧ SN ∈ curr SN ∧DB(SN) 6= ε

∧DB ′(SN) = Tail(DB(SN))
∧ chall = Chall(Head(DB(SN)))

∧ UARs(chall,SN)⇒∨ ∃resp UASr(resp,SN)
∨ ∃RejResp UAJr(RejResp,SN)
∨ ∃SynResp UASFr(SynResp,SN)
∨ TiO

∧ DB(SN)l ⇒ ∨ ∃AVs new,SN ADS(AVs new,SN) ∧ AVs new 6= ε

∨ ∃chall,SN UARs(chall,SN)
∨ ∃SN1 MvAV(SN,SN1)
∨ ∃SN1 MvAV(SN1,SN)

∧ [∧UASFr(SynResp,SN)
∧ SN ∈ curr SN
∧UARs(Chall(AV),SN)
∧ Rand = Rand(AV)]⇒ ADR1(SynResp,Rand,SN)

4.3 The Home Environment

In the next definition we use a new (bound) variable seqhe that contains a temporary
value for seqHE . The reader may understand the specification of the step NHE

normal

as the sequential composition of two “micro-steps”:

NHE
normal(seqHE , seqHE

′) = ∃seqhe

(Nnormal1,HE(seqHE , seqhe) ∧Nnormal2,HE(seqhe , seqHE
′))

Notice, by the way, that if NHE
normal∧ (ADR0∨ ADR1) the value of seqHE uniquely

determines the value of seqhe .

Recall that AVs new is a word (or ordered sequence) of AVs. We write AV1 �AVs new

AV2 iff both AV1 and AV1 appear in AVs new and AV1 appears (anywhere) left of
AV2.
Here we write � instead of �AVs new.

NHE
normal :⇔ ∃seqhe

[

∧ ADS(AVs new,SN)⇒∨ ADR0(SN)
∨ ∃SynResp,Rand ADR1(SynResp,Rand,SN)

∧ ADR0 ∨ ADR1 ⇒ ADS

∧ ADR0 ⇒ seqhe = seqHE

∧ ADR1(SynResp,Rand,SN)⇒
∧ [verif (SynResp,Rand) ∧

¬synchr1(Seq
MS

(SynResp), seqHE)]⇒ seqhe = Seq
MS

(SynResp)

∧ [¬verif (SynResp,Rand) ∨
synchr1(Seq

MS
(SynResp), seqHE)]⇒ seqhe = seqHE

∧ ADS(AVs new,SN)⇒
∧ AVs new 6= ε

∧ AV ∈ AVs new⇒ cons(AV)
∧ ∀AV1,AV2∈AVs new (AV1 ≺ AV2 ⇔ AV1 � AV2)
∧ ∀AV∈AVs new (seqhe < Seq(AV) ≤ seq ′HE)

∧ ∀i∈IN ∃AV∈AVs new (seqhe < i ≤ seq ′HE ⇒ Seq(AV) = i)

∧ seq ′HE − seqhe ≤ N

∧ seqHEl ⇒ ∃AVs new,SN ADS(AVs new,SN) ∧ AVs new 6= ε]

In this specification we have used a new function synchr1, instead of our old synchr .
The reason is the following: we want not only that the current value of seqHE is in the
correct range: synchr(seqMS , seqHE), but also that the new value of seqHE is also in
the correct range (else, although seqHE is in the correct range the HE could generate
AVs which are outside of this range). Thus we also want: synchr(seqMS , seqHE

′),
or in other words: synchr(seqMS , seqHE + N). The definition of synchr1(x, y) is
therefore:

synchr1(x, y) := synchr(x, y) ∧ synchr(x, y + N)

This specification says nothing about where do the AVs in AVs new come from. They
can be generated in the moment in which they are sent (through an Authentication
Data Response), or “pre-generated” and kept in an internal HE Database.

It is important for our proofs that, in normal behavior, when
ADR0 or ADR1(SynResp,Rand,SN) with verif (SynResp,Rand) ∧
¬synchr1(Seq

MS
(SynResp), seqHE), the the parameter AVs new in

ADS(AVs new,SN) is not the empty word. In other cases it could be empty
without changing our properties or proofs. For the meantime, we follow the original
specification, in which AVs new is never ε. Later, for the incorrect system, we will
weaken this assumption.

4.4 The Communication Channel

Recall from Convention 3.2 that for instance UARs(SN) means
∃resp UARs(resp,SN), i.e. an implicit existential quantification over the non
mentioned parameters. Let us say that the mobile station communicates with the
SN if in any one of the two direction a message is sent or received.

Comm(SN) :⇔∨UARs(SN) ∨UARs(SN)
∨UASs(SN) ∨UASs(SN)
∨UAJs(SN) ∨UAJs(SN)
∨UASFs(SN) ∨UASFs(SN)

We will assume that the MS communicates at the same time with only one SN:
Comm(SN) ∧ Comm(SN1)⇒ SN = SN1

The message User Authent. Request may be received correctly (OKR), or it
may be corrupted during the transmission (CorrR), or it may get lost (LossR):

OKR :⇔ ∃chall,SN ∧UARs(chall,SN)
∧UARr(chall,SN)

CorrR :⇔ ∃chall,SN ∧UARs(chall,SN)
∧ ∃chall1 ¬cons(chall1) ∧UARr(chall1,SN)

LossR :⇔ ∃chall,SN ∧UARs(chall,SN)
∧ ¬UARr(SN)

We will assume that during each step of the normal system, UARs ⇒ OKR ∨
CorrR ∨ LossR. In other words, our assumption is that the challenge chall in
UARs(chall,SN) can not be replaced during the communication by another chal-
lenge chall1 (in UARr(chall1,SN)) which is also consistent. This sort of situation
will be discussed later in Section 6.

On the other direction, the message User Authent. Response may be received
correctly (OKS), or it may be corrupted during the transmission (CorrS), or it may
get lost (LossS). As in the other directions, our assumption is that the response
can not be replaced during the communication by another consistent or verifiable
response. For the case of a normal response, this amounts to nothing, because there
is only one consistent response. For the case of a synchronisation fail, we have to
state explicitly, that if UARs(Chall(AV),SN) happens in the same step, then the
corrupted response is not verifiable (with respect to the random number of this AV).
This is exactly what we ask in the Assumption 4.1. Another possibility would be to
impose NAss3

critical, discussed later in Assumption 6.3.

OKS :⇔∨ ∃resp,SN ∧UASs(resp,SN)
∧UASr(resp,SN)

∨ ∃RejResp,SN ∧UAJs(RejResp,SN)
∧UAJr(RejResp,SN)

∨ ∃SynResp,SN ∧UASFs(SynResp,SN)
∧UASFr(SynResp,SN)

CorrS :⇔∨ ∃resp,SN ∧UASs(resp,SN)
∧ ∃resp1

resp1 6= resp ∧UASr(resp1,SN)
∨ ∃RejResp,SN

∧UAJs(RejResp,SN)
∧ ∃RejResp1

RejResp1 6= RejResp ∧UAJr(RejResp1,SN)

∨ ∃SynResp,SN

∧UASFs(SynResp,SN)
∧ ∃SynResp1

∧ SynResp1 6= SynResp

∧UASFr(SynResp1,SN)

LossS :⇔ ∧ ∨ UASs(SN)
∨ UAJs(SN)
∨ UASFs(SN)

∧ ¬UASr(SN)
∧ ¬UAJr(SN)
∧ ¬UASFr(SN)

The corruption of messages does not generate consistent fail synchonisation re-
sponses to the challenge.

Assumption 4.1.

NAss
normal :⇔

[∧ UARs(chall,SN) ∧ UASFr(SynResp,SN)
∧ ¬UASFs(SynResp,SN)]
⇒ ¬verif (SynResp, Rand(AV))

We will assume that during each non-stutter step of the communication channel,
either the channel is OK or there is a corruption or a loss of a challenge/response:

NCC
normal :⇔
∧ ∀SN,SN1 Comm(SN) ∧ Comm(SN1)⇒ SN = SN1

∧ UARs ⇒ OKR ∨ CorrR ∨ LossR
∧ UARr ⇒ OKR ∨ CorrR ∨ LossR
∧ UASs ∨UAJs ∨UASFs ⇒ OKS ∨ CorrS ∨ LossS
∧ UASr ∨UAJr ∨UASFr ⇒ OKS ∨ CorrS ∨ LossS
∧ NAss

normal

4.5 The Mobile Station

Definition 4.1. The system is during the lifetime of the USIM if the number of
User Authentication Responses is less than SQNmax/∆:

Lifetime :⇔ nUAS,s ≤ SQNmax/∆

When the mobile station receives a User Authent. Request, if the challenge is
consistent and synchronous. it updates the variable la chall and sends the corre-
sponding response, User Authent. Response. But if the challenge is not consis-
tent, it sends a User Authent. Reject, and if the challenge is not synchronous,

it sends a User Authent. Response: The only reason for updating the variable
la chall is the one given above:

NMS
normal :⇔
∧ UARr(chall,SN)⇒∧ cons(chall) ∧ synchr(seqMS , Seq(chall))

⇒ UASs(Resp(chall),SN))

∧ ¬cons(chall)
⇒ UAJs(RejResp(chall),SN)

∧ cons(chall) ∧ ¬synchr(seqMS , Seq(chall))

⇒ UASFs(SynResp(la chall , chall),SN))

∧ UASs ∨UAJs ∨UASFs ⇒ UARr

∧ UARr(chall,SN) ∧ UASs ⇒ la chall ′ = chall

∧ UARr(chall,SN) ∧ ¬UASs ⇒ la chall ′ = la chall

∧ la challl ⇒ UASs(resp,SN)
∧ Lifetime ′

5 Definition of Normal Behavior

Definition 5.1. An AV is called generated (by the home environment) if the home
environment has sent this AV in an Authentication Data Response. Formally, the
variable Gen, of type ℘(AV) is defined by the temporal formula:

AGennormal :⇔
∧ Gen = ∅
∧ tu(∧Genl ⇒ ∃AVs new,SN ADS(AVs new,SN) ∧ AVs new 6= ε

∧∃AVs new,SN ADS(AVs new,SN)⇒ Gen ′ = Gen ∪ AVs new)

Definition 5.2. An AV copy is lost if it is either:

1. lost or corrupted in the communication Channel from the SN to the USIM, or

2. lost or intentionally discarded during a Location Update

Formally, the variable Lost, of type ℘(AV) is defined by:

ALostnormal :⇔
∧ Lost = ∅
∧ tu(∧ Lostl ⇒ ∨ UARs ∧ (CorrR ∨ LossR)

∨ LUR(SN,SN1) ∧ ¬MvAV(SN,SN1)
∧ UARs(Chall(AV),SN) ∧ (CorrR ∨ LossR)

⇒ Lost ′ = Lost ∪ {AV}
∧ LUR(SN,SN1) ∧ ¬MvAV(SN,SN1)⇒

Lost ′ = Lost ∪ DB(SN))

It is not necessary to explicitly model losses of AVs (1.) inside of an SN or during
the (2.) communication between the home environment and the serving network or

(3.) between two serving networks (during a MvAV). From the point of view of the
HE and the MS, at least, it is equivalent to loose the AV in any one of those three
situations or to loose it in the communication Channel from the SN to the USIM.

Definition 5.3. An AV copy is used if its challenge was sent in an authentication
request. More precisely, the variable Used, of type ℘(AV) is defined by:

AUsednormal :⇔
∧Used = ∅
∧ tu(∧Usedl ⇒ UARs

∧UARs(Chall(AV),SN)⇒ Used ′ = Used ∪ {AV}

Definition 5.4. An AV copy is accepted if its challenge was accepted by the mobile
station: Accepted, of type ℘(AV) is defined by:

AAcceptednormal :⇔
∧Accepted = ∅
∧ tu(∧Acceptedl ⇒ la challl

∧la challl ⇒ Accepted ′ = Accepted ∪
{AV ∈ Gen ′ | Chall(AV) = la chall ′})

Definition 5.5. An unused AV copy is usable if its location is the current SN where
the user is registered (or where the user was last registered), that is, it is an element
of DB(last SN).

Definition 5.6. The sequence numbers seqMS in the USIM and seqHE in the home
environment are called synchronous iff synchr(seqMS , seqHE + 1). In this case we
call the system weakly-synchronous:

WeakSynchr :⇔ synchr(seqMS , seqHE + 1)

Definition 5.7. An unused AV copy is called synchronous (with respect to seqMS)
if synchr(seqMS ,Seq(AV))

Definition 5.8. The system is strongly-synchronousif it is weakly-synchronous and
all usable AV copies are also synchronous (w.r. to seqMS).

StrongSynchr :⇔WeakSynchr ∧ ∀AV∈DB(last SN) synchr(seqMS , Seq(AV))

Definition 5.9. Let A ⊆ AV. A is said to have no m consecutive AVs or to be
interrupted each m elements iff between any two elements of A whose sequence
numbers differ by at least m − 1 there is a number k between those two sequence
numbers such that no element of A has k as its sequence number.

Interrm(A) :⇔
∀AV1,AV2∈A (Seq(AV2)− Seq(AV1) ≥ m− 1⇒

∃k (Seq(AV1) < k < Seq(AV2) ∧ ∀AV∈A Seq(AV) 6= k))

Definition 5.10. ”Normal Behavior Scenario”: The system behaves normally
(from the beginning on) if for any (∆ − N − 1) AVs in sequence, at least 1 AV
is not lost, and on each transition step, the formulas NLU

normal, N SN
normal, NHE

normal,
NCC
normal, and NMS

normal hold:

N Step
normal :⇔ NLU

normal ∧N SN
normal ∧NHE

normal ∧NCC
normal ∧NMS

normal

Anormal :⇔
Init ∧ Ainterleavenormal ∧ ACurrSNnormal ∧ ALastSNnormal ∧ AGennormal ∧ ALostnormal ∧ AUsednormal

∧ tu(N Step
normal ∧ Interr∆−N−1(Lost ′))

6 Transitions of the incorrect System

6.1 Events: more Transitions

Message Trans. Param. Param. Var.
or Event Pred. Name Type Name

Error HE XHE Failure FAIL nXHE

Error SN XSN SN SN nXSN
Failure FAIL

Error LU XLU SN SN nXLU
Failure FAIL

Table 3: Failure Events

Definition 6.1. (The Failure Events)

XHE(Failure) :⇔ nXHE(Failure)l
XSN(SN,Failure) :⇔ nXSN(SN,Failure)l
XLU(SN,Failure) :⇔ nXLU(SN,Failure)l

We also use conventions similar to the ones in Conventions 3.1 and 3.2. We do not
write them explicitly.

Some remarks to the assumptions/failure models: Most race conditions (the non-
intended ordering of the processing of events due to concurrency and communication
delays) are non-critical. This is due to the fact that the protocol is constructed as
a set of requests and responses (or timeouts). In our modeling we use as atomic
granularity complete actions (request+response or time-out). Nevertheless it is pos-
sible to formulate race conditions as the simultaneous performance of two actions
(that should happen in order and such that the simultaneous performance is not
equivalent to any of the two orderings) or by adding events (like XLU(SN,Race)),
that have some unexpected consequences.

In our case, the unexpected consequence of XLU(SN,Race) is that the USIM may
change its location simultaneously to a ADR (or equivalently, to an ADS).

Also in that case, the data-base of authentication vectors may have been updated
in an unexpected order. There is no real need for explicitly requiring this (as a
single transition step) since it is equivalent to a sequential composition of the tran-
sitions (in any order): update the database DB correctly once, loose, eventually
several times, the order of the DB (event: XSN(SN,DB)) and loose AVs (event:
XSN(SN,Loss)).

Another more drastic but simple way of modeling this type of situation, allowing
even more strange race conditions in which many different SNs are involved (but
not changing our properties or proofs), is to allow in the event XSN(DB) (without
a parameter SN) to mix the different DBs of the different SNs in an arbitrary way:

XSN(DB)⇒
⋃
SN

Set(DB ′(SN)) =
⋃
SN

Set(DB(SN))

instead of, as we will have now (see the definition of N SN
critical):

XSN(SN,DB)⇒ Set(DB ′(SN)) = Set(DB(SN))

Component Assumption/Failure Model Description

USIM (only case) The USIM always works correctly.
The lifetime of the USIM is not
exceeded. (See Def. 4.1).

SN SN 1. No failure SN works correctly
SN 2. AV loss Loss or corruption of AVs

(event: XSN(Loss))
SN 3. AV disordering Disordering of AVs

(event: XSN(DB))
SN 4. Crash SN Use of old AVs

(event: XSN(Crash))
SN 5. SN is compromised AVs are stolen

(event: XSN(Steal))

HE HE 1. No failure HE works correctly
HE 2. DB-failures SQN is reset to an older value

(event: XHE(DB))
HE 3. HE crash Critical failures: SQN is set

to an arbitrary value
(event: XHE(Crash))

HE 4. HE is compromised An attacker sets SQN to an
arbitrarily chosen value;
then AVs are generated and
stolen and eventually SQN
is set to a new less
suspicious value.
(But: not generated
AVs are never compromised)
(event: XHE(Steal))

Table 4: Assumptions and Failure Models. Part I

Component Assumption/Failure Description

Transmission Ch 1. normal situation In a sequence of transmissions,
channel a certain maximal number of
(between consecutive failures happen
SN and (loss or corruption of messages)
USIM) Ch 2. critical situation, A huge amount of consecutive

probably due to attacks messages are lost or corrupted
Ch 3. replay attacks Old (=seen) messages are inserted
Ch 4. complex attacks Messages using unseen AVs

are inserted.

Those AVs have been stolen.

Location LU 1. normal situation Cancel location implies all
AVs are deleted.

Update With a Location update request
all old AVs are deleted, fresh
AVs are requested from the old
SN or from the HE/AuC.
No race condition happens

LU 2. failure After a Location update request
old AVs are still present and
will be used
(event: XLU(SN,DB))

LU 3. race conditions There are several race conditions,
for instance: when an SN
asks for Authentication Data,
ADR, (and in particular, after
a synchronisation failure
is detected), the USIM changes SN
(location update) and the new SN
collects new AVs, before the HE is
able to process the old ADR.
(event: XLU(SN,Race))

Table 5: Assumptions and Failure Models: Part II

disordering the DB of only one SN independently of all other SNs.

It is in principle possible that several errors happen within the same transition, but
sometimes the specifications of them contradict each other. In any case it is always
possible that errors occur immediately after another.

For simplicity, we defined all three types of error (XHE,XSN,XLU) as being of the
same type. But each one may happen only for certain parameter values:

Ainterleavecritical :⇔ Ainterleavenormal ∧
tu(∧XHE(Failure)⇒ Failure ∈ {DB,Crash,Steal}
∧XSN(SN,Failure)⇒ Failure ∈ {Loss,DB,Crash,Steal}
∧XLU(SN,Failure)⇒ Failure ∈ {DB,Race})

6.2 Changing the Location

Recall the definition of curr SN : ℘(SN) given in Def. 4.1. This definition imposes
no restriction in our specification and remains as it is. The definition of last SN : SN
will also be left unchanged: the value of last SN is of no interest to us when curr SN
is a set with two or more elements. But as soon as curr SN is a singleton or empty,
last SN has the meaning that we intend: either is curr SN = { last SN } or it is the
last SN where the user was registered.

ACurrSNincorr :⇔ ACurrSNcritical :⇔ ACurrSNnormal

ALastSNincorr :⇔ ALastSNcritical :⇔ ALastSNnormal

NLU
critical :⇔
∧ LUR(SN,SN1) ∧ ¬XLU(SN,DB)⇒MvAV(SN,SN1) ∨DB ′(SN1) = ε

∧ MvAV(SN,SN1)⇒ LUR(SN,SN1)
∧ (ADS ∧ ¬∃SN XLU(SN,Race))⇒ curr SN ′ = curr SN

∧ MvAV(SN,SN1)⇒∧DB ′(SN1) = DB(SN)
∧DB ′(SN) = ε

∧ ∀SN2 (SN2 6= SN ∧ SN2 6= SN1 ⇒
DB ′(SN2) = DB ′(SN2))

The definition of NLU
critical is very close to the one of NLU

normal. There we had (rewrit-
ing a bit the original formula):

LUR(SN,SN1) ∧ ¬MvAV(SN,SN1)⇒ DB ′(SN1) = ε

but now, if XLU(SN,DB) happens, LUR(SN,SN1) ∧ ¬MvAV(SN,SN1) may imply
DB ′(SN1) 6= ε (thus old AVs may be used: LU 2.). It is not necessary to explicitly
state what happens if LUR(SN,SN1) ∧XLU(SN,DB): either MvAV(SN,SN1) (in
which case DB changes in the prescribed way) or DB(SN1) does not change, un-
less there is another reason for changing DB ′(SN1) (those reasons are given in the
definition of N SN

critical after DB(SN)l ⇒ . . .).

The other difference to NLU
normal is that if the race condition happens, then while

ADS is performed, (ADS∧¬∃SN XLU(SN,Race)), then it may not be excluded that
either a LUR or a CanLoc happen, the mobile station thus changing the location.

6.3 The Serving Network

N SN
critical :⇔
∧ ADR0(SN)⇒ DB(SN) = ε ∧ SN ∈ curr SN
∧ ADR1(SynResp,Rand,SN)⇒

∧ UASFr(SynResp,SN)
∧ SN ∈ curr SN
∧ ∃AV (UARs(Chall(AV),SN) ∧ Rand = Rand(AV))

∧ ADS(AVs new,SN)⇒∧ AVs new 6= ε⇒ DB ′(SN) = AVs new

∧ AVs new = ε⇒ DB ′(SN) = DB(SN)

∧ UARs(chall,SN) ∧ ¬XSN(SN, Loss)⇒
∧ SN ∈ curr SN ∧DB(SN) 6= ε

∧DB ′(SN) = Tail(DB(SN))
∧ chall = Chall(Head(DB(SN)))

∧ XSN(SN,Crash)⇒ UARs

∧ UARs(chall,SN) ∧ XSN(SN,Crash)⇒
∃AV∈Used chall = Chall(AV)

∧ XSN(SN,DB)⇒ Set(DB ′(SN)) = Set(DB(SN))

∧ XSN(SN, Loss)⇒∧ Set(DB ′(SN)) ⊆ Set(DB(SN))
∧ AV1 �DB ′(SN) AV2 ⇒ AV1 �DB(SN) AV2

∧ DB(SN)l ⇒ ∨ ∃SN1 LUR(SN1,SN) ∧ ¬XLU(SN1,DB)
∨ XSN(SN,DB) ∨XSN(SN, Loss)
∨ ∃AVs new,SN ADS(AVs new,SN) ∧ AVs new 6= ε

∨ ∃chall,SN UARs(chall,SN) ∧ ¬XSN(SN, Loss)
∨ ∃SN1 MvAV(SN,SN1)
∨ ∃SN1 MvAV(SN1,SN)

∧ [∧UASFr(SynResp,SN)
∧ SN ∈ curr SN
∧UARs(Chall(AV),SN)
∧ Rand = Rand(AV)]⇒ ADR1(SynResp,Rand,SN)

6.4 The Home Environment

In the real system it seems to be the case that if a race condition happens:

(ADR0 ∨ ADR1) ∧XLU(SN,Race) ∧ LUR(SN,SN1)

then a CanLoc(SN) can be produced, instead of the ADS expected by the serving
network. But we insist that (ADR0 ∨ ADR1) ⇒ ADS. We model the described
situation as follows: first send a ADS(AVs new,SN) with AVs new = ε and then send
a CanLoc. This sequence is equivalent to just sending one CanLoc. Notice that
our specification does not constrain at all the occurrences of CanLoc: they may
happen anytime. (They are seen as inputs to the system).
It is also assumed that AVs which have not been generated can not be stolen (the

code for the generation of AVs is secure).

NHE
critical :⇔ ∃seqhe

[

∧ ADS(AVs new,SN)⇒∨ ADR0(SN)
∨ ∃SynResp,Rand ADR1(SynResp,Rand,SN)

∧ (ADR0 ∨ ADR1)⇒ ADS

∧ ADR0 ⇒ seqhe = seqHE

∧ ADR1(SynResp,Rand,SN)⇒
∧ [verif (SynResp,Rand) ∧

¬synchr1(Seq
MS

(SynResp), seqHE)]⇒ seqhe = Seq
MS

(SynResp)

∧ [¬verif (SynResp,Rand) ∨
synchr1(Seq

MS
(SynResp), seqHE)]⇒ seqhe = seqHE

∧ ADS(AVs new,SN)⇒
∧¬XLU(SN,Race)⇒ AVs new 6= ε

∧ AV ∈ AVs new⇒ cons(AV)
∧ ∀AV1,AV2∈AVs new (AV1 ≺ AV2 ⇔ AV1 � AV2)
∧ ∀AV∈AVs new (seqhe < Seq(AV) ≤ seq ′HE)

∧ ∀i∈IN ∃AV∈AVs new (seqhe < i ≤ seq ′HE ⇒ Seq(AV) = i)

∧ seq ′HE − seqhe ≤ N

∧ XHE(DB)⇒ seqHE
′ < seqHE

∧ seqHEl ⇒ ∨ ∃AVs new,SN ADS(AVs new,SN) ∧ AVs new 6= ε

∨XHE(DB)
∨XHE(Steal)
∨XHE(Crash)]

Notice that XHE(Steal) or XHE(Crash) do not impose any restriction on the value
of seqHE

′. Therefore, after this sort of failures the sequence number of the home
environment may assume an arbitrary value.

6.5 The Communication Channel

The definitions of OKR, CorrR, LossR, OKS, CorrS, and LossS were given in
Section 4.4. These definitions are still valid for the incorrect and the critical sys-
tem. As before, the message User Authent. Request may be received correctly
(OKR), or it may be corrupted during the transmission (CorrR), or it may get lost
(LossR). But now there is one possibility more: it may be also replaced by another
User Authent. Request with another challenge (ATTR).

ATTR :⇔ ∃chall,SN ∧UARs(chall,SN)
∧ ∃chall1 6=chall cons(chall1) ∧UARr(chall1,SN)

Notice that the following is a tautology:

UARs(chall,SN)⇒∨UARr(chall,SN)
∨ ∃chall1 ¬cons(chall1) ∧UARr(chall1,SN)
∨ ¬UARr(SN)
∨ ∃chall1 6=chall cons(chall1) ∧UARr(chall1,SN)

Thus, UARs ⇒ OKR ∨ CorrR ∨ LossR ∨ATTR is a tautology.

There is another form of attack, ATTRi, the insertion of a message that was not
sent. In this situation, the only interesting case is when the inserted challenge is
consistent:

ATTRi :⇔ ∃chall,SN ∧UARr(chall,SN) ∧ cons(chall)
∧ ¬UARs

On the other direction, the message User Authent. Response may be received
correctly (OKS), or it may be corrupted during the transmission (CorrS), or it may
get lost (LossS), or it may be replaced by another User Authent. Response with
another response (ATTR). Notice that in the definition of NCC

normal, if a message
was received, then a corresponding message was as also sent (perhaps with different
parameter values, they can be corrupted). For instance, if UASr happens, then
either OKR or CorrR or LossR happens, and in any case, UASs happens as well.
This is not true anymore. Notice that we do not have to model extra an attack
ATTS, since it is indistinguishable from a corruption CorrS. (In the other direction
ATTR is needed, since CorrR implies that the corrupted challenge is inconsistent).
The insertion attack for messages from the mobile station to the service network
are only interesting when the service network has issued an authentication request
(else the insertion of the message has no consequences):

ATTSi(SN) :⇔∧ ∃chall UARs(chall,SN)
∧ ¬∃resp UASs(resp,SN)
∧ ¬∃RejResp UAJs(RejResp,SN)
∧ ¬∃SynResp UASFs(SynResp,SN)
∧ ∨ ∃resp UASr(resp,SN)
∨ ∃RejResp UAJr(RejResp,SN)
∨ ∃SynResp UASFr(SynResp,SN)

ATTSi :⇔∃SN ATTSi(SN)

The attacker is not able to generate consistent challenges that he has not seen, that
is, either have been transmitted already, or he has stolen. (The definition of Stolen
is given in Definition 5.2).

Assumption 6.1.

NAss1
critical :⇔
[UARr(chall,SN) ∧ ¬UARs(chall,SN) ∧ cons(chall)]

⇒ ∃AV∈Stolen ∪ Used chall = Chall(AV)

The attacker is not able to generate consistent responses to challenges that he has
not seen.

Assumption 6.2.

NAss2
critical :⇔
[UARs(chall,SN) ∧ ¬UASs(resp,SN) ∧UASr(resp,SN) ∧ cons(chall, resp)]

⇒ ∃AV∈Stolen ∪ Used chall = Chall(AV) ∧ resp = Resp(AV)

The attacker is not able to generate consistent fail synchonisation responses to fresh
challenges.

Assumption 6.3.

NAss3
critical :⇔

[∧ UARs(chall,SN) ∧ UASFr(SynResp,SN)
∧ ¬UASFs(SynResp,SN) ∧ verif (SynResp, Rand(AV))]
⇒ (AV ∈ Stolen ∪ Used) ∧ SynResp = SynResp(AV)

Those assumptions are the specification of NCC
critical:

NCC
critical :⇔ NAss1

critical ∧N
Ass2
critical ∧N

Ass3
critical

6.6 The Mobile Station

The mobile station is assumed to work always correctly, therefore,

NMS
critical :⇔ NMS

normal

7 Definition of Incorrect Behavior

Definition 7.1. The stealing of AVs generates a clone (not a ”copy”) of an AV.
Stolen3, the set of clones, is defined by the formulas:

Stolen := StolenHE ∪ StolenSN

StolenHE = ∅ ∧ tu(∧ StolenHEl ⇒ XHE(Steal)
∧ XHE(Steal)⇒ StolenHE

′ ⊇ StolenHE)

StolenSN = ∅ ∧ tu(∧ StolenSNl ⇒ XSN(SN,Steal)
∧ XSN(SN,Steal)⇒

StolenSN ⊆ StolenSN
′ ⊆ StolenSN ∪DB(SN))

Definition 7.2. As before (Def. 5.5), if curr SN is a sigleton or empty, an unused
AV copy is usable if its location is last SN , the current SN where the user is regis-
tered (or where the user was last registered), that is, it is an element of DB(last SN).
If curr SN contains more than one elemant, then an unused AV is usable if its lo-
cation is contained in curr SN , that is, it is an element of ∪SN∈curr SN DB(SN).

In the Definition 5.2, we have defined the variable Lost , the set of lost authentication
vectors. This definition is now extended to the case where the protocol is not running
under normal conditions, but under incorrect or critical ones. Now, the system may
also loose AVs through the event XSN, or through attacks. Notice that also the
disordering of AVs (or, if you prefer, the usage of AVs in disorder) leads to loosing
AVs.

Definition 7.3. An AV copy is lost if it is either:

1. lost or corrupted by an error in SN (SN 2. or SN 3.)

2. lost or corrupted in the communication Channel between the SN and the USIM,
perhaps also due to an attack (Ch. 1 or Ch. 2)

3In our formal specification we do not distinguish between AVs and occurrences of AVs. Thus,
in the formal specification one AV may be at the same time in Stolen and in Used or Lost .

3. lost or intentionally discarded during a Location Update (typically LU 1, but
also LU 2 and LU 3)

Formally, the variable Lost, of type ℘(AV) is defined by:

ALostcritical :⇔
∧ Lost = ∅
∧ tu(∧ Lostl ⇒ ∨ UARs ∧ ¬OKR

∨ LUR(SN,SN1) ∧ ¬MvAV(SN,SN1)
∨ ∃SN XSN(SN, Loss)
∨ ∃SN XSN(SN,DB)

∧ UARs(Chall(AV),SN) ∧ ¬OKR
⇒ Lost ′ = Lost ∪ {AV}

∧ LUR(SN,SN1) ∧ ¬MvAV(SN,SN1)⇒
Lost ′ = Lost ∪ DB(SN)

∧ XSN(SN, Loss)⇒ Lost ′ = Lost ∪ (DB(SN) \DB ′(SN))
∧ XSN(SN,DB)⇒ Lost ′ = Lost ∪ DB(SN))

This definition of Lost is only one of several possible choices. We could say that if
XSN(SN,DB) happens, not all AVs in DB(SN) are lost, only those AV for which
there is an AV1 in DB ′(SN), such that AV1 is left of AV (it will be used earlier than
AV) but AV1 has a larger sequence number than AV:

XSN(SN,DB)⇒
Lost ′ = Lost ∪ {AV ∈ DB(SN) | ∃AV1 AV1 � AV ∧ AV ≺ AV1}

Or we could also say: using an AV with a sequence number larger than one already
used (or, accepted) is loosing this AV. The “exact” definition of “lost” is not so
important. But: we need such a definition (to be able to define what it means to
return to normal behavior) and this definition has to be consistent with the one
given for normal behavior, which should be a particular case.

Definition 7.4. The definitions of generated and used copy remain the same:

AGencritical :⇔ AGennormal AUsednormal :⇔ AUsednormal

Definition 7.5. An AV clone is obsolete if seqMS ≥ Seq(AV). The set of obsolete
clones is denoted by Obsolete. By definition,

Obsolete ⊆ Stolen = StolenHE ∪ StolenSN .

Definition 7.6. An AV clone is called synchronous (with respect to seqMS) if
synchr(seqMS ,Seq(AV))

Notice that this is the same definition as 5.7 but for clones.

Definition 7.7. The system is in perfect conditions (at a certain moment of time)
if it is strongly-synchronous and any AV clone is obsolete:

Perfect :⇔ StrongSynchr ∧ Stolen ⊆ Obsolete

Notice that in the case that there are no clones (and in particular, if from the
beginning the system was behaving normally) then Perfect :⇔ StrongSynchr .

Definition 7.8. ”Critical Behavior Scenario”: The system behaves critically if an
arbitrary combination of assumptions or failure models (SN 1 – LU 3) may occur:

N Step
critical :⇔ NLU

critical ∧N SN
critical ∧NHE

critical ∧NCC
critical ∧NMS

critical

Acritical :⇔
Init ∧ Ainterleavecritical ∧ ACurrSNcritical ∧ ALastSNcritical ∧ AGencritical ∧ ALostcritical ∧ AUsedcritical

∧ tu(N Step
critical)

Definition 7.9. ”Incorrect Behavior Scenario”: The system behaves incorrectly if

• For any ∆ AVs in sequence, at most ∆− 1 are lost,

• disordering of AVs occur, (SN 3) but no SN-crashes or SN-steal

• a failure in the Location Update may happen (LU 2), but no race condition

• no errors in the home environment happen.

Aincorr :⇔ Acritical ∧ tu(∧ Interr∆−N−1(Lost ′)
∧ ¬XSN(Crash)
∧ ¬XSN(Steal)
∧ ¬XLU(Race)
∧ ¬XHE)

After the system has been behvaving incorrectly, it may return to normal:

Definition 7.10. ”Return to Normal Behavior”: Let x be a boolean variable (or
state predicate) with the property that if it is 1, it remains 1: tu(xl ⇒ x ′ = 1). Then
we say that the system behaves normally when x if during the time that x=1 for
any (∆− N− 1) AVs in sequence, at least 1 AV is not lost, and on each transition
step, the formulas NLU

normal, N SN
normal, NHE

normal, NCC
normal, and NMS

normal hold:

Ax
normal :⇔
Init ∧ Ainterleavecritical ∧ ACurrSNcritical ∧ ALastSNcritical ∧ AGencritical ∧ ALostcritical ∧ AUsedcritical

∧ ∀Lost0:℘(AV) [(¬x ∧ x ′ ⇒ Lost ′ = Lost0)

⇒ tu{ x ⇒ N Step
normal ∧ Interr∆−N−1(Lost ′ \ Lost0) }]

Note that “normal behavior” is more a property of the environment of the system
(attacks, loosing messages, race conditions, failures in data-bases, etc.) as of the
proper system itself. Even if the system returns to “normal behavior”, the old
failures may still have consequences, for instance, AVs with an old sequence number
may be used. Often, only a “succesfull” synchronisation failure will “clean up” the
system”.

Notice also that the definition of return to normal behavior does not exclude the
possibility that some messages get lost. (There is no bound on how many messages
from the MS to the SN may get lost!) In particular if the system is not synchronous,
this condition will remain unnoticed as long as the messages User Authentication
Request and User Authentication Synchronisation Fail Indication get lost. In this
case a “succesfull” synchronisation failure is not only helpful, it is necessary:

Definition 7.11. We say that a Synchronisation Failure is successful, if

1. the corresponding messages User Authentication Request and User Authenti-
cation Synchronisation Fail Indication do not get lost or corrupted, and if

2. this Fail Indication is processed by the HE before the USIM changes the SN
location, i.e. no race condition LU 3 happens.

Formally, a successful Synchronisation Failure is given by the formula:

UASFsuccessful :⇔∃chall,SN,SynResp

∧ UARs(chall,SN) ∧UARr(chall,SN)
∧ UASFs(SynResp,SN) ∧UASFr(SynResp,SN)
∧ ¬∃SN XLU(SN,Race)

8 Theorems

Lemma 8.1.

Ainterleavenormal ∧NMS
normal ⇒

∧ UASs(resp,SN)⇒ ∃chall ∧ UARr(chall,SN)
∧ cons(chall)
∧ synchr(seqMS , Seq(chall))

∧ resp = Resp(chall)

∧ UAJs(RejResp,SN)⇒ ∃chall UARr(chall,SN) ∧ ¬cons(chall)

∧ UASFs(SynResp,SN)⇒ ∃chall ∧ UARr(chall,SN)
∧ cons(chall)
∧ ¬synchr(seqMS , Seq(chall))

∧ SynResp = SynResp(la chall , chall)

Proof: The proof is done by simple predicate logic. All three claims are proven
in exactly the same way. Let us prove the second one, which is the shortest one. It
amounts to showing

Ainterleavenormal ∧NMS
normal ∧ UAJs(RejResp,SN)⇒

∃chall UARr(chall,SN) ∧ ¬cons(chall)

Ainterleavenormal ∧NMS
normal ∧ UAJs(RejResp,SN)

⇒UAJs (Def of UAJs)
⇒UASs ∨UAJs ∨UASFs (Conjunction Rules)

⇒UARr (Def of NMS
normal)

⇒∃chall,SN1 UARr(chall,SN1) (Def of UARs)
⇒UARr(chall,SN1) (Skolemisation: Introd.

of fresh variables)

[Assume cons(chall) ∧ synchr(seqMS , Seq(chall))

⇒UASs(Resp(chall),SN1)) (Def of NMS
normal)

⇒UASs (Def of UASs)

⇒¬UAJs (Def of Ainterleavenormal)
⇒Contradiction (UAJs)]

⇒¬(cons(chall) ∧ synchr(seqMS , Seq(chall))) (Assumption false)

⇒¬cons(chall) ∨ ¬synchr(seqMS , Seq(chall)))(De Morgan)

[Assume cons(chall) ∧ ¬synchr(seqMS , Seq(chall))

⇒UASFs(SynResp(la chall , chall),SN) (Def of NMS
normal)

⇒UASFs (Def of UASs)

⇒¬UAJs (Def of Ainterleavenormal)
⇒Contradiction (UAJs)]

⇒¬(cons(chall) ∧ ¬synchr(seqMS , Seq(chall)))(Assumption false)

⇒¬cons(chall) ∨ synchr(seqMS , Seq(chall))) (De Morgan)

⇒¬cons(chall) (Resolution)

⇒UAJs(RejResp(chall),SN1) (Def of NMS
normal

andUARr(chall,SN1))
⇒RejResp = RejResp(chall) ∧ SN = SN1 (UAJs(RejResp(chall),SN1)

UAJs(RejResp,SN))

and Def of Ainterleavenormal)
⇒UARr(chall,SN) (SN = SN1)
⇒UARr(chall,SN) ∧ ¬cons(chall) Conjunction
⇒∃chall UARr(chall,SN) ∧ ¬cons(chall) Introd of Ex.

Lemma 8.2.

ACurrSNnormal ∧ ALastSNnormal ⇒
tu((NLU

normal ∧ curr SN ′ 6= ∅)⇒ curr SN ′ = {last SN })

Lemma 8.3.

Anormal ⇒ tu(∧ DB(last SN) 6= ε⇒ seqHE = Seq(max(DB(last SN)))

∧ seqMS = Seq(max(Accepted))

∧ UARs(Chall(AV),SN)⇒ AV = min(DB(last SN)))

Proof: 1. The first goal is to prove

Anormal ⇒ tu(DB(last SN) 6= ε⇒ seqHE = Seq(max(DB(last SN))))

This follows if in any transition where seqHE or DB or last SN changes,

DB ′(last SN ′) 6= ε⇒ seqHE
′ = Seq(max(DB ′(last SN ′))))

holds.

1.1. Assume seqHEl. First use the definition of NHE
normal. seqHE changes only when

ADS happens. Choosing fresh variables for the parameters we may assume
ADS(AVs new,SN). It is easy to see that AVs new 6= ε, (else seqHE does not change).
Recalling the definition of NHE

normal :⇔ ∃seqhe
[], choose seqhe to be any value that

makes the predicate in the square brackets to be true. (Skolemisation). Now, since

∀i∈IN ∃AV∈AVs new (seqhe < i ≤ seq ′HE ⇒ Seq(AV) = i)

letting i = seq ′HE we have

∃AV∈AVs new Seq(AV) = seq ′HE

Choose AV0 with Seq(AV0) = seq ′HE . Now, from

∀AV∈AVs new (seqhe < Seq(AV) ≤ seq ′HE)

it follows that ∀AV∈AVs new (Seq(AV) ≤ Seq(AV0)), which may be written as AV0 =
max(AVs new).

Using the definition ofN SN
normal, we have that ADS(AVs new,SN) implies DB ′(SN) =

AVs new and therefore AV0 = max(DB ′(SN)). Then

Seq(AV0) = Seq(max(DB ′(SN))) = seqHE
′

proving the claim, since SN ∈ curr SN = curr SN ′ (no race condition in NLU
normal)

and curr SN ′ = {last SN ′} imply that SN = {last SN ′}.
1.2. Now assume that last SN l ∧seqHE

′ = seqHE , and let us show:

DB ′(last SN ′) 6= ε⇒ seqHE
′ = Seq(max(DB ′(last SN ′))))

Since

last SN l⇒ curr SN l ∧(∃SN1 curr SN ′ = {SN1} ∨ curr SN ′ = ∅)

but curr SN ′ = ∅ implies last SN ′ = last SN . Choosing a new fresh variable, we
conclude that curr SN l ∧curr SN ′ = {SN1}.
From ACurrSNnormal ∧ ALastSNnormal we obtain that LUR ∨ CanLoc and from NLU

normal we
know that CanLoc⇒ LUR, proving LUR.
Consider now two cases: if ¬MvAV, then DB ′(last SN ′) = ε, in the other case, if
MvAV, then DB ′(last SN ′) = DB(last SN). In both cases our claim is valid.

1.3. Now assume that DBl ∧last SN ′ = last SN ∧seqHE
′ = seqHE , and let us show:

DB ′(last SN ′) 6= ε⇒ seqHE
′ = Seq(max(DB ′(last SN ′))))

If DB changes, but seqHE does not, then UARs or MvAV happen (N SN
normal).

In the first one, only the smallest element of DB(last SN) is taken out, leaving
DB(last SN) empty or its largest element unchanged. In both cases our goal is
shown.

2. The second goal is that in each transition,

seqMS
′ = Seq(max(Accepted ′)).

This follows easily from the definition of Accepted and NMS
normal.

3. The third goal is that in each transition,

UARs(Chall(AV),SN)⇒ AV = min(DB(last SN)).

The proof is similar to the proof of the first goal and uses the face that � and ≺
coincide: when ADS(AVs new,SN) happens, the elements of AVs new = DB ′(SN)
are in order (i.e.: � ⇒ ≺). On each UARs, the smallest AV is used, and the
remaining elements of DB(SN) continue in order.

Lemma 8.4.

Anormal ⇒ tu(∀0<i<seqHE
∃AV∈Gen i = Seq(AV))

Lemma 8.5. If the system behaves normally, then the set of generated AVs is the
union of the used AVs, the usable ones, and the lost ones:

Anormal ⇒ tu(Gen = Accepted ∪ DB(last SN) ∪ Lost)

A simple consequence of the last two lemmas is:

Lemma 8.6.

Anormal ⇒ tu(∀seqMS<i<Seq(min(DB(last SN))) ∃AV∈Lost i = Seq(AV))

Lemma 8.7. If the system behaves normally, then the set of usable AVs has never
more than N elements:

Anormal ⇒ tu(|DB(last SN)| ≤ N)

Lemma 8.8.

Anormal ⇒ tu(UARs(chall,SN)⇒ Seq(chall)− seqMS < ∆)

Proof: This follows from chall = min(DB(SN)) and (SN) = last SN

Lemma 8.9.

NCC
normal ∧UARs(Chall(AV),SN)⇒
∨ ∧Accepted ′ = Accepted ∪ {AV}
∧ seqMS

′ = Seq(AV)

∧ Lost ′ = Lost
∨ ∧Accepted ′ = Accepted ∪ {AV}
∧ seqMS

′ = Seq(AV)

∧ Lost ′ = Lost ∪ {AV}
∨ ∧Accepted ′ = Accepted
∧ seqMS

′ = seqMS

∧ Lost ′ = Lost ∪ {AV}

Lemma 8.10.

NCC
normal ∧UARs(Chall(AV),SN) ∧UASr(Resp(AV),SN)⇒
∧Accepted ′ = Accepted ∪ {AV}
∧ seqMS

′ = Seq(AV)

∧ Lost ′ = Lost

Proposition 8.11. Initially the system is in perfect conditions. And as long as the
system behaves normally, it remains in perfect conditions and no synchronisation
failures happen. This may be formalised as follows4:

Anormal ⇒ tu(Perfect) ∧ tu(¬UASFs)

Proof: First let us see why Perfect is an invariant, i.e. Anormal ⇒ tu(Perfect). It
is clear that initially, Perfect holds, i.e. Init ⇒ Perfect . Now, if Perfect holds and
Nnormal holds then also Perfect ’ holds. This follows from Lemma 8.8.

Proposition 8.12. If the system behaves incorrectly, and then behaves normally,
then after the first successful Synchronisation Fail Indication the system is in perfect
conditions. This is formalised as follows:

Aincorr ∧ Ax
normal ⇒ tu(UASFsuccessful ∧ x ⇒ Perfect ′)

Proposition 8.13. If the system behaves critically, and then behaves normally,
then after the first successful Synchronisation Fail Indication the system is strongly-
synchronous. This is formalised as follows:

Ax
normal ⇒ tu(UASFsuccessful ∧ x ⇒ StrongSynchr ′)

Proposition 8.14. If the system strongly-synchronous but not in perfect condi-
tions, and from that point on it behaves normally, then after the stolen AVs have
been used or become obsolete, at most one successful Synchronisation Fail Indication
is needed to return to perfect conditions.

Proposition 8.15. If the system weakly-synchronous but not strongly-synchronous,
and from that point on it behaves normally, then after the non-synchronous usable
AVs have been used or lost, at most one successful Synchronisation Fail Indication
is needed to return to a strongly-synchronous state.

References

[1] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Program-
ming Languages and Systems, 16(3): 872–923, May 1994.

[2] 3G TS 33.102 Version 3.0.0. 3G Security Architechture

[3] S3-99179 (CR to [2]), Conditions on use of Authentication Information.

[4] S3-99180 (CR to [2]), Modified re-synchronisation procedure for AKA-protocol.

[5] S3-99181 (CR to [2]), Sequence numger management scheme protecting agains
USIM lockout.

4The formalisation states something slightly different, namely that if the system always behaves
normally, then it is always in perfect conditions and never a synchronisation failure happens. This
is slightly weaker than the formulation in the theorem. But the induction proof given in the text
also proves the stronger assertion: the proof shows that initially the system is in perfect conditions
and that as long as normal conditions hold, the system remains in perfect conditions and no
synchronisation failure happens.

