

Source	TSG-S4
Title	CRs on AMR

S4 Tdoc.	Spec.	Ver.	CR	Rev.	Rel.	Subject
S4-99456	06.73	7.2.0	A020		R98	Correction to reset function in AMR decoder
S4-99523	06.75	7.0.0	A001		R98	Update of AMR Transmission Delay Figures
S4-99454R	06.93	7.2.0	A006	1	R98	Editorial clarifications concerning RATSCCH and RX/TX DTX handler synchronization at handover.
S4-99455R	06.93	7.2.0	A007	1	R98	Onset frame signaling by the TX RSS.
S4-99380	26.090	3.0.1	001		R99	Bit allocation of the adaptive multi-rate codec
S4-99392	26.090	3.0.1	001		R99	Use of random excitation when RX_NODATA and not in DTX.
S4-99538	26.093	3.0.1	001	2	R99	Alignment to GSM 06.93

Joint SMG11/TSG-SA4 Meeting #13 / #8 Kyoto, Japan, 6-10 December 1999

Document	S4-99456
(2000 use the formet TD 0

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

		CHANGE I	REQI	JEST	Please s page for	see embedded help fi r instructions on how	ile at the bottor to fill in this for	n of this m correctly.
		06.73	CR	A020		Current Versio	on: 7.2.0 (R98)
GSM (AA.BB) or 3G (A	AA.BBB) specifica	tion number \uparrow		↑ CR r	number as	s allocated by MCC s	support team	
For submission to	D: TSG-SA eting # here ↑	#6 for a for infor	oproval mation	X		strate non-strate	gic X	(for SMG use only)
Form:	: CR cover sheet, ve	rsion 2 for 3GPP and SMG	The latest	version of this for	m is availal	ble from: ftp://ftp.3gpp.o	rg/Information/Cl	R-Form-v2.doc
Proposed change (at least one should be ma	e affects: arked with an X)	(U)SIM	ME	X UT	[RAN /	/ Radio	Core Net	work X
Source:	TSG-SA WO	G4 Codec				Date:	16.12.19	99
Subject:	Correction to	o reset function in	<mark>AMR d</mark>	ecoder				
Work item:	AMR							
Category:FA(only one categoryshall be markedCwith an X)D	Correction Correspond Addition of f Functional r Editorial mo	ls to a correction i feature modification of fea odification	in an ea ature	rlier release	÷ X	Release:	Phase 2 Release 9 Release 9 Release 9 Release 9 Release 9	96 97 98 X 99 00
<u>Reason for</u> change:	The variable In Decoder_ Table 7 and	es corr_hp and lsf _amr_reset, a call 8 (list of static va	_hist_m to cb_g riables)	ean_index ain_averag does not fu	are no e_rese illy cor	t used. et is missing. form to C code	e.	
Clauses affected:	C code	files vad1.h, dtx_	<mark>dec.h, c</mark>	lec_amr.c,	and sp	pecification		
Other specs C affected: C M B C	Other 3G core Other GSM co AS test speci ASS test speci ASS test specific	e specifications ore specifications fications cifications ations		$\begin{array}{l} \rightarrow \text{ List of C} \\ \rightarrow \text{ List of C} \end{array}$	Rs: Rs: Rs: Rs: Rs: Rs:			
Other comments:								

<----- double-click here for help and instructions on how to create a CR.

1. How the code is changed

1.1 File vad1.h

Line 68 is removed (corr_hp is not used).

1.1.1 Before the change (line 65-69)

```
Word16 complex_hang_count; /* complex hangover counter, used by VAD */
Word16 complex_hang_timer; /* hangover initiator, used by CAD */
Word16 corr_hp; /* filtered value */
Word16 best_corr_hp; /* FIP filtered value Q15 */
```

1.1.2 After the change (line 65-68)

Word16	complex_hang_count;	/*	complex hangover counter, used by VAD	*/
Word16	<pre>complex_hang_timer;</pre>	/*	hangover initiator, used by CAD	*/

Word16 best_corr_hp; /* FIP filtered value Q15 */

1.2 File dtx_dec.h

Line 55 is removed (lsf_hist_mean_index is not used).

1.2.1 Before the change (line 54-56)

```
Word16 lsf_hist_mean[M*DTX_HIST_SIZE];
Word16 lsf_hist_mean_index;
Word16 log_pg_mean;
```

1.2.2 After the change (line 54-55)

```
Word16 lsf_hist_mean[M*DTX_HIST_SIZE];
Word16 log_pg_mean;
```

1.3 File dec_amr.c

In Decoder_amr_reset a call to Cb_gain_average_reset is added.

1.3.1 Before the change (line 192-196)

```
for (i = 0; i < 9; i++)
   state->ltpGainHistory[i] = 0;
if (mode != MRDTX)
   lsp_avg_reset(state->lsp_avg_st);
```

1.3.2 After the change (line 192-198)

```
for (i = 0; i < 9; i++)
    state->ltpGainHistory[i] = 0;
```

```
Cb_gain_average_reset(state->Cb_gain_averageState);
```

2. How the specification is changed

4.5.3 Static variables used in the C-code

In this section two tables that specify the static variables for the speech encoder and decoder respectively are shown. All static variables are declared within a C **struct.**

Struct name	Variable	Type[Length]	Description
Speech_Encode_	cod_amr_state	cod_amrState	see below in this table
FrameState			
	pre_state	Pre_ProcessState	see below in this table
	dtx	Flag	Is set if DTX functionality is used
Dra Drassa Ctata		Int Mord4C	Used for WWOPS counting
Pre_ProcessState	y2_hi	Word16	filter state, upper word
	y2_10 v1_bi	Word16	filter state, inder word
		Word16	filter state, lower word
	x0	Word16	filter state
	x1	Word16	filter state
cod_amrState	old_speech	Word16[320]	speech buffer
	speech	Word16*	pointer to current frame in old_speech
	p_window	Word16*	pointer to LPC analysis window in old_speech
	p_window_12k2	Word16*	pointer to LPC analysis window with no lookahead in
		14.0*	old_speech (MR122)
	new_speech	Word16 [*]	pointer to the last 160 speech samples in old_speech
	old_wsp	Word16[303]	buffer holding spectral weighted speech
	old lags	Word16[5]	open loop I TP states
	ol gain flg	Word16[2]	enables open loop pitch lag weighting (MR102)
	old exc	Word16[314]	excitation vector
	exc	Word16*	current excitation
	ai_zero	Word16[51]	history of weighted synth. filter followed by zero vector
	zero	Word16*	zero vector
	h1	Word16*	impulse response of weighted synthesis filter
	hvec	Word16[80]	zero vector followed by impulse response
	lpcSt	IpcState	see below in this table
		ISpState	see below in this table
	cicipSi gainQuantSt		see below in this table
	nitchOl WahtSt		see below in this table
	tonStabSt	tonStabState	see below in this table
	vadSt4	vadState1	see below in this table
	<u> ∀v</u> adSt 2	√vadState2	see below in this table
	dtx	Flag	is set if DTX functionality is used
	dtx_encSt	dtx_encState	see below in this table
	mem_syn	Word16[10]	synthesis filter memory
	mem_w0	Word16[10]	weighting filter memory (applied to error signal)
	mem_w	Word16[10]	filter memory (applied to input signal)
	error	Word16*	error signal (input minus synthesized speech)
	sharp	Word16	pitch sharpening gain
¥vadState1	bckr est	Word16[9]	background noise estimate
. <u>.</u>	ave level	Word16[9]	averaged input components for stationary estimation
	old_level	Word16[9]	input levels of the previous frame
	sub_level	Word16[9]	input levels calculated at the end of a frame (lookahead)
	a_data5	Word16[6]	memory for the filter bank
	a_data3	Word16[5]	memory for the filter bank
	burst_count	Word16	counts length of a speech burst
	nang_count	Word16	nangover counter
	Halse_count	Word16	Faise speech detection counter
	vadred	Word16	15 flags for intermediate VAD decisions
	pitch	Word16	15 flags for pitch detection
	tone	Word16	15 flags for tone detection
	complex_high	Word16	flags for complex detection
	complex_low	Word16	flags for complex detection
	oldlag_count	Word16	variables for pitch detection
	oldlag	Word16	variables for pitch detection
	complex_hang_count	Word16	complex hangover counter, used by VAD
	complex_hang_timer	vvord16	Inangover initiator, used by CAD
	corr_np	Word16	Hitered Value
	pest_con_np	Word16	final decision
	complex warning	Word16	complex background warning
	sp burst count	Word16	counts length of a speech burst incl HO addition
	corr hp fast	Word16	filtered value
	•	(continued	
			•

|

l

Table 7: Speech encoder static variables

Table 7 (concluded): Speech encoder static variables

l

Struct name	Variable	Type[Length]	Description
<u>√v</u> adState2	pre_emp_mem	Word16	input pre-emphasis memory
	update_cnt	Word16	noise update counter
	hyster_cnt	Word16	hysteresis counter
	last update cnt	Word16	noise update counter value for last frame
	ch_enrg_long_db	Word16[16]	long term channel energy in dB
	Lframe cnt	Word32	10 ms frame counter
	Lch enra	Word32[16]	channel energy estimate
	Lch noise	Word32[16]	channel noise estimate
	last normb shift	Word16	block shift factor for last frame, used for pre emp mem
	tsnr	Word16	total estimated peak SNR in dB
	hangover	Word16	VAD hangover
	burstcount	Word16	number of consecutive voice active frames
	fupdate flag	Word16	A flag to control a forced update of the noise estimate
	negSNRvar	Word16	SNR variability
	negSNRbias	Word16	sensitivity bias
	shift state	Word16	indicates scaling state of channel energy estimate
	L RO	Word32	LTP energy
	L Rmax	Word32	LTP max correlation
	LTP flag	Flag	set when open loop pitch prediction gain > threshold
dtx_encState	lsp hist	Word16[80]	I SP history (8 frames)
	log en hist	Word16[8]	logarithmic frame energy history (8 frames)
	hist ptr	Word16	pointer to the cyclic history vectors
	log en index	Word16	Index for logarithmic energy
	hist ptr tmp	Word16	logarithmic frame energy index
	init lsf va index	Word16	initial index for lsf predictor
	lisp index	Word16[3]	Iso indecies to the three code books
	dtxHangoverCount	Word16	is decreased in DTX handover period
	decAnaElapsedCount	Word16	counter for elansed speech frames in DTX
IncState	LevinsonSt	LevinsonState	see below
LevinsonState	old A	Word16[11]	last frames direct form coefficients
IsnState	lsp. old	Word16[10]	old I SP vector
ispolate	lsp_old a	Word16[10]	old quantized LSP vector
	aSt	O plsfState	see below in this table
		Word16[10]	pact quantized LSE prediction error
	past_ry	Ditab frState	past qualitized LSF prediction entri
	pitchSt		
tonStabState	count	Word16	count consecutive (potential) resonance frames
	gp	Word16[7]	pitch gain history
Pitch_frState	10_prev_subtrame	Word16	integer. pitch lag of previous subframe
gainQuantState	sf0_exp_gcode0	Word16	subframe 0/2 codebook gain exponent
	sf0_frac_gcode0	Word16	subframe 0/2 codebook gain fraction
	sf0_exp_target_en	Word16	subframe 0/2 target energy exponent
	sf0_frac_target_en	Word16	subframe 0/2 target energy fraction
	sf0_exp_coeff	Word16[5]	subframe 0/2 energy coefficient exponents
	sf0_frac_coeff	Word16[5]	subframe 0/2 energy coefficient fractions
	gain_idx_ptr	Word16*	pointer to gain index value in parameter frame
	gc_predSt	gc_predState	see below in this table
	gc_predUncSt	gc_predState	see below in this table
	adaptSt	GainAdaptState	see below in this table
gc_predState	past_qua_en	Word16[4]	MA predictor memory (20*log10(pred. error))
	past_qua_en_MR122	Word16[4]	MA predictor memory, 12.2 style (log2(pred. error))
GainAdaptState	onset	Word16	onset counter
	prev_alpha	Word16	previous adaptor output
	prev_gc	Word16	previous codebook gain
	ltpg_mem	Word16[5]	pitch gain history
pitchOLWghtState	old_T0_med	Word16	weighted open loop pitch lag
	ada w	Word16	weigthing level depeding on open loop pitch gain
	wght_flg	Word16	switches lag weighting on and off

Struct name	Variable	Type[Length]	Description
Speech_Decode_FrameSt	Ddecoder_amrState	Decoder_amrState	see below in this table
ate	post_state	Post_FilterState	see below in this table
	PpostHP_state	Post_ProcessState	see below in this table
	ComplexityCounter	int	Used for wMOPS counting
Decoder_amrState	old_exc	Word16[194]	excitation vector
	exc	Word16*	current excitation
	Isp_old	Word16[10]	LSP vector of previous frame
	mem_syn	Word16	synthesis filter memory
	old T0	Word16	nitch sharpening gain
	prev_bf	Word16	previous value of "bad frame" flag
	prev_pdf	Word16	previous value of "pot. dangerous frame" flag
	state	Word16	ECU state (06)
		Word16[9]	excitation energy history
	inBackgroundNoise	Word16	hackground poise flag
	voicedHandover	Word16	hangover flag
	ltpGainHistory	Word16[9]	pitch gain history
	background_state	Bgn_scdState	see below in this table
	Cb_gain_averState	Cb_gain_averageState	see below in this table
	lsp_avg State_st	lsp_avgState	see below in this table
	IstState	D_plsfState	see below in this table
	ec_gain_p_st	ec_gain_pitchState	see below in this table
	ec_gain_c_si	ac predState	see table 7
	nodataSeed	Word16	seed for CN generator
	ph_disp_st	ph_dispState	see below in this table
	dtxDecoderState	dtx_decState	see below in this table
dtx_decState	since_last_sid	Word16	number of frames since last SID frame
	true_sid_period_inv	Word16	inverse of true SID update rate
	log_en	Word16	logarithmic frame energy
	l pp seed ry	Word32	previous value of log_en
	lsn	Word16[10]	I SP vector
	lsp_old	Word16[10]	previous LSP vector
	lsf_hist	Word16[80]	LSF vector history (8 frames)
	lsf_hist_ptr	Word16	index to beginning of LSF history
	lsf_hist_mean	Word16[80]	mean-removed LSF history (8 frames)
	Isr_nist_mean_index	Word16	Index to beg. of mean-removed LSF history
	log_pg_mean	Word16[8]	logarithmic frame energy history
	log en hist ptr	Word16	index to beginning of log. frame energy history
	log_en_adjust	Word16	mode-dependent frame energy adjustment
	dtxHangoverCount	Word16	counts down in hangover period
	decAnaElapsedCount	Word16	counts elapsed speech frames after DTX
	sia_trame	Word16	Tags SID frames
	valiu_uata dtxHangover∆dded	Word16	flags hangover period at end of speech
	dtxGlobalState	enum DTXStateTvpe	DTX state flags
	data_updated	Word16	flags CNI updates
Bgn_scdState	frameEnergyHist	Word16[60]	history of synthesis frame energy
	bgHangover	Word16	number of frames since last speech frame
Cb_gain_averageState	cbGainHistory	Word16[7]	codebook gain history
	nangvar bangCount	Word16	counts length of talkspurt in subframes
Isp. avgState	Isp meanSave	Word16[10]	averaged I SP vector
D_plsfState	past_r_q	Word16[10]	past quantized LSF prediction vector
	past_lsf_q	Word16[10]	past dequantized LSF vector
ec_gain_pitchState	pbuf	Word16[5]	pitch gain history
	past_gain_pit	Word16	previous pitch gain (limited to 1.0)
ec dain codeState	prev_gp abut	Word16[5]	previous good pitch gain
ec_gain_codestate	past gain code	Word16	previous codebook gain
	prev qc	Word16	previous good codebook gain
		(continued)	

Table 8 (concluded): Speech decoder static variables

Struct name	Variable	Type[Length]	Description
ph_dispState	gainMem	Word16[5]	pitch gain history
	prevState	Word16	previously used impulse response
	prevCbGain	Word16	previous codebook gain
	lockFull	Word16	force maximum phase dispersion
	onset	Word16	onset counter
Post_FilterState	res2	Word16[40]	LP residual
	mem_syn_pst	Word16[10]	synthesis filter memory
	synth_buf	Word16[170]	synthesis filter work area
	agc_state	agcState	see below in this table
	preemph_state	preemphasisState	see below in this table
agcState	past_gain	Word16	past agc gain
preemphasisState	mem_pre	Word16	filter state
Post_ProcessState	y2_hi	Word16	filter state, upper word
	y2_lo	Word16	filter state, lower word
	y1_hi	Word16	filter state, upper word
	y1_lo	Word16	filter state, lower word
	x0	Word16	filter state
	x1	Word16	filter state

help.doc

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

		CHANGE F	REQI	JEST	Please page fo	see embedded help f r instructions on how	ile at the bottom of the to fill in this form corr	is ectly.
		06.75	CR	A00	1	Current Versi	on: 7.0.0	
GSM (AA.BB) or 3G	G (AA.BBB) specifica	ation number \uparrow		↑ c	CR number a	as allocated by MCC s	support team	
For submission	to: TSG-SA neeting # here ↑	<mark>#6 </mark>	oproval mation	X		strate non-strate	gic (for SM gic X use on	ЛG nly)
For Proposed chang (at least one should be n	rm: CR cover sheet, ve ge affects: narked with an X)	(U)SIM	The latest	t version of this	s form is availa	able from: ftp://ftp.3gpp.c	rg/Information/CR-Form	-v2.doc
Source:	TSG-S4/SM	1G11				Date:	16/10/99	
Subject:	Update of A	MR Transmission	<mark>ı Delay I</mark>	-igures				
Work item:	AMR							
Category:FA(only one categoryshall be markedCwith an X)	Correction Correspond Addition of Functional Editorial mo	ds to a correction i feature modification of fea odification	in an ea ature	rlier relea	ase	Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> change:	The propose approved A	ed modifications to MR TRAU frame t	o the AN formats,	AR trans as defin	mission led in 08	delay figures and 08.61.	re based on the	e
Clauses affected	<u>d:</u> 14							
Other specs affected:	Other 3G cor Other GSM c MS test spec BSS test spec O&M specific	e specifications ore specifications ifications cifications ations		\rightarrow List of \rightarrow List of \rightarrow List of \rightarrow List of \rightarrow List of	f CRs: f CRs: f CRs: f CRs: f CRs: f CRs:			
<u>Other</u> comments:								

<----- double-click here for help and instructions on how to create a CR.

14 Transmission Delay

Editor's Note 1: Section based on the content of Tdoc SMG11 158/99. This document was produced before a final agreement was reached on the format of the Abis and Ater TRAU frames. The final format could have a [small] impact on the delay figures presented below.

The transmission delay of a communication using AMR has been evaluated using the same method as for the previous GSM speech codecs [2, 3 & 4]. The reference system delay distribution for the downlink and uplink directions are provided in figures 14.1 and 14.2 respectively. The speech transcoders are assumed to be remote located from the BTS (16 kbit/s or 8 kbit/s sub-multiplexing on the Abis & Ater Interfaces).

Figure 14.2: Reference Uplink delay distribution

The definition of the different delay parameters is given in the following table. The table also provides the value used for the parameter when not dependent of the type of speech codec or sub-multiplexing scheme over the Abis & Ater interfaces.

Tabisd	Time required to transmit the minimum number of speech data bits over the downlink Abis interface to start encoding a radio speech frame. Depends on the speech codec mode, the TRAU frame format and the Abis/Ater sub multiplexing scheme. Note that most TRAU frame synchronization bits can ideally be transmitted by anticipation and are usually not included in this parameter.
Tabisu	Time required to transmit the minimum number of speech data bits over the uplink Abis interface to start decoding a speech frame. Depends on the speech codec mode, the TRAU frame format and the Abis/Ater sub-multiplexing scheme. Note that the TRAU frame synchronization bits can ideally be transmitted by anticipation and are usually not included in this parameter.
Ta/d	Delay in the analogue to digital converter in the uplink (implementation dependent). Set to 1ms [4].
Tbsc	Switching delay in the BSC (implementation dependent). Set to 0.5ms [2 & 4].
Tbuff	Buffering time required for the time alignment procedure for the in-band control of the remote transcoder. Set to 1.25 ms [2 & 4].
Td∕a	Delay in the digital to analogue converter in the downlink (implementation dependent). Set to 1ms [2 & 4].
Techo	Delay induced by the echo canceller (implementation dependent). Set to 1ms [2 & 4].
Tencode:	Processing delay required to perform the channel encoding (implementation dependent). Depends on the channel coding complexity of each codec mode.
Tmsc	Switching delay in the MSC (implementation dependent). Set to 0.5ms [2 & 4].
Tproc	Processing delay required to perform the speech decoding (implementation dependent). Depends on the speech decoding complexity of each codec mode.
Trftx	Time required for the transmission of a speech frame over the air interface. Derived from the radio framing structure and the interleaving scheme. Worst case is 37.5 ms in Full Rate mode and 32.5 ms in Half Rate mode [2 & 4].

GSM 06.75 version 7.0.0 release 99

MS Margin:

26

Trxproc	Processing delay required to perform the channel equalization, the channel decoding and SID-frame detection (implementation dependent). The channel decoding depends on the codec mode. The channel equalization part was set to 6.84 ms in Full Rate mode and 3.5 ms in Half Rate mode [4].								
Tsample	Duration of the segment of PCM speech samples operated on by the speech transcoder: 25 ms in all cases corresponding to 20 ms for the processed speech frame and 5 ms of look ahead.								
Tsps	Worst case processing delay required by the downlink speech encoder before an encoded bit can be sent over the Ater/Abis interface taking into account the speed on the Ater/Abis interface (implementation dependent). Depends on the speech coding complexity of each codec mode and on the sub-multiplexing rate on the Ater/Abis interface. Because of the priority given to the decoding, T <i>proc</i> is also added to the overall downlink transmission delay.								
T <i>transc</i>	MS speech encoder processing delay, from input of the last PCM sample to output of the final encoded bit (implementation dependent). For the evaluation of the transmission delay, it was assumed that the speech decoding has a higher priority than the speech encoding, i.e. this delay is artificially increased by the speech decoding delay.								
Margin	Implementation dependent margins in the different system components. Set as follows:								
	MSC Margin: $0.5 \text{ ms} [2 \& 4]$								
	BSC Margin: 0.5 ms [2 & 4]								
	BTS Margin: 0.45 ms downlink, 0.3 ms uplink [2 & 4]								

The processing delays were estimated using complexity figures for each codec mode. In addition, to take into account the dependence on the DSP implementation, the computation was based on the same methodology used for the previous GSM speech codecs [4].

The DSPs running the speech and channel codec are modeled with the 3 following parameters:

2 ms in Full Rate, 1.9 ms in Half Rate [2 & 4].

E represents the DSP Efficiency. This corresponds to the ratio tMOPS/wMOPS of the codec implementation on the DSP.

S represents for the speed of the DSP: Maximum Number of Operations that the DSP can run in 1 second. This number is expressed in MOPS.

P represents the percentage of DSP processing power assigned to the codec.

The processing delay of a task of complexity X (in wMOPS) can then be computed using the equation:

$$D = \frac{20X}{ESP}$$
 ms

For compatibility reasons, the same ESP parameter used for the EFR processing delays computation [4] was used: $ESP=25^{1}$.

The following tables provide the overall transmission delay parameters for each codec mode. The design objective for the Algorithmic Round Trip Transmission Delay (ARTD = 2Tsample + 2Trftx + Tabisu + Tabisd) was set to the EFR ARTD increased by 10 ms in Full Rate mode, and the GSM HR ARTD increased by 10 ms in Half Rate mode.

Tables 14.1 and 14.2 define the parameters impacting the computation of the transmission delays over the Abis/Ater interfaces (*Tabisu* & *Tabisd*) for the 16 kbit/s and 8kbit/s sub-multiplexing schemes respectively. The definition of different parameters is provided below. They are derived from the AMR TRAU frame format provided in [5 & 6].

Min # of bits: Minimum number of speech bits required to start the next operation (speech decoding in uplink or channel encoding in downlink).

Sync. bits: Additional synchronization bits in the TRAU frame (synchronization header not included) before reaching the last required bit.

Min # Data: Rank of the last required bit in the TRAU frame.

Anticip.: Number of bits that can be sent by anticipation.

¹ This ESP value was derived in 1996, during the EFR standardization. It is based on a 40 MHz DSP, with an efficiency of 1 and a 60% CPU availability. All processing delays would be improved assuming DSP performances corresponding to the state of the art of DSP technology.

Requir.: Resulting number of bits that must be received (Min #Data - # Anticip.).

	м	lode	Min # of bits	Sync. bits	Min # Data	# anticip.	# Requir.	Tabisu	Mode	Min # of bits	Sync. bits	Min # Data	# anticip.	# Requir.	Tabisu
F	ull	12.2		6	143	38	105	6.625	12.2	94	6	139	33	106	6.625
Ra	ate	10.2		6	144	38	106	6.625	10.2	75	5	119	33	86	5.375
1	6k	7.95		6	144	38	106	6.625	7.95	64	4	107	33	74	4.625
L	Jpl	7.4		6	144	38	106	6.625	7.4	61	4	104	33	71	4.5
		6.7		6	144	38	106	6.625	6.7	58	4	101	33	70	4.375
		5.9		6	144	38	106	6.625	5.9	54	3	96	33	65	4.125
		5.15		6	144	38	106	6.625	5.15	49	3	91	33	60	3.75
		4.75		6	144	38	106	6.625	4.75	51	3	93	33	62	3.875
-					N				-						
				Min #	iviin #					Min #	iviin #				
	_		Mode	Min # of bits	Min # Data	# anticip.	# Requir.	Tabisd	Mode	Min # of bits	Min # Data	# antici	p. #Requ	uir. Tabisc	<u>I_</u>
	Г	Full	Mode 12.2	Min # of bits	Data 316	# anticip. 43	# Requir. 273	Tabisd 17.125	Mode 12.2	Min # of bits 256	Data 312	# antici 39	p. # Req u 273	uir. Tabiso 17.12	1 5
	ſ	Full Rate	Mode 12.2 10.2	Min # of bits	Min # Data 316 316	# anticip. 43 43	# Requir. 273 273	Tabisd 17.125 17.125	Mode 12.2 10.2	Min # of bits 256 216	Data 312 312	# antici 39 82	p. # Req u 273 230	uir. Tabiso 17.12 14.37	1 5
	ſ	Full Rate 16k	Mode 12.2 10.2 7.95	Min # of bits	Data 316 316 259	# anticip. 43 43 43 43	# Requir. 273 273 216	Tabisd 17.125 17.125 13.5	Mode 12.2 10.2 7.95	Min # of bits 256 216 171	Data 312 312 312 312	# antici 39 82 130	i p. # Requ 273 230 182	uir. Tabisc 17.12 14.37 11.37	1 5 5 5
	ſ	Full Rate 16k Dwnl	Mode 12.2 10.2 7.95 7.4	Min # of bits	Data 316 316 259 250	# anticip. 43 43 43 43 43 43	# Requir. 273 273 216 207	Tabisd 17.125 17.125 13.5 13	Mode 12.2 10.2 7.95 7.4	Min # of bits 256 216 171 160	Data 312 312 312 312 312	# antici 39 82 130 141	p. # Requ 273 230 182 171	uir. Tabisc 17.12 14.37 11.37 10.7	1 5 5 5 5
		Full Rate 16k Dwnl	Mode 12.2 10.2 7.95 7.4 6.7	Min # of bits	Min # Data 316 316 259 250 238	# anticip. 43 43 43 43 43 43	# Requir. 273 273 216 207 195	Tabisd 17.125 17.125 13.5 13 12.25	Mode 12.2 10.2 7.95 7.4 6.7	Min # of bits 256 216 171 160 146	Min # Data 312 312 312 312 312 312 312	# antici 39 82 130 141 156	p. # Requ 273 230 182 171 156	uir. Tabisc 17.12 14.37 11.37 10.7 9.7	
		Full Rate 16k Dwnl	Mode 12.2 10.2 7.95 7.4 6.7 5.9	Min # of bits	Min # Data 316 316 259 250 238 230	# anticip. 43 43 43 43 43 43 43	# Requir. 273 273 216 207 195 187	Tabisd 17.125 17.125 13.5 13 12.25 11.75	Mode 12.2 10.2 7.95 7.4 6.7 5.9	Min # of bits 256 216 171 160 146 130	Min # Data 312 312 312 312 312 312 312 312	# antici 39 82 130 141 156 173	p. # Requ 273 230 182 171 156 139	uir. Tabisc 17.12 14.37 11.37 10.7 9.7 8.7	1 5 5 5 5 5 5 5 5
		Full Rate 16k Dwnl	Mode 12.2 10.2 7.95 7.4 6.7 5.9 5.15	Min # of bits	Min # Data 316 316 259 250 238 230 215	# anticip. 43 43 43 43 43 43 43 43 43 43 43 43	# Requir. 273 273 216 207 195 187 172	Tabisd 17.125 17.125 13.5 13 12.25 11.75 10.75	Mode 12.2 10.2 7.95 7.4 6.7 5.9 5.15	Min # of bits 256 216 171 160 146 130 115	Min # Data 312 312 312 312 312 312 312 312 312	# antici 39 82 130 141 156 173 189	p. # Requ 273 230 182 171 156 139 123	uir. Tabisc 17.12 14.37 11.37 10.7 9.7 8.7 7.7	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 14.1: Tabisu (ms) & Tabisd (ms) computation tables for the 16 kbit/s sub-multiplexing scheme

	Mada	Min #	Sync.	Min #	# ontioin	# Domuin	Tabiau		Mede	Min #	Sync.	Min #	# ontioin	# Doguin	Tabiau
· · · · ·	wode	OT DIES	DITS	Data	# anticip.	# Requir.	T abisu		wode	OT DIES	DITS	Data	# anticip.	# Requir.	T abisu
Half	7.95	-	-	-	-	-	-	Half	7.95	-	-	-	-	-	-
Rate	7.4			70	3	67	8.375	Rate	7.4	58	0	72	2	70	8.75
8k	6.7			76	9	67	8.375	8k	6.7	55	0	75	12	63	7.875
Upl	5.9			77	17	60	7.5	Upl	5.9	51	0	77	12	65	8.125
	5.15			77	22	55	6.875		5.15	46	0	68	12	56	7
	4.75			77	20	57	7.125		4.75	48	0	70	12	58	7.25
			Min #	Min #						Min #	Min #				
		Mode	of bits	Data	# anticip.	# Requir.	Tabisd		Mode	of bits	Data	# antic	ip. #Requ	ir. Tabiso	b
	Half	7.95	-	-	-	-	-	Half	7.95	-	-	-	-	-	
	Rate	7.4		160	3	157	19.625	Rate	7.4	148	174	12	162	20.2	5
	8k	6.7		160	9	151	18.875	8k	6.7	134	160	22	138	17.2	5
	Dwnl	5.9		158	17	141	17.625	Dwnl	5.9	118	160	22	138	17.2	5
		5.15		157	22	135	16.875		5.15	103	160	39	121	15.12	5
		4.75		147	20	127	15.875		4.75	95	160	47	113	14.12	5

Table 14.2: Tabisu (ms) & Tabisd (ms) computation tables for the 8 kbit/s sub-multiplexing scheme

Tables 14.3 and 14.4 provide the overall Uplink and Downlink transmission delay for the different Full Rate codec modes using a 16 kbit/s sub-multiplexing scheme.

Tables 14.5 and 14.6 provide the overall Uplink and Downlink transmission delay for the different Half Rate codec modes using a 16 kbit/s sub-multiplexing scheme.

Tables 14.7 and 14.8 provide the overall Uplink and Downlink transmission delay for the different Half Rate codec modes using an 8 kbit/s sub-multiplexing scheme.

	U	_ FR 16k														
	D	elay Parameter	12.2	10.2	7.95	7.4	6.	7 !	5.9	5.15	4.75	F	R E	FR		
MSC		Tmsc	0.5	0.5	0.5	0.5	0.	5 (0.5	0.5	0.5	0.	5 ().5		
		Margin	0.5	0.5	0.5	0.5	0.	5 (0.5	0.5	0.5	0.	5 ().5		
BSC		Tbsc	0.5	0.5	0.5	0.5	0.	5 (0.5	0.5	0.5	0.	5 ().5		
		Tproc	1.8160	1.8320	1.9920) 1.760	2.36	600 2.	024	2.0160	2.0160) 1.	5 1	.27		
		Margin	0.5	0.5	0.5	0.5	0.	5 (0.5	0.5	0.5	0.	5 ().5		
BTS		Tabisu	6.625	6.625	6.625	6.6	6.6	25 6.	625	6.63	6.625	4	6.4	375		
		Trxproc eq	6.84	6.84	6.84	6.84	4 6.8	34 6	.84	6.84	6.84	8.	8 6	.84		
	٦	rxproc ch. dec.	1.9360	1.7440	3.880	1.328	30 0.25	560 0.2	2400	0.232	0.2320) () 1	.96		
		Margin	3	3	3	3	3	3	3	3	3	3	3	3		
		Trftx	37.5	37.5	37.5	37.5	5 37	.5 3	7.5	37.5	37.5	37	.5 3	7.5		
MS		Tencode	0.272	0.288	0.248	0.23	2 0.2	56 0	.24	0.232	0.232	1.	6 0	.32		
		Ttransc	12.976	12.680	13.256	5 12.10	04 13.	50 11.	0240	9.6560	11.240) 8	3 12	2.17		
		Tsample	25	25	25	25	2	5	25	25	25	2		20		
		Tmargin	2	2	2	2	2	2	2	2	2	2	2	2		
		Ta/d	1	1	1	1	1		1	1	1	1		1		
		Total Uplink	101.0	100.5	103.3	99.4	4 100).3 9	7.5	96.1	97.7	89	.4 9	4.5		
			L	IL FR 16k												
			C	elay Para	meter	12.2	10.2	7.95	7.4	6.	7 !	5.9	5.15	4.75	FR	EFR
			MSC		Tmsc	0.5	0.5	0.5	0.5	0.	5 ().5	0.5	0.5	0.5	0.5
				Ν	Margin	0.5	0.5	0.5	0.5	0.	5 ().5	0.5	0.5	0.5	0.5
			BSC		Tbsc	0.5	0.5	0.5	0.5	0.	5 ().5	0.5	0.5	0.5	0.5
					Tproc	1.5632	1.5328	1.6072	1.516	58 1.58	388 1.	564	1.5624	1.5664	1.5	1.27
				N	Margin	0.5	0.5	0.5	0.5	0.	5 ().5	0.5	0.5	0.5	0.5
			BTS	_ 1	Tabisu	6.625	5.375	4.625	4.5	4.3	75 4.	125	3.75	3.875	4	6.4375
			\vdash	Trxp	roc eq	6.84	6.84	6.84	6.84	4 6.8	34 6	.84	6.84	6.84	8.8	6.84
				I rxproc ch	n. dec.	1.6848	1.5504	3.408	1.170	JA 1.12	288 2.7	224	0.936	2.2568	0	1.96
			\square	ľ	Viargin	3	3	3	3		5	3	3	3	3	3
				- -		31.5	37.5	37.5	37.5	37	.5 3	1.5	37.5	37.5	37.5	37.5
			MS	le -	ncoae	0.23/6	0.25/6	0.2168	0.2	0.2	184 0.2	2016	0.2072	0.1952	1.6	0.32
					transc	11.379	11.127	11.714	10.95	50 11.	ор 9.1 г	912	8.6912	10.250	8	12.17
					ampie	25	25	25	25	2		25	25	25	20	20
				Ir	nargin	2	2	2	2	2	2	∠	2	2	2	2
				Total	I a/d	1	1	1	1	7 00	2 0	57	1	1 05 F	1	04.5
		T -1.1. () (оршик_	90.0	91.2	96.9	93.7	96	.5 9	U.1	92.5	95.5	69.4	94.5
		Table 14.3	3: Upl	ink Trai	nsmis	sion D	elay ii	n Full	Rate	Mode	(<u>in m</u>	s & 1	6 KDI	/s sub	-multip	plexing

[DL FR 16k														
[elay Parameter	12.2	10.2	7.95	7.4	6.	7 5	5.9	5.15	4.75	FI	R E	FR		
MSC	Techo	1	1	1	1	1	[1	1	1	1		1		
	Tmsc	0.5	0.5	0.5	0.5	6 0.	5 ().5	0.5	0.5	0.	5 ().5		
	Margin	0.5	0.5	0.5	0.5	6 0.	5 ().5	0.5	0.5	0.	5 ().5		
BSC	Tbsc	0.5	0.5	0.5	0.5	6 O.	5 ().5	0.5	0.5	0.	5 ().5		
	Tsample	25	25	25	25	2	5 2	25	25	25	2	0 2	20		
	Tsps	2.28	2.28	2.28	2.2	8 2.2	28 2	.28	2.28	2.28	1.	6 2	2.3		
	Tproc (Tsps)	1.816	0 1.8320	1.9920) 1.76	00 2.36	500 2.	024	2.0160	2.016	0				
	Tabisd	17.12	5 17.125	13.5	13	12.	25 11	1.75	10.75	10.12	5 17	.4 17	.375		
	Margin	0.5	0.5	0.5	0.5	6 0.	5 ().5	0.5	0.5	0.	5 ().5		
BTS	Tbuff	1.25	1.25	1.25	1.2	5 1.2	25 1	.25	1.25	1.25	1.2	25 1	.25		
	Tencode	0.272	2 0.288	0.248	0.23	2 0.2	56 0	.24	0.232	0.232	2 1.	6 1	.6		
	Margin	0.45	0.45	0.45	0.4	5 0.4	45 0	.45	0.45	0.45	0.4	45 0	.45		
	Trftx	37.5	37.5	37.5	37.	5 37	.5 3	7.5	37.5	37.5	37	.5 3	7.5		
MS	Trxproc eq	6.84	6.84	6.84	6.84	4 6.8	34 6	.84	6.84	6.84	8.	8 6	.84		
	Trxproc ch. dec.	1.936	5 1.744	3.88	1.32	.8 0.2	56 0	.24	0.232	0.232	2 0) 1	.96		
	Tproc	1.816	5 1.832	1.992	1.70	6 2.3	36 2.	024	2.016	2.016	5 1.	5 1	.27		
	Margin	2	2	2	2	2	2	2	2	2	2	2	2		
	Td/a	1	1	1	1	1		1	1	1	1		1		
	Total Downlink	102.3	3 102.1	100.9	97.4	4 96	.8 9	5.6	94.6	93.9	96	.1 9	6.5		
			DL FR 16k												
			Delay Para	meter	12.2	10.2	7.95	7.4	6.	7	5.9	5.15	4.75	FR	EFR
		MSC	-	Techo	1	1	1	1	1		1	1	1	1	1
				Tmsc	0.5	0.5	0.5	0.5	0.	5	0.5	0.5	0.5	0.5	0.5
			Ν	/largin	0.5	0.5	0.5	0.5	0.	5	0.5	0.5	0.5	0.5	0.5
		BSC		Tbsc	0.5	0.5	0.5	0.5	0.	5	0.5	0.5	0.5	0.5	0.5
			Ts	ample	25	25	25	25	2	5	25	25	25	20	20
				Tsps	2.28	2.28	2.28	2.28	3 2.2	28 2	2.28	2.28	2.28	1.6	2.3
			Tproc (Tsps)	1.5632	1.5328	1.6072	1.516	68 1.58	388 1	.564	1.5624	1.5664		
			Т	abisd	17.125	14.375	11.375	10.7	5 9.7	75 8	3.75	7.75	7.125	17.4	17.375
			<u>N</u>	Aargin	0.5	0.5	0.5	0.5	.	5	0.5	0.5	0.5	0.5	0.5
		BTS		Tbuff	1.25	1.25	1.25	1.25	5 1.2	25 1	.25	1.25	1.25	1.25	1.25
			Tei	ncode	0.2376	0.2576	0.2168	0.2	0.21	184 0.	2016	0.2072	0.1952	1.6	1.6
			Ν	/largin	0.45	0.45	0.45	0.45	5 0.4	45 ().45	0.45	0.45	0.45	0.45
				Trftx	37.5	37.5	37.5	37.5	5 37	.5 3	37.5	37.5	37.5	37.5	37.5
		MS	Trxpr	oc eq	6.84	6.84	6.84	6.84	l 6.8	84 6	5.84	6.84	6.84	8.8	6.84
			Trxproc ch	n. dec.	1.6848	1.5504	3.408	1.170	04 1.12	288 2.	7224	0.936	2.2568	0	1.96
			·	Tproc	1.5632	1.5328	1.6072	1.516	58 1.58	388 1	.564	1.5624	1.5664	1.5	1.27
			Ν	largin	2	2	2	2	2	2	2	2	2	2	2
				Td/a	1	1	1	1	1		1	1	1	1	1
			Total Do	wnlink	101.5	98.6	97.5	94.5	5 93	.6 9	94.1	91.3	92.0	96.1	96.5

 Table 14.4: Downlink Transmission Delay in Full Rate Mode (in ms & 16 kbit/s sub-multiplexing scheme)

	U	HR16k												
	D	elay Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR	EFR	HR			
MSC		Tmsc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
		Margin	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
BSC		Tbsc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
		Tproc	1.9920	1.7600	2.3600	2.0240	2.0160	2.0160	1.5	1.27	1.71			
		Margin	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5			
BTS		Tabisu	6.625	6.6	6.625	6.625	6.63	6.625	4	6.4375	4.8125			
		Trxproc eq	3.5	3.5	3.5	3.5	3.5	3.5	8.8	6.84	3.5			
	٦	rxproc ch. dec.	1.1040	1.0800	1.0000	0.9440	0.9120	2.1280	0	1.96	2.3			
		Margin	3	3	3	3	3	3	3	3	3			
		Trftx	32.9	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9			
MS		Tencode	0.152	0.152	0.144	0.136	0.144	0.136	1.6	0.32	0.16			
		Ttransc	13.256	12.104	13.50	11.0240	9.6560	11.240	8	12.17	15.6			
		Tsample	25	25	25	25	25	25	20	20	24.4			
		Tmargin	1.9	1.9	1.9	1.9	1.9	1.9	2	2	1.9			
		Ta/d	1	1	1	1	1	1	1	1	1			
		Total Uplink	92.4	91.0	92.9	90.1	88.7	91.4	89.4	94.5	93.3			
				ULHR	16k									
				Delay	Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR	EFR	HR
			MSC	;	Tms	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
					Margii	n 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			BSC	;	Tbse	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
					Tpro	1.6072	1.5168	1.5888	1.5640	1.5624	1.5664	1.5	1.27	1.71
					Margii	n 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
			BTS	5	Tabis	J 4.625	4.5	4.375	4.125	3.75	3.875	4	6.4375	4.8125
				· ·	Trxproc ed	3.5	3.5	3.5	3.5	3.5	3.5	8.8	6.84	3.5
				Trxpr	oc ch. dec	. 1.8928	0.9312	0.9104	0.8448	0.7984	0.7696	0	1.96	2.3
					Margii	n 3	3	3	3	3	3	3	3	3
					Trft	x 32.9	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9
			MS	5	Tencode	e 0.1368	0.1328	0.1216	0.1144	0.128	0.1192	1.6	0.32	0.16
					Ttranse	11.714	10.950	11.66	9.7912	8.6912	10.250	8	12.17	15.6
				1	Tsample	e 25	25	25	25	25	25	20	20	24.4
				1	Tmargii	n 1.9	1.9	1.9	1.9	1.9	1.9	2	2	1.9
				1	Ta/o	1 1	1	1	1	1	1	1	1	1
				T	otal Uplin	k 89.3	87.3	88.0	85.7	84.2	85.9	89.4	94.5	93.3
				. –								1.1.1		

Table 14.5: Uplink Transmission Delay in Half Rate Mode (in ms & 16 kbit/s sub-multiplexing scheme)

	D	L HR 16k									
	D	elay Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR	EFR	HR
MSC		Techo	1	1	1	1	1	1	1	1	1
		Tmsc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		Margin	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BSC		Tbsc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		Tsample	25	25	25	25	25	25	20	20	24.4
		Tsps	1.74	1.74	1.74	1.74	1.74	1.74	1.6	2.3	7.8
		Tproc (Tsps)	1.992	1.76	2.36	2.024	2.016	2.016	0	0	0
		Tabisd	13.5	13	12.25	11.75	10.75	10.125	17.4	17.375	8.375
		Margin	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BTS		Tbuff	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
		Tencode	0.152	0.152	0.144	0.136	0.144	0.136	1.6	1.6	0.16
		Margin	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Trftx	32.9	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9
MS		Trxproc eq	3.5	3.5	3.5	3.5	3.5	3.5	8.8	6.84	3.5
	٦	rxproc ch. dec.	1.104	1.08	1	0.944	0.912	2.128	0	1.96	2.3
		Tproc	1.9920	1.7600	2.3600	2.0240	2.0160	2.0160	1.5	1.27	1.71
		Margin	1.9	1.9	1.9	1.9	1.9	1.9	2	2	1.9
		Td/a	1	1	1	1	1	1	1	1	1
		Total Downlink	89.5	88.5	88.9	87.6	86.6	87.2	96.1	96.5	88.7

	DL HR 16k									
	Delay Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR	EFR	HR
MSC	Techo	1	1	1	1	1	1	1	1	1
	Tmsc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Margin	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BSC	Tbsc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Tsample	25	25	25	25	25	25	20	20	24.4
	Tsps	2.1508	2.1508	2.1508	2.1508	2.1508	2.1508	1.6	2.3	7.8
	Tproc (Tsps)	1.6072	1.5168	1.5888	1.564	1.5624	1.5664	0	0	0
	Tabisd	11.375	10.75	9.75	8.75	7.75	7.125	17.4	17.375	8.375
	Margin	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BTS	Tbuff	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
	Tencode	0.1368	0.1328	0.1216	0.1144	0.128	0.1192	1.6	1.6	0.16
	Margin	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Trftx	32.9	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9
MS	Trxproc eq	3.5	3.5	3.5	3.5	3.5	3.5	8.8	6.84	3.5
	Trxproc ch. dec.	1.8928	0.9312	0.9104	0.8448	0.7984	0.7696	0	1.96	2.3
	Tproc	1.6072	1.5168	1.5888	1.5640	1.5624	1.5664	1.5	1.27	1.71
	Margin	1.9	1.9	1.9	1.9	1.9	1.9	2	2	1.9
	Td/a	1	1	1	1	1	1	1	1	1
-	Total Downlink	87.8	86.0	85 1	84.0	83.0	82.3	96.1	96.5	88.7

Table 14.6: Downlink Transmission Delay in Half Rate Mode (in ms & 16 kbit/s sub-multiplexing
scheme)

HR 0.5 0.5 0.5 1.71 0.5 9.75 3.5 2.3 3 32.9 0.16 15.6 24.4

1.9

1

1

I	UL HR8k											
	Delay Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR/16k	EFR/16k	HR		
NSC	Tmsc	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
	Margin	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
BSC	Tbsc	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
	Tproc	-	1.7600	2.3600	2.0240	2.0160	2.0160	1.5	1.27	1.71		
	Margin	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		
BTS	Tabisu	-	8.38	8.375	7.500	7	7.13	4	6.4375	9.75		
	Trxproc eq	-	3.5	3.5	3.5	3.5	3.5	8.8	6.84	3.5		
	Trxproc ch. dec.	-	1.0800	1.0000	0.9440	0.9120	2.1280	0	1.96	2.3		
	Margin	-	3	3	3	3	3	3	3	3		
	Trftx	-	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9		
MS	Tencode	-	0.152	0.144	0.136	0.144	0.136	1.6	0.32	0.16		
	Ttransc	-	12.104	13.50	11.0240	9.6560	11.240	8	12.17	15.6		
	Tsample	-	25	25	25	25	25	20	20	24.4		
	Tmargin	-	1.9	1.9	1.9	1.9	1.9	2	2	1.9		
	Ta/d	-	1	1	1	1	1	1	1	1		
	Total Uplink	N/A	92.8	94.7	90.9	88.9	91.9	89.4	94.5	98.2		
			UL HR	8k								
			Delay I	Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR/16k	EFR/16
		MSC	;	Tmso	- (0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Margir	n -	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		BSC	;	Tbso	- 1	0.5	0.5	0.5	0.5	0.5	0.5	0.5
				Tproc	- 1	1.5168	1.5888	1.5640	1.5624	1.5664	1.5	1.27
				Margir	n -	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		BTS	5	Tabisu	- I	8.75	7.875	8.125	7	7.25	4	6.4375
				Trxproc ec	- I	3.5	3.5	3.5	3.5	3.5	8.8	6.84
			Trxpro	oc ch. dec		0.9312	0.9104	0.8448	0.7984	0.7696	0	1.96
				Margir	า -	3	3	3	3	3	3	3
				Trft	< -	32.9	32.9	32.9	32.9	32.9	37.5	37.5
		MS	5	Tencode	e -	0.1328	0.1216	0.1144	0.128	0.1192	1.6	0.32
				Ttranso	- 1	10.950	11.66	9.7912	8.6912	10.250	8	12.17
				Tsample	- 19	25	25	25	25	25	20	20
			1	Tmargir	n - I	1.9	1.9	1.9	1.9	1.9	2	2

1

Ta/d

Total Uplink N/A 91.6 91.5 89.7 87.5 89.3 89.4 94.5 98.2 Table 14.7: Uplink Transmission Delay in Half Rate Mode (in ms & 8 kbit/s sub-multiplexing scheme)

1

1

1

1

1

	D	elay Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR/16k	EFR/16k	HR
MSC		Techo	-	1	1	1	1	1	1	1	1
		Tmsc	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		Margin	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BSC		Tbsc	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
		Tsample	-	25	25	25	25	25	20	20	24.4
		Tsps	-	1.61	1.61	1.61	1.61	1.61	1.6	2.3	4.3
		Tproc (Tsps)	-								
		Tabisd	-	19.625	18.875	17.625	16.875	15.875	17.4	17.375	17.5
		Margin	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BTS		Tbuff	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
		Tencode	-	0.152	0.144	0.136	0.144	0.136	1.6	1.6	0.16
		Margin	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
		Trftx	-	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9
MS		Trxproc eq	-	3.5	3.5	3.5	3.5	3.5	6.84	8.8	3.5
	٦	rxproc ch. dec.	-	1.08	1	0.944	0.912	2.128	1.96	0	2.3
		Tproc	-	1.7600	2.3600	2.0240	2.0160	2.0160	1.5	1.27	1.71
		Margin	-	1.9	1.99	1.9	1.9	1.9	2	2	1.9
		Td/a	-	1	1	1	1	1	1	1	1
		Total Downlink	N/A	93.2	93.1	91.3	90.6	90.8	96.1	96.5	94.4

	DL HR 8k									
	Delay Parameter	7.95	7.4	6.7	5.9	5.15	4.75	FR/16k	EFR/16k	HR
MSC	Techo	-	1	1	1	1	1	1	1	1
	Tmsc	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Margin	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BSC	Tbsc	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Tsample	-	25	25	25	25	25	20	20	24.4
	Tsps	-	10	10	10	10	10	1.6	2.3	4.3
	Tproc (Tsps)	-								
	Tabisd	-	20.25	17.25	17.25	15.125	14.125	17.4	17.375	17.5
	Margin	-	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
BTS	Tbuff	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
	Tencode	-	0.1328	0.1216	0.1144	0.128	0.1192	1.6	1.6	0.16
	Margin	-	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
	Trftx	-	32.9	32.9	32.9	32.9	32.9	37.5	37.5	32.9
MS	Trxproc eq	-	3.5	3.5	3.5	3.5	3.5	6.84	8.8	3.5
	Trxproc ch. dec.	-	0.9312	0.9104	0.8448	0.7984	0.7696	1.96	0	2.3
	Tproc	-	1.5168	1.5888	1.5640	1.5624	1.5664	1.5	1.27	1.71
	Margin	-	1.9	1.99	1.9	1.9	1.9	2	2	1.9
	Td/a	-	1	1	1	1	1	1	1	1
	Total Downlink	N/A	101.8	99.0	98.8	96.6	95.6	96.1	96.5	94.4

Table 14.8: Downlink Transmission Delay in-Half Rate Mode -(<u>in ms &</u> 8 kbit/s sub-multiplexing scheme)

15 Frequency Response

NOTE: The frequency response is essentially given as a piece of additional information. It should not be used to qualify the codec performances in terms of perceived quality or DTMF transparency.

The frequency response of the AMR codec was evaluated by computing the logarithmic gain of the frequency response of each codec mode, according to the following equation:

Gain_{dB} =
$$10\log_{10} \left[\sum_{k=1}^{M} out(k)^2 / \sum_{k=1}^{M} inp(k)^2\right]$$

where inp(k) and out(k) are the input (original) and output (processed) signals and M is the total number of processed samples.

The frequency response was computed for all 8 codec modes (12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.15 and 4.75 kbit/s), in error-free condition, with DTX disabled. Tone signals were generated and processed in the range 50-3998 Hz with a frequency step of 21 Hz. Each tone lasted 8 seconds at a level of –26 dBovl. In order to discard potential transition

Joint SMG11/TSG-SA4 Meeting #13 / #8 Kyoto, Japan, 6-10 December 1999

help.doc

Document	S4-99454R
e.g	1. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

	С	HANGE I	REQI	JEST 🖁	Please see embedded help age for instructions on ho	o file at the bottom of this w to fill in this form correct	ly.
		06.93	CR	A006Re	v1 Current Vers	sion: 7.2.0	
GSM (AA.BB) or 3G (AA.BBB) specification	number 1		↑ CR nu	mber as allocated by MCC	C support team	
For submission to	D: TSG-SA#6 eting # here ↑	for a for infor	oproval mation	X	Strat non-strat	egic (for SMG egic X use only)	1
Proposed change (at least one should be ma	e affects: arked with an X)		ME	X UTF	RAN / Radio	Core Network	X
<u>Source:</u>	TSG-SA WG4	Codec			Date	<u>16.12.1999</u>	
<u>Subject:</u>	Editorial clarificat handover.	cations concern	ning RAT	SCCH and	RX/TX DTX hand	er synchronisation	١
Work item:	AMR						
Category:FA(only one categoryshall be markedCwith an X)	Correction Corresponds t Addition of fea Functional mo Editorial modif	o a correction ature dification of fea fication	in an eai ature	lier release	Release: X	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> <u>change:</u>	The block diag signal flow fror Editorial clarifi Correction of e	ram displaying n TX RSS to T cation of TX D ditorial mistake	the tran X DTX h X handl s	smit side DT andler. er operation	TX functions need during handover.	to reflect the contr	ol
Clauses affected	<mark>5, 5.1.1, 5</mark>	5 <mark>.1.2.1, 5.1.2.4</mark> ,	<u>6.1.1,</u> 6	.1.2			
Other specs Affected: M E	Other 3G core s Other GSM core AS test specific BSS test specifi D&M specification	pecifications specifications ations cations ons		$\begin{array}{l} \rightarrow \ \text{List of CR} \\ \rightarrow \ \text{List of CR} \end{array}$	25: 25: 25: 25: 25:		
Other comments:							

<----- double-click here for help and instructions on how to create a CR.

5 Transmit (TX) side

A block diagram of the transmit side DTX functions is shown in figure 1.

Figure 1: Block diagram of the transmit side DTX functions

5.1.1 Functions of the TX DTX handler

To allow an exact verification of the TX DTX handler functions, all frames before the reset of the system are treated as if there were speech frames of an infinitely long time. Therefore, and in order to ensure the correct estimation of comfort noise parameters at RX DTX side, the first 7 frames after the reset or after enabling the DTX operation shall always be marked with TX_TYPE= "SPEECH_GOOD ", even if VAD flag ="0" (hangover period, see figure 2).

The Voice Activity Detector (VAD) shall operate all the time in order to assess whether the input signal contains speech or not. The output is a binary flag (VAD flag ="1" or VAD flag ="0", respectively) on a frame by frame basis (see GSM 06.94).

The VAD flag controls indirectly, via the TX DTX handler operations described below, the overall DTX operation on the transmit side.

Whenever VAD flag ="1", the speech encoder output frame along with mode information shall be passed directly to the radio subsystem (RSS), marked with $TX_TYPE =$ " SPEECH_GOOD "

At the end of a speech burst (transition VAD flag ="1" to VAD flag ="0"), it takes 8 consecutive frames to make a new updated SID analysis available at receiver side (see GSM 06.92). Normally, the first 7 speech encoder output frames after the end of the speech burst shall therefore be passed directly to the RSS, marked with TX_TYPE =" SPEECH_GOOD " ("hangover period"). The end of the speech is then indicated by passing frame 8 after the end of the speech burst to the RSS, marked with TX_TYPE = "SID_FIRST" (see figure 2).

TX Types: "S" = SPEECH; "F" = SID_FIRST; "U" = "SID_UPDATE; "N" = NO DATA N_{elapsed}: No. of elapsed frames since last SID_UPDATE

Figure 2: Normal hangover procedure (N_{elapsed} > 23)

If, however, at the end of the speech burst, less than 24 frames have elapsed since the last SID_UPDATE frame was computed and passed to the RSS, then this last analysed SID_UPDATE frame shall repeatedly be passed to the RSS whenever a SID_UPDATE frame is to be produced, until a new updated SID analysis is available (8 consecutive frames marked with VAD flag ="0"). This reduces the activity on the air in cases where short background noise spikes are taken for speech, by avoiding the "hangover" waiting for the SID frame computation.

Once the first SID analysis after the end of a speech burst has been computed and the SID_FIRST frame has been passed to the Radio Subsystem, the TX DTX handler shall at regular intervals compute and pass updated SID_UPDATE (Comfort Noise) frames to the Radio Subsystem (RSS) as long as VAD flag = "0". SID_UPDATE frames shall be generated every 8th frame. The first SID_UPDATE shall be sent as the third frame after the SID_FIRST frame.

The speech encoder is operated in full speech modality if TX_TYPE = " SPEECH_GOOD " and otherwise in a simplified mode, because not all encoder functions are required for the evaluation of comfort noise parameters and because comfort noise parameters are only to be generated at certain times.

In order to ensure TX/RX DTX handler synchronisation at handover, the uplink TX DTX handler in the MS shall accept messages from TX RSS with control parameter NSYNC, resulting in the following operation during the next NSYNC frames:

- The TX DTX handler shall send SID_UPDATE instead of NO_DATA frames to the TX RSS.
- <u>Whenever</u>If, during that period VAD flag = 1, then the TX DTX handler shall continue to produce SPEECH frames for at least the rest of the period and, in addition, the hangover period.

5.1.2.1 Functions of the TX Radio Subsystem for TCH/AFS

The TX Radio Subsystem operates in the following way regarding DTX (without TFO):

- -all frames marked with TX_TYPE = " SPEECH_GOOD " are scheduled for normal channel coding and transmission. The frame format for CHE operation shall be SPEECH. If, however, the previous frame was not of TX_TYPE = "SPEECH_GOOD" or of TX_TYPE = "SID_FIRST", an ONSET frame format followed by SPEECH_GOOD shall be signalled to the CHE;
- -for frames marked with TX_TYPE = "SID_FIRST" a SID_FIRST frame format is signalled to the CHE. Note: Normally, only the first 4 TDMA frames carrying bits of this frame (and carrying the second half of the preceding SPEECH frame) shall be transmitted. The remaining bits of the SID_FIRST frame pre-set the interleaver buffer with a special bit pattern for the case a frame marked with TX_TYPE = "SPEECH_GOOD" is immediately following;
- frames marked with TX_TYPE = "SID_UPDATE" are scheduled for SID_UPDATE frame channel coding and transmission. The frame format signalled to CHE is SID_UPDATE;

for frames marked with TX_TYPE = "NO_DATA" no processing or transmission is carried out.

When operating in non-speech after a handover the GSM MS shall schedule its most recent SID_UPDATE frame instead of the first incoming NO_DATA frame to update the remote speech decoder's Comfort Noise states. This action is aborted if the transcoder schedules a new SID_UPDATE frame.

If a SID FIRST frame or the first SID UPDATE frame after a SID FIRST frame, is stolen for Fast Associated Control Channel (FACCH) signalling purposes, then the subsequent frame shall be scheduled for transmission of the SID_FIRST or SID_UPDATE frame (whichever applies) instead.

SPEECH frames shall override possible SID_FIRST or SID_UPDATE frames in exceptional cases.

At handover, TX/RX DTX handler synchronisation shall be initiated. At the time instant before the MS starts sending to the new base station, a message shall be sent to the uplink TX DTX handler with the parameter NSYNC = 12.

5.1.2.4 Functions of the TX Radio Subsystem for RATSCCH

During regular speech transmission (in the middle of a speech burst)RATSCCH replaces (steals) one (TCH/AFS) respectively two (TCH/AHS) speech frames (see GSM 05.09). Also in all non speech cases the RATSCCH shall be handled like speech. The respective RATSCCH frame formats (RATSCCH in case of TCH/AFS, respectively RATSCCH_MARKER and RATSCCH_DATA in case of TCH/AHS) shall be signalled to the CHE.

If RATSCCH has to be sent during a speech pause in DTX, then first an ONSET frame shall be signalled to the CHE, followed by the RATSCCH frame(s) and finally by the respective SID_FIRST frame(s).

If a SID_UPDATE frame is affected by RATSCCH signalling, then the SID_UPDATE frame shall be re-scheduled for transmission immediately after the RATSCCH signalling.

It is proposed (but not mandatory) to handle a FACCH should be handled in the same way as a RATSCCH, i.e. like a short speech burst.

6.1.1 Functions of the RX radio subsystem

The RX radio subsystem uses a combination of gross-bit markers, receiver measurements, and CRC checks to classify each received frame. The basic operation for each frame is outlined below:

-the receiver first searches for the RATSCCH, SID_UPDATE, SID_FIRST or ONSET gross bit markers.

-If the RATSCCH signalling is detected, then the RATSCCH frame (TCH/AFS) respectively the RATSCCH_MARKER and RATSCCH_DATA frames (TCH/AHS) shall be decoded and handled as described in GSM 05.09. They shall be passed to the RX DTX handler as a NO_DATA frame(s).

-If the SID_FIRST marker is detected the frame is passed to the RX DTX handler as a SID_FIRST frame.

- -If the SID_UPDATE marker is detected, then the frame is-shall be decoded and passed to the RX DTX handler as a SID_UPDATE or a SID_BAD or a NO_DATA frame, depending on the CRC and the information bits, along with the comfort noise parameters, if applicable. A NO_DATA frame shall be passed on, if all information bits of a SID_UPDATE frame are set to "1" and the CRC is bad (see SID_FILLER in subclause 5.1.2.3).
 - If the ONSET marker is detected, then an ONSET frame shall be passed to the RX DTX handler.
- -if neither SID_UPDATE nor SID_FIRST markers are detected, the frame shall be channel decoded assuming it to be a speech frame. Depending on the CRC for speech frame channel decoding along with other receiver measurements the frame shall then be passed to the RX DTX handler marked as either SPEECH_GOOD, SPEECH_ DEGRADED, SPEECH_BAD or NO_DATA frame.

6.1.2 Functions of the RX DTX handler

The RX DTX handler is responsible for the overall DTX operation on the RX side. It consists of two main modes: SPEECH and COMFORT_NOISE. The initial mode shall be SPEECH.

The DTX operation on the RX side shall be as follows:

- ----The RX DTX handler shall enter mode SPEECH, when a frame classified as SPEECH_GOOD or SPEECH_DEGRADED is received. ONSET frames may be taken into account to identify the beginning of a speech burst;
- whenever a frame classified as SPEECH_GOOD is received the RX DTX handler shall pass it directly on to the speech decoder;
- -if the RX DTX handler is in mode SPEECH, then frames classified as SPEECH_DEGRADED, SPEECH_BAD or NO_DATA shall be substituted and muted as defined in GSM 06.91. Frames classified as NO_DATA shall be handled like SPEECH_BAD frames without valid speech information;
- -frames classified as SID_FIRST, SID_UPDATE or SID_BAD shall bring the RX DTX handler into mode COMFORT_NOISE and shall result in comfort noise generation, as defined in GSM 06.92. SID_BAD frames shall be substituted and muted as defined in GSM 06.91. In mode COMFORT_NOISE the RX DTX handler shall ignore all unusable frames (NO_DATA, SPEECH_BAD) delivered by the RSS; comfort noise generation shall continue, until timeout may apply (see GSM 06.91);

Joint SMG11/TSG-SA4 Meeting #13 / #8 Kyoto, Japan, 6-10 December 1999

Document	S4-99455R
e.g.	for 3GPP use the format TP-99xxx

	, • • • • • • • •					01101	SwG, use the format P	-99-XXX
			REQL	JEST	Please s page for	see embedded help fi r instructions on how	ile at the bottom of th to fill in this form cor	nis rectly.
		06.93	CR	A007F	Rev1	Current Version	on: 7.2.0	
GSM (AA.BB) or 30	G (AA.BBB) specifica	ation number \uparrow		↑ <i>CF</i>	R number a	s allocated by MCC s	support team	
For submission	to: TSG-SA neeting # here ↑	#6 for ap	oproval mation	X		strate non-strate	gic (for Si gic X use of	MG nly)
Proposed chang	rm: CR cover sheet, ve ge affects:		ME	X	JTRAN /	/ Radio	Core Network	x X
(at least one should be r	marked with an X)							
Source:	TSG-SA W	G4 Codec				Date:	16.12.1999	
Subject:	Onset fram	<mark>e signalling by the</mark>	TX RSS	6.				
Work item:	AMR							
Category:FA(only one categoryshall be markedwith an X)	 Correction Correspond Addition of Functional Editorial model 	ds to a correction i feature modification of fea odification	n an ear ature	lier releas	se	Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> change:	Correction of used if the precedul the precedul signalled.	of an inconsistenc present frame is s ng frame is a SID_	y: For T(peech a FIRST f	CH/AFS the pre- frame, cu	he ONS eceding rrently, i	ET marker sho frame is not a no ONSET fran	ould always be speech frame me is being	. If
Clauses affected	<u>d:</u> <u>5.1.2</u>							
Other specs affected:	Other 3G cor Other GSM c MS test spec BSS test spe O&M specific	e specifications ore specifications ifications cifications ations		$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	CRs: CRs: CRs: CRs: CRs: CRs:			
<u>Other</u> comments:								

<----- double-click here for help and instructions on how to create a CR.

5.1.2 Functions of the TX Radio Subsystem

The TX Radio Subsystem has the following overall functionality. The radio transmission is cut after the transmission of a SID_FIRST frame when the speaker stops talking. During speech pauses the transmission is resumed at regular intervals for transmission of one SID_UPDATE frame, in order to update the generated comfort noise on the RX side (and to improve the measurement of the link quality by the RSS). Note that the transcoder knows what frames to send. In the case when nothing is to be transmitted it outputs frames marked with TX_TYPE = "NO_DATA".

Within the TX Radio Subsystem the TX_TYPE Monitoring unit controls the operation of the Channel Encoder (as specified in GSM 05.03) and the Transmission of the frame. Control input to the TX_TYPE Monitoring unit is the TX_TYPE. Control output and input to the Channel Encoder are indicators specifying the frame format. These frame format indicators are defined in GSM 05.03, they are different for TCH/AFS and TCH/AHS.

5.1.2.1 Functions of the TX Radio Subsystem for TCH/AFS

The TX Radio Subsystem operates in the following way regarding DTX (without TFO):

- all frames marked with TX_TYPE = "SPEECH_GOOD " are scheduled for normal channel coding and transmission. The frame format for CHE operation shall be SPEECH. If, however, the previous frame was not of TX_TYPE = "SPEECH_GOOD" or of TX_TYPE = "SID_FIRST", an ONSET frame format followed by SPEECH_GOOD shall be signalled to the CHE;
- for frames marked with TX_TYPE = "SID_FIRST" a SID_FIRST frame format is signalled to the CHE. Note: Normally, only the first 4 TDMA frames carrying bits of this frame (and carrying the second half of the preceding SPEECH frame) shall be transmitted. The remaining bits of the SID_FIRST frame pre set the interleaver buffer with a special bit pattern for the case a frame marked with TX_TYPE = "SPEECH_GOOD" is immediately following;
- frames marked with TX_TYPE = "SID_UPDATE" are scheduled for SID_UPDATE frame channel coding and transmission. The frame format signalled to CHE is SID_UPDATE;
- for frames marked with TX_TYPE = "NO_DATA" no processing or transmission is carried out.

When operating in non-speech after a handover the GSM-MS shall schedule its most recent SID_UPDATE frame instead of the first incoming NO_DATA frame to update the remote speech decoder's Comfort Noise states. This action is aborted if the transcoder schedules a new SID_UPDATE frame.

SPEECH frames shall override possible SID_FIRST or SID_UPDATE frames in exceptional cases.

At handover, TX/RX DTX handler synchronisation shall be initiated. At the time instant before the MS starts sending to the new base station, a message shall be sent to the uplink TX DTX handler with the parameter NSYNC = 12.

3GPP/SMG Meeting #12 Document S4-9938				80				
StLaurent-du-Var, France, 18-22 Oct 1999				e.g. for or for	3GPP use the format T r SMG, use the format 1	P-99xxx -99-xxx		
		CHANGE I	REQI	JES	Please page fo	see embedded help or instructions on how	file at the bottom of th to fill in this form cor	nis rectly.
		26.090	CR	001	I	Current Versi	ion: <mark>3.0.1</mark>	
GSM (AA.BB) or 30	G (AA.BBB) specifica	ation number \uparrow			↑ CR number a	as allocated by MCC	support team	
For submission	n to: TSG-SA meeting # here ↑ orm: CR cover sheet, ve	#6 for a for infor rsion 2 for 3GPP and SMG	oproval mation	X version of	this form is avail	strate non-strate able from: ftp://ftp.3gpp.o	egic (for S egic X use o org/Information/CR-Form	MG nly) n-v2.doc
Proposed chan (at least one should be	ge affects: marked with an X)	(U)SIM	ME	X	UTRAN	/ Radio	Core Networl	< X
Source:	TSG-SA W	G4 Codec				Date:	16/12/99	
Subject:	Bit allocatio	n of the adaptive i	multi-rat	<mark>e code</mark>	C			
Work item:	AMR							
Category:	F Correction A Correspond B Addition of C Functional D Editorial mo	ls to a correction i feature modification of fea odification	in an ea ature	rlier rel	ease	K Release:	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	x
Reason for change:	Bring bit ord the GSM Ac	ler tables of encod laptive Multi Rate	der outp speech	ut para codec	ameters in	to line with the	ANSI-C code f	or
Clauses affecte	ed: 7							
Other specs affected:	Other 3G con Other GSM c MS test speci BSS test speci O&M specific	e specifications ore specifications fications cifications ations		\rightarrow List \rightarrow List \rightarrow List \rightarrow List \rightarrow List	of CRs: of CRs: of CRs: of CRs: of CRs: of CRs:			
<u>Other</u> comments:								
help.doc								

<----- double-click here for help and instructions on how to create a CR.

7 Detailed bit allocation of the adaptive multi-rate codec

The detailed allocation of the bits in the adaptive multi-rate speech encoder is shown for each mode in table 9a-9h. These tables show the order of the bits produced by the speech encoder. Note that the most significant bit (MSB) of each codec parameter is always sent first.

Table 9a: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 244 bits/20 ms, 12.2 kbit/s mode

	· · · · · · · · · · · · · · · · · · ·
Bits (MSB-LSB)	Description
s1 - s7	index of 1st LSF submatrix
s8 - s15	index of 2nd LSF submatrix
s16 - s23	index of 3rd LSF submatrix
s24	sign of 3rd LSF submatrix
s25 - s32	index of 4th LSF submatrix
s33 - s38	index of 5th LSF submatrix
	subframe 1
s39 - s47	adaptive codebook index
s48 - s51	adaptive codebook gain
s52	sign information for 1st and 6th pulses
s53 - s55	position of 1st pulse
s56	sign information for 2nd and 7th pulses
s57 - s59	position of 2nd pulse
s60	sign information for 3rd and 8th pulses
s61 - s63	position of 3rd pulse
s64	sign information for 4th and 9th pulses
s65 - s67	position of 4th pulse
s68	sign information for 5th and 10th pulses
s69 - s71	position of 5th pulse
s72 - s74	position of 6th pulse
s75 - s77	position of 7th pulse
s78 - s80	position of 8th pulse
s81 - s83	position of 9th pulse
s84 - s86	position of 10th pulse
s87 - s91	fixed codebook gain
	subframe 2
s92 - s97	adaptive codebook index (relative)
s98 - s141	same description as s48 - s91
	subframe 3
s142 - s194	same description as s39 - s91
	subframe 4
s195 - s244	same description as s92 - s141

Table 9b: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 204 bits/20 ms, 10.2 kbit/s mode

opecennam	
Bits (MSB-LSB)	Description
s1 – s8	index of 1st LSF subvector
s9 - s17	index of 2nd LSF subvector
s18 – s26	index of 3rd LSF subvector
	subframe 1
s27 – s34	adaptive codebook index
s35	sign information for 1st and 5th pulses
s36	sign information for 2nd and 6th pulses
s37	sign information for 5 th 3rd and 7th pulses
s38	sign information for 4th and 8th pulses
s39-s48	position for 1st, 2nd, and 5th pulses
s49-s58	position for 3rd, 6th, and 7th pulses
s59-s65	position for 4th and 78th pulses
s66 – s72	codebook gains
	subframe 2
s73 – s77	adaptive codebook index (relative)
s78 – s115	same description as s35 – s72
	subframe 3
s116 – s161	same description as s27 – s72
	subframe 4
s162 – s204	same description as s73 – s115

Table 9c: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 159 bits/20 ms, 7.95 kbit/s mode

Bits (MSB-LSB)	Description				
s1 – s9	index of 1st LSF subvector				
s10 - s18 index of 2nd LSF subvector					
s19 – s27	index of 3rd LSF subvector				
	subframe 1				
s28 – s35	adaptive codebook index				
s36 – s <mark>38<u>39</u></mark>	position of 4 st <u>4th</u> pulse				
s 39<u>40</u> – s41<u>42</u>	position of 2 nd 3rd pulse				
s <u>4243</u> – s <u>4445</u>	position of 3 rd 2nd pulse				
s 45<u>46</u> – s48	position of 4 th <u>1st</u> pulse				
s49	sign information for 4 st 4th pulse				
s50	sign information for 2 nd 3rd pulse				
s51	sign information for 3 ^{re} 2nd pulse				
s52	sign information for 4 th <u>1st</u> pulse				
s53 – s56	adaptive codebook gain				
s57 – s61	fixed codebook gain				
	subframe 2				
s62 – s67	adaptive codebook index (relative)				
s68 – s93	same description as s36 – s61				
	subframe 3				
s94 – s127	same description as s28 – s61				
	subframe 4				
s128 – s159	same description as s62 – s93				

Table 9d: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 148 bits/20 ms, 7.40 kbit/s mode

Bits (MSB-LSB)	Description
s1 – s8	index of 1st LSF subvector
s9 - s17	index of 2nd LSF subvector
s18 – s26	index of 3rd LSF subvector
	subframe 1
s27 – s34	adaptive codebook index
s35 – s <mark>37<u>38</u></mark>	position of 4 st <u>4th</u> pulse
s 38<u>39</u> – s40<u>41</u>	position of 2 nd 3rd pulse
s <u>4142</u> - s <u>4344</u>	position of 3 rd 2nd pulse
s44 <u>45</u> – s47	position of 4 th <u>1st</u> pulse
s48	sign information for 4 st 4th pulse
s49	sign information for 2 nd 3rd pulse
s50	sign information for 3 rd 2nd pulse
s51	sign information for 4 th 1st pulse
s52 – s58	codebook gains
	subframe 2
s59 – s63	adaptive codebook index (relative)
s64 – s87	same description as s35 – s58
	subframe 3
s88 – s119	same description as s27 – s58
	subframe 4
s120 – s148	same description as s59 – s87

Bits (MSB-LSB)	Description
s1 – s8	index of 1st LSF subvector
s9 - s17	index of 2nd LSF subvector
s18 – s26	index of 3rd LSF subvector
	subframe 1
s27 – s34	adaptive codebook index
s35 – s <mark>37<u>38</u></mark>	position of 4 st <u>3rd</u> pulse
s <u>3839</u> – s41 <u>42</u>	position of 2nd pulse
s <mark>42<u>43</u> – s45</mark>	position of 3 rd <u>1st</u> pulse
s46	sign information for 4 st <u>3rd</u> pulse
s47	sign information for 2nd pulse
s48	sign information for 3 ^{re} 1st pulse
s49 – s55	codebook gains
	subframe 2
s56 – s59	adaptive codebook index (relative)
s60 – s80	same description as s35 – s55
	subframe 3
s81 – s109 same description as s27 – s55	
	subframe 4
s110 – s134	same description as s56 – s80

1

Table 9f: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 118 bits/20 ms, 5.90 kbit/s mode

Bits (MSB-LSB)	Description
s1 – s8	index of 1st LSF subvector
s9 - s17	index of 2nd LSF subvector
s18 – s26	index of 3rd LSF subvector
	subframe 1
s27 – s34	adaptive codebook index
s35 – s <mark>38</mark> 39	position of 4 st 2nd pulse
s 39<u>40</u> – s43	position of 2 nd 1st pulse
s44	sign information for 4 st 2nd pulse
s45	sign information for 2 nd 1st pulse
s46 – s51	codebook gains
	subframe 2
s52 – s55	adaptive codebook index (relative)
s56 – s72	same description as s35 – s51
	subframe 3
s73 – s97	same description as s27 – s51
	subframe 4
s98 – s118	same description as s52 – s72

Table 9g: Source encoder output parameters in order of occurrence and bit allocation within the ______speech frame of 103 bits/20 ms, 5.15 kbit/s mode

Bits (MSB-LSB)	Description			
s1 – s8	index of 1st LSF subvector			
s9 - s16	index of 2nd LSF subvector			
s17 – s23	index of 3rd LSF subvector			
	subframe 1			
s24 – s31	adaptive codebook index			
s32	position subset			
s33 – s35	position of 4 st 2nd pulse			
s36 – s38	position of 2 nd <u>1st</u> pulse			
s39	sign information for 4 st 2nd pulse			
s40	sign information for 2 nd 1st pulse			
s41 – s46	codebook gains			
	subframe 2			
s47 – s50	adaptive codebook index (relative)			
s51 – s65	same description as s32 – s46			
	subframe 3			
s66 – s84	same description as s47 – s65			
	subframe 4			
s85 – s103	same description as s47 – s65			

Table 9h: Source encoder output parameters in order of occurrence and bit allocation within the speech frame of 95 bits/20 ms, 4.75 kbit/s mode

Bite (MSB-LSB)	Description
Bits (IVI3B-L3B)	Description
s1 – s8	index of 1st LSF subvector
s9 - s16	index of 2nd LSF subvector
s17 – s23	index of 3rd LSF subvector
	subframe 1
s24 – s31	adaptive codebook index
s32	position subset
s33 – s35	position of 4 st 2nd pulse
s36 – s38	position of 2 nd 1st pulse
s39	sign information for 4 st 2nd pulse
s40	sign information for 2 nd 1st pulse
s41 – s48	codebook gains
	subframe 2
s49 – s52	adaptive codebook index (relative)
s53 – s61	same description as s32 – s40
	subframe 3
s62 - s65	same description as s49 – s52
s66 – s82	same description as s32– s48
	subframe 4
s83 – s95	same description as s49 – s61

3GPP/SMG Meeting #12 Document S4-9939			S4-99392		
StLaurent-d	StLaurent-du-Var, France, 18-22 Oct 1999			e.g. for or for	3GPP use the format TP-99xxx SMG, use the format P-99-xxx
	СНАМС		IFST Plea	ase see embedded help f	file at the bottom of this
	GHANC			e for instructions on now	to fill in this form correctly.
	<mark>26.0</mark>	<mark>91</mark> CR	001	Current Versi	on: 3.0.1
GSM (AA.BB) or 3G	G (AA.BBB) specification number ↑		↑ CR numb	er as allocated by MCC :	support team
For submission	to: <mark>TSG-SA#6</mark> neeting # here ↑ for	for approval r information	X	strate non-strate	gic (for SMG gic X ^{use only)}
For	rm: CR cover sheet, version 2 for 3GPP an	d SMG The latest	t version of this form is a	vailable from: ftp://ftp.3gpp.c	org/Information/CR-Form-v2.doc
Proposed changes (at least one should be n	ge affects: (U)SIM	ME	X UTRA	N / Radio	Core Network X
<u>TSG-SA WG4</u> <u>Codec</u>	TSG-SA WG4 Codec			Date:	16/12/99
Subject:	Use of random excitatio	n when RX_N	ODATA and n	ot in DTX.	
Work item:	AMR				
Category: F A A (only one category B shall be marked C with an X) D	Correction Corresponds to a correct Addition of feature Functional modification Editorial modification	ction in an ea of feature	rlier release	X <u>Release:</u>	Phase 2 Release 96 Release 97 Release 98 Release 99 X Release 00
Reason for change:	Reason for change: When the speech decoder receives no data, which results in zero speech parameters, a buzzy sound may be produced. This can be avoided by using pseudo random parameters instead of zero parameters. The speech decoder receives no data, e.g., due to the FACCH.			eech parameters, do random es no data, e.g.,	
Clauses affected	d: 6.2.3.2 and 7.2.4				
Other specs Affected:	Other 3G core specification Other GSM core specifications MS test specifications BSS test specifications O&M specifications	ations X - - - - - -	→ List of CRs: → List of CRs:	06.73	
<u>Other</u> comments:					
1 march					

<----- double-click here for help and instructions on how to create a CR.

help.doc

6.2.3.2 Innovation sequence

The received fixed codebook innovation pulses from the erroneous frame are always used in the state in which they were received when corrupted data are received. In the case when no data were received random fixed codebook indicies should be employed.

7.2.4 Innovation sequence

The received fixed codebook innovation pulses from the erroneous frame are always used in the state in which they were received when corrupted data are received. In the case when no data were received random fixed codebook indicies should be employed.

7.3 Substitution and muting of lost SID frames

In the speech decoder a single frame classified as SID_BAD shall be substituted by the last valid SID frame information and the procedure for valid SID frames be applied. If the time between SID information updates (updates are specified by SID_UPDATE arrivals and ocassionally by SID_FIRST arrivals see 06.92) is greater than one second this shall lead to attenuation.

Joint SMG11/TSG-SA4 Meeting #13 / #8 Kyoto, Japan, 6-10 December 1999

	_		CHANGE	REQ	JEST	Please see e bage for insti	embedded help fi ructions on how i	ile at the bottom of th to fill in this form cor	nis rectly.
			26.093	CR	004rev	/2 Cu	urrent Versio	on: 3.0.1	
GSM (AA.BB) or	3G (/	AA.BBB) specifica	tion number \uparrow		↑ CR nu	umber as allo	ocated by MCC s	support team	
For submissio	n to I mee	D: TSG-SA	#6 for a for info	pproval rmation	X		strate	gic (for S gic X use o	MG nly)
Proposed chai	n ge e ma	e affects: rked with an X)	(U)SIM	ME	X UT	RAN / Ra	adio	Core Network	X
Source:		TSG-SA					Date:	16/12/99	
Subject:		Alignment to	GSM 06.93						
Work item:		AMR							
Category: (only one category shall be marked with an X)	F A B C D	Correction Correspond Addition of t Functional r Editorial mo	ls to a correction feature modification of fe odification	in an ea ature	rlier release	X	<u>Release:</u>	Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00	X
<u>Reason for</u> <u>change:</u>		Clarification with 26.101. Make annex SA4-approv	s to main part of A identical to G ed CRs A006 an	specifica SM 06.9 d A007.	ation. Bring 1 3 Release 9	FX_TYPE 8 (version	E/RX_TYPE n 7.2.0) plus	s SMG11/TSG	ne 6-
Clauses affect	ed:	Main pa	art and annex A.						
Other specs affected:	C C M B C	Other 3G core Other GSM co 1S test speci 3SS test speci 0&M specifica	e specifications ore specifications fications cifications ations		$\begin{array}{l} \rightarrow \text{ List of CF} \\ \rightarrow \text{ List of CF} \end{array}$	Rs: Rs: Rs: Rs: Rs: Rs:			
<u>Other</u> comments:									

Document S4-99538

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

<----- double-click here for help and instructions on how to create a CR

1. Scope

This document describes theoperation of the Adaptive Multi Rate speech codec during Source Controlled Rate (SCR)operation.

For clarity, the operation of the Adaptive Multi-Rate speech Codec in Codec Types UMTS_AMR and GSM_AMR for the UMTS system. The implementation of this SCR operation is mandatory in all UMTS equipment.

<u>The</u> description is structured according to the block <u>diagrams in figures 1 and 3. Thisdiagram in figure 1. This</u> structure of distributing the various functions between system entities is not mandatory for implementation, as long as the operation on the speech decoder output remains the same.

The SCR functions described in this technical specification are mandatory for implementation in the UEs. The receiver requirements are mandatory for implementation in all Transcoders, the transmitter requirements only for those links where SCR will be used.

Annex A E describes the interworking operation of AMR with GSM EFR, TDMA EFR, TDMA US1 and PDC EFR. This mode of operation is F.F.S. Annex A describes the Discontinuous Transmission (DTX) operation of the Adaptive Multi-Rate speech Codec in Codec Type GSM AMR for the GSM system. This annex is the former GSM 06.93 (release 98).

Annexes B to E describe the SCR operation of the Adaptive Multi-Rate speech Codec in Codec Types GSM EFR, TDMA EFR, TDMA US1 and PDC EFR for the UMTS system.

2. Normative references

This document incorporates by dated and undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this document only when incorporated in it by amendment or revision. For undated references, the latest edition of the publication referred to applies.

- [1] 3G TS 26.071 : "AMR Speech Codec; General description".
- [2] 3G TS 26.073 : "AMR Speech Codec; ANSI-C code".
- [3] 3G TS 26.074 : "AMR Speech Codec; Test sequences".
- [4] 3G TS 26.090 : "AMR Speech Codec; Transcoding functions".
- [5] 3G TS 26.091 : "AMR Speech Codec; Error concealment of lost frames".
- [6] 3G TS 26.092 : "AMR Speech Codec; Comfort noise aspects".
- [7] 3G TS 26.094 : "AMR Speech Codec; Voice Activity Detector (VAD)".
- [8] 3G TS 26.101 : "AMR Speech Codec; Frame structure".

3. Definitions, symbols and abbreviations

3.1 Definitions

For the purpose of this document, the following definitions apply.

frame: Time interval of <u>20 msec.20 ms</u>, corresponding to the time segmentation of the Adaptive <u>Multi Rate speech</u> <u>transcoderMulti-Rate speech Codec</u>, also used as a short term for a traffic frame.

<u>3GPP</u>

traffic frame: Block of 95..244 information bits transmitted on the speech traffic channels.

SID frame: Frame that conveys information about the acoustic background noise.

speech frame: Traffic frame that has been classified as a-SPEECH GOOD or SPEECH BAD frame.

VAD flag: Boolean flag, generated by the VAD algorithm indicating the presence ("1") or the absence ("0") of a speech frame.

RX_TYPE: , generated by the de framing unit , indicating to the RX SCR handler the type of data in the current frame. Refer to Table 2 for an example.

TX_TYPE: flag, generated by the TX SCR handler, indicating to the framin unit the type of data in the current frame. Refer to Table 1 for an example.classifies the received frame.

TX TYPE: classifies the frame to be transmitted.

hangover period: A period of frames added at the end of a speech burst in which VAD flag ="0" and TX_TYPE is ="00",="SPEECH GOOD", this period provides the encoder with an extra window to analyzederive the Comfort Noise parameters.

3.2 Symbols

For the purpose of this document, the following symbols apply.

N_{elapsed} Number of elapsed frames since the last updated SID frame.

3.3 Abbreviations

For the purpose of this_document , the following abbreviations apply.

AN	Access Network
SCR	Source Controlled Rate operation
TS	Telecommunication Standard, Technical Specification
GSM	Global System for Mobile Telecommunications
GSM-EFR	GSM Enhanced Full Rate speech codecCodec
UE	User Equipment
PDC-EFR	ARIB PDC-EFR 6.7 kbit/s speech coderkBit/s speech Codec
RAN	Radio ANAccess Network
RX	Receive
SID	Silence Descriptor (Background character Descriptor)
TDMA-EFR	TIA IS-641 Enhanced speech coderCodec
TDMA-US1	TIA TDMA-US1 (12.2 kbit/s EFR)kBit/s Codec, similar to GSM-EFR)
TX	Transmit
VAD	Voice Activity Detector

4. General

Source Controlled Rate operation (SCR) is a mechanism $\frac{infor}{inf}$ the AMR Speech Codec, which allows the codec to encode speech the input signal at a lower average rate by taking speech inactivity into account. The SCR scheme may be used for the following purposes:

- —to save power in the User Equipment;

<u>3GPP</u>

SCR in the transmitting path (uplink) shall be in operation in UEs, if commanded so by the network. The UE shall handle SCR in the receiving path (downlink) at any time, regardless, whether SCR in the transmitting path is commanded or not.

4.1 General organisation

The default SCR mechanism described in this document requires the following functions:

- —a Voice Activity Detector (VAD) on the transmit (TX) side;
- —evaluation of the background acoustic noise on the transmit (TX) side, in order to transmit characteristic parameters to the receive (RX) side;
- —generation on the receive (RX) side of a similar noise, called comfort noise, during periods where the transmission is switched off.

The Voice Activity Detector (VAD) is defined in [7] and the AMR-mode comfort noise functions in [6]. Both are based partly on the speech <u>transcoderCodec</u> and its internal variables, defined in [4].

In addition to these functions, if the parameters arriving at the RX side are detected to be seriously corrupted by errors, the speech or comfort noise must be generated from substituted data in order to avoid seriously annoying effects for the listener. These functions for the AMR mode are defined in [5].

An overall description of the speech processing parts can be found in [1]. An overview of one link SCR operation is shown in Figure 1.

Figure 1: Block diagram of one link SCR operation

5. AMR SCR operation

5.1 Transmit (TX) side

A block diagram of the transmit side SCR functions is shown in Figure 2.

Figure 2: Block diagram of the transmit side SCR functions SCR functions at the TX side

5.1.1 General operation

The TX SCR handler passes traffic frames, individually marked by TX_TYPE, to the Framing unit. Each frame consists of bit fields containing the information bits, the codec mode indication, and the TX_TYPE. TX_TYPE shall be used to specify the contents of the frame. The table below provides an overview of the different TX_TYPEs used and explains the required contents in the information bit and the mode indication bit fields.

5

TX_TYPE	Legend	Information Bits	Mode Indication
00	SPEECH	speech frame, size depending on codec mode	current codec mode
01	SID_FIRST (end of speech marker, start of CN generation)	no useful information,	the codec mode that would have been used if TX_TYPE had been 00 (SPEECH)
10	SID_UPDATE	comfort noise information , information bits	the codec mode that would have been used if TX_TYPE had been 00 (SPEECH)
44	NO_DATA	no useful information	no useful information

TX TYPE	Information Bits	Mode Indication
SPEECH_GOOD	Speech frame, size 95244 bits, depending on codec mode	Current codec mode
SPEECH BAD	Corrupt speech frame (bad CRC), size 95244 bits, depending on codec mode	Current codec mode
<u>SID FIRST</u>	Marker for the end of talkspurt, no further information, all 35 comfort noise bits set to "0"	The codec mode that would have been used if TX_TYPE had been "SPEECH_GOOD"
SID_UPDATE	<u>35 comfort noise bits</u>	The codec mode that would have been used if TX TYPE had been "SPEECH GOOD"
<u>SID_BAD</u>	Corrupt SID update frame (bad CRC)	The codec mode that would have been used if TX TYPE had been "SPEECH GOOD"
NO_DATA	No useful information, nothing to be transmitted	No useful information

TX_TYPE = <u>"H""NO_DATA"</u> indicates that the Information Bit and Codec Mode fields do not contain any useful data (and should not be transmitted over AN). The purpose of this TX_TYPE is to provide the option to save network transmission between the transcoder and AN. <u>Note, the TX_TYPEs</u> "<u>SPEECH_BAD</u>" and "<u>SID_BAD</u>" may occur in <u>TFO and TrFO situations.</u>

The scheduling of the frames for transmission on the Access Network is controlled by the TX SCR handler by the use of the TX_TYPE field and the given SCR operation mode.

5.1.2 5.1.2 Functions of the TX SCR handler

If TX SCR operation is disabled, the TX SCR handler continuously generates speech frames, i.e. frames marked with TX_TYPE="SPEECH_GOOD".

If the TX SCR operation is enabled, the VAD flag controls the TX SCR handler operation as described in the following paragraphs.

6

5.1.2.1 AMR SCR Timing procedures

To allow an exact verification of the TX SCR handler functions, all frames before the reset of the system are treated as if there were speech frames of an infinitely long time. Therefore, and in order to ensure the correct estimation of comfort noise parameters at RX SCR side, the first seven? frames after the reset are or after enabling the SCR operation shall always be marked with TX_TYPE= "00"", "SPEECH_GOOD", even if VAD flag ="0" (hangover period, see figure 3).

The Voice Activity Detector (VAD) shall operate all the time in order to assess whether the input signal contains speech or not. The output is a binary flag (VAD flag ="1" or VAD flag ="0", respectively) on a frame by frame basis (see [7]).

The VAD flag controls indirectly, via the TX SCR handler operations described below, the overall SCR operation on the transmit side.

Whenever VAD flag ="1", the speech encoder output frame along with mode information shall be passed directly to the AN-), marked with TX_TYPE ="00"-" SPEECH_GOOD "

At the end of a speech burst (transition VAD flag ="1" to VAD flag ="0"), it takes eight consecutive frames to make a new updated SID analysis available (see [6]). Normally, the first seven speech encoder output frames after the end of the speech burst shall therefore be passed directly to the AN, marked with TX_TYPE ="00" (SPEECH)= "SPEECH GOOD" ("hangover period").

The end of the speech is then indicated by passing frame eight after the end of the speech burst to the AN, marked with $TX_TYPE = \frac{01}{SID_FIRST}$ (see figure 2): SID FIRST (see figure 3). SID FIRST frames do not contain data.

N_{elapsed}: No. of elapsed frames since last SID UPDATE

Error! No text of specified style in document.

8

TX Types: "S" = SPEECH; "F" = SID_FIRST; "U" = "SID_UPDATE; "N" = NO DATA $N_{elapsed}$: No. of elapsed frames since last SID_UPDATE

Figure 3: Normal hangover procedure for AMR (N_{elapsed} > 23)

If, however, at the end of the speech burst, less than 24 frames have elapsed since the last SID_UPDATE frame was computed, then this last analysed SID_UPDATE frame should be passed to the AN whenever a SID_UPDATE frame(TX_TYPE="10") is to be produced, until a new updated SID analysis is available (8 consecutive frames marked with VAD flag ="0"). This reduces the load on the network in cases where short background noise spikes are taken for speech, by avoiding the "hangover" waiting for the SID frame computation.

Once the first SID analysis after the end of a speech burst has been computed and the first SIDSID_FIRST frame has been passed to the AN, the TX SCR handler shall at regular intervals compute and pass updated SID_UPDATE (Comfort Noise) frames(TX_TYPE = "10") to the AN) as long as VAD flag = "0". SID_UPDATE frames shall be generated every 8th frame. However for frame loss robustness the The first SID_UPDATE frame shall be sent as the third frame after the initial SID_FIRST frame.

Note: The speech encoder is operated in full speech modality if $TX_TYPE = "00"$ " SPEECH GOOD" and otherwise in a simplified mode, because not all encoder functions are required for the evaluation of comfort noise parameters and because comfort noise parameters are only to be generated at certain times.

5.1.3 The TX part of the AN

The TX part of the AN has the following overall functionality. The transmission is cut after the transmission of a SID_FIRST frame when the speaker stops talking. During speech pauses the transmission is resumed at regular intervals for transmission of one SID_UPDATE frame, in order to update the generated comfort noise on the RX side. The transcoder decides what frames to send. In the case whennothing is to be transmitted it outputs frames marked with TX_TYPE = "11".

Demands on<u>operation of</u> the TX part of the Access Network

AN is controlled The TX part of the AN operates in the following way regarding SCR:

frames marked with TX_TYPE = "00" (SPEECH) are scheduled for transmission.

frames marked with TX_TYPE = "01" (SID_FIRST) are scheduled for transmission.

for frames marked with TX_TYPE = "11" (NO_DATA) no processing or transmission is carried out.by the TX SCR handler via the TX_TYPE.

<u>3GPP</u>

SPEECH frames shall override possible<u>All frames</u>, marked with SPEECH_GOOD, SID_FIRST or SID_UPDATE frames in these exceptional cases.—<u>shall be transmitted by the TX part of the AN.</u>

5.2 Receive (RX) side

A block diagram of the receive side SCR functions is shown in Figure 3 below.

Figure 4: Block diagram of the receive side SCR functions

5.2.1 General operation

Whatever their context (speech, SID, or none), the deframing unit after<u>The</u> ANcontinuously passes the<u>all</u> received traffic frames to the RX SCR handler, individually marked by various pre processing functions with a 3 bit type indicator RX_TYPEclassified with RX_TYPE, as described in Table 2, which serve to classify the traffic frame. This classification allows the RX SCR handler to determine in a simple way how the received 2 (see TS 26.102). The RX SCR handles the frame accordingly.

frame is to be handled.

RX_TYPE	Legend	Description
000	SPEECH_GOOD	Speech frame without errors in class A, and most likely not in class B (quality information in the RX part of the AN also OK)
001	SPEECH_PROBABLY_DEGRADED	Speech frame with CRC OK (class A OK), but less sensitive bits may be corrupted. At least 1 bit error in the speech coder's class B bits is suspected

010	SPEECH_BAD	(likely) speech frame with bad CRC (or estimated to be very bad by the RX part of the AN)
011	SPARE	Spare
100	SID_FIRST	This SID-frame marks the beginning of a comfort noise period.
101	SID_UPDATE	Correct SID update frame
110	SID_BAD	Corrupt SID update frame (bad CRC; applicable only for SID_UPDATE frames)
-111	NO_DATA	Nothing useable was received. The synthesis mode of the previous frame type is used.

<u>RX_TYPE</u>	Information Bits
SPEECH GOOD	Speech frame without detected errors.
SPEECH BAD	(likely) speech frame with bad CRC (or estimated to be very bad by the RX part of the AN)
<u>SID_FIRST</u>	This SID-frame marks the beginning of a comfort noise period.
SID UPDATE	Correct SID update frame
<u>SID_BAD</u>	<u>Corrupt SID update frame (bad CRC; applicable only</u> for SID_UPDATE frames)
NO DATA	Nothing useable was received. The synthesis mode of the previous frame type is used.

Table 2: RX_TYPE identifiers for <u>UMTS_AMR and GSM_AMR</u>

5.2.2 RX part of the AN

The RX/de framing unit uses a combination of measurements from AN , and CRC checks to classify each received frame according to RX_TYPE (Table 2).

5.2.3 5.2.3 Demands on the RX SCR handler

The RX SCR handler is responsible for the overall SCR operation on the RX side. It consists of two main modes: <u>SPEECH and COMFORT_NOISE</u>. The initial mode shall be <u>SPEECH</u>.

The SCR operation on the RX side shall be as follows:

- whenever<u>The RX SCR handler shall enter mode SPEECH, when</u> a frame classified as <u>SPEECH GOOD is</u> received.
- <u>whenever a frame classified as SPEECH_GOOD is received the RX SCR handler shall pass it directly on to the</u> speech decoder;
- when a frame classified as SPEECH_PROBABLY_DEGRADED, SPEECH_BAD, SID_BAD is received the error concealment procedure(s) shall be applied. If not in Comfort Noise Generation mode, the RX SCR handler shall treat NO_DATA frames delivered by the AN asif the RX SCR handler is in mode SPEECH, then

<u>frames classified as SPEECH_BAD or NO_DATA shall be substituted and muted as defined in [5]. Frames</u> <u>classified as NO_DATA shall be handled like</u> SPEECH_BAD frames without valid speech information.; <u>information</u>;

 frames classified as SID_UPDATE, SID_FIRST or SID_BAD shall result in Comfort Noise Generation mode, until the next SID_UPDATE frame has arrived or frames classified as SPEECH_OK or SPEECH_PROBABLY_DEGRADED are detected. During this period,SID_FIRST, SID_UPDATE or SID_BAD shall bring the RX SCR handler into mode COMFORT_NOISE and shall result in comfort noise generation, as defined in [6]. SID_BAD frames shall be substituted and muted as defined in [5];

in mode COMFORT_NOISE the RX SCR handler shall ignore any unusable frames (NO_DATA) delivered by the AN;

<u>all unusable frames (NO_DATA, SPEECH_BAD); comfort noise generation</u>——Frames classified as SPARE are handled as NO_DATA frames.

<u>5.3 AMR SID Information formatshall continue, until timeout may apply ([5]);</u>

Annex A: AMR DTX handler for the GSM system (corresponding to GSM 06.93)

A.1 Scope

The present document gives a description of the general baseband operation of Adaptive Multi-Rate speech traffic channels in the transmitter and in the receiver of GSM Mobile Stations (MS)s and Base Station Systems (BSS)s during Discontinuous Transmission (DTX).

For clarity, the description is structured according to the block diagrams in figures 1 and 3. Except in the case described next, this structure of distributing the various functions between system entities is not mandatory for implementation, as long as the operation on the air interface and on the speech decoder output remains the same.

In the case of BSSs where the speech transcoder is located remote from the Base Transceiver Station (BTS), the implementation of the interfaces between the DTX handlers and the Radio Sub System (RSS) as described in the present document together with all their flags is mandatory, being part of the A-bis interface as described in GSM 08.60 and GSM 08.61.

The DTX functions described in this technical specification are mandatory for implementation in the GSM MSs. The receiver requirements are mandatory for implementation in all GSM BSSs, the transmitter requirements only for those where downlink DTX or Tandem Free Operation will be used.

A.2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
- A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.
- For this Release 1999 document, references to GSM documents are for Release 1999 versions (version 7.x.y).

[1]	<u>3G TS 21.004: "Digital cellular telecommunication system (Phase 2+); Abbreviations and acronyms".</u>
[2]	3G TS 24.008: "Digital cellular telecommunication system (Phase 2+); Mobile radio interface layer 3 specification".
[3]	3G TS 25.003: "Digital cellular telecommunication system (Phase 2+); Channel coding".
[4]	3G TS 25.005: "Digital cellular telecommunication system (Phase 2+); Radio transmission and reception".
[5]	3G TS 25.008: "Digital cellular telecommunication system (Phase 2+); Radio subsystem link control".
[6]	3G TS 25.009: "Digital cellular telecommunication system (Phase 2+); Link adaptation".
[7]	3G TS 26.071: "Digital cellular telecommunications system (Phase 2+); Adaptive Multi-Rate (AMR) speech processing functions; General description".

[8]	<u>3G TS 26.073: "Digital cellular telecommunications system (Phase 2+); ANSI-C code for the GSM</u> <u>Adaptive Multi-Rate speech codec".</u>
[9]	<u>3G TS 26.074: "Digital cellular telecommunications system (Phase 2); Test vectors for the GSM</u> <u>Adaptive Multi-Rate speech codec".</u>
[10]	<u>3G TS 26.090: "Digital cellular telecommunications system (Phase 2+); Adaptive Multi-Rate</u> <u>speech transcoding".</u>
[11]	3G TS 26.091: "Digital cellular telecommunications system (Phase 2+); Substitution and muting of lost frame for Adaptive Multi-Rate speech traffic channels".
[12]	3G TS 26.092: "Digital cellular telecommunications system (Phase 2+); Comfort noise aspects for Adaptive Multi-Rate speech traffic channels".
[13]	3G TS 26.094: "Digital cellular telecommunications system (Phase 2+); Voice Activity Detector (VAD) for Adaptive Multi-Rate speech traffic channels".
[14]	3G TS 28.060: "Digital cellular telecommunication system (Phase 2+); Inband control of remote transcoders and rate adaptors for Full Rate traffic channels".
[15]	<u>3G TS 28.061: "Digital cellular telecommunication system (Phase 2+); Inband Control of Remote</u> <u>Transcoders and Rate Adaptors for Half Rate traffic channels".</u>
[16]	3G TS 28.062: "Digital cellular telecommunications system; Inband Tandem Free Operation (TFO) of Speech Codecs".

13

A.3 Definitions, symbols and abbreviations

A.3.1 Definitions

For the purpose of the present document, the following definitions apply.

frame: Time interval of 20 ms, corresponding to the time segmentation of the Adaptive Multi Rate speech transcoder (3G TS 26.090 [9]), also used as a short term for a traffic frame.

traffic frame: Block of 95..244 information bits transmitted on the TCH/AFS or TCH/AHS speech traffic channels.

SID frame: Frame characterised by the SID (Silence Descriptor) gross bit patterns. It may convey information on the acoustic background noise.

speech frame: Traffic frame that has been classified as a SPEECH frame.

VAD flag: Boolean flag, generated by the VAD algorithm defined in 3G TS 26.094 indicating the presence ("1") or the absence ("0") of a speech frame.

RX_TYPE: flag with eight values, generated by the RX radio subsystem, indicating to the RX DTX handler the type of data in the current frame. Refer to Table 2.

TX_TYPE: flag with eight values, generated by the TX DTX handler, indicating to the TX radio subsystem the type of data in the current frame. Refer to Table 1.

hangover period: A period of 7 frames added at the end of a speech burst in which VAD flag ="0" and TX TYPE is "SPEECH".

A.3.2 Symbols

For the purpose of the present document, the following symbols apply.

<u>Nelapsed</u> Number of elapsed frames since the last updated SID frame.

3GPP

A.3.3 Abbreviations

For the purpose of the present document, the following abbreviations apply.

BSC	Base Station Controller
BSS	Base Station System
BTS	Base Transceiver Station
CHD	Channel Decoder
CHE	Channel Encoder
DTX	Discontinuous Transmission
ETS	European Telecommunication Standard
FACCH	Fast Associated Control CHannel
GSM	Global System for Mobile Telecommunications
MS	Mobile Station
RATSCCH	Robust Amr Traffic Synchronised Control CHannel
RSS	Radio Sub System
RX	Receive
SACCH	Slow Associated Control CHannel
SID	SIlence Descriptor
TX	Transmit
VAD	Voice Activity Detector

For abbreviations not given in this subclause, see 3G TS 21.004.

A.4 General

Discontinuous Transmission (DTX) is a mechanism, which allows the radio transmitter to be switched off most of the time during speech pauses for the following two purposes:

- to save power in the Mobile Station (MS);
- to reduce the overall interference level over the air interface.

DTX in uplink shall be in operation within the GSM MS, if commanded so by the network, see 3G TS 204.08. The MS shall handle DTX in downlink at any time, regardless, whether DTX in uplink is commanded or not.

A.4.1 General organisation

The overall DTX mechanism described in the present document requires the following functions:

- a Voice Activity Detector (VAD) on the transmit (TX) side;
- evaluation of the background acoustic noise on the transmit (TX) side, in order to transmit characteristic parameters to the receive (RX) side;
- generation on the receive (RX) side of a similar noise, called comfort noise, during periods where the radio transmission is switched off.

The Voice Activity Detector (VAD) is defined in 3G TS 26.094 and the comfort noise functions in 3G TS 26.092. Both are based partly on the speech transcoder and its internal variables, defined in 3G TS 26.090.

In addition to these functions, if the parameters arriving at the RX side are detected to be seriously corrupted by errors, the speech or comfort noise must be generated from substituted data in order to avoid seriously annoying effects for the listener. This function is defined in 3G TS 26.091.

An overall description of the speech processing parts can be found in 3G TS 26.071.

The description for Tandem Free Operation is given in 3G TS 28.062.

15

A.5 Transmit (TX) side

A block diagram of the transmit side DTX functions is shown in figure 1.

Figure 5: Block diagram of the transmit side DTX functions

A.5.1 General operation

The TX DTX handler passes traffic frames, individually marked by TX TYPE, to the Radio Subsystem (RSS). Each frame passed to the RSS consists of bit fields containing the information bits, the codec mode indication, and the TX_TYPE. TX_TYPE is used to specify the contents of the frame. The table below provides an overview of the different TX_TYPEs used and explains the required contents in the information bit and the mode indication bit fields. In case of ongoing Tandem Free Operation (see 3G TS 28.062) frames with errors may arrive in downlink in the BTS.

Table 3: TX TYPE identifiers

TX_TYPE Legend	Information Bits	Mode Indication
SPEECH_GOOD	speech frame, size 95244 bits depending	current code mode
	<u>on codec mode;</u>	
	no errors known.	
SPEECH_DEGRADED	Speech frame, size 95244 bits, depending	current codec mode
(only in downlink in	<u>on codec mode;</u>	
<u>TFO)</u>	there might be errors in class 2 bits.	
SPEECH_BAD	Speech frame, size 95244 bits, depending	current codec mode
(only in downlink in	<u>on codec mode;</u>	
<u>TFO)</u>	there are errors in class 1 bits.	
SID_FIRST	marks the end of a talkspurt, respectively	the codec mode that would have
	the beginning of a speech pause; does not	been used if TX_TYPE had been
	contain information bits.	SPEECH
SID_UPDATE	comfort noise, 35 bits;	the codec mode that would have
	no errors known	been used if TX_TYPE had been
		SPEECH
SID_BAD	comfort noise, 35 bits;	the codec mode that would have
(only in downlink in	errors detected, parameters unusable	been used if TX_TYPE had been
<u>TFO)</u>		SPEECH
ONSET	announces the beginning of a speech	the codec mode of the following
(only in downlink in	burst; does not contain information bits	speech frame
<u>TFO)</u>		
NO_DATA	no useful information	no useful information

TX TYPE = "NO DATA" indicates that the Information Bit and Codec Mode fields do not contain any useful data (and shall not be transmitted over the air interface). The purpose of this TX TYPE is to provide the option to save transmission between the transcoder and the radio base station if a packet oriented transmission is used.

<u>3GPP</u>

The scheduling of the frames for transmission on the air interface is controlled by the TX DTX handler by the use of the TX TYPE field.

A.5.1.1 Functions of the TX DTX handler

To allow an exact verification of the TX DTX handler functions, all frames before the reset of the system are treated as if there were speech frames of an infinitely long time. Therefore, and in order to ensure the correct estimation of comfort noise parameters at RX DTX side, the first 7 frames after the reset or after enabling the DTX operation shall always be marked with TX_TYPE= "SPEECH_GOOD ", even if VAD flag ="0" (hangover period, see figure 2).

The Voice Activity Detector (VAD) shall operate all the time in order to assess whether the input signal contains speech or not. The output is a binary flag (VAD flag ="1" or VAD flag ="0", respectively) on a frame by frame basis (see 3G TS 26.094).

The VAD flag controls indirectly, via the TX DTX handler operations described below, the overall DTX operation on the transmit side.

Whenever VAD flag ="1", the speech encoder output frame along with mode information shall be passed directly to the radio subsystem (RSS), marked with TX_TYPE =" SPEECH_GOOD "

At the end of a speech burst (transition VAD flag ="1" to VAD flag ="0"), it takes 8 consecutive frames to make a new updated SID analysis available at receiver side (see 3G TS 26.092). Normally, the first 7 speech encoder output frames after the end of the speech burst shall therefore be passed directly to the RSS, marked with TX TYPE =" SPEECH_GOOD " ("hangover period"). The end of the speech is then indicated by passing frame 8 after the end of the speech burst to the RSS, marked with TX TYPE = "SID FIRST" (see figure 2).

TX Types: "S" = SPEECH; "F" = SID_FIRST; "U" = "SID_UPDATE; "N" = NO DATA $N_{elapsed}$: No. of elapsed frames since last SID_UPDATE

Figure 6: Normal hangover procedure (N_{elapsed} > 23)

If, however, at the end of the speech burst, less than 24 frames have elapsed since the last SID_UPDATE frame was computed and passed to the RSS, then this last analysed SID_UPDATE frame shall repeatedly be passed to the RSS whenever a SID_UPDATE frame is to be produced, until a new updated SID analysis is available (8 consecutive frames marked with VAD flag ="0"). This reduces the activity on the air in cases where short background noise spikes are taken for speech, by avoiding the "hangover" waiting for the SID frame computation.

Once the first SID analysis after the end of a speech burst has been computed and the SID_FIRST frame has been passed to the Radio Subsystem, the TX DTX handler shall at regular intervals compute and pass updated SID_UPDATE (Comfort Noise) frames to the Radio Subsystem (RSS) as long as VAD flag = "0". SID_UPDATE frames shall be generated every 8th frame. The first SID_UPDATE shall be sent as the third frame after the SID_FIRST frame.

The speech encoder is operated in full speech modality if TX_TYPE = "SPEECH_GOOD " and otherwise in a simplified mode, because not all encoder functions are required for the evaluation of comfort noise parameters and because comfort noise parameters are only to be generated at certain times.

In order to ensure TX/RX DTX handler synchronisation at handover, the uplink TX DTX handler in the MS shall accept messages from TX RSS with control parameter NSYNC, resulting in the following operation during the next NSYNC frames:

- The TX DTX handler shall send SID UPDATE instead of NO DATA frames to the TX RSS.
- Whenever, during that period VAD flag = 1, the TX DTX handler shall continue to produce SPEECH frames for at least the rest of the period and, in addition, the hangover period.

A.5.1.2 Functions of the TX Radio Subsystem

The TX Radio Subsystem has the following overall functionality. The radio transmission is cut after the transmission of a SID_FIRST frame when the speaker stops talking. During speech pauses the transmission is resumed at regular intervals for transmission of one SID_UPDATE frame, in order to update the generated comfort noise on the RX side (and to improve the measurement of the link quality by the RSS). Note that the transcoder knows what frames to send. In the case when nothing is to be transmitted it outputs frames marked with TX_TYPE = "NO_DATA".

Within the TX Radio Subsystem the TX TYPE Monitoring unit controls the operation of the Channel Encoder (as specified in 3G TS 25.003) and the Transmission of the frame. Control input to the TX_TYPE Monitoring unit is the TX TYPE. Control output and input to the Channel Encoder are indicators specifying the frame format. These frame format indicators are defined in 3G TS 25.003, they are different for TCH/AFS and TCH/AHS.

A.5.1.2.1 Functions of the TX Radio Subsystem for TCH/AFS

The TX Radio Subsystem operates in the following way regarding DTX (without TFO):

- all frames marked with TX_TYPE = "SPEECH_GOOD " are scheduled for normal channel coding and transmission. The frame format for CHE operation shall be SPEECH. If, however, the previous frame was not of TX_TYPE = "SPEECH_GOOD", an ONSET frame format followed by SPEECH_GOOD shall be signalled to the CHE;
- for frames marked with TX TYPE = "SID FIRST" a SID FIRST frame format is signalled to the CHE;
- frames marked with TX_TYPE = "SID_UPDATE" are scheduled for SID_UPDATE frame channel coding and transmission. The frame format signalled to CHE is SID_UPDATE;
- for frames marked with TX_TYPE = "NO_DATA" no processing or transmission is carried out.

If a SID_FIRST frame or the first SID_UPDATE frame after a SID_FIRST frame, is stolen for Fast Associated Control Channel (FACCH) signalling purposes, then the subsequent frame shall be scheduled for transmission of the SID_FIRST or SID_UPDATE frame (whichever applies) instead.

SPEECH frames shall override possible SID FIRST or SID UPDATE frames in exceptional cases.

At handover, TX/RX DTX handler synchronisation shall be initiated. At the time instant before the MS starts sending to the new base station, a message shall be sent to the uplink TX DTX handler with the parameter NSYNC = 12.

A.5.1.2.2 Functions of the TX Radio Subsystem for TCH/AHS

The TX Radio Subsystem operates in the following way regarding DTX:

all frames marked with TX TYPE = "SPEECH GOOD " are scheduled for normal channel coding and transmission. The frame format for CHE operation shall be SPEECH. However, if the previous frame was of TX TYPE = "SID FIRST", a SID FIRST INH frame format followed by SPEECH GOOD shall be signalled to the CHE. If the previous frame was of TX TYPE = "SID_UPDATE", a SID_UPDATE_INH frame format followed by SPEECH_GOOD shall be signalled to the CHE. If the previous frame was of TX TYPE "NO DATA", an ONSET frame format followed by SPEECH GOOD shall be signalled to the CHE;

<u>3GPP</u>

- <u>for frames marked with TX_TYPE = "SID_FIRST" a SID_FIRST_P1 frame format is signalled to the CHE.</u> Note: All 4 TDMA frames carrying the bits of this frame shall be transmitted. The Mode Indication received with the frame is stored for potential use in the next frame;
- <u>When the TX SCR handler is ordered by the network to operate in AMR mode with SCR operation enabled</u> <u>thefor frames marked with TX TYPE = "SID UPDATE" a SID_UPDATE frame format is according to [5].</u> <u>This is the default and only mandatory operating mode of the SCR handler.</u>

signalled to the CHE. All 4 TDMA frames carrying the bits of this frame shall be transmitted;

Annex A: ETSI-AMR SCR handler

The ETSI-AMR SCR handler is indentical to the AMR SCR handler as described in the main body of this specification. Speech coding interworking aspects ETSI AMR are described in [TBD].for frames marked with TX_TYPE = "NO_DATA", no processing or transmission is carried out. However, if the preceding frame was marked with TX_TYPE = "SID_FIRST", a SID_FIRST_P2 frame format is signalled to CHE. Note: The 2 TDMA frames carrying bits of this frame shall be transmitted. If, depending on the current frame number, the Mode Indication is to be transmitted with these TDMA frames, the Mode Indication shall be used that was stored during the processing of the preceding SID_FIRST frame.

If a SID_FIRST frame or the first SID_UPDATE frame after a SID_FIRST frame, is affected by Fast Associated Control Channel (FACCH) signalling purposes, then the SID_FIRST or SID_UPDATE frame (whichever applies) shall be re-scheduled for transmission immediately after the FACCH signalling.

SPEECH frames shall override possible SID_FIRST or SID_UPDATE frames in exceptional cases.

At handover, TX/RX DTX handler synchronisation shall be initiated. At the time instant before the MS starts sending to the new base station, a message shall be sent to the uplink TX DTX handler with the parameter NSYNC = 12.

A.5.1.2.3 Functions of the Downlink TX Radio Subsystem for TFO

The TX Radio Subsystem in the BTS shall in addition operate in the following way regarding DTX, if TFO is ongoing (see 3G TS 28.062):

- Frames with TX_TYPE = SPEECH_GOOD, SID_FIRST and SID_UPDATE shall be handled as usual in DTX, regardless whether DTX in downlink is requested or not. Also NO_DATA shall be handled as usual, if DTX is requested.
- Frames with TX_TYPE = NO_DATA shall be replaced by SID_FILLER frames, if DTX in downlink is not requested. By this the radio transmission continues in downlink, although no parameters are transmitted in speech pauses on the Abis interface. The MS generates Comfort Noise in these speech pauses.
- Frames with TX TYPE = SPEECH DEGRADED shall be handled exactly like SPEECH GOOD frames.
- For frame with TX TYPE = SPEECH BAD and SID BAD the CHE shall perform its regular processing, but then shall invert the six, respectively 14 CRC bits before convolutional encoding and transmitting the frames on the air interface. By this the error concealment mechanism in the MS is triggered to handle these corrupted frames.
- ONSET frames may be ignored by the TX Radio Subsystem and need not to be processed.

Definition: SID_FILLER frames are like SID_BAD frames, but with all information bits set to "1". The 14 CRC bits shall artificially be inverted by the CHE before convolutional encoding and transmission.

A.5.1.2.4 Functions of the TX Radio Subsystem for RATSCCH

During regular speech transmission (in the middle of a speech burst)RATSCCH replaces (steals) one (TCH/AFS) respectively two (TCH/AHS) speech frames (see 3G TS 25.009). Also in all non speech cases the RATSCCH shall be handled like speech. The respective RATSCCH frame formats (RATSCCH in case of TCH/AFS, respectively RATSCCH_MARKER and RATSCCH_DATA in case of TCH/AHS) shall be signalled to the CHE.

If RATSCCH has to be sent during a speech pause in DTX, then first an ONSET frame shall be signalled to the CHE, followed by the RATSCCH frame(s) and finally by the respective SID FIRST frame(s).

If a SID_UPDATE frame is affected by RATSCCH signalling, then the SID_UPDATE frame shall be re-scheduled for transmission immediately after the RATSCCH signalling.

FACCH should be handled in the same way as a RATSCCH, i.e. like a short speech burst.

A.6 Receive (RX) side

A block diagram of the receive side DTX functions is shown in figure 3.

A.6.1 General operation

Whatever their context (speech, SID, FACCH or none), the RSS continuously passes the received traffic frames to the RX DTX handler, individually marked by various pre-processing functions with RX_TYPE as described in subclause 6.1.1 and table 2, which serves to classify the traffic frame. This classification allows the RX DTX handler to determine in a simple way how the received frame is to be handled.

Table 4: RX_TYPE identifiers

RX_TYPE Legend	Description
SPEECH GOOD	Speech frame with CRC OK, Channel Decoder soft values
	also OK
SPEECH_DEGRADED	Speech frame with CRC OK, but 1B bits and class2 bits may
	be corrupted
SPEECH_BAD	(likely) speech frame, bad CRC (or very bad Channel Decoder
	measures)
SID_FIRST	first SID marks the beginning of a comfort noise period
SID_UPDATE	SID update frame (with correct CRC)
SID_BAD	Corrupt SID update frame (bad CRC; applicable only for
	SID_UPDATE frames)
ONSET	ONSET frames precede the first speech frame of a speech
	burst
NO DATA	Nothing useable (for the speech decoder) was received. This
	applies for the cases of no received frames (DTX) or received
	FACCH or RATSCCH or SID_FILLER signalling frames.

A.6.1.1 Functions of the RX radio subsystem

The RX radio subsystem uses a combination of gross-bit markers, receiver measurements, and CRC checks to classify each received frame. The basic operation for each frame is outlined below:

- the receiver first searches for the RATSCCH, SID_UPDATE, SID_FIRST or ONSET gross bit markers.

- If the RATSCCH signalling is detected, then the RATSCCH frame (TCH/AFS) respectively the <u>RATSCCH MARKER and RATSCCH DATA frames (TCH/AHS) shall be decoded and handled as described</u> in 3G TS 25.009. They shall be passed to the RX DTX handler as a NO DATA frame(s).
- If the SID_FIRST marker is detected the frame is passed to the RX DTX handler as a SID_FIRST frame.
- If the SID_UPDATE marker is detected, then the frame shall be decoded and passed to the RX DTX handler as
 <u>a SID_UPDATE or a SID_BAD or a NO_DATA frame, depending on the CRC and the information bits, along
 with the comfort noise parameters, if applicable. A NO_DATA frame shall be passed on, if all information bits
 of a SID_UPDATE frame are set to "1" and the CRC is bad (see SID_FILLER in subclause 5.1.2.3).
 </u>
- If the ONSET marker is detected, then an ONSET frame shall be passed to the RX DTX handler.
- if neither SID UPDATE nor SID FIRST markers are detected, the frame shall be channel decoded assuming it to be a speech frame. Depending on the CRC for speech frame channel decoding along with other receiver measurements the frame shall then be passed to the RX DTX handler marked as either SPEECH_GOOD, SPEECH_DEGRADED, SPEECH_BAD or NO_DATA frame.

A.6.1.2 Functions of the RX DTX handler

The RX DTX handler is responsible for the overall DTX operation on the RX side. It consists of two main modes: SPEECH and COMFORT NOISE. The initial mode shall be SPEECH.

The DTX operation on the RX side shall be as follows:

- The RX DTX handler shall enter mode SPEECH, when a frame classified as SPEECH_GOOD or SPEECH DEGRADED is received. ONSET frames may be taken into account to identify the beginning of a speech burst;
- whenever a frame classified as SPEECH_GOOD is received the RX DTX handler shall pass it directly on to the speech decoder;
- if the RX DTX handler is in mode SPEECH, then frames classified as SPEECH_DEGRADED, SPEECH_BAD
 or NO DATA shall be substituted and muted as defined in 3G TS 26.091. Frames classified as NO DATA shall
 be handled like SPEECH_BAD frames without valid speech information;

frames classified as SID_FIRST, SID_UPDATE or SID_BAD shall bring the RX DTX handler into mode <u>COMFORT</u> NOISE and shall result in comfort noise generation, as defined in 3G TS 26.092. SID_BAD frames shall be substituted and muted as defined in 3G TS 26.091. In mode COMFORT_NOISE the RX DTX handler shall ignore all unusable frames (NO_DATA, SPEECH_BAD) delivered by the RSS; comfort noise generation shall continue, until timeout may apply (see 3G TS 26.091);