
3GPP - TSG SA #5 Tdoc SP-99409
11-13 October, 1999
Kyongju, Korea

Title: 3G TS 23.127 v. 0.2.1 and v.0.3.0:

Virtual Home Environment (VHE)/Open Service Architecture (OSA) - Stage

2

Date: 1999-10-06

Source: S2

Purpose: For information

Agenda Point: 5.2.3

The attached document contains two versions of the 3G TS 23.171: Virtual Home
Environment (VHE)/Open Service Architecture (OSA) - Stage 2.

v.0.2.1 is the last approved version by S2.
v.0.3.0 is the version which should have been approved by correspondence last week to be presented
as v.1.0.0 at SA#5 meeting. However, due to some technical reasons, this was not performed. S2
will now provide version 1.0.0 before end of October and send it to SA e-mail reflector.

3G TS 23.127 v0.3.0 (1999-10)
Technical Specification

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

Virtual Home Environment / Open Service Architecture
(3G TS 23.127 version 0.3.0)

3GPP

3G TS 23.127 v0.3.0 (1999-10)23G TS 23.127 version 0.3.0

Reference
DTS/TSGS-0223127U

Keywords
VHE, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

3GPP

3G TS 23.127 v0.3.0 (1999-10)33G TS 23.127 version 0.3.0

Contents

Foreword.. 4

1 Scope ... 5

2 References.. 5
2.1 Normative references ...5
2.2 Informative references ...6

3 Definitions and abbreviations.. 6
3.1 Definitions...6
3.2 Abbreviations ..7

4 Virtual Home Environment ... 7

5 Open Service Architecture .. 8
5.1 Overview of the Open Service Architecture..8
5.2 Basic mechanisms in the Open Service Architecture..11
5.3 Base interface classes...12
5.3.1 Base Interface Class ...12
5.3.2 Base Service Interface class ..12

6 Framework service capability features... 13
6.1 Authentication...13
6.1.1 Establishing a Service Agreement ..13
6.1.2 Authentication interface class...14
6.2 Authorisation...19
6.3 Event Notification..19
6.4 Registration ...20
6.5 Discovery...20

7 Non-Framework service capability features... 21
7.1 Call Control...21
7.1.1 Call Manager ...21
7.1.2 Call ..24
7.1.2.1.1 State Diagram..29
7.1.3 Call Leg ...32
7.1.3.1.1 State Diagram..35
7.2 Security/privacy...37
7.3 Address Translation...37
7.4 User Location ..37
7.5 User Status ..39
7.6 Terminal Capabilities ..41
7.7 Message Transfer...41
7.8 Data Download..41
7.9 User Profile Management ..41
7.10 Charging ...41
7.10.1 CAMEL Call Leg...42

8 Annex - Relation between OSA interface class methods and CAMEL operations (informative) 44

9 Annex - Example of use of OSA (informative) .. 46

10 History... 48

3GPP

3G TS 23.127 v0.3.0 (1999-10)43G TS 23.127 version 0.3.0

Foreword
This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following
formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

3GPP

3G TS 23.127 v0.3.0 (1999-10)53G TS 23.127 version 0.3.0

1 Scope
This document specifies the stage 2 of the Virtual Home Environment and Open Service Architecture.

Virtual Home Environment (VHE) is defined as a concept for personal service environment (PSE) portability across
network boundaries and between terminals. The concept of the VHE is such that users are consistently presented with
the same personalised features, User Interface customisation and services in whatever network and whatever terminal
(within the capabilities of the terminal and the network), wherever the user may be located. For Release99, e.g.
CAMEL, MExE and SAT are considered the mechanisms supporting the VHE concept.

The Open Service Architecture (OSA) defines an architecture that enables operator and third party applications to
make use of network functionality through an open standardised interface (the OSA Interface). OSA provides the glue
between applications and service capabilities provided by the network. In this way applications become independent
from the underlying network technology. The applications constitute the top level of the Open Service Architecture
(OSA). This level is connected to the Service Capability Servers (SCSs) via the OSA interface. The SCSs map the
OSA interface onto the underlying telecom specific protocols (e.g. MAP, CAP, H.323, SIP etc.) and are therefore
hiding the network complexity from the applications.

Applications can be network/server centric applications or terminal centric applications. Terminal centric
applications reside in the Mobile Station (MS). Examples are MExE and SAT applications. Network/server centric
applications are outside the core network and make use of service capability features offered through the OSA
interface. (Note that applications may belong to the network operator domain although running outside the core
network. Outside the core network means that the applications are executed in Application Servers that are physically
separated from the core network entities).

2 References
References may be made to:

a) Specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) All versions up to and including the identified version (identified by "up to and including" before the version
identity); or

c) All versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) Publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

2.1 Normative references
 [1] GSM 01.04 (ETR 350): ”Digital cellular telecommunication system (Phase 2+); Abbreviations

and acronyms”

 [2] GSM 02.57: ”Digital cellular telecommunication system (Phase 2+); Mobile Station Application
Execution Environment (MExE); Service description”

[3] GSM 03.57: " Digital cellular telecommunication system (Phase 2+); Mobile Station Application
Execution Environment (MExE); Service description - Stage2”

3GPP

3G TS 23.127 v0.3.0 (1999-10)63G TS 23.127 version 0.3.0

[4] GSM 02.78: " Digital cellular telecommunication system (Phase 2+); Customised Applications
for Mobile network Enhanced Logic (CAMEL); Service definition - Stage 1" [5] GSM 03.78:
”Digital cellular telecommunication system (Phase 2+); Customised Applications for Mobile
network Enhanced Logic (CAMEL); Service definition - Stage 2”

 [6] GSM 11.14: ”Digital cellular telecommunication system (Phase 2+); Specification of the SIM
Application Toolkit for the Subscriber Identity Module - Mobile Equipment; (SIM - ME)
interface” < Editor's note: check whether reference to 22.038 has to be included >

 [7] UMTS TS 22.101: ”Universal Mobile Telecommunications System (UMTS): Service Aspects;
Service Principles”

 [8] UMTS TS 22.105: ”Universal Mobile Telecommunications System (UMTS); Services and
Service Capabilities”

 [9] UMTS TS 22.121: ”Universal Mobile Telecommunications System (UMTS); Virtual Home
Environment”

[10] UMTS TR 22.905: “….

2.2 Informative references
[1] UMTS TR 22.70: ”Universal Mobile Telecommunications System (UMTS); Virtual Home

Environment”

[2] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (www.w3.org)

3 Definitions and abbreviations

3.1 Definitions
For the purposes of this TS, the following definitions apply:

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home
Environment to provide services.

Local Service: A service, which can be exclusively provided in the current serving network by a Value added Service
Provider.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within
networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the standardised
OSA interface

Service Capability Server: Functional Entity providing OSA interfaces towards an application

Services: Services are made up of different service capability features.

Applications: Services, which are designed using service capability features.

OSA Interface: Standardised Interface used by application to access service capability features.

Personal Service Environment: contains personalised information defining how subscribed services are provided and
presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Home Environment: responsible for overall provision of services to users

3GPP

3G TS 23.127 v0.3.0 (1999-10)73G TS 23.127 version 0.3.0

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the
terminal and serving network.

User Services Profile: Contains identification of subscriber services, their status and reference to service
preferences.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and
between terminals.

Further UMTS related definitions are given in 3G TS 22.101.

3.2 Abbreviations
For the purposes of this TS the following abbreviations apply:

CAMEL Customised Application For Mobile Network Enhanced Logic
CSE Camel Service Environment
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HLR Home Location Register
IDL Interface Description Language
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Architecture
PLMN Public Land Mobile Network
PSE Personal Service Environment
SAT SIM Application Tool-Kit
SCP Service Control Point
SIM Subscriber Identity Module Short Message Service
USIM User Service Identity Module
VASP Value Added Service Provider
VHE Virtual Home Environment

Further GSM related abbreviations are given in GSM 01.04. Further UMTS related abbreviations are given in 3G T
22.905.

4 Virtual Home Environment
The Virtual Home Environment (VHE) is an important portability concept of the 3G mobile systems. It enables end
users to bring with them their personal service environment whilst roaming between networks, and also being
independent of terminal used.

The Personal Service Environment (PSE) describes how the user wishes to manage and interact with her
communication services. It is a combination of a list of subscribed to services, service preferences and terminal
interface preferences. PSE also encompasses the user management of multiple subscriptions, e.g. business and private,
multiple terminal types and location preferences. The PSE is defined in terms of one or more User Profiles.

3GPP

3G TS 23.127 v0.3.0 (1999-10)83G TS 23.127 version 0.3.0

The user profiles consist of two kinds of information:

• Interface related information (User Interface Profile) and,

• Service related information (User Services profile).

Please see TS22.121 [9] for more details.

5 Open Service Architecture
In order to implement not known end user services/applications today, a highly flexible Open Service Architecture
(OSA) is required. The Open Service Architecture (OSA) is the architecture enabling applications to make use of
network capabilities. The applications will access the network through the OSA interface that is specified in this
Technical Specification.

The access to network functionality is offered by different Service Capability Servers (SCSs) and appear as service
capability features in the OSA interface. These are the capabilities that the application developers have at their hands
when designing new applications (or enhancements/variants of already existing ones). The different features of the
different SCSs can be combined as appropriate. The exact addressing (parameters, type and error values) of these
features is described in stage 3 descriptions. These interface descriptions (“IDLs”) are open and accessible to
application developers, who can design services in any programming language. The service logic executes toward the
OSA interfaces, while the underlying core network functions use their specific protocols.

The aim of OSA is to provide an extendible and scalable architecture that allows for inclusion of new service
capability featuresand SCSs in future releases of UMTS with a minimum impact on the applications using the OSA
interface.

To make it possible for application developers to rapidly design new and innovative applications, an architecture with
open interfaces is imperative. By using object oriented techniques, like CORBA, it will be possible to use different
operating systems and programming languages in application servers and service capability servers. The different
servers interwork via the OSA interfaces. The service capability servers will serve as gateways between the network
entities and the applications

5.1 Overview of the Open Service Architecture
The Open Service Architecture consists of three parts:

- Applications, e.g. VPN, conferencing, location based applications. These applications are implemented in
one or more Application Servers;

- Framework, providing the applications with basic mechanisms that enable applications to make use of the
service capabilities in the network. Examples of framework services are Authentication, Registration and
Discovery. Before an application can use the network functionality made available through the Service
Capability Servers, authentication between the application and framework is needed. After authentication,
The discovery service then enables the application to find out from the framework what service capability
features are provided by the Service Capability Servers. The service capability features are accessed by the
methods defined in the OSA interface classes.

Service Capability Servers, providing the applications with service capability features that are abstractions from
underlying network functionality. Examples of service capability features offered by the Service Capability Servers are
Call Control, Message Transfer and Location Information. Similar service capability features are possibly provided by
more than one Service Capability Servers. For example, Call Control functionalitymight be provided by SCSs on top
of CAMEL and MExE.

3GPP

3G TS 23.127 v0.3.0 (1999-10)93G TS 23.127 version 0.3.0

< Editor’s note: text below (until figure) moved from former 5.2.1 to this place>

The OSA interface is specified in terms of a number of interface classes. The interface classes are divided into two
groups:

- framework interface classes, describing the methods on the framework

- service interface classes, describing the methods on the service capability servers.

The interface classes are further divided into methods. For example, the Call Manager interface class might contain a
method to create a call (which realises one of the Service capability features ‘Initiate and create session’ as specified in
[9]).

For description purpose the interface classes belonging to the same subject are grouped together and called network
services. For example, the interface classes Call Manager, Call and Leg constitute the Call Control network service.

Note that the CSE does not provide the service logic execution environment for application using the OSA interface,
since these applications are executed in Application Servers.

framework Loc. information Call control

HLR CSE MExE
server

SAT
server

Servers

E.g. Location server

Service capability server(s)

Interface
class

OSA interface

Open
Service

Architecture

discovery Application

Application
server

Figure 1 Overview of Open Service Architecture

This specification defines the OSA interface. OSA does not mandate any specific platform or programming language.

The Service Capability Servers that implement the OSA interface classes are functional entities that can be distributed
across one or more physical node. For example, the Location interface classes and Call Control interface classes might
be implemented on a single physical entity or distributed across different physical entities. Furthermore, a service
capability server can be implemented on the same physical node as a network functional entity or in a separate
physical node. For example, Call Control interface classes might be implemented on the same physical entity as the
CAMEL protocol stack (i.e. in the SCP) or on a different physical entity.

Several options exist:

 Option 1

The OSA interface classes are implemented in one or more physical entity, but separate from the physical network
entities.Figure 2 shows the case where the OSA interface classes are implemented in one physical entity, called
“gateway” in the figure. Figure 3 shows the case where the SCSs are distributed across several ‘gateways’.

3GPP

3G TS 23.127 v0.3.0 (1999-10)103G TS 23.127 version 0.3.0

SCS ‘Gateway’

OSA Interface

Non-standardised
Interfaces

CSE ….HLR

Physical entity Functional entity

Figure 2 SCSs and network functional entities implemented in separate physical entities

SCS ‘Gateway’

OSA Interface

Non-standardised
Interfaces

CSE ….HLR

SCS SCS

Figure 3 SCSs and network functional entities implemented in separate physical entities, SCSs distributed across
several ‘gateways’.

Option 2

The OSA interface classes are implemented in the same physical entities as the traditional network entities (e.g. HLR,
CSE), see Figure 4.

SCS
OSA Interface

CSE ….HLR

SCS SCS

Figure 4 SCSs and network functional entities implemented in same physical entities

Option 3

Option 3 is the combination of option 1 and option 2, i.e. a hybrid solution.

3GPP

3G TS 23.127 v0.3.0 (1999-10)113G TS 23.127 version 0.3.0

‘Gateway’

OSA Interface

Non-standardised
Interfaces

CSE ….HLR

SCS SCS

Figure 5 Hybrid implementation (combination of option 1 and 2)

It shall be noted that in all cases there is only one framework.

From the application point of view, it shall make no difference which implementation is chosen, i.e. in all cases the
same network functionality is perceived by the application. The applications shall always be provided with the same
set of interface classes and a common access to framework and service interface.

It is the framework that will provide the applications with an overview of available service capability features and how
to make use of them.

<Remark to Application Interface:

The network functionality can be accessed via network and mobile based applications, e.g. from mobile station to
control subscriber data in the HLR. In other words, future contributions might show that parts of the OSA application
interface might be implemented on service capability servers and parts in mobile terminals>

5.2 Basic mechanisms in the Open Service Architecture
This section explains what basic mechanisms are executed in OSA prior to offering and activating applications.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others every time a user
subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

- Authentication: Once a off line service agreement exists, the application can access the authentication interface.
The authentication model of OSA is a peer-to-peer model. The application must authenticate the framework as
well as be authenticated by the framework. The application must be authenticated before any other OSA interface
is allowed to be used.

- Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of
determining what a previously authenticated application is allowed to do. Authentication must precede
authorisation.

- Discovery of framework and service interfaces. After successful authentication, applications can obtain
available framework interface classes and use the discovery interface to get the allowed service interface classes.
The Discovery interface can be used at any time after successful authentication.

- Establishment of service agreement. Before any application can interact with a network service capability a
service agreement must be established. A service agreement consist of an off-line (e.g. by physically passing
messages) and on-line part. The application has to sign an on-line service agreement before any other access to
the network service interface is allowed.

-

Basic mechanism between Framework and Service Capability Server:

- Registering of service interfaces. Interface classes offered by a Service Capability Server can be registered at the

3GPP

3G TS 23.127 v0.3.0 (1999-10)123G TS 23.127 version 0.3.0

Framework. In this way the Framework can inform the Application upon request about available service interface
classes (Discovery). This mechanism is in general applied when installing or upgrading a Service Capability
Server.

Basic mechanisms between Application Server and Service Capability Server:

- Request of event notifications. This mechanism is applied when a user has subscribed to an application and that
application needs to be invoked upon receipt of events from the network related to the user. For example, when a
user subscribes to screening application, the application needs to be invoked when the user makes a call. A call
notificationevent is in this case requested on the Calling and/or Called Party Number of the user.

5.3 Base interface classes
The base class interfaces described in this sub clause are provided for completeness of the documentation. With object
oriented design all classes are based on a base class. This base class normally does very little and new methods (ie
functionality) are added by each class further in the hierarchy.

5.3.1 Base Interface Class

This class is the foundation of the all interfaces and shall be inherited by all following interfaces. It contains no further
methods.

 Name Base_Interface

Method

Parameters

Returns

Errors

5.3.2 Base Service Interface class

This class provides the base for ALL service and framework interfaces described in the following chapters. It allows
an application to set a reference to the application, which is used by the OSA interface to respond to the application,
which originally initiated the request. For example, when an application wants to be notified upon the receipt of the
"called party busy" event, the Service Capability Server must know where to send the notification. This reference can
be provided by the application with the setCallBack method across the OSA interface.

Name Base_Service_Interface

Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke
methods on the application.

Parameters AppInterface

Specifies a reference to the application interface, which is used for callbacks.

Returns

Errors

3GPP

3G TS 23.127 v0.3.0 (1999-10)133G TS 23.127 version 0.3.0

6 Framework service capability features

6.1 Authentication
The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Network to prevent misuse of resources. In addition it may
be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The authentication interface must be the first interface invoked by an application. Invocations of other interfaces will
fail until authentication has been successfully completed.

The address of the Authentication Framework interface is administered in the application prior to the API being used.
This address is made available by the Home Environment, possibly also for a particular HE-VASP.

6.1.1 Establishing a Service Agreement

Before any application can interact with the network a service agreement will have to be established or an existing
agreement will need modification or indeed termination if it is being superseded. An appropriate procedure is
required to cater for each of these cases. Off-line agreement may be done by physically passing messages in a secure
manner using cryptographic or non-cryptographic techniques. On-line agreement, on the other hand, can only be done
in practice using cryptographic techniques.

The procedure outlined below describes on-line establishment of service agreements using cryptographic techniques
only, since this is considered to be an integral part of the Authentication Framework. However, the procedures may
also be a basis for an off-line establishment of service agreements using cryptographic techniques.

A procedure to establish a service agreement begins with the application and Authentication Framework
authenticating each other. This uses an authentication mechanism chosen by the Authentication Framework.

After authentication the application and Authentication Framework negotiate a service agreement which will involve
each party digitally signing the agreement.

• A application sends an initial message to the Authentication Framework - this will include the authentication
capabilities of the application. The Authentication Framework will then choose an authentication mechanism
based on information about the authentication capabilities of the framework, application and the service requested.
If the application is capable of handling more than one mechanism then the Authentication Framework chooses
one preferred authentication option.

• The Authentication Framework sends the identity of the prescribed authentication mechanism to the application.
The Authentication Framework will instruct the application to perform the agreed mechanism.

• The application and Authentication Framework interact to authenticate each other. Depending on the mechanism
prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. It is assumed
that any cryptographic process for enciphering the link is handled at a lower layer (and is outside the scope of this
specification).

• The application is now authorised and can access the Discovery Framework Interface using the
obtainInterface method. The application uses functions of the Discovery framework interface to look for the
services it needs. Using the selectService() and signServiceAgreement() methods it requests the
use of a service.

The application and Authentication Framework can then negotiate a service agreement. Optionally, the Authentication
Framework may request re-authorisation. Each party then digitally signs the agreement.

< Editor’s note: clarifying text needed to explain what is meant by “client” in the interface class defintions in chapter
6 and 7 >

3GPP

3G TS 23.127 v0.3.0 (1999-10)143G TS 23.127 version 0.3.0

< Editor: in the remainder of chapters 7 and 8, remove "service interface", "application interface", "framework
interface"; remove "name" row by "direction" row

6.1.2 Authentication interface class

Method authenticateClient()

This method is used by the framework to authenticate the application. The application must
respond with the correct responses to the challenges presented by the framework. The Gateway ID
(The address of the gateway being used - which will be pre-provisioned in the application
environment) can be used by the application to reference the correct gateway Public Key. The key
management system is currently outside of the scope of the specification.

Direction Framework to application

Parameters challenge

The challenge presented by the framework to be responded to by the application. The challenge
will be encrypted with the mechanism prescribed by the
initiateClientAuthentication().

Returns response

This is the response of the application to the challenge of the framework in the current sequence.
The response will be the challenge, decrypted with the mechanism prescribed by the
initiateClientAuthentication().

Errors

Method terminateAppClientAuthentication()

This method is used by the framework to terminate authentication with the application.

Direction Framework to application

Parameters terminationText

This is the termination text that is signed by the framework using the private key of the framework
or another secret key.

digitalSignature

This is the digital signature of the termination text. The application uses this to check
terminationText. If a match is made, the authentication is terminated, otherwise an error is
returned.

Returns

Errors

Method signAppServiceAgreement()

This method is used by the framework to ask the application to sign an agreement on the service to
continue the authentication process.

3GPP

3G TS 23.127 v0.3.0 (1999-10)153G TS 23.127 version 0.3.0

Direction Framework to application

Parameters serviceToken

This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service requested by the application.

agreementText

This is the agreement text that is to be encrypted by the application using the private key of the
application.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns digitalSignature

This is the encrypted version of the agreement text given by the application.

Errors

Method terminateAppServiceAgreement()

This method is used by the framework to terminate an agreement with the application on the
service.

Direction Framework to application

Parameters serviceToken

This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service requested by the application.

terminationText

This is the termination text that is digitally signed by the framework. The signing algorithm used
is the same as for the function signServiceAgreement().

digitalSignature

This is the digital signature of the termination text. The application uses this to check the
terminationText. If a match is made, the service agreement is terminated, otherwise an error
is returned.

Returns

Errors

Method initiateClientAuthentication()

The application uses this method to initiate the authentication process. The mechanism returned by
the framework is the mechanism preferred by the framework. This should be within the application
capability. If a mechanism within the application’s capability cannot be found, the framework must
return an error.

Direction Application to framework

Parameters applicationID

3GPP

3G TS 23.127 v0.3.0 (1999-10)163G TS 23.127 version 0.3.0

This is the ID for the application.. The application ID can be used by the framework to reference
the correct application Public Key (the key management system is currently outside of the scope of
the specification).

appInterface

Specifies a reference to the application interface, which is used for callbacks.

clientCapability

This is the authentication capability of the application. This is a list of capabilities separated by a
comma.

Returns prescribedMechanism

This is the mechanism returned by the framework to indicate the mechanism preferred by the
framework for the authentication process. If the value of the prescribedMechanism returned
by the framework is not understood by the application, it is considered a catastrophic error and the
application must abort.

Errors INVALID_APPLICATIONID

Returned by the framework if the framework cannot find the applicationID parameter. The
value of the parameter prescribedMechanism is NULL in this situation

INVALID_CLIENT_CAPABILITY

If the value of the clientCapability parameter is not valid. The value of the parameter
prescribedMechanism is set to NULL.

Method authenticateFramework()

This method is used by the application to authenticate the framework. The framework must
respond with the correct responses to the challenges presented by the application. The application
ID received in the initiateClientAuthentication() can be used by the gateway to
reference the correct application public key (the key management system is currently outside of the
scope of this specification).

Direction Framework to application

Parameters challenge

The challenge presented by the application to be responded to by the framework. The challenge
mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge
Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted
with the mechanism prescribed by the initiateClientAuthentication().

Returns response

This is the response of the framework to the challenge of the application in the current sequence.
The response will be the challenge, decrypted with the mechanism prescribed by the
initiateClientAuthentication().

Errors

Method terminateClientAuthentication()

This method is used by the application to terminate authentication with the framework. The
application ID received in the initiateClientAuthentication() can be used by the
gateway to reference the correct application public key or another secret key (the key management

3GPP

3G TS 23.127 v0.3.0 (1999-10)173G TS 23.127 version 0.3.0

system is currently outside of the scope of this specification).

Direction Framework to application

Parameters terminationTex

This is the termination text that is signed by the application using the private key of the application
or another secret key.

digitalSignature

This is the digital signature of the termination text. The framework uses this to check the decrypted
terminationText. If a match is made, the authentication is terminated, otherwise an error is
returned.

Returns

Errors

Method SelectService()

This method is used by the application to identify the service that the application is interested in.

Direction Application to framework

Parameters ServiceID

This uniquely defines the service required.

ServiceProperties

The names and values of the trading data properties that the service should support.

Returns ServiceToken

This is a free format text token returned by the framework, which can be signed as part of a service
agreement. This will contain operator specific information relating to the service level agreement
for use of the API.

Errors

Method SignServiceAgreement()

This method is used by the application to ask the framework to sign an agreement on the service to
continue the authentication process.

Direction Application to framework

Parameters ServiceToken

The token returned by the framework in a previous selectService() method call to identify
the service requested by the application.

AgreementText

This is the agreement text that is to be encrypted by the framework using the private key of the
framework.

SigningAlgorithm

This is the algorithm used to compute the digital signature. The signing algorithm must be known
to the framework and mandated by the prescribed mechanism returned by the framework.

3GPP

3G TS 23.127 v0.3.0 (1999-10)183G TS 23.127 version 0.3.0

Returns DigitalSignature

This is the encrypted version of the agreement text given by the framework.

serviceManagerInterface

This identifies the address of the service manager interface for the requested service.

Errors INVALID_SIGNING_ALGORITHM

Returned by the framework when the signing algorithm does not match with the prescribed
mechanism.

Method terminateServiceAgreement()

This method is used by the application to ask the framework to terminate an agreement on the
service.

Direction Application to framework

Parameters serviceToken

The token returned by the framework in a previous selectService() method call to identify
the service requested by the application.

terminationText

This is the termination text that is to be digitally signed by the application. The signing algorithm
used is the same as for the function signServiceAgreement().

digitalSignature

This is the digital signature of the termination text. The framework uses this to check the
terminationText. If a match is made, the service agreement is terminated, otherwise an error
is returned.

Returns

Errors

Direction Application to framework

Method obtainFrameworkInterface()

This method is used to obtain other framework interfaces. Only by using this method can the
application obtain the interface references to the other framework interfaces.

Parameters frameworkId

The name of the framework interface to which a reference to the interface is requested. The
interfaces allowed include discovery, event notification and OA & M. This parameter
uniquely defines the service of interest from the application.

appInterface

Specifies a reference to the application interface, which is used for callbacks. If an application
interface is not needed, then the value of this parameter should be NULL.

Returns frameworkInterface

This is the interface reference to the interface asked for by the application.

3GPP

3G TS 23.127 v0.3.0 (1999-10)193G TS 23.127 version 0.3.0

Errors INVALID_INTERFACEID

Returned if the framework is given an invalid interface name

6.2 Authorisation
< Editor’s note: to be completed in e-mail discussion >

6.3 Event Notification

Method enableNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Direction Application to framework

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the obtainInterface() method (refer to Authentication interface).

eventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns assignmentID

Specifies the ID assigned by the framework for this newly enabled event notification.

Errors

Method disableNotification()

This method is used by the application to disable generic notifications from the framework.

Direction Application to framework

Parameters eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the framework when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

3GPP

3G TS 23.127 v0.3.0 (1999-10)203G TS 23.127 version 0.3.0

Method eventNotify()

This method notifies the application of the arrival of a generic event.

Direction Framework to application

Parameters eventInfo

Specifies specific data associated with this event.

assignmentID

Specifies the assignment id which was returned by the framework during the
enableNotification() method. The application can use assignment id to associate events
with event specific criteria and to act accordingly.

Returns

Errors

Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated
(for example, due to faults detected).

Direction Framework to application

Parameters

Returns

Errors

6.4 Registration

<Editor’s note: to be completed in e-mail discussion >

6.5 Discovery

Method discoverService()

The discoverService operation is the means by which a user (client application) is able to obtain the
reference (address) to the services that meet its requirements. The client specifies criteria about the
service it is interested in and the framework returns the identifier for the service that meet the
criterias.

Direction Application to framework

Parameters ServiceProperties

3GPP

3G TS 23.127 v0.3.0 (1999-10)213G TS 23.127 version 0.3.0

The names and values of the trading data properties that the service should support, includes
Service Type name, Service constraints.

Returns serviceID

This is the unique identity of the service.

Errors

7 Non-Framework service capability features
The service capability features provided to the application by service capabilities servers to enable access to network
resources. <Editor's note: information flows might be needed to express what information is exchanged (and in what
order) between application and service capability servers; this needs then also be reflected in the document
structure>

Note: when the direction of a method in an interface class is “application to network”, this means that the method is
invoked from the application to an SCS residing on the network side of the OSA interface.

7.1 Call Control

The Call control network service consist of three interface classes:

1. Call manager, containing management function for call related issues

2. Call, containing methods to control a call

3. Leg, containing methods to control individual legs in a call

A call can be controlled by one Call Manager; A call can consist of up to n Legs, where n is determined by the Service
Capability used.

Call
Manager

LegCall0..1 0..n

Figure 6 Call control class hierarchy

7.1.1 Call Manager

The generic call manager interface class provides the management functions to the generic call Service Capability
Features. The application programmer can use this interface, to create call objects and to enable or disable call-related
event notifications.

3GPP

3G TS 23.127 v0.3.0 (1999-10)223G TS 23.127 version 0.3.0

Method CreateCall()

This method is used to create a new call object.

Direction Application to network

Parameters AppCall

Specifies the application interface for callbacks from the call created.

Returns Call

Specifies the interface reference of the call created.

CallSessionID

Specifies the call session ID of the call created.

Errors

Method EnableCallNotification()

This method is used to enable call notifications so that events can be sent to the application.

Direction Application to network

Parameters AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the setCallback() method.

EventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns AssignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event
notification.

Errors

Method DisableCallNotification()

This method is used by the application to disable call notifications.

Direction Application to network

Parameters EventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

AssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableNotification() was called.

Returns

3GPP

3G TS 23.127 v0.3.0 (1999-10)233G TS 23.127 version 0.3.0

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has
automatically removed any load controls on calls requested to a particular address range or calls
made to a particular destination within the generic call control service.

Direction Network to application

Parameters AddressRange

Specifies the address range within which the overload has ceased.

overloadType

Specifies the type of overload that has ceased.

Returns

Errors

Method callFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Direction Network to application

Parameters call

Specifies the call interface in which the fault has been detected.

callSessionID

3GPP

3G TS 23.127 v0.3.0 (1999-10)243G TS 23.127 version 0.3.0

Specifies the call session ID of the call in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns

Errors

Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction Network to application

Parameters call

Specifies the reference to the call interface to which the notification relates.

eventInfo

Specifies data associated with this event.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

appInterface

Specifies a reference to the application interface which implements the callback interface for the
new call.

Returns

Errors

Method callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for
example, due to faults detected).

Direction Network to application

Parameters

Returns

Errors

7.1.2 Call

The generic call interface represents the interface to the generic call Service Capability Feature. It provides a structure
to allow simple and complex call behaviour to be used.

3GPP

3G TS 23.127 v0.3.0 (1999-10)253G TS 23.127 version 0.3.0

Method routeCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the
destination party, via a passive call leg (which is implicitly created).

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToDestination_Res()
being generated.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress

Specifies the original destination address of the call.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

Returns

Errors

Method routeCallToOrigination_Req()

This asynchronous method requests routing of a call to the first call party, via a controlling call leg
(which is implicitly created). The call object must already have been created

Direction Application to network

Parameters CallSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToOrigination_Res()
will be generated.

targetAddress

Specifies the origination party to which the call should be routed.

originatingAddress

3GPP

3G TS 23.127 v0.3.0 (1999-10)263G TS 23.127 version 0.3.0

Specifies the address of the originating (calling) party.

AppInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

Returns

Errors

Method releaseCall()

This method requests the release of the call and associated objects.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

cause

Specifies the cause of the release.

Returns

Errors

Method deassignCall()

This method requests that the relationship between the application and the call and associated
objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so
that the application has no further control of call processing. If a call is de-assigned that has event
reports, call information reports or call Leg information reports requested, then these reports will
be disabled and any related information discarded.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

Returns

Errors

Method getCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the
appropriate time (for example, to calculate charging). This method must be invoked before the call
is routed to a target address. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after
any call event reports.

Note: At the end of the call with respect to either a particular call leg or the entire call, the call
information must be sent before the objects of concern are deleted.

Direction Application to network

Parameters callSessionID

3GPP

3G TS 23.127 v0.3.0 (1999-10)273G TS 23.127 version 0.3.0

Specifies the call session ID of the call.

callInfoRequested

Specifies the call information that is requested.

Returns

Errors

Method setCallChargePlan()

Allows an application to include charging information in network generated CDR.

Parameters callSessionID

Specifies the call session ID of the call.

callChargePlan

Application specific charging information.

Returns

Errors

Method getCallState()

This method requests the current state of the call.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

Returns State

Specifies the current state of the call.

Errors

Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

Returns callLegList

Specifies the call legs associated with the call. The references passed in this list are in the same
index order as the IDs passed in the call leg session ID list.

callLegSessionIDList

Specifies the call leg session IDs associated with the call. The IDs passed in this list are in the
same index order as the references passed in the call leg list.

3GPP

3G TS 23.127 v0.3.0 (1999-10)283G TS 23.127 version 0.3.0

Errors

Method createCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the
call, but not attached. The call leg can be attached to the call (using attachCallLeg) when the
call leg is in the connected state (i.e. it has been answered).

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

callLegType

Specifies the type of call leg created (e.g. generic or terminal, controlling or passive).

appCallLeg

Specifies the application interface for callbacks from the call leg created.

Returns callLeg

Specifies the interface of the call leg created.

callLegSessionID

Specifies the call leg session ID of the call leg created.

Errors

Method attachCallLeg()

This method requests that the call leg be attached to the call object. This will allow transmission on
all associated bearer connections to other parties in the call. The call leg must be in the connected
state for this method to complete successfully.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg to attach to the call.

callLegSessionID

Specifies the call leg session ID to attach to the call.

Returns

Errors

Method detachCallLeg()

This method requests that the call leg be detached from the call object. This will prevent
transmission on any associated bearer connections to other parties in the call. The call leg must be
in the connected state for this method to complete successfully.

3GPP

3G TS 23.127 v0.3.0 (1999-10)293G TS 23.127 version 0.3.0

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg to detach from the call.

callLegSessionID

Specifies the call leg session ID to detach from the call.

Returns

Errors

Method getControlLeg()

This method requests the identification of the controlling call leg of this call.

Direction Application to network

Parameters callSessionID

Specifies the call session ID of the call.

Returns callLeg

Specifies the interface of the controlling call leg of this call.

callLegSessionID

Specifies the call leg session ID of the controlling leg of this call.

Errors

7.1.2.1.1 State Diagram

Figure 7 shows the state model for the generic call interface from applications point of view. The state model is
simplified because most of the state is held within the associated call legs. The call is created by an application (via the
createCall() method on the CallManager interface) or implicitly by the Generic Call Control Service when a
new call event notification arrived.

It shall be noted that this state diagrams relates to the OSA interface and not to the underlying mechanism used to
perform the call control.

<Editor’s note: A mapping to CAMEL states might be needed in the stage 3>

3GPP

3G TS 23.127 v0.3.0 (1999-10)303G TS 23.127 version 0.3.0

ACTIVE

INACTIVE

IDLE

RELEASED

releaseCallLeg
[not controlling call leg]

attachCallLeg
[first call leg]

releaseCall

detachCallLeg
[last call leg]

releaseCallLeg
[controlling call leg]

ALL STATES

deassignCall

createCall

routeCallToOrigination_Req
[call accepted]

releaseCall

routeCallLegToAddress
[call accepted]

routeCallToDestination_Req
[call accepted]

releaseCall

Figure 7 - State diagram for the Call interface from an application point of view

.

Method routeCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was
successful, and indicates the response of the destination party (for example, the call was answered,
not answered, refused due to busy, etc.). If the call is answered, then a (passive) call leg object will
be created for that leg of the call.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg associated with the destination party.

callLegSessionID

Specifies the call leg session ID of the call leg associated with the destination party.

3GPP

3G TS 23.127 v0.3.0 (1999-10)313G TS 23.127 version 0.3.0

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode
that the call object is in, the call leg generating the report (if applicable) and other related
information.

Returns

Errors

Method routeCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was
unsuccessful - the call could not be routed to the destination party (for example, the network was
unable to route the call, the parameters were incorrect, the request was refused, etc.).

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

Method routeCallToOrigination_Res()

This asynchronous method indicates that the request to route a call to the first call party was
successful, and indicates the response of that party (for example, the call was answered, not
answered, refused due to busy, etc.). If the call is answered, then a (controlling) call leg object will
be created for that leg of the call.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg associated with the origination party.

callLegSessionID

Specifies the call leg session ID of the call leg associated with the origination party.

eventReport

Specifies the result of the request to route the call to the origination party. It also includes the mode
that the call object is in, the call leg generating the report (if applicable) and other related
information.

Returns

Errors

3GPP

3G TS 23.127 v0.3.0 (1999-10)323G TS 23.127 version 0.3.0

Method routeCallToOrigination_Err()

This asynchronous method indicates that the request to route the call to the originating party was
unsuccessful (for example, the network was unable to route the call, the parameters were incorrect,
the request was refused, etc.).

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

Method getCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for
example to calculate charging.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns

Errors

Method getCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error
condition.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

7.1.3 Call Leg

The generic call leg interface represents the logical call leg associating a call with an address. The call leg tracks it

3GPP

3G TS 23.127 v0.3.0 (1999-10)333G TS 23.127 version 0.3.0

own states and allows charging summaries to be accessed.

Method routeCallLegToAddress()

This method initiates routing of the call leg to the given target address. The outcome of the call
routing attempt can be requested and reported using callLegEventReport_Req and
callLegEventReport_Res / callLegEventReport_Err.

Direction Application to network

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalCalledAddress

Specifies the original address to which the call was initiated.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

Returns

Errors

Method callLegEventReport_Req()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object
will be set to observe.

Direction Application to network

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

eventReportsRequested

Specifies the events that the call leg object will observe and report.

Returns

Errors

Method getCallLegState()

This method requests the current state of the call leg.

Direction Application to network

3GPP

3G TS 23.127 v0.3.0 (1999-10)343G TS 23.127 version 0.3.0

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

Returns state

Specifies the current state of the call leg.

Errors

Method getAddresses()

This method requests the address details associated with the call leg.

Direction Application to network

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

Returns addressList

Specifies the addresses associated with the call leg.

Errors

Method getCallLegInfo_Req()

This asynchronous method requests information associated with the call leg to be provided at the
appropriate time (for example, to calculate charging). Note: in the call leg information must be
accessible before the objects of concern are deleted.

Direction Application to network

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested

Specifies the call leg information that is requested.

Returns

Errors

Method getCallLegType()

This method requests whether the call leg is a controlling or passive call leg.

Direction Application to network

3GPP

3G TS 23.127 v0.3.0 (1999-10)353G TS 23.127 version 0.3.0

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

Returns callLegType

Specifies the call leg type.

Errors

Method getCall()

This method requests the call associated with this call leg.

Direction Application to network

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Returns Call

Specifies the interface of the call associated with this call leg.

CallSessionID

Specifies the call session ID of the call associated with this call leg.

Errors

7.1.3.1.1 State Diagram

Figure 8 shows the state model for the generic call leg interface from an application point of view. This represents
most of the call setup states. The call leg is created by an application (via the createCallLeg() method on the
Call interface) or implicitly by the Generic Call Control Service.

It shall be noted that this state diagrams relates to the OSA interface and not to the underlying mechanism used to
perform the call control.

<Editor’s note: A mapping to CAMEL states might be needed in the stage 3>

3GPP

3G TS 23.127 v0.3.0 (1999-10)363G TS 23.127 version 0.3.0

IDLE CALL_PROCEEDING

ALERTING CONNECTED

RELEASED

FAILED

ALL STATES

eventNotify
[answer]

eventNotify
[no answer]

releaseCallLeg

notificationTerminated
[switch fault]

eventNotify
[call leg ringing]

eventNotify
[busy or out of service]

eventNotify
[answer]

eventNotify
[call leg released]

releaseCallLeg

eventNotify
[call leg released]

createCallLeg

eventNotify
[new call]

routeCall/CallLegTo..._Req
[call proceeding]

routeCall/CallLegTo..._Req
[call accepted]

routeCall/CallLegTo..._Req
[call leg ringing]

releaseCallLeg

routeCall/CallLegTo..._Req
[busy or out of service]

deassignCall

releaseCall

Figure 8 - State diagram for the CallLeg interface from an application point of view

Method callLegEventReport_Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for
example, a mid-call event, the party has requested to disconnect, etc.).

Direction Network to application

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode
that the call object is in, the call leg generating the report (if applicable) and other related
information.

Returns

Errors

Method CallLegEventReport_Err()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful,
and the reason (for example, the parameters were incorrect, the request was refused, etc.).

3GPP

3G TS 23.127 v0.3.0 (1999-10)373G TS 23.127 version 0.3.0

Direction Network to application

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns

Errors

Method GetCallLegInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for
example to calculate charging.

Direction Network to application

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

CallLegInfoReport

Specifies the call leg information requested.

Returns

Errors

Method GetCallLegInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error
condition.

Direction Network to application

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns

Errors

7.2 Security/privacy

7.3 Address Translation

7.4 User Location

Method EnableLocationNotification()

3GPP

3G TS 23.127 v0.3.0 (1999-10)383G TS 23.127 version 0.3.0

This method is used to enable user status notifications so that events can be sent to the application.

Direction Application to network

Parameters AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns assignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event
notification.

Errors

Method disableLocationNotification()

This method is used by the application to disable call notifications.

Direction Application to network

Parameters eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method getUserLocation()

This method is used by an application to get the location of a user directly.

Direction Application to network

Parameters userIdentity

Identifies the user

Returns locationInformation

Specifies the current location of the user. The following information elements may be returned:

• CellId or location area identifier

• VLR number

• Geographical information

3GPP

3G TS 23.127 v0.3.0 (1999-10)393G TS 23.127 version 0.3.0

• Location number

locationInformationAge

Indicates the time that the location information was updated.

Errors

Method locationReport()

This method notifies the application of the arrival of a mobility-related event.

Direction Network to application

Parameters eventInfo

Specifies data associated with this event.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

Returns

Errors

Method locationNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for
example, due to faults detected).

Direction Network to application

Parameters

Returns

Errors

7.5 User Status

Method enableStatusNotification()

This method is used to enable user status notifications so that events can be sent to the application.

Direction Application to network

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is

3GPP

3G TS 23.127 v0.3.0 (1999-10)403G TS 23.127 version 0.3.0

used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required:

• Check for subscriber being reachable

• Check for subscriber being not reachable

Returns assignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event
notification.

Errors

Method disableStatusNotification()

This method is used by the application to disable call notifications.

Direction Application to network

Parameters eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

Method GetUserStatus()

Direction Application to network

Parameters userIdentity

This parameter identifies the user for which the status has to be reported

Returns status

Reports the status of the user. The following status can be reported:

• Assumed idle

• Busy

• NotReachable

• No information available

Errors

3GPP

3G TS 23.127 v0.3.0 (1999-10)413G TS 23.127 version 0.3.0

Method statusEventNotify()

This method notifies the application of the arrival of a call-related event.

Direction Network to application

Parameters status

Reports the status of the user.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

Returns

Errors

Method statusNotificationTerminated()

This method indicates to the application that all status event notifications have been terminated
(for example, due to faults detected).

Direction Network to application

Parameters

Returns

Errors

7.6 Terminal Capabilities

7.7 Message Transfer

7.8 Data Download

7.9 User Profile Management
<Editor's note: management of supplementary service data might be included here (or in a separate section it that
appears to be more appropriate>

7.10 Charging

3GPP

3G TS 23.127 v0.3.0 (1999-10)423G TS 23.127 version 0.3.0

7.10.1 CAMEL Call Leg

This class inherits from the base Call Leg interface class and adds CAMEL specific methods.

Method setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users
handset.

Direction Application to network

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

adviceOfChargeInformation

Specifies two sets of Advice of Charge parameter according to GSM …..

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns

Errors

Method superviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection
time for this call. If an application calls this function before it calls a
routeCallToDestination_Req() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Direction Application to network

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Duration

Specifies the granted duration of the call/session in:

• time in milliseconds for the connection, or;

• Total data transferred in …

TarrifSwitch

Specifies an optional tariff switch indicating a change in tariff.

3GPP

3G TS 23.127 v0.3.0 (1999-10)433G TS 23.127 version 0.3.0

treatment

Specifies how the network should react after the granted connection time expired.

Returns

Errors

Method superviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

Returns

Errors

Method superviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Direction Network to application

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

3GPP

3G TS 23.127 v0.3.0 (1999-10)443G TS 23.127 version 0.3.0

8 Annex - Relation between OSA interface class
methods and CAMEL operations (informative)

The table below shows how OSA interface class methods can be mapped onto CAMEL CAP Phase3
operations. Note that the table below does not contain Framework interface classes. In some cases there is no
mapping between OSA interface classes and CAP operations, but between OSA interface classes and
messages generated by TCAP, the protocol layer below CAP.

<Editor’s note: the mapping might slighty change due to CAMEL phase3 scope changes>

<Editor’s note: mapping on parameter level might be done as part of stage3 >

OSA interface class method CAP operation (phase3)

CreateCall No CAP operation, since execution of this method only results in
the creation of a Call object instance in the Service Capability
Server

EnableCallNotification AnyTimeModification

Note: AnyTimeModification only allows for activation of O/T-CSI,
not for the creation

DisableCallNotification AnyTimeModification

Note: AnyTimeModification only allows for de-activation of O/T-
CSI, not for the deletion

CallAborted TCAP U-ABORT or Disconnect event

CallFaultDetected All “no connection” events that refer to an error rather than to a
normal “no connection” situation (like e.g. “busy”, “no answer”)

CallEventNotify InitialDP

CallNotificationTerminated -

RouteCallToDestination_Req (InitiateCallAttempt and Reconnect) or Connect or Continue

and RequestReport_BCSM (in case the application needs to be
notified on certain events)

RouteCallToDestination_Res EventReport_BCSM

RouteCallToDestination_Err TCAP Return Error

RouteCallToOrigination_Req InitiateCallAttempt

and RequestReport_BCSM (in case the application needs to be
notified on certain events)

RouteCallToOrigination_Res EventReport_BCSM

RouteCallToOrigination_Err TCAP Return Error

ReleaseCall ReleaseCall

DeassignCall Cancel

GetCallInfo_Req CallInformationRequest

3GPP

3G TS 23.127 v0.3.0 (1999-10)453G TS 23.127 version 0.3.0

OSA interface class method CAP operation (phase3)

GetCallInfo_Res CallInformationReport

GetCallInfo_Err TCAP Return Error

GetCallState -

GetCallLegs -

CreateCallLeg -

AttachCallLeg -

DetachCallLeg -

GetControlLeg -

RouteCallLegToAddress (InitiateCallAttempt and Reconnect) or Connect or Continue

and RequestReport_BCSM (in case the application needs to be
notified on certain events)

CallLegEventReport_Req RequestReport_BCSM

CallLegEventReport_Res EventReport_BCSM

CallLegEventReport_Err TCAP Return Error

GetCallLegState -

GetAddresses -

GetCallLegInfo_Req CallInformationRequest

GetCallLegInfo_Res CallInformationReport

GetCallLegInfo_Err TCAP Return Error

GetCallLegType -

GetCall -

EnableLocationNotification AnyTimeModification

Note: AnyTimeModification only allows for activation of M-CSI,
not for the creation

DisableLocationNotification AnyTimeModification

Note: AnyTimeModification only allows for de-activation of M-
CSI, not for the deletion

GetUserLocation AnyTimeInterrogation

LocationReport LocationUpdate [check latest version CAP phase3]

LocationNotificationTerminated ? [check latest version CAP phase3]

EnableStatusNotification AnyTimeModification

Note: AnyTimeModification only allows for activation of M-CSI,
not for the creation

DisableStatusNotification AnyTimeModification

Note: AnyTimeModification only allows for de-activation of M-
CSI, not for the deletion

3GPP

3G TS 23.127 v0.3.0 (1999-10)463G TS 23.127 version 0.3.0

OSA interface class method CAP operation (phase3)

StatusNotificationTerminated ? [check latest version CAP phase3]

SetChargeInfo FurnishChargingInformation

SetAdviceOfCharge SendChargingInformation

SuperviseCall_Req ApplyCharging

SuperviseCall_Res ApplyCharging_Response

SuperviseCall_Err TCAP Return Error

9 Annex - Example of use of OSA (informative)

The following example shows how the OSA, described on a high level, could be used to execute an application. Note
that OSA enables the use of various Service Capability Servers by an application.

 A user participates in a three-party conference discussing where to dine tonight (voice call). The Web is browsed to
pick a suitable restaurant. The location of the restaurant in relation to the position of the user is displayed on the
user’s terminal (location/positioning application). The restaurant choice is agreed amongst the conference
participants and a voice call is set up to book a table at the restaurant.

In some more detail this example could look as follows:

1) Conference call set-up:

Ordered via a WAP communication to the Call Conference Application.

WAP-GW

 CAMEL
 SCS

Call Conference Application on
Application Server

Request conference set-up

Set up call to User A, User B and User C

User A

User B

User C

2) Web-browsing:

User A uses WAP to browse information on the Internet (or a specific Home Environment provided service) to find a
restaurant guide.

User A à WAP-GW à Internet.

After having found two restaurant choices which all conference participants agree to, it is decided to choose the one

3GPP

3G TS 23.127 v0.3.0 (1999-10)473G TS 23.127 version 0.3.0

that is closest to where User A is located. User A then contacts the “Locator Application” which helps him to decide
which of the two restaurants that is closest to him, and how to get there.

3) Location/Positioning info:

User A à “Locator Application” à CAMEL SCS (positioning part).

The “Locator Application” determines which of the two restaurants that is the closest, translates the positioning
information into a description how to get there, either in text for WAP or alternatively included as an attachment in an
e-mail.

4) Table reservation:

Lastly, User A makes a table reservation by calling the restaurant. This can either be done via the WTAI interface
between a WTA application or by requesting an application in the network to establish the call as described in 1.
above.

User A à Voice call controlled via WTAI à Restaurant”

3GPP

3G TS 23.127 v0.3.0 (1999-10)483G TS 23.127 version 0.3.0

10 History
 Date Version Comment

July 1999 0.1.0 Initial Draft produced in Hazlet, New Jersey, USA

September 1999 0.2.0 Version presented to S2 plenary in Bonn, Germany (not including all agreed
changes yet from VHE/OSA adhoc session)

September 1999 0.2.1 Output of Bonn meeting

October 1999 0.3.0 Version sent to S2 e-mail list and proposed to send to SA plenary

Rapporteur: Erwin van Rijssen, Ericsson

Email: Erwin.van.Rijssen@etm.ericsson.se Telephone: + 31 161 24.26.02

-

3G TS 23.xyz 0.12.0 (1999-097)
Technical Specification

3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects;

Virtual Home Environment / Open Service Architecture
(3G TS 23.xyz version 0.21.10)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)23G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Reference
DTS/TSGS-0223xxxU

Keywords
VHE, OSA

3GPP

Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet
http://www.3gpp.org

3GPP

3G TS 23.xyz 0.12.0 (1999-097)33G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Contents

Foreword.. 67

1 Scope ... 78

2 References .. 78
2.1 Normative references ... 78
2.2 Informative references ... 89

3 Definitions and abbreviations .. 89
3.1 Definitions ... 89
3.2 Abbreviations .. 910

4 Introduction to VHE and OSA ...910

5 Virtual Home Environment .. 1112

6 Open Service Architecture .. 12
6.1 Overview of the Open Service Architecture .. 1314
6.2 Principles in the Open Service Architecture ... 1516
6.2.1 OSA Interface .. 1516
6.2.2 Basic mechanisms in OSA ... 1718
6.3 Base interface classes ... 1718
6.3.1 Base Interface Class ... 18
6.3.2 Base Service Interface class .. 1819

7 Framework service capability features... 19
7.1 Authentication ... 19
7.1.1 Establishing a Service Agreement .. 19
7.1.2 Authentication interface class ... 20
7.2 Authorisation ... 26
7.2.1 Authorisation - framework interface ... 26
7.2.2 Authorisation - service interface ... 26
7.3 Event Notification.. 26
7.3.1 Event Notification – framework interface ... 26
7.3.2 Event Notification – application interface ... 2726
7.4 Registration ... 27
7.4.1 Registration – framework interface ... 27
7.4.2 Registration – service interface ... 27
7.5 Discovery... 27
7.5.1 Discovery – framework interface .. 27
7.5.2 Discovery – application interface .. 28

8 Non-Framework service capability features ... 28
8.1 Call Control ... 28
8.1.1 Call Manager ... 2928
Call Manager – service interface .. 2928
Call Manager – application interface ... 30
8.1.2 Call .. 3332
Call – service interface... 3332
8.1.2.1.1 State Diagram.. 3836
Call – application interface .. 3837
8.1.3 Call Leg ... 4140
Call Leg – Service interface ... 4140
8.1.3.1.1 State Diagram.. 4442
Call Leg – Application interface .. 4443
8.2 Security/privacy ... 4645
8.3 Address Translation ... 4645
8.4 User Location .. 4645

3GPP

3G TS 23.xyz 0.12.0 (1999-097)43G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

8.4.1 User Location – Service Interface ... 4645
8.4.2 User Location – Application Interface ... 4746
8.5 User Status .. 4847
8.5.1 User Status – Service Interface ... 4847
8.5.2 User Status – Application Interface .. 4948
8.6 Terminal Capabilities .. 5049
8.7 Message Transfer... 5049
8.8 Data Download .. 5049
8.9 User Profile Management .. 5049
8.10 Charging ... 5049
CAMEL Call Leg - Service interface .. 5049
CAMEL Call Leg – Application Interface .. 5250

9 Relation between interface classes and service capability servers .. 5351
9.1 Relation between Call Control and CAMEL .. 5351

10 Annex - Example of use of OSA (informative) ... 5351

11 History .. 5553

Foreword.. 5

1 Scope ... 6

2 References.. 6
2.1 Normative references ...6
2.2 Informative references ...7

3 Definitions and abbreviations.. 7
3.1 Definitions...7
3.2 Abbreviations ..8

4 Introduction to VHE and OSA .. 8

5 Virtual Home Environment ... 8

6 Open Service Architecture .. 9
6.1 Overview of the Open Service Architecture..9
6.2 Principles in the Open Service Architecture...11
6.2.1 Interfaces in OSA...11
6.2.2 Basic mechanisms in OSA ...12
6.3 Base classes ...12
6.3.1 Base Class..12
6.3.2 Base Service Interface ..12

7 Framework service capability features... 13
7.1 Authentication...13
7.1.1 Establishing a Service Agreement ..13
7.1.2 Authentication - framework interface ...14
7.1.3 Authentication - service interface ...15
7.2 Authorisation...19
7.2.1 Authorisation - framework interface ...19
7.2.2 Authorisation - service interface ...19
7.3 Event Notification..19
7.3.1 Event Notification – framework interface ...19
7.3.2 Event Notification – application interface...19
7.4 Registration ...20
7.4.1 Registration – framework interface...20
7.4.2 Registration – service interface...20
7.5 Discovery...20
7.5.1 Discovery – framework interface ..20
7.5.2 Discovery – application interface..21

3GPP

3G TS 23.xyz 0.12.0 (1999-097)53G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

8 Non-Framework service capability features... 21
8.1 Call Control...21
8.1.1 Call Manager ...21
8.1.1.1 Call Manager – service interface ...21
8.1.1.2 Call Manager – application interface...23
8.1.2 Call ..25
8.1.2.1 Call – service interface..25
8.1.2.2 Call – application interface ...30
8.1.3 Call Leg ...33
8.1.3.1 Call Leg – Service interface ..33
8.1.3.2 Call Leg – Application interface ...36
8.2 Security/privacy...38
8.3 Address Translation...38
8.4 User Location ..38
8.4.1 User Location – Service Interface ...38
8.4.2 User Location – Application Interface ...39
8.5 User Status ..40
8.5.1 User Status – Service Interface ...40
8.5.2 User Status – Application Interface ..41
8.6 Terminal Capabilities ..42
8.7 Message Transfer...42
8.8 Data Download..42
8.9 User Profile Management ..42
8.10 Charging ...42
8.10.1.1 CAMEL Call Leg - Service interface..42
8.10.1.2 CAMEL Call Leg – Application Interface ...43

9 Relation between interface classes and service capability servers ... 44
9.1 Relation between Call Control and CAMEL ..44

10 History... 45

3GPP

3G TS 23.xyz 0.12.0 (1999-097)63G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Foreword
This Technical Specification has been produced by the 3GPP.

The contents of the present document are subject to continuing work within the TSG and may change following
formal TSG approval. Should the TSG modify the contents of this TS, it will be re-released by the TSG with an
identifying change of release date and an increase in version number as follows:

Version 3.y.z

where:

x the first digit:

1 presented to TSG for information;

2 presented to TSG for approval;

3 Indicates TSG approved document under change control.

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
updates, etc.

z the third digit is incremented when editorial only changes have been incorporated in the specification;

3GPP

3G TS 23.xyz 0.12.0 (1999-097)73G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

1 Scope
This document specifies the stage 2 of the Virtual Home Environment and Open Service Architecture.

Virtual Home Environment (VHE) is defined as a concept for personal service environment (PSE) portability across
network boundaries and between terminals. The concept of the VHE is such that users are consistently presented with
the same personalised features, User Interface customisation and services in whatever network and whatever terminal
(within the capabilities of the terminal and the network), wherever the user may be located. For Release99, CAMEL,
MExE and SAT are considered the network mechanisms supporting VHE.

The Open Service Architecture (OSA) defines an architecture that enables applications to make use of network
functionality through an open standardised interface (the OSAApplication Interface). OSA provides the glue between
applications and service capabilities provided by the network. In this way applications become independent from the
underlying network technology. The applications constitute the top level of the Open Service Architecture (OSA). This
level is connected to the Service Capability Servers (SCSs) via the OSA interface. The SCSs map the OSA interface
onto the underlying telecom specific protocols (e.g. MAP, CAP, H.323, SIP etc.) and are therefore hiding the network
complexity from the applications.

Applications can be network centric applications or client/server applications with clients residing in the Mobile
Station (MS). Examples of the latter case are MExE and SAT.

A key feature to support VHE is the ability to build services using the OSA Application Interface.

2 References
References may be made to:

a) Specific versions of publications (identified by date of publication, edition number, version number, etc.), in
which case, subsequent revisions to the referenced document do not apply; or

b) All versions up to and including the identified version (identified by "up to and including" before the version
identity); or

c) All versions subsequent to and including the identified version (identified by "onwards" following the version
identity); or

d) Publications without mention of a specific version, in which case the latest version applies.

A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same
number.

2.1 Normative references
 [1] GSM 01.04 (ETR 350): ”Digital cellular telecommunication system (Phase 2+); Abbreviations

and acronyms”

 [2] GSM 02.57: ”Digital cellular telecommunication system (Phase 2+); Mobile Station Application
Execution Environment (MExE); Service description”

[3] GSM 03.57: " Digital cellular telecommunication system (Phase 2+); Mobile Station Application
Execution Environment (MExE); Service description - Stage2”

[4] GSM 02.78: " Digital cellular telecommunication system (Phase 2+); Customised Applications
for Mobile network Enhanced Logic (CAMEL); Service definition - Stage 1"

 [53] GSM 03.78: ”Digital cellular telecommunication system (Phase 2+); Customised Applications for
Mobile network Enhanced Logic (CAMEL); Service definition - Stage 2”

3GPP

3G TS 23.xyz 0.12.0 (1999-097)83G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

 [64] GSM 11.14: ”Digital cellular telecommunication system (Phase 2+); Specification of the SIM
Application Toolkit for the Subscriber Identity Module - Mobile Equipment; (SIM - ME)
interface” < Editor's note: check whether reference to 22.038 has to be included >

 [75] UMTS TS 22.101: ”Universal Mobile Telecommunications System (UMTS): Service Aspects;
Service Principles”

 [86] UMTS TS 22.105: ”Universal Mobile Telecommunications System (UMTS); Services and
Service Capabilities”

 [97] UMTS TS 22.121: ”Universal Mobile Telecommunications System (UMTS); Virtual Home
Environment”

2.2 Informative references
[1] UMTS TR 22.70: ”Universal Mobile Telecommunications System (UMTS); Virtual Home

Environment”

[2] World Wide Web Consortium Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation (www.w3.org)

3 Definitions and abbreviations

3.1 Definitions
For the purposes of this TS, the following definitions apply:

HE-VASP: Home Environment Value Added Service Provider. This is a VASP that has an agreement with the Home
Environment to provide services.

Local Service: A service, which can be exclusively provided in the current serving network by a Value added Service
Provider.

Service Capabilities: Bearers defined by parameters, and/or mechanisms needed to realise services. These are within
networks and under network control.

Service Capability Feature: Functionality offered by service capabilities that are accessible via the standardised
application OSA interface

Service Capability Server: service capabilities like CAMEL, HLR, MexE server etc.Entity providing OSA interfaces
towards an application

Services: Services are made up of different service capability features.

Applications / Clients: These are sServices, which are designed using service capability features.

Interfaces:

-application ~

-framework ~

-service ~

Application OSA Interface: Standardised Interface used by application/clients to access service capability features.
There are 3 different interfaces that are distinguished:

-application interface: This is the interface as send from the application

-framework interface: This is the interface towards the OSA Framework

3GPP

3G TS 23.xyz 0.12.0 (1999-097)93G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

- service interface: This is the interface as send from the Service Capability Servers

Personal Service Environment: contains personalised information defining how subscribed services are provided and
presented towards the user. The Personal Service Environment is defined in terms of one or more User Profiles.

Home Environment: responsible for overall provision of services to users

User Interface Profile: Contains information to present the personalised user interface within the capabilities of the
terminal and serving network.

User Services Profile: Contains identification of subscriber services, their status and reference to service preferences.

User Profile: This is a label identifying a combination of one user interface profile, and one user services profile.

Value Added Service Provider: provides services other than basic telecommunications service for which additional
charges may be incurred.

Virtual Home Environment: A concept for personal service environment portability across network boundaries and
between terminals.

Further UMTS related definitions are given in 3G TS 22.101.

3.2 Abbreviations
For the purposes of this TS the following abbreviations apply:

AI Application Interface (prefix to interface class method)
CAMEL Customised Application For Mobile Network Enhanced Logic
CSE Camel Service Environment
FI Framework Interface (prefix to interface class method)
HE Home Environment
HE-VASP Home Environment Value Added Service Provider
HLR Home Location Register
LCS LoCation Services
MAP Mobile Application Part
ME Mobile Equipment
MExE Mobile Station (Application) Execution Environment
MS Mobile Station
MSC Mobile Switching Centre
OSA Open Service Architecture
PLMN Public Land Mobile Network
PSE Personal Service Environment
SAT SIM Application Tool-Kit
SIM Subscriber Identity Module Short Message Service
SI Service Interface (prefix to interface class method)
USIM User Service Identity Module
VASP Value Added Service Provider
VHE Virtual Home Environment

Further GSM related abbreviations are given in GSM 01.04. Further UMTS related abbreviations are given in UMTS
TS 22.01.

4Introduction to VHE and OSA

3GPP

3G TS 23.xyz 0.12.0 (1999-097)103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

The Virtual Home Environment (VHE) is an important portability concept of the 3G mobile systems. It enables end
users to bring with them their personal service environment whilst roaming between networks, and also being
independent of terminal used.

For service continuity reasons (evolution from 2G systems), VHE encompasses both 2G services (including 2G
supplementary services) and, all the new services/applications which will be implemented using standardised service
capability servers. For Release ’99 the service capability servers are gsmSCF, MExE and SAT and access to. As
regards MExE, with subparts WAP and Java, the standardisation is the responsibility of the WAP Forum (Java is for
further study). In Release ’99 the new 3G services will be executed in the Home Environment domain also when
roaming.. 2G supplementary services are executed according to GSM roaming principles.

In order to implement the VHE, including also today not known end user services/applications, a highly flexible Open
Service Architecture (OSA) is required. It would interface the core networks with all the legacy features, and connect
to the fast moving applications world.

To make it possible for operators and 3rd party application developers, possibly with no telecom competence, to rapidly
design new and innovative applications, an architecture with open interfaces is imperative. By using object oriented
techniques, like CORBA, it will be possible to use different operating systems and programming languages in
application servers and service capability servers. The different servers interwork via the CORBA interfaces. The
service capability servers will serve as gateways between the legacy systems and the applications environment.

The following example shows how the OSA, described on a high level, could be used to execute an application. Note
that OSA enables the use of various Service Capability Servers by an application.

 A user participates in a three-party conference discussing where to dine tonight (voice call). The Web is browsed to
pick a suitable restaurant. The location of the restaurant in relation to the position of the user is displayed on the
user’s terminal (location/positioning application). The restaurant choice is agreed amongst the conference
participants and a voice call is set up to book a table at the restaurant.

In some more detail this example could look as follows:

1) Conference call set-up:

Ordered via a WAP communication to the Call Conference Application.

WAP-GW

 CAMEL
 SCS

Call Conference Application on
Application Server

Request conference set-up

Set up call to User A, User B and User C

User A

User B

User C

2) Web-browsing:

User A uses WAP to browse information on the Internet (or a specific Home Environment provided service) to find a

3GPP

3G TS 23.xyz 0.12.0 (1999-097)113G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

restaurant guide.

User A à WAP-GW à Internet.

After having found two restaurant choices which all conference participants agree to, it is decided to choose the one
that is closest to where User A is located. User A then contacts the “Locator Application” which helps him to decide
which of the two restaurants that is closest to him, and how to get there.

3) Location/Positioning info:

User A à “Locator Application” à CAMEL SCS (positioning part).

The “Locator Application” determines which of the two restaurants that is the closest, translates the positioning
information into a description how to get there, either in text for WAP or alternatively included as an attachment in an
e-mail.

4) Table reservation:

Lastly, User A makes a table reservation by calling the restaurant. This can either be done via the WTAI interface
between a WTA application or by requesting an application in the network to establish the call as described in 1.
above.

User A à Voice call controlled via WTAI à Restaurant”

54 Virtual Home Environment
The Virtual Home Environment (VHE) is an important portability concept of the 3G mobile systems. It enables end
users to bring with them their personal service environment whilst roaming between networks, and also being
independent of terminal used.

The Personal Service Environment (PSE) describes how the user wishes to manage and interact with her
communication services. It is a combination of a list of subscribed to services, service preferences and terminal
interface preferences. PSE also encompasses the user management of multiple subscriptions, e.g. business and private,
multiple terminal types and location preferences. The PSE is defined in terms of one or more User Profiles.

The user profiles consist of two kinds of information:

• Interface related information (User Interface Profile) and,

• Service related information (User Services profile).

Please see TS22.121 [97] for more details.

The moving out of the applications from the core networks leads to a preference to locate these user profiles in a
common database, where they are easily accessible from both the core network functions and the applications. The
database is located in the HE domain.”

<Editor's note: improve the text on 2G and 3G services; text to be provided by Siemens >

The mechanisms that constitute VHE enable the development of 3G services/applications, but may also be used to
provide 2G services/applications for continuity reasons. For Release ’99 the service capability servers include
gsmSCF, MExE server and SAT server and access to bearers. In Release ’99 the new 3G services will be executed in
the Home Environment domain also when roaming.. 2G supplementary services are executed according to GSM
roaming principles.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)123G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

65 Open Service Architecture
The figure below shows an overall picture of the OSA.

Service
logic 1

Service
logic 2

Service
logic n

gsmSCF
MExE
server

SAT
server

Bearers

Networks

Service
Capability
Servers

Applications

OSA interface

GSM/UMTS protocols

Figure Open Service Architecture

The applications constitute the top level of the Open Service Architecture (OSA). The application servers implement
the services/applications offered to the end users. This level is connected to the Service Capability Servers (SCSs) via
the OSA interface. The SCSs are placed on the border between the core networks and the applications environment,
and are thus shielding the applications from telecom specific protocols (e.g. MAP, CAP, H.323, SIP etc.).

Many new services will be so called client/server applications, with clients residing in the Mobile Station (MS).
Typically MExE and SAT applications will have clients in the MS.

In order to implement the VHE, including also today not known end user services/applications, a highly flexible Open
Service Architecture (OSA) is required. The Open Service Architecture (OSA) is the architecture enabling
applications to make use of network capabilities. The applications will interface to the network through the OSA
interface that is specified in this Technical Specification.

The network functionality is offered by the different Service Capability Servers (SCSes) and appear as is called service
capability features in the OSA interface. These are the capabilities that the application developers have at their hands
when designing new applications (or enhancements/variants of already existing). The different features of the different
SCSs can be combined as appropriate. The exact content of these features is described in stage 3 descriptions. These
interface descriptions (“IDLs”) are open and accessible to application developers, who can design services in any
programming language. The service logic executes toward the CORBA interfaces, while the underlying core network
functions use their specific protocols.

The aim of OSA is to provide an architecture that allows for inclusion of new SCSes in future releases of UMTS with
a minimum impact on the applications using the OSA interface. This means that OSA is scalable, in that more SCSs
can be defined as required.

To make it possible for operators and 3rd party application developers, possibly with no telecom competence, to rapidly
design new and innovative applications, an architecture with open interfaces is imperative. By using object oriented
techniques, like CORBA, it will be possible to use different operating systems and programming languages in
application servers and service capability servers. The different servers interwork via the CORBA interfaces. The
service capability servers will serve as gateways between the legacy systems and the applications environment.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)133G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

The OSA is scalable, in that more SCSs can be defined as required.

4Introduction to VHE and OSA
<Editor's note: purpose is to introduce VHE and OSA in a few sentences and to explain what has to be standardised
>

� A few sentences about VHE and OSA, explaining that:

VHE = portability across terminals and networks of PSE

OSA = architecture that enables applications (both operator and 3rd party developed) to make use of the
functionality provided by service capability serverss, in UMTS release 99: CAMEL, MExE, SAT and “access to
bearers”

<Editor's note: example to be added to show that OSA enables applications to use functionality from various service
capability servers (e.g. route planning application using HLR to get location information and CAMEL to setup call to
the user>

5Virtual Home Environment
<Editor's note: some text on VHE >

< possible issues to be discussed include User Profile related issues and possible interworking between Service
Capability Servers like CAMEL, MExE and SAT. >

6Open Service Architecture
<Editor's note: this chapter briefly explains what OSA is, including:

-showing overall OSA architecture

-introducing the components that constitute OSA (such as Application Servers and Service Capability Servers

-explaining basic mechanisms in OSA, e.g. how applications find out what functionality is provided by the Service
Capability Servers>

6.15.1 Overview of the Open Service Architecture
<Editor's notes:

-the figure shown below is a starting point. Contributions are invited to improve the figure

-improvement agreed during drafting (not reflected yet): "CSE" will be changed into "gsmSCF"

-clarification needed on the relation between Application Server and gsmSCF>

The Open Service Architecture consists of three parts:

- Applications, e.g. VPN, conferencing, location based applications. These applications are implemented in
one or more Application Servers;

- Framework, providing the applications with basic services mechanisms that enable applications to make use

3GPP

3G TS 23.xyz 0.12.0 (1999-097)143G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

of the service capabilities in the network. Examples of framework services are Authentication, Registration
and Discovery.; Before an application can use the network functionality made available by the Service
Capability Servers, authentication between the application and framework is needed. After authentication,
The discovery service then enables the application to find out from the framework what service capability
features are provided by the Service Capability Servers.

- Service Capability Servers, providing the applications with network services that are abstractions from
underlying network functionality. Examples of network services offered by the Service Capability Servers are
Call Control, Message Transfer and Location. Network sServices are possibly provided by more than one
Service Capability Server. For example, the Call Control service might be provided by CAMEL and MexE.
Examples of possible The Service Capability iesy Servers are taken into account for UMTS Release 99 are
CSEAMEL, MexE Server, SAT Server and HLR1.

application

service
capability
server

terminal

HLR CSE MExE server SAT server

network

MExE client SAT client

applications

INAP/CAP/MAP

GSM/GPRS/UMTS protocols

WAP/HTTP “11.14”

interface
standardised
in OSA

framework

interface
class

application
server

call
control

location
informationOpen

Service
Architecture

registration

discovery service

application

service
capability
servers

HLR CSE

OSA interface

framework

interface
class

Call controlLoc. information

Open
Service

Architecture

discovery

Servers

E.g. Mobility server,
Web server,
MExE server

1 It shall be noted that the HLR as such is not a Service capability, but the ability to access HLR data is meant here.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)153G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Figure 22221Logical oOverview of Open Service Architecture

This specification defines the OSA interface. The way it is implemented (e.g. the programming language used) is
outside the scope of this specification and is vendor specific.

Several options exist:

• All interface classes which provide the OSA interface are implemented on one entity outside the core network.

• The interface classes which provide the OSA interface are implemented on different entities outside the core
network.

• The interface classes which provide the OSA interface are implemented on different entities outside the core
network as well as inside one or more core network entities.

From the application point of view, it shall make no difference which implementation is chosen, i.e. in all cases the
same network functionality is perceived by the application. The applications shall always be provided with the same
set of interface classes and a common access to framework and service interface.

It is the framework that will provide the applications with an overview of available service capability features and how
to make use of them.

Implementation of the service capability server is vendor specific. Several options exist:

In a separate entity. The interfaces between that entity and the entity implementing the Service capability is then non-
standardised

As a software layer in the entity implementing the Service Capability.

It is the framework that will provide the applications with an overview of available service capability features and a
reference to where they can be found.

<Remark to Application Interface:

The network functionality can be accessed via network and mobile based clients, e.g. from mobile station to control
subscriber data in the HLR. In other words, future contributions might show that parts of the OSA application
interface might be implemented on service capability servers and parts in mobile terminals>

6.25.2 Principles in the Open Service Architecture
Section 5.15.15.16.1 introduced the three parts that constitute the Open Service Architecture; these parts are:
Applications, Framework and Service Capabilities. This section explains how the three parts are structured and what
exactly is standardised in the OSA. Furthermore it explains the principles for application registration, service
registration and application invocation.

6.2.15.2.1 OSA Interfaces in OSA

The OSA interface is specified in terms of a number of interface classes. The interface classes are divided into two
groups:

- framework interface classes

- service interface classes

<Editor's note: document has to be checked on consistent use of service interface classes rather than service
interfaces >

3GPP

3G TS 23.xyz 0.12.0 (1999-097)163G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

The interface classes are further divided into methods. For example, the Call Manager interface class might contain a
method to create a call (which realises one of the Service capability features ‘Initiate and create session’ as specified in
[9]).

For descriptional purpose the interface classes belonging to the same subject are grouped together and called network
services. For example, the interface classes Call Manager, Call and Leg constitute the Call Control network service.

All services (both those in the Framework and in the Service Capabilities) are defined in terms of a number of
interface classes. This means that only interface classes are specified, not the object implementations in the
Application Server, Framework Server and Service Capability Servers that implement these interface classes. The
interface classes can be divided into three groups, similar to the way the Open Service Architecture is divided into
three parts. These three groups are:

-application interface classes (hereafter abbreviated as “application interfaces”)

-framework interface classes (hereafter abbreviated as “framework interfaces”)

-service capability interface classes (hereafter abbreviated as “service interfaces”)

Each service contains application interfaces and/or framework interfaces and/or service interfaces.

Example:

The Call Control service is specified as a collection of service interfaces and application interfaces. Examples of the
Call Control service interfaces are: SI_Call_Manager, SI_Call and SI_Leg. Examples of Call Control application
interfaces are: AI_Call_Manager, AI_Call, AI_Leg. A more precise description can be found in section 8.1. Figure 2
illustrates the example. Each interface is defined in terms of methods that can be invoked on the interface. For
example, the SI_Call_Mgr interface might contain the method Create_Call (which realises the Service capability
feature ‘Initiate and create session’ as specified in [reference to stage1]).

Call Control

Call Manager

AI_Call_Mgr

Service Capability ServerFramework Server

Application Server

Call Leg

SI_Call_Mgr

create_call

AI_Call AI_Leg

SI_Call

add_leg
release_call
route_call_req

create_call

SI_Leg

release_leg
get_leginfo_req

call_aborted route_call_resp get_leginfo_resp

3GPP

3G TS 23.xyz 0.12.0 (1999-097)173G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Call Control

Call Manager

AI_Call_Mgr

Service Capability ServerFramework Server

Application Server

Call Leg

SI_Call_Mgr

create_call

AI_Call AI_Leg

SI_Call

add_leg
release_call
route_call_req

create_call

SI_Leg

release_leg
get_leginfo_req

call_aborted route_call_resp get_leginfo_resp

Figure 32 Example: interface classes that specify the Call Control service

6.2.25.2.2 Basic mechanisms in OSA

This section explains what basic mechanisms are executed in OSA prior to offering and activating applications.

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others every time a user
subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application Server aand Framework Server:

- Establishment of service agreement. Agreement established either off-line (e.g. by physically passing messages)
or on-line.

- Discovery of framework and service interfaces. Once a service agreement exists, the application server can
obtain all available framework interface classes and allowed service interface classess. This mechanism is in
general applied before starting the development of a new application or before activation of the applicationThe
Discovery interface can be used at any time.

Basic mechanism between Framework Server and Service Capability Server:

- Registering of service interfaces. Service iInterface classess offered by a Service Capability Server can be
registered at the Framework Server. In this way the Framework Server can inform the Application Server upon
request about available service interface classes (Discovery)s. This mechanism is in general applied when
installing or upgrading a Service Capability Server.

Basic mechanisms between Application Server and Service Capability Server:

- Request of event notifications. This mechanism is applied when a user has subscribed to an application and that
application needs to be invoked upon receipt of events from the network related to the user. For example, when a
user subscribes to a VPN application, the application needs to be invoked when the user makes a call. An event is
in this case requested on the Calling Party Number of the user.

5.3 Base interface classes

3GPP

3G TS 23.xyz 0.12.0 (1999-097)183G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Base
Interface

Base
Service

Interface

Framework
Interfaces

Service
Interfaces

Application
Interfaces

0..n0..n 0..n

0..1

Figure 4 Interface class hierarchy

6.3.15.3.1 Base Interface Class

<Editor’s note: some text is needed to explain the concept of Base Interface Class >

This class is the foundation of the all interface and shall be inherited by all following interfaces. It contains no further
methods.

 Name Base_Interface

Method

Parameters

Returns

Errors

5.3.2 Base Service Interface class

This class provides the base for ALL service and framework interfaces described in the following chapters. It allows
an applications to set a reference to the application, which is used by the OSA interfaceservice and framework
interfaces when initiating an to respond to the application which originally initiated the request. For example, when
an application wants to be notified upon the receipt of the "called party busy" event, the Service Capability Server
must know where to send the notification to. This reference can be provided by the application across the OSA
interface.

Name Base_Service_Interface

Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke
methods on the application.

Parameters AppInterface

Specifies a reference to the application interface, which is used for callbacks.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)193G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Returns

Errors

-

76 Framework service capability features

7.16.1 Authentication
The API supports multiple authentication techniques. The procedure used to select an appropriate technique for a
given situation is described below. The authentication mechanisms may be supported by cryptographic processes to
provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and
digital signatures in the authentication procedure depends on the type of authentication technique selected. In some
cases strong authentication may need to be enforced by the Network to prevent misuse of resources. In addition it may
be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The authentication interface must be the first interface invoked by an application. Invocations of other interfaces will
fail until authentication has been successfully completed.

The address of the Authentication Framework interface is administered in the application prior to the API being used.
This address is made available by the Home Environment, possibly also for a particular HE-VASP.

7.1.16.1.1 Establishing a Service Agreement

Before any application can interact with the network a service agreement will have to be established or an existing
agreement will need modification or indeed termination if it is being superseded. An appropriate procedure is
required to cater for each of these cases. Off-line agreement may be done by physically passing messages in a secure
manner using cryptographic or non-cryptographic techniques. On-line agreement, on the other hand, can only be done
in practice using cryptographic techniques.

The procedure outlined below describes on-line establishment of service agreements using cryptographic techniques
only, since this is considered to be an integral part of the Authentication Framework. However, the procedures may
also be a basis for an off-line establishment of service agreements using cryptographic techniques.

A procedure to establish a service agreement begins with the client application and Authentication Framework
authenticating each other. This uses an authentication mechanism chosen by the Authentication Framework. After
authentication the client application and Authentication Framework negotiate a service agreement which will involve
each party digitally signing the agreement.

� A client application sends an initial message to the Authentication Framework - this will include the authentication
capabilities of the client application. The Authentication Framework will then choose an authentication
mechanism based on information about the authentication capabilities of the framework, client application and the
service requested. If the client is capable of handling more than one mechanism then the Authentication
Framework chooses one preferred authentication option.

� The Authentication Framework sends the identity of the prescribed authentication mechanism to the client
application. The Authentication Framework will instruct the client to perform the agreed mechanism.

� The client application and Authentication Framework interact to authenticate each other. Depending on the
mechanism prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. It
is assumed that any cryptographic process for enciphering the link is handled at a lower layer (and is outside the
scope of this specification).

� The client application is now authorised and can access the Discovery Framework Interface using the
obtainInterface method. The application uses functions of the Discovery framework interface to look for the
services it needs. Using the selectService() and signServiceAgreement() methods it requests the

3GPP

3G TS 23.xyz 0.12.0 (1999-097)203G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

use of a service.

• The client application and Authentication Framework can then negotiate a service agreement. Optionally, the
Authentication Framework may request re-authorisation. Each party then digitally signs the agreement.

< Editor: in the remainder of chapters 7 and 8, remove "service interface", "application interface", "framework
interface"; remove "name" row by "direction" row

7.1.16.1.2 Authentication interface class - framework interface

After authentication the client application and Authentication Framework negotiate a service agreement which will
involve each party digitally signing the agreement.

• A client application sends an initial message to the Authentication Framework - this will include the
authentication capabilities of the client application. The Authentication Framework will then choose an
authentication mechanism based on information about the authentication capabilities of the framework, client
application and the service requested. If the client is capable of handling more than one mechanism then the
Authentication Framework chooses one preferred authentication option.

• The Authentication Framework sends the identity of the prescribed authentication mechanism to the client
application. The Authentication Framework will instruct the client to perform the agreed mechanism.

• The client application and Authentication Framework interact to authenticate each other. Depending on the
mechanism prescribed, this procedure may consist of a number of messages e.g. a challenge/ response protocol. It
is assumed that any cryptographic process for enciphering the link is handled at a lower layer (and is outside the
scope of this specification).

• The client application is now authorised and can access the Discovery Framework Interface using the
obtainInterface method. The application uses functions of the Discovery framework interface to look for the
services it needs. Using the selectService() and signServiceAgreement() methods it requests the
use of a service.

The client application and Authentication Framework can then negotiate a service agreement. Optionally, the
Authentication Framework may request re-authorisation. Each party then digitally signs the agreement.

< Editor’s note: clarifying text needed to explain what is meant by “client” in the interface class defintions in chapter
6 and 7 >

Method authenticateClient()

This method is used by the framework to authenticate the client. The client must respond with the
correct responses to the challenges presented by the framework. The Gateway ID (The address of
the gateway being used - which will be pre-provisioned in the application environment) can be
used by the application to reference the correct gateway Public Key. The key management system is
currently outside of the scope of the specification.

Direction Framework to application

Parameters challenge

The challenge presented by the framework to be responded to by the client. The challenge will be
encrypted with the mechanism prescribed by the initiateClientAuthentication().

Returns response

This is the response of the client to the challenge of the framework in the current sequence. The
response will be the challenge, decrypted with the mechanism prescribed by the
initiateClientAuthentication().

3GPP

3G TS 23.xyz 0.12.0 (1999-097)213G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

DirectionNa
me

Framework to application

Method terminateAppClientAuthentication()

This method is used by the framework to terminate authentication with the client.

Parameters terminationText

This is the termination text that is signed by the framework using the private key of the framework
or another secret key.

digitalSignature

This is the digital signature of the termination text. The client uses this to check
terminationText. If a match is made, the authentication is terminated, otherwise an error is
returned.

Returns

Errors

NameDirect
ion

Framework to application

Method signAppServiceAgreement()

This method is used by the framework to ask the client to sign an agreement on the service to
continue the authentication process.

Parameters serviceToken

This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service requested by the client.

agreementText

This is the agreement text that is to be encrypted by the client using the private key of the client.

signingAlgorithm

This is the algorithm used to compute the digital signature.

Returns digitalSignature

This is the encrypted version of the agreement text given by the client.

Errors

NameDirect
ion

Framework to application

Method terminateAppServiceAgreement()

This method is used by the framework to terminate an agreement with the client on the service.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)223G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Parameters serviceToken

This is the token passed back from the framework in a previous selectService() method call.
This token is used to identify the service requested by the client.

terminationText

This is the termination text that is digitally signed by the framework. The signing algorithm used
is the same as for the function signServiceAgreement().

digitalSignature

This is the digital signature of the termination text. The client uses this to check the
terminationText. If a match is made, the service agreement is terminated, otherwise an error
is returned.

Returns

Errors

7.1.2Authentication - service interface

DirectionNa
me

Application to framework

Method initiateClientAuthentication()

The application uses this method to initiate the authentication process. The mechanism returned by
the framework is the mechanism preferred by the framework. This should be within the client
capability. If a mechanism within the client’s capability cannot be found, the framework must
return an error.

Parameters applicationID

This is the ID for the application.. The application ID can be used by the framework to reference
the correct application Public Key (the key management system is currently outside of the scope of
the specification).

appInterface

Specifies a reference to the application interface, which is used for callbacks.

clientCapability

This is the authentication capability of the client. This is a list of capabilities separated by a
comma.

Returns prescribedMechanism

This is the mechanism returned by the framework to indicate the mechanism preferred by the
framework for the authentication process. If the value of the prescribedMechanism returned
by the framework is not understood by the application, it is considered a catastrophic error and the
application must abort.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)233G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors INVALID_APPLICATIONID

Returned by the framework if the framework cannot find the applicationID parameter. The
value of the parameter prescribedMechanism is NULL in this situation

INVALID_CLIENT_CAPABILITY

If the value of the clientCapability parameter is not valid. The value of the parameter
prescribedMechanism is set to NULL.

DirectionNa
me

Framework to application

Method authenticateFramework()

This method is used by the client to authenticate the framework. The framework must respond with
the correct responses to the challenges presented by the client. The application ID received in the
initiateClientAuthentication() can be used by the gateway to reference the correct
application public key (the key management system is currently outside of the scope of this
specification).

Parameters challenge

The challenge presented by the client to be responded to by the framework. The challenge
mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge
Handshake Authentication Protocol [RFC 1994, August1996]. The challenge will be encrypted
with the mechanism prescribed by the initiateClientAuthentication().

Returns response

This is the response of the framework to the challenge of the client in the current sequence. The
response will be the challenge, decrypted with the mechanism prescribed by the
initiateClientAuthentication().

Errors

NameDirect
ion

Framework to application

Method terminateClientAuthentication()

This method is used by the client to terminate authentication with the framework. The application
ID received in the initiateClientAuthentication() can be used by the gateway to
reference the correct application public key or another secret key (the key management system is
currently outside of the scope of this specification).

Parameters terminationTex

This is the termination text that is signed by the client using the private key of the client or another
secret key.

digitalSignature

This is the digital signature of the termination text. The framework uses this to check the decrypted
terminationText. If a match is made, the authentication is terminated, otherwise an error is
returned.

Returns

3GPP

3G TS 23.xyz 0.12.0 (1999-097)243G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

NameDirect
ion

Application to framework

Method SelectService()

This method is used by the client to identify the service that the application is interested in.

Parameters ServiceID

This uniquely defines the service required.

ServiceProperties

The names and values of the trading data properties that the service should support.

Returns ServiceToken

This is a free format text token returned by the framework, which can be signed as part of a service
agreement. This will contain operator specific information relating to the service level agreement
for use of the API.

Errors

NameDirect
ion

Application to framework

Method SignServiceAgreement()

This method is used by the client to ask the framework to sign an agreement on the service to
continue the authentication process.

Parameters ServiceToken

The token returned by the framework in a previous selectService() method call to identify
the service requested by the client.

AgreementText

This is the agreement text that is to be encrypted by the framework using the private key of the
framework.

SigningAlgorithm

This is the algorithm used to compute the digital signature. The signing algorithm must be known
to the framework and mandated by the prescribed mechanism returned by the framework.

Returns DigitalSignature

This is the encrypted version of the agreement text given by the framework.

serviceManagerInterface

This identifies the address of the service manager interface for the requested service.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)253G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors INVALID_SIGNING_ALGORITHM

Returned by the framework when the signing algorithm does not match with the prescribed
mechanism.

NameDirect
ion

Application to framework

Method terminateServiceAgreement()

This method is used by the client to ask the framework to terminate an agreement on the service.

Parameters serviceToken

The token returned by the framework in a previous selectService() method call to identify
the service requested by the client.

terminationText

This is the termination text that is to be digitally signed by the client. The signing algorithm used
is the same as for the function signServiceAgreement().

digitalSignature

This is the digital signature of the termination text. The framework uses this to check the
terminationText. If a match is made, the service agreement is terminated, otherwise an error
is returned.

Returns

Errors

NameDirect
ion

Application to framework

Method obtainFrameworkInterface()

This method is used to obtain other framework interfaces. Only by using this method can the
application obtain the interface references to the other framework interfaces.

Parameters frameworkId

The name of the framework interface to which a reference to the interface is requested. The
interfaces allowed include discovery, event notification and OA & M. This parameter
uniquely defines the service of interest from the application.

appInterface

Specifies a reference to the application interface, which is used for callbacks. If an application
interface is not needed, then the value of this parameter should be NULL.

Returns frameworkInterface

This is the interface reference to the interface asked for by the application.

Errors INVALID_INTERFACEID

Returned if the framework is given an invalid interface name

3GPP

3G TS 23.xyz 0.12.0 (1999-097)263G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

7.26.2 Authorisation
< Editor’s note: to be completed in e-mail discussion >

7.2.1Authorisation - framework interface

7.2.2Authorisation - service interface

7.36.3 Event Notification

7.3.1Event Notification – framework interface

DirectionNa
me

Application to framework

Method enableNotification()

This method is used to enable generic notifications so that events can be sent to the application.

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the obtainInterface() method (refer to Authentication interface).

eventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns assignmentID

Specifies the ID assigned by the framework for this newly enabled event notification.

Errors

NameDirect
ion

Application to framework

Method disableNotification()

This method is used by the application to disable generic notifications from the framework.

Parameters eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the framework when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)273G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

7.3.2Event Notification – application interface

NameDirect
ion

Framework to application

Method eventNotify()

This method notifies the application of the arrival of a generic event.

Parameters eventInfo

Specifies specific data associated with this event.

assignmentID

Specifies the assignment id which was returned by the framework during the
enableNotification() method. The application can use assignment id to associate events
with event specific criteria and to act accordingly.

Returns

Errors

NameDirect
ion

Framework to application

Method notificationTerminated()

This method indicates to the application that all generic event notifications have been terminated
(for example, due to faults detected).

Parameters

Returns

Errors

7.46.4 Registration
<Editor's note: it has to be decided in contributions whether registration of Service Capability Servers at the
Framework is performed at "service level" (e.g. "Call Control", Location Management, Messaging etc.) or even at a
more detailled level (e.g. create call, get location etc.)>

<Editor’s note: to be completed in e-mail discussion >

7.4.1Registration – framework interface

7.4.2Registration – service interface

7.56.5 Discovery

7.5.1Discovery – framework interface

DirectionNa
me

Application to framework

3GPP

3G TS 23.xyz 0.12.0 (1999-097)283G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Method discoverService()

This method returns the service identity associated with a service.

Parameters serviceProperties

The names and values of the trading data properties that the service should support.

Returns serviceID

This is the unique identity of the service.

Errors

7.5.2Discovery – application interface

-

87 Non-Framework service capability features
The service capability features provided to the application by service capabilities such as CAMEL, MExE, SAT,
HLRservers to enable access to network resources.. These services enable the application to make use of the “real”
network functionality, i.e. the functionality needed in the applications.

<Editor's note: information flows might be needed to express what information is exchanged (and in what order)
between application and service capability servers; this needs then also be reflected in the document structure>

Note: when the direction of a method in an interface class is “application to network”, this means that the method is
invoked from the application to an SCS residing on the network side of the OSA interface .

8.17.1 Call Control
<Editor's note: in TS22.121 the term "session control" is used instead of "call control". It depends on future
contributions whether the scope of OSA in 3GPP Release99 will include "session control" or only limited "call
control" support>

The Call control network serviceService Capability Features consist of three interface classes:

1. CA call manager, containing management function for call related issues

2. CA call interface

3. A lLeg interface

A call can be controlled by one Call Manager; A call can consist of up to n Legs, where n is determined by the Service
Capability used.

Call
Manager

LegCall0..1 0..n

Figure 5555 Call control class hierarchy

3GPP

3G TS 23.xyz 0.12.0 (1999-097)293G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

8.1.17.1.1 Call Manager

8.1.1.1Call Manager – service interface

This interface is the ‘service manager' interface for the Generic Call Capability Features.

The generic call manager interface class provides the management functions to the generic call Service Capability
Features. The application programmer can use this interface to set the call gap rate, to create call objects and to enable
or disable call-related event notifications.

NameDirect
ion

Application to network

Method SetCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within
the generic call control service.

Parameters AddressRange

Specifies the address range to which the overload control should be applied or removed.

Duration

Specifies the duration for which the load control should be set. If the duration is zero, then the load
control is removed.

Mechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any
necessary parameters, such as the call admission rate. The contents of this parameter are ignored if
the load control duration is set to zero.

Treatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if
the load control duration is set to zero.

Returns

Errors

NameDirect
ion

Application to network

Method CreateCall()

This method is used to create a new call object.

Parameters AppCall

Specifies the application interface for callbacks from the call created.

Returns Call

Specifies the interface reference of the call created.

CallSessionID

Specifies the call session ID of the call created.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)303G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

NameDirect
ion

Application to network

Method EnableCallNotification()

This method is used to enable call notifications so that events can be sent to the application.

Parameters AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the setCallback() method.

EventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns AssignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event
notification.

Errors

NameDirect
ion

Application to network

Method DisableCallNotification()

This method is used by the application to disable call notifications.

Parameters EventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

AssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

8.1.1.2Call Manager – application interface

The generic call manager application interface provides the application call management functions to the generic call
service.

NameDirect
ion

Network to application

Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally.
No further communication will be possible between the call and application.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)313G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Parameters call

Specifies the call interface that has aborted or terminated abnormally.

callSessionID

Specifies the call session ID of the call that has aborted or terminated abnormally.

Returns

Errors

NameDirect
ion

Network to application

Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed
load control on calls requested to a particular address range or calls made to a particular
destination within the generic call control service.

Parameters AddressRange

Specifies the address range within which the overload has been encountered.

overloadType

Specifies the type of overload encountered.

treatment

Specifies the treatment of calls that are not admitted due to the load control imposed.

Returns

Errors

NameDirect
ion

Network to application

Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has
automatically removed any load controls on calls requested to a particular address range or calls
made to a particular destination within the generic call control service.

Parameters AddressRange

Specifies the address range within which the overload has ceased.

overloadType

Specifies the type of overload that has ceased.

Returns

Errors

NameDirect
ion

Network to application

3GPP

3G TS 23.xyz 0.12.0 (1999-097)323G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Method callFaultDetected()

This method indicates to the application that a fault has been detected in the call.

Parameters call

Specifies the call interface in which the fault has been detected.

callSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault

Specifies the fault that has been detected.

Returns

Errors

NameDirect
ion

Network to application

Method callEventNotify()

This method notifies the application of the arrival of a call-related event.

Parameters call

Specifies the reference to the call interface to which the notification relates.

eventInfo

Specifies data associated with this event.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

appInterface

Specifies a reference to the application interface which implements the callback interface for the
new call.

Returns

Errors

NameDirect
ion

Network to application

Method callNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for
example, due to faults detected).

Parameters

Returns

3GPP

3G TS 23.xyz 0.12.0 (1999-097)333G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

7.1.2 Call

Call – service interface

The generic call interface represents the interface to the generic call Service Capability Feature. It provides a structure
to allow simple and complex call behaviour to be used.

NameDirect
ion

Application to network

Method routeCallToDestination_Req()

This asynchronous method requests routing of the call (and inherently attached parties) to the
destination party, via a passive call leg (which is implicitly created).

Parameters callSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToDestination_Res()
being generated.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress

Specifies the original destination address of the call.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

Returns

Errors

NameDirect
ion

Application to network

Method routeCallToOrigination_Req()

This asynchronous method requests routing of a call to the first call party, via a controlling call leg
(which is implicitly created). The call object must already have been created

3GPP

3G TS 23.xyz 0.12.0 (1999-097)343G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Parameters CallSessionID

Specifies the call session ID of the call.

responseRequested

Specifies the set of observed events that will result in a routeCallToOrigination_Res()
will be generated.

targetAddress

Specifies the origination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

AppInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

Returns

Errors

NameDirect
ion

Application to network

Method releaseCall()

This method requests the release of the call and associated objects.

Parameters callSessionID

Specifies the call session ID of the call.

cause

Specifies the cause of the release.

Returns

Errors

NameDirect
ion

Application to network

Method deassignCall()

This method requests that the relationship between the application and the call and associated
objects be de-assigned. It leaves the call in progress, however, it purges the specified call object so
that the application has no further control of call processing. If a call is de-assigned that has event
reports, call information reports or call Leg information reports requested, then these reports will
be disabled and any related information discarded.

Parameters callSessionID

Specifies the call session ID of the call.

Returns

3GPP

3G TS 23.xyz 0.12.0 (1999-097)353G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

NameDirect
ion

Application to network

Method getCallInfo_Req()

This asynchronous method requests information associated with the call to be provided at the
appropriate time (for example, to calculate charging). This method must be invoked before the call
is routed to a target address. The call object will exist after the call is ended if information is
required to be sent to the application at the end of the call. The call information will be sent after
any call event reports.

Note: At the end of the call with respect to either a particular call leg or the entire call, the call
information must be sent before the objects of concern are deleted.

Parameters callSessionID

Specifies the call session ID of the call.

callInfoRequested

Specifies the call information that is requested.

Returns

Errors

NameDirect
ion

Application to network

Method setCallChargePlan()

Set an operator specific charge plan for the call. The charge plan must be set before the call is
routed to a target address.

Parameters callSessionID

Specifies the call session ID of the call.

callChargePlan

Specifies the charge plan to use.

Returns

Errors

NameDirect
ion

Application to network

Method getCallState()

This method requests the current state of the call.

Parameters callSessionID

Specifies the call session ID of the call.

Returns State

3GPP

3G TS 23.xyz 0.12.0 (1999-097)363G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Specifies the current state of the call.

Errors

NameDirect
ion

Application to network

Method getCallLegs()

This method requests the identification of the call leg objects associated with the call object.

Parameters callSessionID

Specifies the call session ID of the call.

Returns callLegList

Specifies the call legs associated with the call. The references passed in this list are in the same
index order as the IDs passed in the call leg session ID list.

callLegSessionIDList

Specifies the call leg session IDs associated with the call. The IDs passed in this list are in the
same index order as the references passed in the call leg list.

Errors

NameDirect
ion

Application to network

Method createCallLeg()

This method requests the creation of a new call leg object The call leg will be associated with the
call, but not attached. The call leg can be attached to the call (using attachCallLeg) when the
call leg is in the connected state (i.e. it has been answered).

Parameters callSessionID

Specifies the call session ID of the call.

callLegType

Specifies the type of call leg created (e.g. generic or terminal, controlling or passive).

appCallLeg

Specifies the application interface for callbacks from the call leg created.

Returns callLeg

Specifies the interface of the call leg created.

callLegSessionID

Specifies the call leg session ID of the call leg created.

Errors

NameDirect
ion

Application to network

3GPP

3G TS 23.xyz 0.12.0 (1999-097)373G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Method attachCallLeg()

This method requests that the call leg be attached to the call object. This will allow transmission on
all associated bearer connections to other parties in the call. The call leg must be in the connected
state for this method to complete successfully.

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg to attach to the call.

callLegSessionID

Specifies the call leg session ID to attach to the call.

Returns

Errors

NameDirect
ion

Application to network

Method detachCallLeg()

This method requests that the call leg be detached from the call object. This will prevent
transmission on any associated bearer connections to other parties in the call. The call leg must be
in the connected state for this method to complete successfully.

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg to detach from the call.

callLegSessionID

Specifies the call leg session ID to detach from the call.

Returns

Errors

NameDirect
ion

Application to network

Method getControlLeg()

This method requests the identification of the controlling call leg of this call.

Parameters callSessionID

Specifies the call session ID of the call.

Returns callLeg

Specifies the interface of the controlling call leg of this call.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)383G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

callLegSessionID

Specifies the call leg session ID of the controlling leg of this call.

Errors

7.1.2.1.1 State Diagram

Figure 6Figure 6Figure 6Figure 3 shows the state model for the generic call interface. The state model is simplified
because most of the state is held within the associated call legs. The call is created by an application (via the
createCall() method on the CallManager interface) or implicitly by the Generic Call Control Service when a
new call request arrived.

ACTIVE

INACTIVE

IDLE

RELEASED

releaseCallLeg
[not controlling call leg]

attachCallLeg
[first call leg]

releaseCall

detachCallLeg
[last call leg]

releaseCallLeg
[controlling call leg]

ALL STATES

deassignCall

createCall

routeCallToOrigination_Req
[call accepted]

releaseCall

routeCallLegToAddress
[call accepted]

routeCallToDestination_Req
[call accepted]

releaseCall

Figure 66663 - State diagram for the Call interface

8.1.2.2Call – application interface

The generic application call interface is implemented by the client application developer and is used to handle call
request responses and state reports.

NameDirect
ion

Network to application

Method routeCallToDestination_Res()

This asynchronous method indicates that the request to route the call to the destination was

3GPP

3G TS 23.xyz 0.12.0 (1999-097)393G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

successful, and indicates the response of the destination party (for example, the call was answered,
not answered, refused due to busy, etc.). If the call is answered, then a (passive) call leg object will
be created for that leg of the call.

Parameters callSessionID

Specifies the call session ID of the call.

callLeg

Specifies the interface of the call leg associated with the destination party.

callLegSessionID

Specifies the call leg session ID of the call leg associated with the destination party.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode
that the call object is in, the call leg generating the report (if applicable) and other related
information.

Returns

Errors

NameDirect
ion

Network to application

Method routeCallToDestination_Err()

This asynchronous method indicates that the request to route the call to the destination party was
unsuccessful - the call could not be routed to the destination party (for example, the network was
unable to route the call, the parameters were incorrect, the request was refused, etc.).

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

NameDirect
ion

Network to application

Method routeCallToOrigination_Res()

This asynchronous method indicates that the request to route a call to the first call party was
successful, and indicates the response of that party (for example, the call was answered, not
answered, refused due to busy, etc.). If the call is answered, then a (controlling) call leg object will
be created for that leg of the call.

Parameters callSessionID

Specifies the call session ID of the call.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)403G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

callLeg

Specifies the interface of the call leg associated with the origination party.

callLegSessionID

Specifies the call leg session ID of the call leg associated with the origination party.

eventReport

Specifies the result of the request to route the call to the origination party. It also includes the mode
that the call object is in, the call leg generating the report (if applicable) and other related
information.

Returns

Errors

NameDirect
ion

Network to application

Method routeCallToOrigination_Err()

This asynchronous method indicates that the request to route the call to the originating party was
unsuccessful (for example, the network was unable to route the call, the parameters were incorrect,
the request was refused, etc.).

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

NameDirect
ion

Network to application

Method getCallInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for
example to calculate charging.

Parameters callSessionID

Specifies the call session ID of the call.

callInfoReport

Specifies the call information requested.

Returns

Errors

NameDirect Network to application

3GPP

3G TS 23.xyz 0.12.0 (1999-097)413G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

ion

Method getCallInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error
condition.

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

7.1.3 Call Leg

Call Leg – Service interface

The generic call leg interface represents the logical call leg associating a call with an address. The call leg tracks it
own states and allows charging summaries to be accessed.

NameDirect
ion

Application to network

Method routeCallLegToAddress()

This method initiates routing of the call leg to the given target address. The outcome of the call
routing attempt can be requested and reported using callLegEventReport_Req and
callLegEventReport_Res / callLegEventReport_Err.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

targetAddress

Specifies the destination party to which the call should be routed.

originatingAddress

Specifies the address of the originating (calling) party.

originalCalledAddress

Specifies the original address to which the call was initiated.

redirectingAddress

Specifies the last address from which the call was redirected.

appInfo

Specifies application-related information pertinent to the call (such as alerting method, tele-service
type, service identities and interaction indicators).

Returns

3GPP

3G TS 23.xyz 0.12.0 (1999-097)423G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

NameDirect
ion

Application to network

Method callLegEventReport_Req()

This asynchronous method sets, clears or changes the criteria for the events that the call leg object
will be set to observe.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

eventReportsRequested

Specifies the events that the call leg object will observe and report.

Returns

Errors

NameDirect
ion

Application to network

Method getCallLegState()

This method requests the current state of the call leg.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

Returns state

Specifies the current state of the call leg.

Errors

NameDirect
ion

Application to network

Method releaseCallLeg()

This method requests the release of the call leg. If successful, the associated address (party) will be
released from the call, and the call leg deleted.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

cause

Specifies the cause of the release.

Returns

3GPP

3G TS 23.xyz 0.12.0 (1999-097)433G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

NameDirect
ion

Application to network

Method getAddresses()

This method requests the address details associated with the call leg.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

Returns addressList

Specifies the addresses associated with the call leg.

Errors

DirectionNa
me

Application to network

Method getCallLegInfo_Req()

This asynchronous method requests information associated with the call leg to be provided at the
appropriate time (for example, to calculate charging). Note: in the call leg information must be
accessible before the objects of concern are deleted.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

callLegInfoRequested

Specifies the call leg information that is requested.

Returns

Errors

DirectionNa
me

Application to network

Method getCallLegType()

This method requests whether the call leg is a controlling or passive call leg.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

Returns callLegType

Specifies the call leg type.

Errors

DirectionNa
me

Application to network

3GPP

3G TS 23.xyz 0.12.0 (1999-097)443G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Method getCall()

This method requests the call associated with this call leg.

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Returns Call

Specifies the interface of the call associated with this call leg.

CallSessionID

Specifies the call session ID of the call associated with this call leg.

Errors

7.1.3.1.1 State Diagram

Figure 7Figure 8Figure 7Figure 4 shows the state model for the generic call leg interface. This represents most of the
call setup states. The call leg is created by an application (via the createCallLeg() method on the Call
interface) or implicitly by the Generic Call Control Service.

IDLE CALL_PROCEEDING

ALERTING CONNECTED

RELEASED

FAILED

ALL STATES

eventNotify
[answer]

eventNotify
[no answer]

releaseCallLeg

notificationTerminated
[switch fault]

eventNotify
[call leg ringing]

eventNotify
[busy or out of service]

eventNotify
[answer]

eventNotify
[call leg released]

releaseCallLeg

eventNotify
[call leg released]

createCallLeg

eventNotify
[new call]

routeCall/CallLegTo..._Req
[call proceeding]

routeCall/CallLegTo..._Req
[call accepted]

routeCall/CallLegTo..._Req
[call leg ringing]

releaseCallLeg

routeCall/CallLegTo..._Req
[busy or out of service]

deassignCall

releaseCall

Figure 78774 - State diagram for the CallLeg interface

Call Leg – Application interface

The generic application call leg interface is implemented by the client application developer and is used to handle
responses and errors associated with requests on the call leg.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)453G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

DirectionNa
me

Network to application

Method callLegEventReport_Res()

This asynchronous method reports that an event has occurred that was requested to be reported (for
example, a mid-call event, the party has requested to disconnect, etc.).

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

eventReport

Specifies the result of the request to route the call to the destination party. It also includes the mode
that the call object is in, the call leg generating the report (if applicable) and other related
information.

Returns

Errors

DirectionNa
me

Network to application

Method CallLegEventReport_Err()

This asynchronous method indicates that the request to manage call leg reports was unsuccessful,
and the reason (for example, the parameters were incorrect, the request was refused, etc.).

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns

Errors

DirectionNa
me

Network to application

Method GetCallLegInfo_Res()

This asynchronous method reports all the necessary information requested by the application, for
example to calculate charging.

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

CallLegInfoReport

Specifies the call leg information requested.

Returns

3GPP

3G TS 23.xyz 0.12.0 (1999-097)463G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Errors

DirectionNa
me

Network to application

Method GetCallLegInfo_Err()

This asynchronous method reports that the original request was erroneous, or resulted in an error
condition.

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Error

Specifies the error which led to the original request failing.

Returns

Errors

8.27.2 Security/privacy

8.37.3 Address Translation

8.4User Location

8.4.1User Location – Service Interface

DirectionNa
me

Application to network

Method EnableLocationNotification()

This method is used to enable user status notifications so that events can be sent to the application.

Parameters AppInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required.

Returns assignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event
notification.

Errors

DirectionNa Application to network

3GPP

3G TS 23.xyz 0.12.0 (1999-097)473G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

me

Method disableLocationNotification()

This method is used by the application to disable call notifications.

Parameters eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

DirectionNa
me

Application to network

Method getUserLocation()

This method is used by an application to get the location of a user directly.

Parameters userIdentity

Identifies the user

Returns locationInformation

Specifies the current location of the user. The following information elements may be returned:

• CellId or location area identifier

• VLR number

• Geographical information

• Location number

locationInformationAge

Indicates the time that the location information was updated.

Errors

User Location – Application Interface

DirectionNa
me

Network to application

3GPP

3G TS 23.xyz 0.12.0 (1999-097)483G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Method locationReport()

This method notifies the application of the arrival of a call-related event.

Parameters eventInfo

Specifies data associated with this event.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

Returns

Errors

DirectionNa
me

Network to application

Method locationNotificationTerminated()

This method indicates to the application that all event notifications have been terminated (for
example, due to faults detected).

Parameters

Returns

Errors

8.57.4 User Status

8.5.1User Status – Service Interface

DirectionNa
me

Application to network

Method enableStatusNotification()

This method is used to enable user status notifications so that events can be sent to the application.

Parameters appInterface

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is
used for callbacks. If set to NULL, the application interface defaults to the interface specified via
the setCallback() method.

eventCriteria

Specifies the event specific criteria used by the application to define the event required:

• Check for subscriber being reachable

• Check for subscriber being not reachable

Returns assignmentID

Specifies the ID assigned by the generic call control manager interface for this newly-enabled event

3GPP

3G TS 23.xyz 0.12.0 (1999-097)493G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

notification.

Errors

DirectionNa
me

Application to network

Method disableStatusNotification()

This method is used by the application to disable call notifications.

Parameters eventCriteria

Specifies the event specific criteria used by the application to define the event to be disabled.

assignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableNotification() was called.

Returns

Errors INVALID_ASSIGNMENTID

Returned if the assignment ID does not correspond to one of the valid assignment Ids.

DirectionNa
me

Application to network

Method GetUserStatus()

Parameters userIdentity

This parameter identifies the user for which the status has to be reported

Returns status

Reports the status of the user. The following status can be reported:

• Assumed idle

• Busy

• NotReachable

• No information available

Errors

User Status – Application Interface

DirectionNa
me

Network to application

Method statusEventNotify()

This method notifies the application of the arrival of a call-related event.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)503G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Parameters status

Reports the status of the user.

assignmentID

Specifies the assignment id which was returned by the enableNotification() method. The
application can use assignment id to associate events with event specific criteria and to act
accordingly.

Returns

Errors

NameDirect
ion

Network to application

Method statusNotificationTerminated()

This method indicates to the application that all status event notifications have been terminated
(for example, due to faults detected).

Parameters

Returns

Errors

8.67.5 Terminal Capabilities

8.77.6 Message Transfer

8.87.7 Data Download

8.97.8 User Profile Management
<Editor's note: management of supplementary service data might be included here (or in a separate section it that
appears to be more appropriate>

8.107.9 Charging

CAMEL Call Leg - Service interface

This class inherits from the base Call Leg service interface class and adds CAMEL specific methods.

DirectionNa
me

Application to network

Method setChargeInfo()

The application calls this method to insert charging information in the cal data records (CDR)
generated by the network

3GPP

3G TS 23.xyz 0.12.0 (1999-097)513G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

chargeInfo

Specifies the charging information. The format is application specific.

Returns

Errors

DirectionNa
me

Application to network

Method setAdviceOfCharge()

This method allows the application to the charging information that will be send to the end-users
handset.

Parameters callLegSessionID

Specifies the call leg session ID of the call leg.

adviceOfChargeInformation

Specifies two sets of Advice of Charge parameter according to GSM …..

tariffSwitch

Specifies the tariff switch that signifies when the second set of AoC parameters becomes valid.

Returns

Errors

DirectionNa
me

Application to network

Method superviseCall_Req()

The application calls this method to supervise a call. The application can set a granted connection
time for this call. If an application calls this function before it calls a
routeCallToDestination_Req() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters CallLegSessionID

Specifies the call leg session ID of the call leg.

Duration

Specifies the granted duration of the call/session in:

• time in milliseconds for the connection, or;

• Total data transferred in …

TarrifSwitch

Specifies an optional tariff switch indicating a change in tariff.

3GPP

3G TS 23.xyz 0.12.0 (1999-097)523G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

treatment

Specifies how the network should react after the granted connection time expired.

Returns

Errors

CAMEL Call Leg – Application Interface

DirectionNa
me

Network to application

Method superviseCall_Res()

This asynchronous method reports a call supervision event to the application.

Parameters callSessionID

Specifies the call session ID of the call.

report

Specifies the situation, which triggered the sending of the call supervision response.

usedTime

Specifies the used time for the call supervision (in milliseconds).

Returns

Errors

DirectionNa
me

Network to application

Method superviseCall_Err()

This asynchronous method reports a call supervision error to the application.

Parameters callSessionID

Specifies the call session ID of the call.

error

Specifies the error which led to the original request failing.

Returns

Errors

3GPP

3G TS 23.xyz 0.12.0 (1999-097)533G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

98 Relation between interface classes and service
capability servers

<Editor's notes:

- the purpose of this chapter is to define the mapping between interface classes (and methods) in the OSA
Application Interface and the underlying protocol operations and parameters >

- section 9.1 is an example of how the mapping is defined. Other sections are needed, e.g. to define the mapping
between User Location Management and HLR etc.>

9.18.1 Relation between Call Control and CAMEL
- Do we also define mapping from application interface to SCSes (e.g. making subscription to registered user

results in creation of / addition to O-CSI, T-CSI etc.?

Question: who sets correct O-CSI, T-CSI, etc. in HLR: application provider or operator?
(in first case, these management operations need to be standardised)

9 Annex - Example of use of OSA (informative)

The following example shows how the OSA, described on a high level, could be used to execute an application. Note
that OSA enables the use of various Service Capability Servers by an application.

 A user participates in a three-party conference discussing where to dine tonight (voice call). The Web is browsed to
pick a suitable restaurant. The location of the restaurant in relation to the position of the user is displayed on the
user’s terminal (location/positioning application). The restaurant choice is agreed amongst the conference
participants and a voice call is set up to book a table at the restaurant.

In some more detail this example could look as follows:

1) Conference call set-up:

Ordered via a WAP communication to the Call Conference Application.

WAP-GW

 CAMEL
 SCS

Call Conference Application on
Application Server

Request conference set-up

Set up call to User A, User B and User C

User A

User B

User C

3GPP

3G TS 23.xyz 0.12.0 (1999-097)543G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

2) Web-browsing:

User A uses WAP to browse information on the Internet (or a specific Home Environment provided service) to find a
restaurant guide.

User A à WAP-GW à Internet.

After having found two restaurant choices which all conference participants agree to, it is decided to choose the one
that is closest to where User A is located. User A then contacts the “Locator Application” which helps him to decide
which of the two restaurants that is closest to him, and how to get there.

3) Location/Positioning info:

User A à “Locator Application” à CAMEL SCS (positioning part).

The “Locator Application” determines which of the two restaurants that is the closest, translates the positioning
information into a description how to get there, either in text for WAP or alternatively included as an attachment in an
e-mail.

4) Table reservation:

Lastly, User A makes a table reservation by calling the restaurant. This can either be done via the WTAI interface
between a WTA application or by requesting an application in the network to establish the call as described in 1.
above.

User A à Voice call controlled via WTAI à Restaurant”

3GPP

3G TS 23.xyz 0.12.0 (1999-097)553G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version 0.21.103G TS 23.xyz version
0.21.0

10 History
 Date Version Comment

July 1999 0.10.0 Initial Draft produced in at Hazlet, New Jersey, USA

September 1999 0.2.0 Version presented to S2 plenary in Bonn, Germany (not including all agreed
changes yet from VHE/OSA adhoc session)

September 1999 0.2.1 Output of Bonn meeting

Rapporteur:

Email: Telephone:

