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1 INTRODUCTION 2

1 Introduction

TLA is a specification language for the compositional specification and verification
of distributed programs. The complete protocol was specified in TLA [1], a formal
language used mainly for writing specifications of concurrent systems and proving
properties of the system. TLA is a state based, first-order temporal logic. The main
part of a specification of a system is typically given by a set of events or transitions,
each one being a first-order logic predicate that describes the relation between the
variables in one state and the next. The specification is completed by expressing
the conditions under which the system should start (initial condition) and how a
part of the system will eventually respond or act, the so called fairness properties.

The goal of this paper is to give a formal description of the specification of the
protocol, of the assumptions, failure models, properties of the system or parts of
the system, scenarios and theorems in TLA.

The first theorem presented has the following form: if some conditions on the observ-
able behavior hold during a certain period of time, then at the end of that interval
some condition on the internal state of the system holds. We call those conditions
on observable behavior scenarios (examples: loss of messages, crashes, etc.) and the
conditions on the internal state of the system (example: synchronicity of counters)
we simply call (internal) conditions of the system. Therefore, the first theorem may
be expressed as follows: if a certain scenario holds, then a certain condition of the
system is true. Other theorems have the following form: if a certain condition of the
system is not true at certain time but from that time on a ”good” scenario holds,
the missing condition will become true again.

2 The TLA Notation

The simplest use of TLA is to describe a system as a set of initial conditions, Init,
together with an “evolution” equation, S. This resembles the way a physicist models
a continuous system by initial conditions and a differential equation. A state of the
system is any set of values (valuation) for some variables {z1, z2,... , 2, }. Let us call
x the tuple = (21, 3, ... , 2, ). The formula Init = Init(z) is a (first order or higher
order) formula of predicate logic on z1, 23, ... , Z,, stating the conditions in which
the system starts. The formula S relates two states. Using “primed” versions of the
variables z;, (that is, using fresh variables z} of the same type as z;), S = S(z,2’)
is a formula on the set {z1,x2,... ,x,, 2], 25, ... 2} }.

In TLA this discrete dynamical system is written as:
A & Init AO[S]

The symbol O is read: “box” or “always”. [S], is just an abbreviation of SV &' = x.
Using the convention z[:< z’ # x, [S], is equivalent to x]= S. We will write

A hitAD(z]=S)

A sequence (71,7, ... , Ty, ... ) of states satisfies A if and only if 7 satisfies Init,
and each pair (m;,m;+1) satisfies S or m; is equal to m;41). (This is a so called
“stutter step”). This is exactly the purpose of writing the subindex z in [S], (or
the condition z] in ( z]= S ): allowing stuttering steps. This is quite reasonable:
without introducing a global “clock”, you may view the system as a set of modules
each of which is governed by an equation of the form

A & Init(Xi) A |:|( XiI:> S(X“Xl/) )
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where X;, X; are subsets of {z1,22,... ,25} (or subtuples of z). Then the whole
system is given by the conjunction:

A= Anit(x;) A \O( Xi]= 8(X;, X)) )

We will describe the different versions (scenarios) of the system by formulas Ayormai,
Acriticals Aincorr Of this type. More precisely, we will introduce transition relations,
(N with some indexes) of the form N :& (X;]= S(X;, X})) to build up (using
conjunction or all-quantification) the formulas A.

Our modules do not (explicitely) share variables, but communicate via “actions”
(events or messages). This may be modeled in TLA by introducing a variable for
each message. The variable changes exactly when the message (or event) happens.
Therefore if IN is an input message with parameter x then IN(x) happens exactly
when a suitable variable n,(x) changes:

IN(X) © n(x)]
Typically, the next step relations A/ that we will use are of the form®:
N & IN(x) A cond = OUuT(9(x)) Ay = f(x,y)

(if the input IN(x) happens and the conditions cond are true, the module produces
the output OUT(y), with y = g(x) and changes the local variable y according to
formula f) or of the form:

N:=Out(y) = IN  or: N:eyl=IN

(if the output OuT(y) happens (or y changes), the only reason is that IN(x) has also
happened. The “dummy” variable “x” or “y” in those formulas is not a variable of
the system: the formula N :& IN(x) A cond = ... is equivalent to N :< VY, IN(x) A

cond = ....

3 Notation

In this section we set our notation for the specification. First, we list the data types
or, more properly, domains that will be used in the sequel. This also includes the
introduction of constants and functions. Then we introduce the variables of the
program that we are interested in. We conclude this section by introducing some
notation for the “messages” and “events” of the program.

1If S is of the form cond = Sy, then [S]z is equivalent to z] Acond = Si.
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3.1 Domains, Constants and Functions

The domains (“data types”) that we need are:

B = {01}
N={1,2,3,...}
= the set of natural numbers
SEQ :={1,... ,MaxSEQ} C IN
= the set of possible values for the sequence number
SN = the identifier set of possible service networks
RAND = the set of possible values for the random numbers
AUTN = the set of possible values for the variable AUTN
AV = the set of admissible authentication vectors
CHAL = the set of admissible authentication challenges
RESP 4 = the set of admissible authentication responses
RESP ; = the set of admissible authentication reject responses
RESPs = the set of admissible authentication synchronisation
fail responses
FATZL := {Loss, DB, Crash, Steal, Race}

For boolean variables x or boolean-valued functions f (i.e., with domain IB) we will
use the following shorthand, if no confusion arises: instead of writing z = 0, f(v) =0
or z = 1, f(v) = 1 we will write simply —x,—f(v), or z, f(v) respectively. The
numerical constants that we need are:

MaxSEQ = the maximal possible value for the sequence number.

A = the normal maximal difference between the counters

sequs and seqyg.
N = the maximal increment of seqggr when a batch of
authentication vectors is produced.

N is much smaller than A, we will assume: N < A/2.

In the specification in [2], (together with the CRs [3], [4],and [5] ac-
cepted at 3GPPSA3 London meeting) an AV is a tuple (“vector”) AV =
(Rand, resp, CK,IK,seq ® AK, MODE, M AC). The only values that we are ex-
plicitly interested in are: Rand, resp and seq. We will not use the components
CK,IK in this specification, and we abstract away from MODE (say, this is
part of the user ID and this is encoded in the secret key K). The secret key K
as well as the mac M AC are only used implicitly to define further functions, as
will become clear below. Instead of assuming that Rand, resp and seq are com-
ponents of AV, we assume the existence of functions: Rand,, : AV — Rand,
RespAV : AV +— resp, and @A\/ : AV — seq. The service network, SN receives
from the home environment the complete AV and sends to MS, the mobile station,
chall := Chall(AV) (in the original specification, chall is part of the authentication
vector: = (Rand,seq® AK, MODE, M AC)). The MS is able to check the consistency
of the challenge chall and to calculate the original parameter resp of the AV. Thus we
assume the existence of functions: conscpan (to check the consistency of chall) and
Resp , .. (to calculate resp, given chall). (Those functions, and most of the ones that
we will introduce now, depend on the secret key K; the function cons.pq; depends
also in particular on the parameter M AC). Further, the MS is able to calculate the
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sequence number seq with a function Seq MS applied to chall, and, in case some-
thing goes wrong, also the responses RejResp(chall) and SynResp(la_chall,chall)
for an user authentication reject or user authentication synchronisation failure. In
this last case, in the response SynResp=SynResp(la_chall,chall) the current value
of the sequence number of the MS (= the sequence number of la_chall, as will
be explained later) is encoded. The home environment HE is able to decode this
value via a function Seq o and to verify the freshness of the response SynResp
sent by the mobile station, comparing it to the random number Rand used by the
SN in the last challenge. We call this verification function verif. In the case of a
normal response, the SN uses a function cons,.s to check that the response resp
is consistent with the challenge Chall(AV). Also, let consav(AV) denote that the
authentication vector AV is consistent. Last, let synchr be the function used by the
MS to determine if the two sequence numbers, seqpsg, seq are or not “synchronous”,
(sequms is the sequence number in the MS, and segis the sequence number of the
challenge). What “synchronous” exactly means, is for the most part of the specifica-
tion, irrelevant, except that 1. if not too many AVs get lost, then all new challenges
are synchronous, and 2. old (for instance, used or lost) challenges become non-
synchronous with the passage of time or with successful authentications. But for
the statements and proofs of the properties of the system, we will assume that
synchr(seqq, seqs) := (seq; < seqy) N (seqy < seqy + A).

The (constant, i.e rigid) functions that we need are:

Seq,, AV — SEQ

Seq,, : CHAL — SEQ

&MS :RESPs — SEQ

Chall : AV — CHAL

Resp,, AV — RESP 4

Mch :CHAL — RESP 4
Randpy : AV — RAND
Rand,, : CHAL — RAND
RejResp : CHAL — RESP
SynResp : CHAL x CHAL — RESPs
consay : AY — 1B

consepay : CHAL — 1B

conSyes : CHAL x RESP4 — B
synchr : SEQ x SEQ — 1B

verif : RESPs x RAND — 1B

The function Seq AV defines a transitive, irreflexive relation < in AV:
AV < AV, & @AV(AVQ < @AV(AVQ)
We will assume some properties of these functions. First, the trivial commutations:

@ch o Chall = @A\/
Respch o Chall = Resp,,
Rand,;, o Chall = Randyy,

HE )
critical /s

At its proper place, in Sections 4 and 6 (in the definitions of N7 Z , and

norma.

it will be assumed that any AV generated by the HE is consistent.
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Now, if AV is consistent, then its challenge is also consistent and also consistent
to its corresponding response. One challenge has only one consistent corresponding
response.

consav (AV) = conscpai(Chall(AV)) A consyes(Chall(AV), Resp(AV))

consyres(chall,resp) A respy # resp = —cons,es(chall, resp;)
verif (SynResp, Rand) <
av,chall, SynResp = SynResp(chally, Chall(AV)) A Rand = Rand(AV)

Seq,,s(SynResp(chally, chally)) = Seq,, (chall)

In the sequel, if no confusion arises, we omit the subscripts, writing Seq instead of
S’eqch, SquV or SeqMS, Resp instead of Resp , or Resp,,, Rand instead of Rand_.;,
or Randu, and cons instead of consay , conSchair Or CONSyes.

3.2 The variables of the system

First let us introduce some rather standard notation for two higher-order constructs
that we need: AV* is the set of all words AV, AV, AV3 ... AV, built with “letters”
from AV: AV; € AV. The basic operations in this domain are: Head : AV* — AV
that chooses the first letter of the word: Head(AV, AVa AVs ...AV,) = AV,
and Tail : AV* — AV* is the rest of word: Tail(AV; AV, AV5 .. .AV,) =
(AVy AV ... AV,,). € is the empty word. On the other hand p(AV) is the power-set
of AV: the set of all subsets of AV.

The variables that we will need are:

sequg : SEQ

DB : SN — AV* called the database of AVs

la_chall : CHAL  the last accepted challenge, that is, the

last challenge accepted by the MS

Thus, for SN in SN, the database DB(SN) of AVs stored in the node SN is a word
AV AV, AVs ... AV, of authentication vectors AV;. We will denote by Set(w) the
set {AVy, AV, AVs, ... AV, } of letters in the word w = AV; AV, AV3 ... AV, . By
abuse of notation we will use sometimes DB(SN) in a context where a set is expected

instead of a word, meaning : Set(DB(SN)). Thus ... UDB(SN) is ... USet(DB(SN))
and ... € DB(SN)is ... C Set(DB(SN)).

The auxiliary variables, defined later in Sections 4 and 6 are:

Gen : p(AV) the set of generated AVs

Used : p(AV) the set of used (sent) AVs

Stolengg : p(AV) the set of AVs that were stolen in the HE

Stolengy : p(AV) the set of AVs that were stolen in an SN

Stolen : p(AV) the set of stolen AVs

Accepted : p(AV) the set of AVs accepted by the MS

Succsessful : p(AV) the set of AVs accepted by the MS and correctly replied

Lost : p(AV) the set of lost AVs

last_SN : SN in normal behavior, the SN where the user is registered.

curr_SN : p(SN) the current set of SNs where the user is registered
in normal behavior, it is {last_SN}, in incorrect behavior

it may contain no or several SNs.
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Definition 3.1. The state functions are:
sequs = Seq(la_chall) : SEQ
Definition 3.2.

Init :< seqps = 0 A seque = 0AVsny DB(SN) = e A Stolen = ()

3.3 The Messages: the Transitions of the System

There is a simple way of modeling the occurrence of messages in a purely state-based
approach like TLA: for each message or event MESSAGE_X introduce a variable ng
that changes exactly when MESSAGE_X occurs. For convenience, if MESSAGE_X is
a message with parameters of types Xp, Xs, ... , A, we take the variable nx to be of
type X1 x Xox... X, — IN. ng(x1, X2, . . . X, ) may for instance count (in IN or modulo
a convenient number) how often the message (or event) MESSAGE_X with parame-
ters x1,Xo, . ..x, happens. Instead of using the variable nx in our specification, we
introduce a new predicate, say X(xy,Xa, . ..X,), which is an abbreviation:

X(X1,X2, -+« - Xp) 1€ nx(X1, X2, ... Xp) ]

(If z is a variable, we denote by af the transition predicate =’ # x.)

If MESSAGE_X is a message between SN and MS, then this message may get lost.
Therefore, we have to distinguish the two events: sending MESSAGE_X and receiving
MESSAGE_X, which may happen independently of each other.

For instance, USER AUTHENT. REQUEST gives rise to two different events, USER
AUTHENT. REQUEST SEND (short: UARs) and USER AUTHENT. REQUEST RE-
CEIVE (UARy):

1. Normally, if a UARg happens, then a UARy also happens, with the same
parameters.

2. Due to an attack, the UARy may contain different parameters than the cor-
responding Send.

3. A sent UARg may get lost in the transmission channel, thus producing no
UARj event.

4. Due to an attack, the USIM may receive a UARy that was not sent at all by
the SN.

The SN receives (or produces) a TIME OUT, if the response to the USER AUTHENT.
REQUEST SEND is lost or delayed MVAV (“Move Authentication Vectors”) is the
closed action of SEND ID REQ and SEND ID RESP.
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Message Trans. Param. Param. Var.
Pred. Name Type Name
AUTHENT. DATA REQUEST ADRy | SN SN TUADR, 0
(no syn. fail)
AUTHENT. DATA REQUEST ADR, (SynResp, | (RESPs, | napr,1
(syn. fail) Rand, RAND,
SN) SN)
AUTHENT. DATA RESPONSE ADS (AVs_new, | (AV*, Taps
SN) SN)
USER AUTHENT. REQUEST UAR, (chall, (CHAL NyAR,s
SN) SN)
UARR (chall, (CHAL NyaR,r
SN) SN)
USER AUTHENT. RESPONSE UASq (resp, (RESPA | nuas,s
SN) SN)
UAS; (resp, (RESPA | nuasr
SN) SN)
USER AUTHENT. REJECT UAJ, (RejResp, | (RESP; | nuass
SN) SN)
UAJ, (RejResp, | (RESPs | nuasr
SN) SN)
USER AUTHENT. UASF; | (SynResp, | (RESPs | nuasr,s
SYNCHRON. FAIL INDICATION SN) SN)
UASFy | (SynResp, | (RESPs | nuasr.r
SN) SN)
Table 1: Messages of the Protocol
Message Trans. Param. | Param. | Var.
or Event Pred. Name Type Name
LocATiON UPDATE REQUEST | LUR SN SN NLUR,s
SNy SN
CANCEL LOCATION CaNLocs | SN SN NcanLoc,s
CanLocy | SN SN NCanLoc,r
MOVE AVS MVAV SN SN NMvav
(SEND ID REQ SN, SN
and SEND ID REsp)
TiME OUT T10 SN SN N110

Table 2: Messages or Events outside of the protocol
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Definition 3.3. (The Messages)

ADRg(SN) :< napr o(SN)]

ADR; (SynResp, Rand, SN) :< npg 1 (SynResp, Rand, SN)]
ADS(AVs_new, SN) :< naps(AVs_new, SN)]
UARs(chall, SN) 1< nyag s (chall, SN)T
UARg(chall,SN) :< nyp . (chall, SN) ]
UASq(resp, SN) :< nyas s(resp, SN) |
UASg((resp, SN) < nyas (resp, SN) |
UAJs(RejResp, SN) :< nyp; s (RejResp, SN) |
UAJg(RejResp, SN) :& nypg - (RejResp, SN) |
UASF,(SynResp, SN) :< nyasr s (SynResp, SN) |
UASFg(SynResp, SN) :< nyasr.r (SynResp, SN) |
LUR(SN,SN;) :< nryr(SN, SNy )]
CANLOC(SN) < ncantoc,s(SN) |
CANLOCR(SN) :< ncanroc,r (SN)]

MVAV(SN, SN;) :4 myae(SN, SNy )|

T10(SN) :< nrig(SN)]

By abuse of notation, we will use the predicates ADRy, ADR, ADS, ... without
parameters to intend an implicit existential quantification:

Convention 3.1.

ADRO = EISN ADR()(SN)
ADR; < JsynResp,rand,sn - ADR;(SynResp, Rand, SN)
ADS & EIAVs,neW,SN A])S(AVS_I’IQW7 SN)

Further we will use the predicates ADR;(SN), ADS(SN),... without other param-
eters to intend an implicit existential quantification over the non mentioned param-
eters:

Convention 3.2.

ADR;(SN) :< Jsynresp,Rand  ADR1(SynResp, Rand, SN)
ADS(SN) : Javsnew ADS(AVs_new, SN)

We will not really use the variables napp,0(SN), etc. any further. Their only purpose
is to accommodate to TLA. One note on TLA: instead of using the conventional
syntax [A], of TLA, we prefer the equivalent more readable form: z]= A.

Notice also that ] AP = Ais [P = Al,

It is impossible that a message MESSAGE_X happens at the same time with two
different sets of parameters: X(x1,x2,...Xn) A X(y1,¥2,---Yn) A (X1,Xa,...X,) #
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(Y1,¥25 - Yn):
Az’nterleave DAY

normal
O( VsN,SynResp,Rand,AVs_new,challresp, RejResp, SynResp
VSN, ,SynResp, ,Rands ,AVs_new chally resp; ,RejResp; ,SynResp,
A ADRo(SN) A ADR((SN;) = SN = SN,
A ADR; (SynResp, Rand, SN) A ADR; (SynResp,, Randy, SNy)
= SynResp = SynResp; A Rand = Rand; A SN = SN,
A ADS(AVs_new, SN) A ADS(AVs_newq, SNy)
= AVs_new = AVs_new; A SN = SN;
A UARg(chall, SN) A UARg(chally, SNy)
= chall = chall; ASN = SN;
A UARg(chall, SN) A UARg(chall;, SNy)
= chall = chall; ASN = SN;
A UASg(resp, SN) A UASq(respy, SN1)
= resp = resp; A SN = SN,
A UASg(resp, SN) A UASR(resp;, SNp)
= resp = resp; A SN = SN,
A UAJg(RejResp, SN) A UAJs(RejResp;, SNy)
= RejResp = RejResp; A SN = SN;
A UAJ,(RejResp, SN) A UAJ(RejResp,,SN1)
= RejResp = RejResp; A SN = SN;
A UASF(SynResp,SN) A UASF(SynResp,,SN;)
= SynResp = SynResp; A SN = SN;
A UASFR(SynResp, SN) A UASF(SynResp,, SNy)
= SynResp = SynResp; A SN = SN;
AUASg = -UAJs A —“UASF,
AUAJs = -UAS; A ~UASF
AUASFg = ~UAS; A -UAJy )

4 Transitions of the normal System

4.1 Changing the Location

Let us first define the auxiliary variable curr_SN : o(SN) in the following way:
ACurrSN o

normal

A Fsn curr_SN = {SN}
a( A curr_.SN] = LURV CaNLoC
A LUR(SN,SN;) A CaNLOC(SNg) =
curr_SN' = (curr_SN \ {SNo}) U {SN;}
A LUR(SN,SN;) A =CaNLoc =
curr_SN' = curr SN U {SN; }
A CANLoc(SN) A =LUR =
curr_SN' = (curr_SN \ {SN}) )
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The intuition is that, under ideal? behavior, a LUR(SN,SN;) implies a
CANLOC(SN). In this case, in the set of current SNs the old SN, SN, is replaced by
the new one, SNy: curr SN’ = (curr_SN \ {SN}) U {SN;}. Thus curr_SN would al-
ways be a singleton. We will allow in normal conditions that a CANLOC(SN) occurs
without a LUR(SN,SNy), thus curr_SN is always a singleton or empty. In more
critical situations we will allow curr_SN to be an arbitrary (finite) set: it is the set
of SNs for which a LUR(SN, SN;) has not been followed by a CANLOCG(SN).

With this definition, our specification of the location update step may be written
as:

Nf%o[imal =

A curr_SN' =0V Jgn, curr_SN' = {SNg}

A LUR(SN,SN;) = MVAV(SN,SN;) vV DB'(SN;) = ¢

A MvAV(SN,SN;) = LUR(SN,SN;)

A ADS = curr_SN' = curr_SN

A MVAV (SN, SN;) = A DB’(SN;) = DB(SN)

A DB'(SN) = ¢
/\VSNQ (SNQ # SN A SN» # SN; =
DB’(SNy) = DB’(SNy))

The five points in this requirement are:
first, as explained before, a CANLOC may happen without a LUR, (resulting in
curr_SN" = ()). On the other hand, a LUR can happen without a CANLOC only if
curr_SN = (), (resulting in curr_SN' being a singleton, that is, Jgn, curr_SN’ =
{SNp}), or in other words, if CANLOC has already happened. In any case, both a
LUR and its corresponding CANLOC can happen simultaneously.
Second, a LUR may trigger a MVAV, but not necessarily; if no MVAV happens,
then DB’(SN;) = e. If MVAV happens, then DB’(SN;) = DB(SN). Thus, in any
case, any old existing AVs are to be discarded.
Third, a MVAYV is always produced by a LUR.
Fourth, no race condition happens. This type of race condition will be discussed
later in Section 6.
And last, when a MVAV happens, the AVs of the old SN are moved to the new SN.
Let us now define the auxiliary variable last_SN : SN in the following way:

LastSN
Anormal =

A curr.SN = {last_SN}
AO( A last_SN] = curr_SN|
A Vsn, (curr_ SN A curr_SN’ = {SNo} = last_SN' = SNy)
A (curr_SN| A Vsn, curr_SN' # {SNo}) = last_SN' = last_SN )

Notice that we in the context of ONVEU - the predicate Vsy, curr_SN’ # {SNg} in
the last line of the last formula, is equivalent to curr_SN’ = (). Thus, in this context,

even if curr_SN is empty, last_SN is the last SN where the user was registered.

4.2 The Serving Network

Let us consider first the AUTHENT. DATA REQUEST with the synchronisation flag
turned off (ADRy, that is, no synchronisation fail has happened). The reason for

2We do not model explicitly “ideal behavior”. We let our best scenario, “normal behavior”, to
contain already “normal” errors, like an LUR without a CANLOC.
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issuing this message is that the SN has only few or no authentication vectors left.
For simplicity, we assume the last case, i.e., ADRg = DB(SN) =e.

On the other hand, the only reason for asking AUTHENT. DATA REQUEST with the
synchronisation flag turned on (ADRy), is that a synchronisation fail has happened,
or, more precisely, a UASF has been obtained as response to a UARg.

The SN reacts to AUTHENT. DATA RESPONSE by updating the database of AVs
(DB(SN)).

When the SN sends a USER AUTHENT. REQUEST SEND, it updates the database of
AVs by deleting the first AV in the list DB(SN). (This AV is now the “current AV”,
and the values are used to compare with the expected response, UASg(resp,SN)).
If, sending a user authentication request, no answer (UAS; or UAJ, or UASF})
is received, then a T1O happens.

Ngmat &
A ADR((SN) = DB(SN) = e ASN € curr_SN
A ADR;(SynResp, Rand, SN) =
A UASF(SynResp, SN)
A SN € curr_SN
A Jav (UARg(Chall(AV),SN) A Rand = Rand(AV))
A ADS(AVs_new, SN) = A AVs_new # ¢ = DB’(SN) = AVs_new
A AVs_new = ¢ = DB’(SN) = DB(SN)
A UARg(chall, SN) = ASN € curr_SN A DB(SN) # €
A DB’(SN) = Tail(DB(SN))
A chall = Chall(Head(DB(SN)))
A UARg(chall,SN) =V Fresp UASg(resp, SN)
V' Jrejresp UAJr(RejResp, SN)
V' Jsynresp UASF(SynResp, SN)
v T1O0
A DB(SNY =V Javsnewsn ADS(AVs_new,SN) A AVs_new # ¢
V' Jehaisn UARg(chall, SN)
V Jsn, MVAV(SN,SN;)
V HSNI MVAV(SNl,SN)
A [ AN UASFg(SynResp, SN)
A SN € curr SN
A UARg(Chall(AV),SN)
A Rand = Rand(AV) | = ADR;(SynResp, Rand, SN)

4.3 The Home Environment

In the next definition we use a new (bound) variable segy, that contains a temporary
value for seqyp. The reader may understand the specification of the step Nfgfmal
as the sequential composition of two “micro-steps”:

HE N _
Nnomnal(seqHEa SeqHE ) - Elseqhe

( Nnormall’HE(seqHEa Se%e) A Nnormal27HE(seqhe; 8€QHEI) )
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Notice, by the way, that if NZE A (ADRgV ADR;) the value of seqyp uniquely

ormal
determines the value of seqpe.

Recall that AVs_new is a word (or ordered sequence) of AVs. We write AV < avs_new
AV, iff both AV; and AV; appear in AVs_new and AV appears (anywhere) left of
AVs.

Here we write < instead of < avs_new-

Noobat 7 Ssean |
A ADS(AVs_new,SN) =V ADR(SN)
V' JsynResp,Rand ADR1(SynResp, Rand, SN)
A ADRgyV ADR; = ADS
A ADRg = seqne = sequg
A ADR;(SynResp, Rand, SN) =
A [verif (SynResp, Rand) A
—synchry(Seq,  ((SynResp), sequr)| = seqne = Seq,  ;(SynResp)
A [-werif (SynResp, Rand) Vv
synchry(Seq,, . (SynResp), sequp)] = seqne = sequr
A ADS(AVs_new, SN) =
A AVs_new # €
A AV € AVs_new = cons(AV)
AVav, AVoeavs new (AV1 < AVy & AV < AVy)
AVaveavsnew (5€qne < Seq(AV) < seqyp)
AView Faveavsnew (seqne < i < seqyy = Seq(AV) = i)
A seqyp — seqne <N
A sequr] = Tavsnewsn ADS(AVs_new, SN) A AVs_new # € |

In this specification we have used a new function synchry, instead of our old synchr.
The reason is the following: we want not only that the current value of seqyg is in the
correct range: synchr(sequs, sequr), but also that the new value of seqyg is also in
the correct range (else, although seqyp is in the correct range the HE could generate
AVs which are outside of this range). Thus we also want: synchr(sequs, sequr’),
or in other words: synchr(sequs, sequr + N). The definition of synchr(z,y) is
therefore:

synchry(z,y) := synchr(x,y) A synchr(z,y + N)

This specification says nothing about where do the AVs in AVs_new come from. They
can be generated in the moment in which they are sent (through an Authentication
Data Respounse), or “pre-generated” and kept in an internal HE Database.

It is important for our proofs that, in normal behavior, when
ADRg or ADR;(SynResp, Rand, SN) with verif (SynResp,Rand) A
—synchry(Seq,, .(SynResp), seqyr),  the  the  parameter ~ AVs.new  in
ADS(AVs_new,SN) is not the empty word. In other cases it could be empty
without changing our properties or proofs. For the meantime, we follow the original
specification, in which AVs_new is never e. Later, for the incorrect system, we will
weaken this assumption.
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4.4 The Communication Channel

Recall from Convention 3.2 that for instance UARg(SN) means
Fresp UARg(resp,SN), i.e. an implicit existential quantification over the non
mentioned parameters. Let us say that the mobile station communicates with the
SN if in any one of the two direction a message is sent or received.

Comm(SN) := VvV UAR4(SN) V UARg(SN)
V UASs(SN) vV UASs(SN)
V UAJ4(SN) vV UAJ4(SN)
V UASF,(SN) V UASF,(SN)

We will assume that the MS communicates at the same time with only one SN:
Comm(SN) A Comm(SNy) = SN = SN;

The message USER AUTHENT. REQUEST may be received correctly (OKR), or it
may be corrupted during the transmission (CorrR), or it may get lost (LossR):

OKR :& Fchansn A UARg(chall, SN)
A UARg(chall,SN)
CorrR < Jchansn A UARg(chall, SN)
A Fehan, —cons(chally) A UARg(chally, SN)
LossR :< Jchansn A UARg(chall, SN)
A -“UARg(SN)

We will assume that during each step of the normal system, UARg = OKR V
CorrR V LossR. In other words, our assumption is that the challenge chall in
UARg(chall,SN) can not be replaced during the communication by another chal-
lenge chall; (in UARg(chally, SN) ) which is also consistent. This sort of situation
will be discussed later in Section 6.

On the other direction, the message USER AUTHENT. RESPONSE may be received
correctly (OKS), or it may be corrupted during the transmission (CorrS), or it may
get lost (LossS). As in the other directions, our assumption is that the response
can not be replaced during the communication by another consistent or verifiable
response. For the case of a normal response, this amounts to nothing, because there
is only one consistent response. For the case of a synchronisation fail, we have to
state explicitly, that if UAR¢(Chall(AV),SN) happens in the same step, then the
corrupted response is not verifiable (with respect to the random number of this AV).
This is exactly what we ask in the Assumption 4.1. Another possibility would be to
impose N2 discussed later in Assumption 6.3.

critical?

OKS 1V Frespsn A UASg(resp, SN)
A UASg(resp, SN)
V' JRejresp,sN A UAJs(RejResp, SN)
A UAJg(RejResp, SN)
V' Jsynresp,sN A UASF(SynResp, SN)
A UASFR(SynResp, SN)
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CorrS : <V Jiespsn A UASg(resp,SN)
A Fresp, resp; # resp A UASg(resp;, SN)
V' JRejResp,SN
A UAJs(RejResp, SN)
A Frejresp, RejResp; # RejResp A UAJy(RejResp;, SN)
V' JsynResp,SN
A UASF¢(SynResp, SN)
A Jsynresp, /A SynResp; # SynResp
A UASF;(SynResp,, SN)

LossS : < AV UASg(SN)
v UAJ(SN)
Vv UASF(SN)
A ~UASg(SN)
A ~UAJ(SN)
A ~UASF(SN)

The corruption of messages does not generate consistent fail synchonisation re-
sponses to the challenge.

Assumption 4.1.
N’rﬁ)i‘inal =
[ A UARg(chall, SN) A UASF(SynResp, SN)
A —UASF;(SynResp, SN)]
= —werif (SynResp, Rand(AV))

We will assume that during each non-stutter step of the communication channel,
either the channel is OK or there is a corruption or a loss of a challenge/response:

N omat 7

Vsn,sn, Comm(SN) A Comm(SNy) = SN = SN,

AN UARs = OKRV CorrRV LossR

AN UARy = OKRV CorrRV LossR

AN UASsVUAJsVUASFEFs = OKSV CorrSV LossS
A

AN

>

UASR VUAJ; VUASF; = OKSV CorrSV LossS

N’r?oiinal
4.5 The Mobile Station

Definition 4.1. The system is during the lifetime of the USIM if the number of
User Authentication Responses is less than SQNmax/A:

Lifetime :< nyas s < SQNmazx/A

When the mobile station receives a USER AUTHENT. REQUEST, if the challenge is
consistent and synchronous. it updates the variable la_chall and sends the corre-
sponding response, USER AUTHENT. RESPONSE. But if the challenge is not consis-
tent, it sends a USER AUTHENT. REJECT, and if the challenge is not synchronous,
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it sends a USER AUTHENT. RESPONSE: The only reason for updating the variable
la_chall is the one given above:
Normat &
A UARg(chall,SN) = A cons(chall) A synchr(sequs, Seq(chall))
= UASg(Resp(chall),SN))
A —cons(chall)
= UAJs(RejResp(chall), SN)
A cons(chall) A =synchr(sequs, Seq(chall))
= UASF(SynResp(la_chall,chall),SN))

AN UASs VvV UAJs VvV UASFs = UAR,

A UARg(chall,SN) A UASg = la_chall’ = chall

A UARg(chall,SN) A =UASg = la_chall’ = la_chall
A la_chal] = UASs(resp, SN)

A Lifetime’

5 Definition of Normal Behavior

Definition 5.1. An AV is called generated (by the home environment) if the home
environment has sent this AV in an Authentication Data Response. Formally, the
variable Gen, of type p(AV) is defined by the temporal formula:

Arcjoe:bmal <~
A Gen =10
A O( AGer] = 3avsnew,sn ADS(AVs_new, SN) A AVs_new # €

AJavsnewsn ADS(AVs_new,SN) = Gen' = Gen U AVs_new )

Definition 5.2. An AV copy is lost if it is either:

1. lost or corrupted in the communication Channel from the SN to the USIM, or

2. lost or intentionally discarded during a Location Update

Formally, the variable Lost, of type (AV) is defined by:
ALost e
A Lost =)
A O( A Lost =V UARg A (CorrRV LossR)
V LUR(SN,SN;) A ~MVAV(SN,SN;)
A UARs(Chall(AV),SN) A (CorrR V LossR)
= Lost' = Lost U {AV}
A LUR(SN,SN;) A =MVAV(SN,SN;) =
Lost' = Lost U DB(SN) )

It is not necessary to explicitly model losses of AVs (1.) inside of an SN or during
the (2.) communication between the home environment and the serving network or
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(3.) between two serving networks (during a MvAV). From the point of view of the
HE and the MS, at least, it is equivalent to loose the AV in any one of those three
situations or to loose it in the communication Channel from the SN to the USIM.

Definition 5.3. An AV copy is used if its challenge was sent in an authentication
request. More precisely, the variable Used, of type p(AV) is defined by:
AUz e
A Used = ()
A O( AUsed = UARy
AUARg(Chall(AV),SN) = Used' = Used U {AV}

Definition 5.4. An AV copy is accepted if its challenge was accepted by the mobile
station: Accepted, of type p(AV) is defined by:

Accepted
Anormal =

A Accepted = ()
A O( ANAccepted, = la_chal]
Ala_challl = Accepted’ = Accepted U
{AV € Gen' | Chall(AV) = la_chall'} )
Definition 5.5. An unused AV copy is usable if its location is the current SN where

the user is registered (or where the user was last registered), that is, it is an element
of DB(last_SN).

Definition 5.6. The sequence numbers seqys in the USIM and sequg in the home
environment are called synchronous iff synchr(sequs, sequr + 1). In this case we
call the system weakly-synchronous:

WeakSynchr < synchr(sequs, seque + 1)

Definition 5.7. An unused AV copy is called synchronous (with respect to sequs)
if synchr (sequs,Seq(AV))

Definition 5.8. The system is strongly-synchronousif it is weakly-synchronous and
all usable AV copies are also synchronous (w.r. to sequs ).

StrongSynchr < WeakSynchr A¥avepB(iast_sn)y synchr(sequs, Seq(AV))
Definition 5.9. Let A C AV. A is said to have no m consecutive AVs or to be

interrupted each m elements iff between any two elements of A whose sequence
numbers differ by at least m — 1 there is a number k between those two sequence
numbers such that no element of A has k as its sequence number.
Interr,, (A) :&
Vav, av,ea ( Seq(AVa) — Seq(AVy) > m — 1=
Ji (Seq(AV1) < k < Seq(AVa) AVavea Seq(AV) # k) )

Definition 5.10. "Normal Behavior Scenario”: The system behaves normally
(from the beginning on) if for any (A — N — 1) AVs in sequence, at least 1 AV

is not lost, and on each transition step, the formulas NEU ~ NSN - NHE
CcC MS .
NE s and N2> hold:
Step . LU SN HE CcC MS
Nnormal = Nnormal A Nnormal A Nnormal A Nnormal A Nnormal
Anormat &

: interleave CurrSN LastSN Gen Lost Used
Init A Anormal A Anormal A Anormal A Anormal A A l A A

norma normal
A O( NStep , A Interra_n—1(Lost') )

norma
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6 Transitions of the incorrect System

6.1 Events: more Transitions

Message Trans. | Param. | Param. | Var.
or Event Pred. Name Type Name

ERROR HE | XHE | Failure | FAZL | ny

ERROR SN | XSN | SN SN Nxsn
Failure | FAZL

ERROR LU XLU SN SN NnxLy
Failure | FAZL

Table 3: Failure Events

Definition 6.1. (The Failure Events)

XHE(Failure) :< nyge(Failure)]
XSN(SN, Failure) :< nggy (SN, Failure) ]
XLU(SN, Failure) :< ngy(SN, Failure) |

We also use conventions similar to the ones in Conventions 3.1 and 3.2. We do not
write them explicitly.

Some remarks to the assumptions/failure models: Most race conditions (the non-
intended ordering of the processing of events due to concurrency and communication
delays) are non-critical. This is due to the fact that the protocol is constructed as
a set of requests and responses (or timeouts). In our modeling we use as atomic
granularity complete actions (request+response or time-out). Nevertheless it is pos-
sible to formulate race conditions as the simultaneous performance of two actions
(that should happen in order and such that the simultaneous performance is not
equivalent to any of the two orderings) or by adding events (like XLU(SN,Race)),
that have some unexpected consequences.

In our case, the unexpected consequence of XLU(SN,Race) is that the USIM may
change its location simultaneously to a ADR (or equivalently, to an ADS).

Also in that case, the data-base of authentication vectors may have been updated
in an unexpected order. There is no real need for explicitly requiring this (as a
single transition step) since it is equivalent to a sequential composition of the tran-
sitions (in any order): update the database DB correctly once, loose, eventually
several times, the order of the DB (event: XSN(SN,DB)) and loose AVs (event:
XSN(SN,Loss)).

Another more drastic but simple way of modeling this type of situation, allowing
even more strange race conditions in which many different SNs are involved (but
not changing our properties or proofs), is to allow in the event XSN(DB) (without
a parameter SN) to mix the different DBs of the different SNs in an arbitrary way:

XSN(DB) = | Set(DB'(SN)) = J Set(DB(SN))
SN SN

instead of, as we will have now (see the definition of N/SN. ):

critical
XSN(SN,DB) = Set(DB'(SN)) = Set(DB(SN))
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Component | Assumption/Failure Model | Description
USIM (only case) The USIM always works correctly.
The lifetime of the USIM is not
exceeded. (See Def. 4.1).
SN SN 1. No failure SN works correctly
SN 2. AV loss Loss or corruption of AVs
(event: XSN(Loss) )
SN 3. AV disordering Disordering of AVs
(event: XSN(DB) )
SN 4. Crash SN Use of old AVs
(event: XSN(Crash) )
SN 5. SN is compromised AVs are stolen
(event: XSN(Steal) )
HE HE 1. No failure HE works correctly

HE 2. DB-failures

SQN is reset to an older value
(event: XHE(DB) )

HE 3. HE crash

Critical failures: SQN is set
to an arbitrary value
(event: XHE(Crash) )

HE 4. HE is compromised

An attacker sets SQN to an
arbitrarily chosen value;
then AVs are generated and
stolen and eventually SQN
is set to a new less
suspicious value.

(But: not generated

AVs are never compromised)
(event: XHE(Steal) )

Table 4: Assumptions and Failure Models. Part I
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Component Assumption/Failure Description
Transmission | Ch 1. normal situation | In a sequence of transmissions,
channel a certain maximal number of
(between consecutive failures happen
SN and (loss or corruption of messages)
USIM) Ch 2. critical situation, | A huge amount of consecutive
probably due to attacks | messages are lost or corrupted
Ch 3. replay attacks Old (=seen) messages are inserted
Ch 4. complex attacks Messages using unseen AVs
are inserted.
Those AVs have been stolen.
Location LU 1. normal situation | Cancel location implies all
AVs are deleted.
Update With a Location update request

all old AVs are deleted, fresh
AVs are requested from the old
SN or from the HE/AuC.

No race condition happens

LU 2. failure

After a Location update request
old AVs are still present and
will be used

(event: XLU(SN,DB) )

LU 3. race conditions

There are several race conditions,
for instance: when an SN

asks for Authentication Data,
ADR, (and in particular, after

a synchronisation failure

is detected), the USIM changes SN
(location update) and the new SN
collects new AVs, before the HE is
able to process the old ADR.
(event: XLU(SN,Race) )

Table 5: Assumptions and Failure Models: Part 11
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disordering the DB of only one SN independently of all other SNs.

It is in principle possible that several errors happen within the same transition, but
sometimes the specifications of them contradict each other. In any case it is always
possible that errors occur immediately after another.

For simplicity, we defined all three types of error (XHE,XSN,XLU) as being of the
same type. But each one may happen only for certain parameter values:

Aznterleave o Aznterlelave A

critical norma
O( A XHE(Failure) = Failure € {DB, Crash, Steal}
A XSN(SN, Failure) = Failure € {Loss, DB, Crash, Steal}
A XLU(SN, Failure) = Failure € {DB, Race} )

6.2 Changing the Location

Recall the definition of curr_SN : p(SN) given in Def. 4.1. This definition imposes
no restriction in our specification and remains as it is. The definition of last_SN : SN’
will also be left unchanged: the value of last_SN is of no interest to us when curr_SN
is a set with two or more elements. But as soon as curr_SN is a singleton or empty,
last_SN has the meaning that we intend: either is curr_.SN= { last_SN } or it is the
last SN where the user was registered.

Achr’;éL:fN e ACur'r‘SN PN ACurrSN

critical normal

LastSN . LastSN LastSN
Aincor?“ = 'Acm'tical = Anormal

N icar &

A LUR(SN,SN;) A -XLU(SN,DB) = MVAV(SN,SN;) V DB'(SN;) = ¢
A MVAV(SN,SN;) = LUR(SN, SN;)
A (ADS A —3eny XLU(SN, Race)) = curr_SN' = curr_SN
A MVAV (SN, SN;) = A DB’(SNy) = DB(SN)

A DB'(SN) = €

AVsn, (SN2 # SN A SNg # SNy =

DB'(SNy) = DB’(SNy))

The definition of NLY. . is very close to the one of N'EU - There we had (rewrit-

ing a bit the original formula):
LUR(SN,SN;) A =-MVAV(SN,SN;) = DB’(SN;) = ¢

but now, if XLU(SN,DB) happens, LUR(SN,SN;) A =-MVAV (SN, SN;) may imply
DB'(SN1) # € (thus old AVs may be used: LU 2.). It is not necessary to explicitly
state what happens if LUR(SN, SN;) A XLU(SN, DB): either MVAV (SN, SN;) (in
which case DB changes in the prescribed way) or DB(SN;) does not change, un-
less there is another reason for changing DB’(SN;) (those reasons are given in the
definition of NN . after DB(SN] = ...).

ritical
The other difference to NnLolfmal is that if the race condition happens, then while

ADS is performed, (ADSA—3sy XLU(SN, Race)), then it may not be excluded that
either a LUR or a CANLOC happen, the mobile station thus changing the location.
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6.3 The Serving Network

N icar &
A ADR((SN) = DB(SN) = e ASN € curr_SN
A ADR;(SynResp, Rand, SN) =
A UASF(SynResp, SN)
A SN € curr_SN
A 3av (UARg(Chall(AV),SN) A Rand = Rand(AV))
A ADS(AVs_new, SN) = A AVs_new # ¢ = DB’(SN) = AVs_new
A AVs_new = ¢ = DB’(SN) = DB(SN)
A UARg(chall,SN) A =XSN(SN, Loss) =
ASN € curr_SN A DB(SN) # €
A DB'(SN) = Tail(DB(SN))
A chall = Chall(Head(DB(SN)))
A XSN(SN, Crash) = UAR,
A UARg(chall,SN) A XSN(SN, Crash) =
Jave Usea chall = Chall(AV)
A XSN(SN,DB) = Set(DB'(SN)) = Set(DB(SN))
A XSN(SN, Loss) == A Set(DB’(SN)) C Set(DB(SN))
A AV, < DB’(SN) AV; = AV, < DB(SN) AVy
A DB(SN) =V dsn, LUR(SNy,SN) A =XLU(SN;, DB)
V XSN(SN,DB) vV XSN(SN, Loss)
V' Javs.new,sN ADS(AVs_new, SN) A AVs_new # €
V' ehasn UARg(chall, SN) A =XSN(SN, Loss)
V Jsn, MVAV(SN,SNy)
V Jsn, MVAV(SNy,SN)
A [ ANUASF(SynResp,SN)
A SN € curr_SN
A UARg(Chall(AV),SN)
A Rand = Rand(AV) | = ADR;(SynResp, Rand, SN)

6.4 The Home Environment

In the real system it seems to be the case that if a race condition happens:
(ADRg vV ADR;) A XLU(SN, Race) A LUR(SN,SN;)

then a CANLOC(SN) can be produced, instead of the ADS expected by the serving
network. But we insist that (ADRy vV ADR;) = ADS. We model the described
situation as follows: first send a ADS(AVs_new,SN) with AVs_new = € and then send
a CANLoc. This sequence is equivalent to just sending one CANLOC. Notice that
our specification does not constrain at all the occurrences of CANLOC: they may
happen anytime. (They are seen as inputs to the system).

It is also assumed that AVs which have not been generated can not be stolen (the
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code for the generation of AVs is secure).

N i =& Fseare |
A ADS(AVs_new,SN) = Vv ADR((SN)
V' JsynResp,Rand ADR1(SynResp, Rand, SN)
A (ADRgV ADR;) = ADS
A ADRy = seqne = sequg
A ADR;(SynResp, Rand,SN) =
A [verif (SynResp, Rand) A
—synchry(Seq, , ((SynResp), sequp)] = seqre = Seq,, (SynResp)
A [—verif (SynResp, Rand) v
synchry(Seq, . (SynResp), sequp)] = seqne = sequr
A ADS(AVs_new, SN) =
A —~XLU(SN, Race) = AVs_new # ¢
A AV € AVs_new = cons(AV)
AVav, AVseavsnew (AV1 < AV < AV < AVs)
AVaveavsnew (seqne < Seq(AV) < seqyp)
AVieN Iaveavsnew (S€qne < i < seqyp = Seq(AV) = i)
A seqyp — seqne < N
A XHE(DB) = sequp’ < sequp
A sequr] =V Iavsnew,sn ADS(AVs_new, SN) A AVs_new # ¢
Vv XHE(DB)
V XHE(Steal)
V XHE(Crash) ]

Notice that XHE(Steal) or XHE(Crash) do not impose any restriction on the value
of sequg’. Therefore, after this sort of failures the sequence number of the home
environment may assume an arbitrary value.

6.5 The Communication Channel

The definitions of OKR, CorrR, LossR, OKS, CorrS, and LossS were given in
Section 4.4. These definitions are still valid for the incorrect and the critical sys-
tem. As before, the message USER AUTHENT. REQUEST may be received correctly
(OKR), or it may be corrupted during the transmission (CorrR), or it may get lost
(LossR). But now there is one possibility more: it may be also replaced by another
USER AUTHENT. REQUEST with another challenge (ATTR).

ATTR & ElchaII,SN A UARS(chaII, SN)
A Elchalll;ﬁchall CO’I’LS(ChQ“l) A\ UARR(challl, SN)

Notice that the following is a tautology:

UARG(chall, SN) = V UARg (chall, SN)
V Jehall, —cons(chally) A UARg(chally, SN)
V =UARg(SN)
V Jchally chall cons(chally) A UARg(chally, SN)
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Thus, UARs = OKRV CorrRV LossRV ATTR is a tautology.

There is another form of attack, ATT Ri, the insertion of a message that was not
sent. In this situation, the only interesting case is when the inserted challenge is
consistent:

ATTRi & HchaII,SN N [JAI%,JCha”7 SN) A\ cons(chall)
A —UARg

On the other direction, the message USER AUTHENT. RESPONSE may be received
correctly (OKS), or it may be corrupted during the transmission (CorrS), or it may
get lost (LossS), or it may be replaced by another USER AUTHENT. RESPONSE with
another response (ATTR). Notice that in the definition of NCC if a message
was received, then a corresponding message was as also sent (perhaps with different
parameter values, they can be corrupted). For instance, if UAS; happens, then
either OK R or CorrR or LossR happens, and in any case, UASg happens as well.
This is not true anymore. Notice that we do not have to model extra an attack
ATTS, since it is indistinguishable from a corruption CorrS. (In the other direction
ATTR is needed, since Corr R implies that the corrupted challenge is inconsistent).
The insertion attack for messages from the mobile station to the service network
are only interesting when the service network has issued an authentication request
(else the insertion of the message has no consequences):

ATTSi(SN) 1< A Ienan UAR(chall, SN)
A =Fresp UAS(resp, SN)
A =3Rejresp UAJs(RejResp, SN)
A —3synresp UASF(SynResp, SN)
AV Fresp UASg(resp, SN)
V' Jrejresp UA Ty (RejResp, SN)
V' Jsynresp UASF(SynResp, SN)
ATTSi :=3sy ATTSi(SN)

The attacker is not able to generate consistent challenges that he has not seen, that
is, either have been transmitted already, or he has stolen. (The definition of Stolen
is given in Definition 5.2).

Assumption 6.1.

Assy .
Ncritical =

[ UARg(chall, SN) A =UARg(chall, SN) A cons(chall)]
= ElAVGStolen U Used chall = Chall(AV)

The attacker is not able to generate consistent responses to challenges that he has
not seen.

Assumption 6.2.

Asso .
Ncm'tical =

[ UARg(chall, SN) A =UASg(resp, SN) A UASg(resp, SN) A cons(chall, resp)]
= Javestolen U Used chall = Chall(AV) A resp = Resp(AV)

The attacker is not able to generate consistent fail synchonisation responses to fresh
challenges.
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Assumption 6.3.

Nﬁffi?’cal =
[ A UARg(chall, SN) A UASF(SynResp, SN)
A —UASF;(SynResp,SN) A wverif (SynResp, Rand(AV))]

= (AV € Stolen U Used) A SynResp = SynResp(AV)

: : : cC .
Those assumptions are the specification of Ncritical.

NC’C . PN NAssl l/\NASSQ l/\NASSS

critica critica critica critical

6.6 The Mobile Station
The mobile station is assumed to work always correctly, therefore,

MS . MS
Ncm'tical = Nnormal

7 Definition of Incorrect Behavior

Definition 7.1. The stealing of AVs generates a clone (not a ”copy”) of an AV.
Stolen®, the set of clones, is defined by the formulas:

Stolen := Stolenyg U Stolengy
Stolengg = 0 AO(A Stolenyg] = XHE(Steal)
A XHE(Steal) = Stolenyg’ O Stolenyg)
Stolensy = 0 AO(A Stolengn] = XSN(SN, Steal)
A XSN(SN, Steal) =
Stolengy C Stolengy’ C Stolengy U DB(SN))

Definition 7.2. As before (Def. 5.5), if curr_SN is a sigleton or empty, an unused
AV copy is usable if its location is last_SN, the current SN where the user is regis-
tered (or where the user was last registered), that is, it is an element of DB(last_SN).
If curr_SN contains more than one elemant, then an unused AV is usable if its lo-
cation is contained in curr_SN, that is, it is an element of Usne curr_sny DB(SN).

In the Definition 5.2, we have defined the variable Lost, the set of lost authentication
vectors. This definition is now extended to the case where the protocol is not running
under normal conditions, but under incorrect or critical ones. Now, the system may
also loose AVs through the event XSN, or through attacks. Notice that also the
disordering of AVs (or, if you prefer, the usage of AVs in disorder) leads to loosing
AVs.

Definition 7.3. An AV copy is lost if it is either:

1. lost or corrupted by an error in SN (SN 2. or SN 3.)

2. lost or corrupted in the communication Channel between the SN and the USIM,
perhaps also due to an attack (Ch. 1 or Ch. 2)

3In our formal specification we do not distinguish between AVs and occurrences of AVs. Thus,
in the formal specification one AV may be at the same time in Stolen and in Used or Lost.
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3. lost or intentionally discarded during a Location Update (typically LU 1, but
also LU 2 and LU 3)

Formally, the variable Lost, of type (AV) is defined by:

ALost e
A Lost =)
A O(A Lost = Vv UARs A -OKR
vV LUR(SN,SN;) A =MVAV(SN,SN;)
Vv dsn XSN(SN, Loss)
V 3y XSN(SN, DB)
A UARgs(Chall(AV),SN) A -OKR
= Lost' = Lost U {AV}
A LUR(SN,SN;) A =MVAV(SN,SN;) =
Lost' = Lost U DB(SN)
A XSN(SN, Loss) = Lost' = Lost U (DB(SN)\ DB’(SN))
A XSN(SN,DB) = Lost’ = Lost U DB(SN) )

This definition of Lost is only one of several possible choices. We could say that if
XSN(SN,DB) happens, not all AVs in DB(SN) are lost, only those AV for which
there is an AV; in DB’(SN), such that AV, is left of AV (it will be used earlier than
AV) but AV, has a larger sequence number than AV:

XSN(SN,DB) =
Lost’ = Lost U {AV € DB(SN) | Jav, AV; < AV A AV < AV, }
Or we could also say: using an AV with a sequence number larger than one already
used (or, accepted) is loosing this AV. The “exact” definition of “lost” is not so
important. But: we need such a definition (to be able to define what it means to

return to normal behavior) and this definition has to be consistent with the one
given for normal behavior, which should be a particular case.

Definition 7.4. The definitions of generated and used copy remain the same:

Gen . Gen Used . Used
Acritical = A A al = A

normal norm normal

Definition 7.5. An AV clone is obsolete if seqys > Seq(AV). The set of obsolete
clones is denoted by Obsolete. By definition,

Obsolete C Stolen = Stolengg U Stolengy .

Definition 7.6. An AV clone is called synchronous (with respect to sequs) if
synchr (sequs,Seq(AV))

Notice that this is the same definition as 5.7 but for clones.

Definition 7.7. The system is in perfect conditions (at a certain moment of time)
if it is strongly-synchronous and any AV clone is obsolete:

Perfect :< StrongSynchr A Stolen C Obsolete

Notice that in the case that there are no clones (and in particular, if from the
beginning the system was behaving normally) then Perfect :< StrongSynchr.
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Definition 7.8. ”Critical Behavior Scenario”: The system behaves critically if an
arbitrary combination of assumptions or failure models (SN 1 — LU 3) may occur:

Step . LU SN HE cC MS
Ncm'tical = Ncritical A Ncritical A Ncritical A Ncritical A Ncritical

Acritical &
: interleave CurrSN LastSN Gen Lost Used
Init A Acritical A Acritical A Acritical A Acritical A Acritical A Acritical
Step
A D(Ncritical)

Definition 7.9. "Incorrect Behavior Scenario”: The system behaves incorrectly if

o For any A AVs in sequence, at most A — 1 are lost,
e disordering of AVs occur, (SN 3) but no SN-crashes or SN-steal
e a failure in the Location Update may happen (LU 2), but no race condition

e no errors in the home environment happen.

Aincorr i Acriticat NO( A Interra_n_1(Lost")
A —XSN(Crash)
A —XSN(Steal)
A =XLU(Race)
A\

~XHE )

After the system has been behvaving incorrectly, it may return to normal:

Definition 7.10. "Return to Normal Behavior”: Let x be a boolean variable (or
state predicate) with the property that if it is 1, it remains 1: O(a] = 2’ = 1). Then
we say that the system behaves normally when z if during the time that x=1 for
any (A — N —1) AVs in sequence, at least 1 AV is not lost, and on each transition

step, the formulas N'BU NN NHE  NCC and NMS . hold:

normal’ normal’ normal? normal’ normal
z .
Anormal =
. interleave CurrSN LastSN Gen Lost Used
Init A Acritical A Acritical A Acritical A Acritical A Acritical A Acritical

AV Losto:p(Aav) | (T A 2’ = Lost' = Lostg)
= 0O{ z = N>'? A Interra_n_1(Lost’ \ Losto) } ]

norm

Note that “normal behavior” is more a property of the environment of the system
(attacks, loosing messages, race conditions, failures in data-bases, etc.) as of the
proper system itself. Even if the system returns to “normal behavior”, the old
failures may still have consequences, for instance, AVs with an old sequence number
may be used. Often, only a “succesfull” synchronisation failure will “clean up” the
system”.

Notice also that the definition of return to normal behavior does not exclude the
possibility that some messages get lost. (There is no bound on how many messages
from the MS to the SN may get lost!) In particular if the system is not synchronous,
this condition will remain unnoticed as long as the messages User Authentication
Request and User Authentication Synchronisation Fail Indication get lost. In this
case a “succesfull” synchronisation failure is not only helpful, it is necessary:

Definition 7.11. We say that a Synchronisation Failure is successful, if
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1. the corresponding messages User Authentication Request and User Authenti-
cation Synchronisation Fail Indication do not get lost or corrupted, and if

2. this Fail Indication is processed by the HE before the USIM changes the SN
location, i.e. no race condition LU 8 happens.

Formally, a successful Synchronisation Failure is given by the formula:

UASF gyccessful 2 3chall, SN, SynResp
A UARg(chall, SN) A UARy (chall, SN)
A UASFg(SynResp, SN) A UASFg(SynResp, SN)
A —3sy XLU(SN, Race)

8 Theorems

Lemma 8.1.
Al AN grmal =
A UASq(resp,SN) = Jcpan A UARg(chall, SN)
A cons(chall)
A synchr(sequs, Seq(chall))
A resp = Resp(chall)
A UAJs(RejResp, SN) = Jepan UARg(chall, SN) A —cons(chall)
A UASF(SynResp,SN) = Jepan A UARg(chall, SN)
A cons(chall)
N —synchr(sequs, Seq(chall))
A SynResp = SynResp(la_chall, chall)

PROOF: The proof is done by simple predicate logic. All three claims are proven
in exactly the same way. Let us prove the second one, which is the shortest one. It
amounts to showing

Aiﬁ)tre;r;ljlave A M]L\gT'S?nal A UAJS(ReJ Resp? SN) =
Iehal UARg (chall, SN) A =cons(chall)

Ainterieave x \rMS AU A Jg(RejResp, SN)

normal ormal
=UAJ; (Def of UAJg)
=UAS; VvV UAJs Vv UASF, (Conjunction Rules)
=UAR; (Def of NMS )
=3chai,sn; UARg(chall,SNy) (Def of UARy)
=UARg(chall,SNy) (Skolemisation: Introd.

of fresh variables)
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[ Assume  cons(chall) A synchr(sequs, Seq(chall))

=UASs(Resp(chall),SNy)) (Def of N5 )
=UAS; (Def of UASy)
=-UAJ; (Def of Ainterleave)
=Contradiction (UAJs) ]

= (cons(chall) A synchr(sequs, Seq(chall))) (Assumption false)
=-cons(chall) vV =synchr(sequs, Seq(chall)))(De Morgan)

[ Assume  cons(chall) A ~synchr(sequs, Seq(chall))

=UASF(SynResp(la_chall, chall), SN) (Def of NMS )

— UASF, (Def of UASy)
——UAJ (Def of Ajuiei™)
=-Contradiction (UAJs) ]

= (cons(chall) A =~synchr(sequs, Seq(chall)))(Assumption false)
=-cons(chall) V synchr(sequs, Seq(chall)))  (De Morgan)
=-cons(chall) (Resolution)
=UAJs(RejResp(chall),SNy) (Def of NM5

andUARg(chall, SNy ))
=RejResp = RejResp(chall) A SN = SN, (UAJs(RejResp(chall),SNy)
UAJs(RejResp,SN))

and Def of Azntfﬁeave)

—UARy(chall, SN) (SN = SN)
=UARg(chall, SN) A —cons(chall) Conjunction
=Jchal UARRg(chall, SN) A —cons(chall) Introd of Ex.

Lemma 8.2.
Alormal N Arorral =
O( (NEY A curr SN’ # 0) = curr_SN' = {last_SN} )
Lemma 8.3.
Anormat = O( A DB(last_SN) # € = sequr = Seq(max(DB(last_SN)))
A sequs = Seq(max(Accepted))
A UARg(Chall(AV),SN) = AV = min(DB(last_SN)) )

ProOF: 1. The first goal is to prove

Anormal = O(DB(last_SN) # € = sequp = Seq(max(DB(last_SN))))
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This follows if in any transition where seqygp or DB or last_SN changes,
DB'(last_SN") # ¢ = sequp’ = Seq(max(DB'(last_SN"))))

holds.

1.1. Assume seqyg. First use the definition of NE . seqyp changes only when

ADS happens. Choosing fresh variables for the parameters we may assume
ADS(AVs_new,SN). It is easy to see that AVs_new # ¢, (else seqyr does not change).
Recalling the definition of N2E e J...  [], choose segp. to be any value that

ormal
makes the predicate in the square brackets to be true. (Skolemisation). Now, since

View Javeavsnew (Seqne < @ < seqyp = Seq(AV) = 1)
letting i = seq}; we have
Iaveavsnew Seq(AV) = seqyp

Choose AV, with Seq(AV) = seqyp. Now, from

Vaveavsnew (seqne < Seq(AV) < seqyp)
it follows that Vaveavsnew (Seq(AV) < Seq(AVy)), which may be written as AVy =
max(AVs_new).
Using the definition of N'5N we have that ADS(AVs_new,SN) implies DB’(SN) =

ormal’

AVs_new and therefore AVy = max(DB’(SN)). Then
Seq(AV) = Seq(max(DB'(SN))) = sequp’
proving the claim, since SN € curr_SN = curr_SN' (no race condition in NEU )

normal
and curr_SN’ = {last SN’} imply that SN = {last_SN'}.

1.2. Now assume that last_SN| Asequr’ = sequg, and let us show:
DB'(last_SN") # € = sequg’ = Seq(max(DB'(last_SN'))))

Since
last_SN = curr_SN| A(Jsn, curr_SN' = {SN1} V curr_SN' = 0)

but curr_SN' = () implies last_SN’ = last_SN. Choosing a new fresh variable, we
conclude that curr_SN] Acurr_SN’ = {SN; }.

From Aggféﬁf\] A A,ngﬁf,fajy we obtain that LUR V CaNLoc and from N2V . we
know that CANLoc = LUR, proving LUR.

Consider now two cases: if “MVAV, then DB’(last_.SN') = ¢, in the other case, if

MVAV, then DB’(last_SN') = DB(last_SN). In both cases our claim is valid.
1.3. Now assume that DB] Alast_SN' = last_SN A sequp’ = sequg, and let us show:

DB'(last_SN') # € = sequg’ = Seq(max(DB'(last_SN'))))

If DB changes, but sequyp does not, then UARgs or MVAV happen (N3N ).
In the first one, only the smallest element of DB(last_SN) is taken out, leaving
DB(last_SN) empty or its largest element unchanged. In both cases our goal is

shown.

2. The second goal is that in each transition,

sequs’ = Seq(max(Accepted”)).



8 THEOREMS 31

This follows easily from the definition of Accepted and NS

normal*

3. The third goal is that in each transition,
UARs(Chall(AV),SN) = AV = min(DB(last_SN)).

The proof is similar to the proof of the first goal and uses the face that < and <
coincide: when ADS(AVs_new, SN) happens, the elements of AVs_new = DB’(SN)
are in order (i.e.. < = <). On each UARy, the smallest AV is used, and the
remaining elements of DB(SN) continue in order.

Lemma 8.4.

Anormal = D( v0<i<seqHE E|AVEGen 1= &(A\/) )

Lemma 8.5. If the system behaves normally, then the set of generated AVs is the
union of the used AVs, the usable ones, and the lost ones:

Anormar = O(Gen = Accepted U DB(last_SN) U Lost)

A simple consequence of the last two lemmas is:

Lemma 8.6.

Anormat = O( Vsegys<i<Seq(min(DB(last_SN))) FAveLost © = Seq(AV) )

Lemma 8.7. If the system behaves normally, then the set of usable AVs has never
more than N elements:

-Anormal = D(\DB(last_SNﬂ < N)
Lemma 8.8.

Anormal = O( UARg(chall, SN) = Seqg(chall) — sequs < A )

PROOF: This follows from chall = min(DB(SN)) and (SN) = last_SN

Lemma 8.9.

NEC nat N UARG(Chall(AV), SN) =

V' A Accepted’ = Accepted U {AV}
A sequs’ = Seq(AV)
A Lost’ = Lost

VA Accepted’ = Accepted U {AV}
A sequs’ = Seq(AV)
A Lost’ = Lost U {AV}

VA Accepted’ = Accepted

A sequs’ = sequrs
A Lost’ = Lost U {AV}

Lemma 8.10.

norma

A Accepted’ = Accepted U {AV}
A sequs’ = Seq(AV)
A Lost' = Lost

NEC  NUAR,(Chall(AV), SN) A UAS(Resp(AV), SN) =
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Proposition 8.11. Initially the system is in perfect conditions. And as long as the
system behaves normally, it remains in perfect conditions and no synchronisation
failures happen. This may be formalised as follows*:

Anormal = D(Perfect) A D(_‘UASFS)

PROOF: First let us see why Perfect is an invariant, i.e. Anormar = O(Perfect). Tt
is clear that initially, Perfect holds, i.e. Init = Perfect. Now, if Perfect holds and
Niyormai holds then also Perfect’ holds. This follows from Lemma 8.8.

Proposition 8.12. If the system behaves incorrectly, and then behaves normally,
then after the first successful Synchronisation Fail Indication the system is in perfect
conditions. This is formalised as follows:

Aincorr N A% o = O( UASF gyecessful A © = Perfect’)

Proposition 8.13. If the system behaves critically, and then behaves normally,
then after the first successful Synchronisation Fail Indication the system is strongly-
synchronous. This is formalised as follows:

Afwrmal = D( UASFsuccessful NT = StrongSynchr' )

Proposition 8.14. If the system strongly-synchronous but not in perfect condi-
tions, and from that point on it behaves normally, then after the stolen AVs have
been used or become obsolete, at most one successful Synchronisation Fail Indication
is needed to return to perfect conditions.

Proposition 8.15. If the system weakly-synchronous but not strongly-synchronous,
and from that point on it behaves normally, then after the non-synchronous usable
AVs have been used or lost, at most one successful Synchronisation Fail Indication
is needed to return to a strongly-synchronous state.
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4The formalisation states something slightly different, namely that if the system always behaves
normally, then it is always in perfect conditions and never a synchronisation failure happens. This
is slightly weaker than the formulation in the theorem. But the induction proof given in the text
also proves the stronger assertion: the proof shows that initially the system is in perfect conditions
and that as long as normal conditions hold, the system remains in perfect conditions and no
synchronisation failure happens.



