

3GPP TSG RAN WG1 Meeting AH 1801		R1-1801078
Vancouver, Canada, January 22nd – 26th, 2018

Agenda Item:	7.4.2.2
Source:	Huawei, HiSilicon
Title:	Text proposal on CRC initialization for DL control channel
Document for:	Discussion and Decision

Introduction
In this contribution we present an alternative text proposal for capturing in TS 38.212 the initialization of the CRC shift register for DL control channel.
Background
For DCI, the CRC initialization was discussed and following agreement was reached in RAN1#91 [1]:
Agreement:
· For DCI, initialize CRC shift register with all-ones (i.e., 24 ones)
From the discussion in RAN1#91, the CRC shift register initialization should prevent false CRC pass to differentiate DCIs with different payload size. This is achieved by prepending a sequence of 24 bits with value 1 to the payload and use the resulting sequence as input to calculate the CRC bits. In R1-1800103, this was captured in a text proposal specifying the masking operation as follows
********************************** TEXT START ***********************************
7.3.2	CRC attachment
Error detection is provided on DCI transmissions through a Cyclic Redundancy Check (CRC).

The entire payload is used to calculate the CRC parity bits. Denote the bits of the payload by, and the parity bits by, where is the payload size and is the number of parity bits. A mask sequence is computed as the remainder of polynomial divided by the generator polynomial . The parity bits are computed and attached according to Subclause 5.1 by setting to 24 bits and using the generator polynomial with CRC shift register initialized by all ones, resulting in the sequence , where , and .
		for
	for

After attachment, the CRC parity bits are scrambled with the corresponding RNTI , where corresponds to the MSB of the RNTI, to form the sequence of bits. The relation between ck and bk is:

		for k = 0, 1, 2, …,

		for k = , ,,..., .
********************************** TEXT STOP ************************************

Text proposal
Another equivalent way to capture the operation of prepending a sequence of 24 bits with value 1 to the payload and use the resulting sequence as input to calculate the CRC bits is given below. This is the same text as in a previous version of TS 38.212 discussed in the 3GPP email reflector.
********************************** TEXT START ***********************************
7.3.2	CRC attachment
Error detection is provided on DCI transmissions through a Cyclic Redundancy Check (CRC).

The entire payload is used to calculate the CRC parity bits. Denote the bits of the payload by, and the parity bits by, where is the payload size and is the number of parity bits. Let [image:] be a bit sequence such that [image:] for [image:] and [image:] for [image:]. The parity bits are computed with input bit sequence [image:] and attached according to Subclause 5.1 by setting to 24 bits and using the generator polynomial . The outputwith CRC shift register initialized by all ones, resulting in the sequence after CRC attachment ,is
[image:] for [image:]
[image:] for [image:],

where .

After attachment, the CRC parity bits are scrambled with the corresponding RNTI , where corresponds to the MSB of the RNTI, to form the sequence of bits. The relation between ck and bk is:

		for k = 0, 1, 2, …,

		for k = , ,,..., .
********************************** TEXT STOP ************************************
Conclusion
This contribution present a text proposal to capture the operation of prepending a sequence of 24 bits with value 1 to the payload and use the resulting sequence as input to calculate the CRC bits. The text proposal in Sec.3 and the text proposal in R1-1800103 describe the same solution.
[bookmark: _GoBack]Proposal: Adopt the text proposal in Sec.3.

image2.wmf
1

3

2

1

0

,...,

,

,

,

-

L

p

p

p

p

p

oleObject2.bin

image3.wmf
A

oleObject3.bin

image4.wmf
L

oleObject4.bin

oleObject5.bin

image5.wmf
(

)

D

g

CRC24C

oleObject6.bin

image6.wmf
1

3

2

1

0

,...,

,

,

,

-

B

b

b

b

b

b

oleObject7.bin

image7.wmf
L

A

B

+

=

oleObject8.bin

image8.wmf
15

,

1

,

0

,

,...,

,

rnti

rnti

rnti

x

x

x

oleObject9.bin

image9.wmf
0

,

rnti

x

oleObject10.bin

image10.wmf
1

3

2

1

0

,...,

,

,

,

-

B

c

c

c

c

c

oleObject11.bin

image11.wmf
k

k

b

c

=

oleObject12.bin

image12.wmf
7

+

A

oleObject13.bin

image13.wmf
(

)

2

mod

8

,

-

-

+

=

A

k

rnti

k

k

x

b

c

oleObject14.bin

image14.wmf
8

+

A

oleObject15.bin

image15.wmf
9

+

A

oleObject16.bin

image16.wmf
10

+

A

oleObject17.bin

image17.wmf
23

+

A

oleObject18.bin

oleObject19.bin

oleObject20.bin

oleObject21.bin

oleObject22.bin

image18.wmf
1

3

2

1

0

'

,...,

'

,

'

,

'

,

'

-

+

L

A

a

a

a

a

a

image19.wmf
1

'

=

i

a

image20.wmf
1

...,

,

1

,

0

-

=

L

i

image21.wmf
L

i

i

a

a

-

=

'

image22.wmf
1

...,

,

1

,

-

+

+

=

L

A

L

L

i

oleObject23.bin

oleObject24.bin

oleObject25.bin

image23.wmf
k

k

a

b

=

image24.wmf
1

,...,

2

,

1

,

0

-

=

A

k

image25.wmf
A

k

k

p

b

-

=

image26.wmf
1

,...,

2

,

1

,

-

+

+

+

=

L

A

A

A

A

k

oleObject26.bin

oleObject27.bin

oleObject28.bin

oleObject29.bin

oleObject30.bin

oleObject31.bin

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

oleObject36.bin

image1.wmf
1

3

2

1

0

,...,

,

,

,

-

A

a

a

a

a

a

oleObject1.bin

