3GPP TSG-RAN WG1 AH-1801	R1-1800943
Vancouver, Canada, 22th– 26st January 2018

Source:	Ericsson
Title:	On PDCCH structure
Agenda Item:	7.3.1.1
Document for:	Discussion and Decision
Introduction
In this contribution, we identify an issue with this current definition of the PDCCH interleaver in [1] and propose a text proposal to fix the issue.

In [1], the scrambling for PDSCH and PDCCH is described. However, the scrambling initiation is not described for PDCCH, nor is the initialization for the DMRS sequence generation for PDCCH. In this contribution, we propose how this initiation should be performed.
Discussion on PDCCH interleaver
In NR, the CCE-to-REG mapping for a CORESET can be interleaved or non-interleaved. Interleaving operates on the REG bundles. The interleaving pattern is defined by a rectangular matrix: the number of rows, R, is configured from {2, 3, 6}, and the number of columns is P/R, where P is the total number of REG bundles for the given CORESET. REG bundles are written row-wise and read column-wise. Cyclic shift of the interleaving unit is applied based on a configurable ID with range 0 – 274.

The interleaver is defined in Section 7.3.2.2, TS 38.211 [1]. According to the current NR specification, the interleaver is defined by

where is the number of REGs in the CORESET, is the REG bundle size, is given by the higher-layer parameter CORESET-interleaver-size and is a configurable shift. The number of REG bundles is , which is an integer since is divisible by 6 and {2, 6} when the CORESET does not span more than 2 OFDM symbols and {3, 6} when the CORESET uses 3 OFDM symbols.

The current interleaver definition works if the number of REG bundles is divisible by the selected. For example, with 12 REG bundles, setting , we have . Then 12 REG bundles are written row-wise to a table with 3 rows and 4 columns as shown in the following table. Reading out the entries column-wise, we get the interleaving sequence {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11}, as defined by the formulas in the current NR specification.
[image:]

The current definition fails when is not true. For example, with 10 REG bundles, setting , we have . For , we have , which gives (assuming). This is invalid since too, i.e., an element in the interleaving matrix is read by more than once.

[bookmark: _Toc503507925]The PDCCH interleaver definition in the current TS 38.211 is not correct if the number of REG bundles is not divisible by .

To fix the issue, we can follow the block interleaver defined in LTE, TS 36.212 [2]: Insert NULL entries to fill up the interleaving table when writing to the table and skip the NULL entries when reading from the table. With this approach, the write table in the above example with 10 REG bundles and is as follows. When reading out, the NULL entries are skipped, resulting in the interleaving sequence {2, 6, 3, 7, 0, 4, 8, 1, 5, 9}.
[image:]

[bookmark: _Toc503450765][bookmark: _Toc503450938][bookmark: _Toc503450995][bookmark: _Toc503507628][bookmark: _Toc503507926]If, similar to LTE block interleaver, NULL entries are padded to the sequence for PDCCH interleaving.

The number of rowsfor PDCCH block interleaving can be 2, 3, or 6. With a given number of REG bundles, some value(s) of may result in suboptimal interleaving sequence(s). For example, with 9 REG bundles, setting , we have . Then 9 REG bundles are written row-wise to a table with 6 rows and 2 columns, assuming 3 NULL entries are padded at the beginning, as illustrated in the left table below. This results in the interleaving sequence {1, 3, 5, 7, 0, 2, 4, 6, 8}. If we instead set , no NULL entries need to be padded, as illustrated in the right table below. The resulting interleaving sequence {0, 3, 6, 1, 4, 7, 2, 5, 8} is a better one compared to the one with .
[image:]

The above example illustrates that some restriction on the selection of will be beneficial. In general,should be selected such that it minimizes the number of NULL entries to be padded. This ensures that the block interleaving matrix is as close to a square matrix as possible and leads to better interleaving sequences.
A more relaxed condition could be that the number of NULL entries to be padded should not be larger than the number of columns in the block interleaving matrix. In other words, the consecutive NULL entries to be padded are restricted in the first row of the matrix.

[bookmark: _Toc503507629][bookmark: _Toc503507927]The number of rows should be selected such that the number of padded NULL entries is no more than the number of columns in the block interleaving matrix.
Based on the discussion, we make the following text proposal to subsection 7.3.2.2, TS 38.211:
[bookmark: _Toc503507928]Make the following changes to subsection 7.3.2.2:
[bookmark: _Toc503507929]>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

For interleaved CCE-to-REG mapping, for and for where is configured by the higher-layer parameter CORESET-REG-bundle-size. The interleaver is defined by

where is given by the higher-layer parameter CORESET-interleaver-size subject to and where

-	 is a function of for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI

-	 is a function of the higher-layer parameter CORESET-shift-index.
[bookmark: _Toc503507930]>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Discussion on PDCCH DMRS sequence generation
In subsection 7.4.1.1.1, the sequence generation for the PDSCH DMRS is described:

The UE shall assume the reference-signal sequence is defined by

.

where the pseudo-random sequence is defined in clause 5.2. The pseudo-random sequence generator shall be initialized with

where is the OFDM symbol number within the slot and

-	 and is given by the higher-layer parameter DL-DMRS-Scrambling-ID if provided

-	 and otherwise
The corresponding description for the PDCCH DMRS is in subsection 7.4.1.3.1:

The UE shall assume the reference-signal sequence is defined by

.

[bookmark: _Hlk500028516]where the pseudo-random sequence is defined in clause 5.2.1.
Clearly, the sequence generation procedure for the PDCCH lacks a description for how the pseudo-random sequence generator is initialized, and when defining this procedure, it is reasonable to use the corresponding procedure for PDSCH as a starting point. Hence, we propose
[bookmark: _Toc503442802][bookmark: _Toc503507630][bookmark: _Toc503507931]Make the following addition to subsection 7.4.1.3.1 and inform RAN2 about the associated update to the RRC parameter signalling:
[bookmark: _Toc503442803][bookmark: _Toc503507631][bookmark: _Toc503507932]>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

The UE shall assume the reference-signal sequence is defined by

.

where the pseudo-random sequence is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with

where is the OFDM symbol number within the slot and

-	 is given by the higher-layer parameter PDCCH-DMRS-Scrambling-ID if provided and if the higher-layer parameter CORESET-precoder-granularity equals CORESET-REG-bundle-size and the RNTI is equal to C-RNTI

-	 otherwise
[bookmark: _Toc503442804][bookmark: _Toc503507632][bookmark: _Toc503507933]>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Comparing to the DMRS sequence generation, the possibility to dynamically switch between two DMRS sequence has been removed, since this is not necessary for PDCCH. Furthermore, the dedicated sequence generation seed is only used if the DMRS sequence is confined to REGs constituting the PDCCH the UE attempts to decode [1, section 7.4.1.3.2]. Finally, the dedicated sequence generation seed is only used when the RNTI equals the C-RNTI, i.e., it is not used when the UE is addressed using other (not UE-specific) RNTIs.
[bookmark: _GoBack]Discussion on PDCCH scrambling
In subsection 7.3.1.1 in [1], the PDSCH scrambling is described:

For each codeword , the UE shall assume the block of bits , where is the number of bits in codeword transmitted on the physical channel, are scrambled prior to modulation, resulting in a block of scrambled bits according to

where the scrambling sequence is given by clause 5.2.1. The scrambling sequence generator shall be initialized with

where

-	 equals the higher-layer parameter Data-scrambling-Identity if configured,

-	 otherwise
The corresponding description for PDCCH is in subsection 7.3.2.3:

The UE shall assume the block of bits , where is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits according to

where the scrambling sequence is given by clause 5.2.1.
Clearly, the scrambling procedure for the PDCCH lacks a description for how the scrambling sequence is initialized.
When defining the PDCCH scrambling sequence initialization, it is reasonable to use the PDSCH scrambling sequence initialization as a starting point. Hence, we propose
[bookmark: _Toc503442805][bookmark: _Toc503507633][bookmark: _Toc503507934][bookmark: _Toc492554353][bookmark: _Toc492554531]Make the following addition to subsection 7.3.2.3 and inform RAN2 about the associated update to the RRC parameter signalling:
[bookmark: _Toc503442806][bookmark: _Toc503507634][bookmark: _Toc503507935]>>>>>>>>>>>> Start text proposal >>>>>>>>>>>>

The UE shall assume the block of bits , where is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits according to

where the scrambling sequence is given by clause 5.2.1. The scrambling sequence generator shall be initialized with

where

-	 equals the higher-layer parameter Control-scrambling-Identity if configured and RNTI is equal to C-RNTI

-	 otherwise
[bookmark: _Toc503442807][bookmark: _Toc503507635][bookmark: _Toc503507936]>>>>>>>>>>>> End text proposal >>>>>>>>>>>>
Comparing to the PDSCH scrambling, there is no dependence on the codeword number, since there is only one codeword for PDCCH.

Conclusions
In this contribution, we identify an issue in the current definition of the PDCCH interleaver in NR specification and propose a text proposal to fix the issue. We have also identified issues with PDCCH DMRS sequence initialization, and PDCCH scrambling, and provide text proposals to solve the issues.

Observation 1	The PDCCH interleaver definition in the current TS 38.211 is not correct if the number of REG bundles is not divisible by .

Based on the discussion in this contribution, we propose the following:

Proposal 1	If, similar to LTE block interleaver, NULL entries are padded to the sequence for PDCCH interleaving.

Proposal 2	The number of rows should be selected such that the number of padded NULL entries is no more than the number of columns in the block interleaving matrix.
Proposal 3	Make the following changes to subsection 7.3.2.2:
>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

For interleaved CCE-to-REG mapping, for and for where is configured by the higher-layer parameter CORESET-REG-bundle-size. The interleaver is defined by

where is given by the higher-layer parameter CORESET-interleaver-size subject to and where

-	 is a function of for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI

-	 is a function of the higher-layer parameter CORESET-shift-index.
>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Proposal 4	Make the following addition to subsection 7.4.1.3.1 and inform RAN2 about the associated update to the RRC parameter signalling:
>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

The UE shall assume the reference-signal sequence is defined by

.

where the pseudo-random sequence is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with

where is the OFDM symbol number within the slot and

-	 is given by the higher-layer parameter PDCCH-DMRS-Scrambling-ID if provided and if the higher-layer parameter CORESET-precoder-granularity equals CORESET-REG-bundle-size and the RNTI is equal to C-RNTI

-	 otherwise

>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Proposal 5	Make the following addition to subsection 7.3.2.3 and inform RAN2 about the associated update to the RRC parameter signalling:
>>>>>>>>>>>> Start text proposal >>>>>>>>>>>>

The UE shall assume the block of bits , where is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits according to

where the scrambling sequence is given by clause 5.2.1. The scrambling sequence generator shall be initialized with

where

-	 equals the higher-layer parameter Control-scrambling-Identity if configured and RNTI is equal to C-RNTI

-	 otherwise

>>>>>>>>>>>> End text proposal >>>>>>>>>>>>

[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref503441725][bookmark: _Ref503507915]TS 38.211, “NR; Physical channels and modulation,” V15.0.0.
[bookmark: _Ref503445464]TS 36.212, “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding.”
image2.wmf
CORESET

REG

N

image43.wmf
(

)

(

)

(

)

31

SCID

ID

ID

s

17

init

2

mod

2

1

2

1

14

2

SCID

SCID

n

N

N

l

n

c

n

n

+

+

+

+

+

=

oleObject51.bin

image44.wmf
l

oleObject52.bin

image45.wmf
{

}

1

,

0

SCID

Î

n

oleObject53.bin

image46.wmf
{

}

65535

,...,

1

,

0

SCID

ID

Î

n

N

oleObject54.bin

image47.wmf
0

SCID

=

n

oleObject55.bin

oleObject2.bin

image48.wmf
cell

ID

ID

SCID

N

N

n

=

oleObject56.bin

oleObject57.bin

oleObject58.bin

oleObject59.bin

oleObject60.bin

oleObject61.bin

oleObject62.bin

image49.wmf
(

)

(

)

(

)

31

ID

ID

s

17

init

2

mod

2

1

2

1

14

2

SCID

SCID

n

n

N

N

l

n

c

+

+

+

+

=

oleObject63.bin

image3.wmf
L

oleObject64.bin

oleObject65.bin

oleObject66.bin

image50.wmf
q

oleObject67.bin

image51.wmf
)

1

(

),...,

0

(

)

(

bit

)

(

)

(

-

q

q

q

M

b

b

oleObject68.bin

image52.wmf
)

(

bit

q

M

oleObject69.bin

oleObject70.bin

oleObject3.bin

image53.wmf
)

1

(

~

),...,

0

(

~

(q)

bit

)

(

)

(

-

M

b

b

q

q

oleObject71.bin

image54.wmf
(

)

2

mod

)

(

)

(

)

(

~

)

(

)

(

)

(

i

c

i

b

i

b

q

q

q

+

=

oleObject72.bin

image55.wmf
)

(

)

(

i

c

q

oleObject73.bin

image56.wmf
ID

14

15

RNTI

init

2

2

n

q

n

c

+

×

+

×

=

oleObject74.bin

image57.wmf
{

}

1023

,...,

1

,

0

ID

Î

n

oleObject75.bin

image4.wmf
{

}

6

,

3

,

2

Î

R

image58.wmf
cell

ID

ID

N

n

=

oleObject76.bin

image59.wmf
)

1

(

),...,

0

(

bit

-

M

b

b

oleObject77.bin

image60.wmf
bit

M

oleObject78.bin

image61.wmf
)

1

(

~

),...,

0

(

~

bit

-

M

b

b

oleObject79.bin

image62.wmf
(

)

2

mod

)

(

)

(

)

(

~

i

c

i

b

i

b

+

=

oleObject80.bin

oleObject4.bin

image63.wmf
)

(

i

c

oleObject81.bin

oleObject82.bin

oleObject83.bin

oleObject84.bin

oleObject85.bin

oleObject86.bin

image64.wmf
ID

15

RNTI

init

2

n

n

c

+

×

=

oleObject87.bin

oleObject88.bin

image5.wmf
shift

n

oleObject89.bin

oleObject90.bin

oleObject91.bin

oleObject92.bin

oleObject93.bin

oleObject94.bin

oleObject95.bin

oleObject96.bin

oleObject97.bin

oleObject98.bin

oleObject5.bin

oleObject99.bin

oleObject100.bin

oleObject101.bin

oleObject102.bin

oleObject103.bin

oleObject104.bin

oleObject105.bin

oleObject106.bin

oleObject107.bin

oleObject108.bin

image6.wmf
L

N

CORESET

REG

oleObject109.bin

oleObject110.bin

oleObject111.bin

oleObject112.bin

oleObject113.bin

oleObject114.bin

oleObject115.bin

oleObject116.bin

oleObject117.bin

oleObject118.bin

oleObject6.bin

oleObject119.bin

oleObject120.bin

oleObject121.bin

oleObject122.bin

oleObject7.bin

image7.wmf
Î

L

oleObject8.bin

oleObject9.bin

image8.wmf
R

oleObject10.bin

image9.wmf
3

=

R

oleObject11.bin

image10.wmf
4

=

C

oleObject12.bin

image11.png
11

10

image12.wmf
L

N

CR

/

CORESET

REG

=

oleObject13.bin

oleObject14.bin

oleObject15.bin

image13.wmf
8

=

j

oleObject16.bin

image14.wmf
2

,

2

=

=

r

c

oleObject17.bin

image15.wmf
0

10

mod

10

)

8

(

=

=

f

oleObject18.bin

image16.wmf
0

shift

=

n

oleObject19.bin

image17.wmf
0

)

0

(

=

f

oleObject20.bin

oleObject21.bin

image18.wmf
R

oleObject22.bin

oleObject23.bin

image19.png
Read

6 7
2 3
NULL | NULL
0 1

Write

image20.wmf
L

N

CR

CORESET

REG

>

oleObject24.bin

image21.wmf
L

N

CR

D

CORESET

REG

-

=

oleObject25.bin

image22.wmf
1

/

,...,

0

CORESET

REG

-

L

N

oleObject26.bin

image23.wmf
R

oleObject27.bin

image24.wmf
R

oleObject28.bin

image25.wmf
6

=

R

oleObject29.bin

image26.wmf
2

=

C

oleObject30.bin

image27.wmf
3

=

R

oleObject31.bin

oleObject32.bin

image28.png
Read

7 8
5 6
3 4
1 2
NULL 0
NULL | NULL
Write !

Read

Write

oleObject33.bin

oleObject34.bin

oleObject35.bin

image29.wmf
{

}

6

,

2

Î

L

oleObject36.bin

image30.wmf
1

CORESET

symb

=

N

oleObject37.bin

image31.wmf
{

}

6

,

CORSET

symb

N

L

Î

oleObject38.bin

image32.wmf
{

}

3

,

2

CORESET

symb

Î

N

oleObject39.bin

image33.wmf
L

image1.wmf
(

)

(

)

(

)

é

ù

LR

N

C

C

c

R

r

r

cR

j

L

N

n

c

rC

j

f

CORESET

REG

CORESET

REG

shift

1

,...,

1

,

0

1

,...,

1

,

0

mod

)

(

=

-

=

-

=

+

=

+

+

=

oleObject40.bin

image34.wmf
(

)

(

)

(

)

é

ù

LR

N

C

C

c

R

r

r

cR

j

L

N

n

c

rC

j

f

CORESET

REG

CORESET

REG

shift

1

,...,

1

,

0

1

,...,

1

,

0

mod

)

(

=

-

=

-

=

+

=

+

+

=

oleObject41.bin

image35.wmf
(

)

(

)

(

)

(

)

é

ù

L

N

CR

D

LR

N

C

R

r

C

D

D

c

D

r

cR

R

r

D

c

c

r

cR

k

D

c

rC

k

g

L

N

n

j

g

j

f

CORESET

REG

CORESET

REG

CORESET

REG

shift

1

-

0,1...,

and

1,

-

,...,

1

,

if

1

-

1,2...,

and

1,

-

0,1,...,

if

1

)

(

mod

)

(

-

=

=

î

í

ì

=

+

=

-

+

=

=

-

-

+

=

-

+

=

+

=

oleObject42.bin

image36.wmf
{

}

6

,

3

,

2

Î

R

oleObject43.bin

image37.wmf
C

D

£

oleObject44.bin

oleObject45.bin

oleObject1.bin

image38.wmf
cell

ID

N

oleObject46.bin

image39.wmf
{

}

274

,...,

1

,

0

shift

Î

n

oleObject47.bin

image40.wmf
)

(

m

r

oleObject48.bin

image41.wmf
(

)

(

)

)

1

2

(

2

1

2

1

)

2

(

2

1

2

1

)

(

+

×

-

+

×

-

=

m

c

j

m

c

m

r

oleObject49.bin

image42.wmf
)

(

i

c

oleObject50.bin

