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Introduction
In this contribution, we identify an issue with this current definition of the PDCCH interleaver in [1] and propose a text proposal to fix the issue.

In [1], the scrambling for PDSCH and PDCCH is described. However, the scrambling initiation is not described for PDCCH, nor is the initialization for the DMRS sequence generation for PDCCH. In this contribution, we propose how this initiation should be performed. 
Discussion on PDCCH interleaver
In NR, the CCE-to-REG mapping for a CORESET can be interleaved or non-interleaved. Interleaving operates on the REG bundles. The interleaving pattern is defined by a rectangular matrix: the number of rows, R, is configured from {2, 3, 6}, and the number of columns is P/R, where P is the total number of REG bundles for the given CORESET. REG bundles are written row-wise and read column-wise. Cyclic shift of the interleaving unit is applied based on a configurable ID with range 0 – 274.

The interleaver is defined in Section 7.3.2.2, TS 38.211 [1]. According to the current NR specification, the interleaver is defined by 










where  is the number of REGs in the CORESET,  is the REG bundle size,  is given by the higher-layer parameter CORESET-interleaver-size and is a configurable shift. The number of REG bundles is , which is an integer since is divisible by 6 and {2, 6} when the CORESET does not span more than 2 OFDM symbols and {3, 6} when the CORESET uses 3 OFDM symbols.



The current interleaver definition works if the number of REG bundles is divisible by the selected. For example, with 12 REG bundles, setting , we have . Then 12 REG bundles are written row-wise to a table with 3 rows and 4 columns as shown in the following table. Reading out the entries column-wise, we get the interleaving sequence {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11}, as defined by the formulas in the current NR specification.
[image: ]








The current definition fails when  is not true. For example, with 10 REG bundles, setting , we have . For , we have , which gives  (assuming ). This is invalid since too, i.e., an element in the interleaving matrix is read by more than once.


[bookmark: _Toc503507925]The PDCCH interleaver definition in the current TS 38.211 is not correct if the number of REG bundles is not divisible by .

To fix the issue, we can follow the block interleaver defined in LTE, TS 36.212 [2]: Insert NULL entries to fill up the interleaving table when writing to the table and skip the NULL entries when reading from the table. With this approach, the write table in the above example with 10 REG bundles and  is as follows. When reading out, the NULL entries are skipped, resulting in the interleaving sequence {2, 6, 3, 7, 0, 4, 8, 1, 5, 9}.
[image: ]



[bookmark: _Toc503450765][bookmark: _Toc503450938][bookmark: _Toc503450995][bookmark: _Toc503507628][bookmark: _Toc503507926]If, similar to LTE block interleaver,  NULL entries are padded to the sequence  for PDCCH interleaving.






The number of rowsfor PDCCH block interleaving can be 2, 3, or 6. With a given number of REG bundles, some value(s) of  may result in suboptimal interleaving sequence(s). For example, with 9 REG bundles, setting , we have . Then 9 REG bundles are written row-wise to a table with 6 rows and 2 columns, assuming 3 NULL entries are padded at the beginning, as illustrated in the left table below. This results in the interleaving sequence {1, 3, 5, 7, 0, 2, 4, 6, 8}. If we instead set , no NULL entries need to be padded, as illustrated in the right table below. The resulting interleaving sequence {0, 3, 6, 1, 4, 7, 2, 5, 8} is a better one compared to the one with .
[image: ]


The above example illustrates that some restriction on the selection of  will be beneficial. In general,should be selected such that it minimizes the number of NULL entries to be padded. This ensures that the block interleaving matrix is as close to a square matrix as possible and leads to better interleaving sequences. 
A more relaxed condition could be that the number of NULL entries to be padded should not be larger than the number of columns in the block interleaving matrix. In other words, the consecutive NULL entries to be padded are restricted in the first row of the matrix.

[bookmark: _Toc503507629][bookmark: _Toc503507927]The number of rows should be selected such that the number of padded NULL entries is no more than the number of columns in the block interleaving matrix.
Based on the discussion, we make the following text proposal to subsection 7.3.2.2, TS 38.211:
[bookmark: _Toc503507928]Make the following changes to subsection 7.3.2.2:
[bookmark: _Toc503507929]>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>





For interleaved CCE-to-REG mapping, for  and  for  where  is configured by the higher-layer parameter CORESET-REG-bundle-size. The interleaver is defined by 






where  is given by the higher-layer parameter CORESET-interleaver-size subject to  and where


-	 is a function of for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI 

-	 is a function of the higher-layer parameter CORESET-shift-index.
[bookmark: _Toc503507930]>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Discussion on PDCCH DMRS sequence generation
In subsection 7.4.1.1.1, the sequence generation for the PDSCH DMRS is described:

The UE shall assume the reference-signal sequence  is defined by

.

where the pseudo-random sequence  is defined in clause 5.2. The pseudo-random sequence generator shall be initialized with



where  is the OFDM symbol number within the slot and


-	 and  is given by the higher-layer parameter DL-DMRS-Scrambling-ID if provided


-	 and  otherwise
The corresponding description for the PDCCH DMRS is in subsection 7.4.1.3.1:

The UE shall assume the reference-signal sequence  is defined by

.

[bookmark: _Hlk500028516]where the pseudo-random sequence  is defined in clause 5.2.1. 
Clearly, the sequence generation procedure for the PDCCH lacks a description for how the pseudo-random sequence generator is initialized, and when defining this procedure, it is reasonable to use the corresponding procedure for PDSCH as a starting point. Hence, we propose
[bookmark: _Toc503442802][bookmark: _Toc503507630][bookmark: _Toc503507931]Make the following addition to subsection 7.4.1.3.1 and inform RAN2 about the associated update to the RRC parameter signalling:
[bookmark: _Toc503442803][bookmark: _Toc503507631][bookmark: _Toc503507932]>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

The UE shall assume the reference-signal sequence  is defined by

.

where the pseudo-random sequence  is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with



where  is the OFDM symbol number within the slot and

-	 is given by the higher-layer parameter PDCCH-DMRS-Scrambling-ID if provided and if the higher-layer parameter CORESET-precoder-granularity equals CORESET-REG-bundle-size and the RNTI is equal to C-RNTI

-	 otherwise
[bookmark: _Toc503442804][bookmark: _Toc503507632][bookmark: _Toc503507933]>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Comparing to the DMRS sequence generation, the possibility to dynamically switch between two DMRS sequence has been removed, since this is not necessary for PDCCH. Furthermore, the dedicated sequence generation seed is only used if the DMRS sequence is confined to REGs constituting the PDCCH the UE attempts to decode [1, section 7.4.1.3.2]. Finally, the dedicated sequence generation seed is only used when the RNTI equals the C-RNTI, i.e., it is not used when the UE is addressed using other (not UE-specific) RNTIs.
[bookmark: _GoBack]Discussion on PDCCH scrambling
In subsection 7.3.1.1 in [1], the PDSCH scrambling is described:





For each codeword , the UE shall assume the block of bits , where  is the number of bits in codeword  transmitted on the physical channel, are scrambled prior to modulation, resulting in a block of scrambled bits according to



where the scrambling sequence  is given by clause 5.2.1. The scrambling sequence generator shall be initialized with


where

-	 equals the higher-layer parameter Data-scrambling-Identity if configured,

-	 otherwise
The corresponding description for PDCCH is in subsection 7.3.2.3:



The UE shall assume the block of bits , where  is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits  according to



where the scrambling sequence  is given by clause 5.2.1. 
Clearly, the scrambling procedure for the PDCCH lacks a description for how the scrambling sequence is initialized. 
When defining the PDCCH scrambling sequence initialization, it is reasonable to use the PDSCH scrambling sequence initialization as a starting point. Hence, we propose
[bookmark: _Toc503442805][bookmark: _Toc503507633][bookmark: _Toc503507934][bookmark: _Toc492554353][bookmark: _Toc492554531]Make the following addition to subsection 7.3.2.3 and inform RAN2 about the associated update to the RRC parameter signalling:
[bookmark: _Toc503442806][bookmark: _Toc503507634][bookmark: _Toc503507935]>>>>>>>>>>>> Start text proposal >>>>>>>>>>>>



The UE shall assume the block of bits , where  is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits  according to



where the scrambling sequence  is given by clause 5.2.1. The scrambling sequence generator shall be initialized with


where

-	 equals the higher-layer parameter Control-scrambling-Identity if configured and RNTI is equal to C-RNTI

-	 otherwise
[bookmark: _Toc503442807][bookmark: _Toc503507635][bookmark: _Toc503507936]>>>>>>>>>>>> End text proposal >>>>>>>>>>>>
Comparing to the PDSCH scrambling, there is no dependence on the codeword number, since there is only one codeword for PDCCH. 


Conclusions
In this contribution, we identify an issue in the current definition of the PDCCH interleaver in NR specification and propose a text proposal to fix the issue. We have also identified issues with PDCCH DMRS sequence initialization, and PDCCH scrambling, and provide text proposals to solve the issues.


Observation 1	The PDCCH interleaver definition in the current TS 38.211 is not correct if the number of REG bundles is not divisible by .

Based on the discussion in this contribution, we propose the following:



Proposal 1	If, similar to LTE block interleaver,  NULL entries are padded to the sequence  for PDCCH interleaving.

Proposal 2	The number of rows should be selected such that the number of padded NULL entries is no more than the number of columns in the block interleaving matrix.
Proposal 3	Make the following changes to subsection 7.3.2.2:
>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>





For interleaved CCE-to-REG mapping, for  and  for  where  is configured by the higher-layer parameter CORESET-REG-bundle-size. The interleaver is defined by 






where  is given by the higher-layer parameter CORESET-interleaver-size subject to  and where


-	 is a function of for a PDCCH transmitted in a CORESET configured by the PBCH or RMSI 

-	 is a function of the higher-layer parameter CORESET-shift-index.
>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Proposal 4	Make the following addition to subsection 7.4.1.3.1 and inform RAN2 about the associated update to the RRC parameter signalling:
>>>>>>>>>>>> Start of text proposal >>>>>>>>>>>>

The UE shall assume the reference-signal sequence  is defined by

.

where the pseudo-random sequence  is defined in clause 5.2.1. The pseudo-random sequence generator shall be initialized with



where  is the OFDM symbol number within the slot and

-	 is given by the higher-layer parameter PDCCH-DMRS-Scrambling-ID if provided and if the higher-layer parameter CORESET-precoder-granularity equals CORESET-REG-bundle-size and the RNTI is equal to C-RNTI

-	 otherwise

>>>>>>>>>>>> End of text proposal >>>>>>>>>>>>
Proposal 5	Make the following addition to subsection 7.3.2.3 and inform RAN2 about the associated update to the RRC parameter signalling:
>>>>>>>>>>>> Start text proposal >>>>>>>>>>>>



The UE shall assume the block of bits , where  is the number of bits transmitted on the physical channel, is scrambled prior to modulation, resulting in a block of scrambled bits  according to



where the scrambling sequence  is given by clause 5.2.1. The scrambling sequence generator shall be initialized with


where

-	 equals the higher-layer parameter Control-scrambling-Identity if configured and RNTI is equal to C-RNTI

-	 otherwise

>>>>>>>>>>>> End text proposal >>>>>>>>>>>>

[bookmark: _In-sequence_SDU_delivery]References
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