

3GPP TSG RAN WG1 Meeting AH 1801		R1-1800103
Vancouver, Canada, January 22nd – 26th, 2018

[bookmark: _GoBack]Agenda Item:	7.4.2.2
Source:	Huawei, HiSilicon
Title:	Text proposals for downlink control polar coding
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In this contribution we discuss aspects of polar coding and propose changes in TS 38.212.
[bookmark: _Ref477266525]DCI CRC Initialization
For DCI, the CRC initialization was discussed and following agreement was reached in RAN1#91 [1]:
Agreement:
· For DCI, initialize CRC shift register with all-ones (i.e., 24 ones)
From the discussion in RAN1#91, the CRC shift register initialization should prevent false CRC pass to differentiate DCIs with different payload size. This is achieved by setting to all-ones the bit sequence at the beginning of the payload.
In TS 38.212 Subclause 5.1[2], cyclic generator polynomials are defined, and then the CRC calculation procedure is given. For DCI, the L=24 CRC generator polynomial is:

“”.
The CRC calculation procedure is:
“The encoding is performed in a systematic form, which means that in GF(2), the polynomial:

yields a remainder equal to 0 when divided by the corresponding CRC generator polynomial, with CRC shift register initialized by all zeros unless stated otherwise.

The bits after CRC attachment are denoted by , where . The relation between and is:

	for

 for .”
In this section, we discuss that when the DCI CRC shift register is initialized to all-ones as per RAN1#91 agreement, different CRC shift register representations may lead to different CRC calculation results. Hence we propose to clarify the CRC shift register representation in TS38.212 [2].

CRC Calculation and Representation
There are two ways to represent the CRC calculation procedure when the cyclic shift register is initialized to all-zeroes. Consider the CRC polynomial as an example, set L=3 and A=10.
1. Cyclic Shift Register Based Representation 1
In Figure 1, the feedback of the shift register is determined by the CRC generator polynomial, and the input direction to the shift register is from low end. According to the CRC polynomial division definition, three zeroes should be appended at the end of the input bits before they enter the shift register.

In the example with L=3 and A=10, the input will be. After all (10+3) bits are insert into the shift register sequentially, the final state of the shift register represents the remainder of the polynomial division, which represents the calculated 3 CRC bits.

[bookmark: _Ref502827703][bookmark: _Ref502827696]Figure 1. Cyclic shift register representation 1, bits input from low end for ().
2. Cyclic Shift Register Based Representation 2
When the cyclic shift register is initialized to all-zeroes, another representation of the CRC calculation is illustrated in Figure 2. Compared to Figure 1, the difference is that the input direction to the shift register is now from high end. In this case, the GF(2) division can immediately take effect by the register feedback when the bits input from high end. From the implementation point of view, this kind of representation is widely used because the appended L=3 zeroes required for representation 1 are not needed.

In the example with L=3 and A=10, the input will be, and after all 10 bits are inserted into the shift register sequentially, the final state of the shift register will be the calculated 3 CRC bits.

[bookmark: _Ref503170623]Figure 2. Cyclic shift register representation 2, bits input from high end for ().

For CRC generator polynomial of with all-zeros initialization, suppose the 28 bits input of [0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,0,0,1], the CRC calculation will lead to the same CRC bits sequence of [0,1,0,1,0,1,0,1,1,0,1,1,0,1,0,1,1,1,1,0,0,1,0,0] for both representations.
Observation 1: With all-zeroes initialization of the CRC shift register, the CRC calculation have two equivalent shift register based representations.

With the initialization to all-ones, the two representations are not equivalent. For example, for the DCI CRC polynomial , by setting the shift register initialized with all-ones, and suppose that the 28 input bits are [0,0,0,0,0,1,1,0,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1, 1,0,0,0,1],
· using CRC calculation representation in Figure 1, the 24 CRC bits are
[0,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,0,0,0,0, 1,0,0,1]
· using CRC calculation representation in Figure 2, the 24 CRC bits are
[0,0,0,1,1,1,1,0,1,1,1,1,0,0,1,1,1,1,0,1, 1,0,1,0]
Since the above two CRC calculation results are different with initialization to all-ones, it is necessary to clarify the detail about the DCI CRC calculation in the specifications.
Observation 2: With all-ones initialization of the CRC shift register, the CRC shift register based representation needs to be specified.
Text Proposal
Due to the linearity of CRC (CRC is a type of linear block code), the agreement about DCI CRC shift register initialized with all-ones can be simply realized as masking a certain bit sequence on the CRC bits of the payload.

Proposal 1: Agree to the following test proposal for TS 38.214 Subclause 7.3.2:
********************************** TEXT START ***********************************
[bookmark: _Toc500953355]7.3.2	CRC attachment
Error detection is provided on DCI transmissions through a Cyclic Redundancy Check (CRC).

The entire payload is used to calculate the CRC parity bits. Denote the bits of the payload by, and the parity bits by, where is the payload size and is the number of parity bits. A mask sequence is computed as the remainder of polynomial divided by the generator polynomial . The parity bits are computed and attached according to Subclause 5.1 by setting to 24 bits and using the generator polynomial with CRC shift register initialized by all ones, resulting in the sequence , where , and .
		for
	for

After attachment, the CRC parity bits are scrambled with the corresponding RNTI , where corresponds to the MSB of the RNTI, to form the sequence of bits. The relation between ck and bk is:

		for k = 0, 1, 2, …,

		for k = , ,,..., .
********************************** TEXT STOP ************************************
Rate matching for polar codes
In Subclause 5.4.1, the rate matching output for polar codes is denoted as:
“The rate matching for Polar code is defined per coded block and consists of sub-block interleaving, bit collection, and bit interleaving. The input bit sequence to rate matching is . The output bit sequence after rate matching is denoted as .”
In Subclause 5.4.1.2, the bit sequence is denoted as the rate matching output:
“The bit sequence after the sub-block interleaver from Section 5.4.1.1 is written into a circular buffer of length N.

Denoting by E the rate matching output sequence length, the rate matching output bit sequence is , , generated as follows:”
In Subclause 5.4.1.3:

“The bit sequence is interleaved into bit sequence”

To avoid that both bit sequences and are denoted as output sequence of the rate matching, we propose to denoteas the sequence after bit selection.

Proposal 2: Agree to the following test proposal for TS 38.214 Subclause 5.4.1.2:
********************************** TEXT START ***********************************
[bookmark: _Toc500953273]5.4.1.2	Bit selection

The bit sequence after the sub-block interleaver from Subclause 5.4.1.1 is written into a circular buffer of length .

Denoting by the rate matching output sequence length, the sequence after bit selection the rate matching output bit sequence is , , generated as follows:
********************************** TEXT STOP ************************************
Conclusion
For the initialization of the DCI CRC shift register, we observe that
Observation 1: With all-zeroes initialization of the CRC shift register, the CRC calculation have two equivalent shift register based representations.
Observation 2: With all-ones initialization of the CRC shift register, the CRC shift register based representation needs to be specified.
We have text proposals for TS 38.214 Subclause 7.3.2 and Subclause 5.4.1.2, as in Proposal 1 and Proposal 2, respectively.
References
[1] [bookmark: _Ref477333292][bookmark: _Ref502762319]Chairman’s notes in 3GPP TSG RAN WG1 #91
[2] [bookmark: _Ref502763349]TS38.212 V15.0.0

image2.wmf
1

1

2

2

1

1

0

1

2

1

1

0

...

...

-

-

-

-

-

-

+

-

+

+

+

+

+

+

+

+

+

L

L

L

L

L

A

L

A

L

A

p

D

p

D

p

D

p

D

a

D

a

D

a

oleObject2.bin

image3.wmf
1

3

2

1

0

,...,

,

,

,

-

B

b

b

b

b

b

oleObject3.bin

image4.wmf
L

A

B

+

=

oleObject4.bin

image5.wmf
k

a

oleObject5.bin

image6.wmf
k

b

oleObject6.bin

image7.wmf
k

k

a

b

=

oleObject7.bin

image8.wmf
1

,...,

2

,

1

,

0

-

=

A

k

oleObject8.bin

image9.wmf
A

k

k

p

b

-

=

oleObject9.bin

image10.wmf
1

,...,

2

,

1

,

-

+

+

+

=

L

A

A

A

A

k

oleObject10.bin

image11.wmf
[

]

0129

,,,...,,0,0,0

aaaa

oleObject11.bin

image12.emf
D1D0++BitsInputD2High End

Microsoft_Visio___111111.vsdx
D1
D0
+
+
Bits
Input
D2
High End

image13.wmf
[

]

0129

,,,...,

aaaa

oleObject12.bin

image14.emf
D1D0++BitsInputD2High End

Microsoft_Visio___222222.vsdx
D1
D0
+
+
Bits
Input
D2
High End

image15.wmf
(

)

CRC24C

gD

oleObject13.bin

oleObject14.bin

image16.wmf
1

3

2

1

0

,...,

,

,

,

-

A

a

a

a

a

a

oleObject15.bin

image17.wmf
1

3

2

1

0

,...,

,

,

,

-

L

p

p

p

p

p

oleObject16.bin

image18.wmf
A

oleObject17.bin

image19.wmf
L

oleObject18.bin

oleObject19.bin

image20.wmf
(

)

D

g

CRC24C

oleObject20.bin

oleObject21.bin

oleObject22.bin

image21.wmf
15

,

1

,

0

,

,...,

,

rnti

rnti

rnti

x

x

x

oleObject23.bin

image22.wmf
0

,

rnti

x

oleObject24.bin

image23.wmf
1

3

2

1

0

,...,

,

,

,

-

B

c

c

c

c

c

oleObject25.bin

image24.wmf
k

k

b

c

=

oleObject26.bin

image25.wmf
7

+

A

oleObject27.bin

image26.wmf
(

)

2

mod

8

,

-

-

+

=

A

k

rnti

k

k

x

b

c

oleObject28.bin

image27.wmf
8

+

A

oleObject29.bin

image28.wmf
9

+

A

oleObject30.bin

image29.wmf
10

+

A

oleObject31.bin

image30.wmf
23

+

A

oleObject32.bin

image31.wmf
k

e

oleObject33.bin

image32.wmf
1

,...,

2

,

1

,

0

-

=

E

k

oleObject34.bin

image33.wmf
1

2

1

0

,...,

,

,

-

E

e

e

e

e

oleObject35.bin

image34.wmf
1

2

1

0

,...,

,

,

-

E

f

f

f

f

oleObject36.bin

image1.wmf
(

)

]

1

[

2

4

8

12

13

15

17

20

21

23

24

CRC24C

+

+

+

+

+

+

+

+

+

+

+

+

=

D

D

D

D

D

D

D

D

D

D

D

D

D

g

oleObject37.bin

image35.wmf
k

f

oleObject38.bin

oleObject39.bin

image36.wmf
1

2

1

0

,...,

,

,

-

N

y

y

y

y

oleObject40.bin

image37.wmf
N

oleObject41.bin

image38.wmf
E

oleObject42.bin

oleObject1.bin

oleObject43.bin

oleObject44.bin

