3GPP TSG RAN WG1 #AH Channel Model                                               R1-161709
Ljubljana, Slovenia, March 14-16, 2016
Agenda item:	7.0
Source: 	Samsung
Title: 	Discussion on additional attenuations
Document for: 	Discussion
[bookmark: _GoBack]
1. Introduction
In [1], the modeling methodologies for the additional features were discussed. This contribution discusses how to model additional attenuations due to rain and atmospheric losses. 

2. Additional Attenuations for Path Loss Model
In microwave bands, transmission loss is accounted by the free-space loss. However, in >6GHz cm/mm wave bands, additional loss factors come into play, such as atmospheric losses and rain loss in the transmission medium.
Atmospheric attenuations due to e.g. rain, water-vapour and oxygen absorption
These features can be added as an additional loss term, L, to the baseline path loss model. The total path loss (PL) can be described as:

PL [dB] = PL'(f, d) + L(f,  p, t, ρ, R),

where:
· PL'(f, d) is the distance & frequency dependent baseline path loss, which can be the same as the PL in [3] for <6GHz; and
· L(f, p, t, ρ, R, df) is for the additional attenuation;
· f is the carrier frequency;
· d is the link distance;
· p is the air pressure;
· t is the temperature;
· ρ is the water-vapour density;
· R is the rainfall rate; and


The additional attenuations can be described as:

L(f,  p, t, ρ, R) = Lgas(f, p, t, ρ) + Lrain(f, R)

[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3]The Lgas [dB/km] is an attenuation term due to atmospheric gaseous losses which is dependent on the carrier frequency, the air pressure, the temperature and the water-vapour density. Figure 1 shows the specific attenuation from 1 to 350 GHz at sea-level for dry air and water vapour with a density of 7.5 g/m3 [4]. The important absorption peaks occur at 24 and 60 GHz due to absorption of the radio signal by water vapour (H2O) and oxygen (O2). Except for these frequencies, there is no significant attenuation for frequencies below 100 GHz. Therefore, for most of the frequencies below 100 GHz, the attenuation due to atmospheric gases can be negligible. The details of Lgas modelling can be found in Appendix A.

[bookmark: OLE_LINK6]In addition, the specific attenuation values due to atmospheric gases at several candidate frequency bands are summarized in Table 1.
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[bookmark: OLE_LINK5][bookmark: OLE_LINK4][bookmark: OLE_LINK7]Figure 1. Specific attenuation due to atmospheric gases [5]


Table 1. Specific attenuation values due to atmospheric gases at several candidate frequency bands
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The additional attenuation Lrain [dB/km] for rain losses was well modelled in [5], as a function of frequency and the rain rate R [mm/h]:

Lrain(f, R) = kRα

The parameter values are available from Appendix B. Figure 2 [6] shows the attenuation per kilometre as a function of rain rate. When the rain rate is high, the corresponding attenuation is not negligible.


[image: ]

Figure 2. Specific attenuation due to rain [6]



3. Conclusion
In this contribution, we proposed the additional loss from atmosphere and rain attenuation as an additional path loss term.
Proposal: The additional attenuation due to atmospheric attenuations (water-vapour and oxygen absorption) and rain losses are modelled as an additional path loss term, L(f, p, t, ρ, R), according to [4] and [5]:
L(f, p, t, ρ, R) = Lgas(f, p, t, ρ) + Lrain(f, R)
where
· Lgas(f, p, t, ρ) = γo + γw  [dB/km] 
· Lrain(f, R) = kRα  [dB/km]
and
· f is the carrier frequency;
· d is the link distance;
· p is the air pressure;
· t is the temperature;
· ρ is the water-vapour density;
· R is the rainfall rate; and
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Appendix A. Gas attenuation modeling details in [4]
The specific attenuation due to dry air and water vapour, from sea level to an altitude of 10 km, can be estimated using the following simplified algorithms.
For dry air, the attenuation γo [dB/km] is given by the following equations:
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For water vapour, the attenuation γw [dB/km] is given by:
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Finally, the specific attenuation due to dry air and water vapour can be modelled as:

Lgas(f, p, t, ρ) = γo + γw  [dB/km]

Appendix B. Rain attenuation modeling details in [5]
The specific attenuation Lrain[dB/km] due to rain is obtained from the rain rate R [mm/h] using the power-law relationship:
Lrain(f, R) = kRα.

Values for the coefficients k and α are determined as functions of frequency, f (GHz), in the range from 1 to 1 000 GHz, from the following equations, which have been developed from curve-fitting to power-law coefficients derived from scattering calculations:
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Values for the constants for the coefficient kH for horizontal polarization, the coefficient kV for vertical polarization, for the coefficient αH for horizontal polarization, and for the coefficient αV for vertical polarization are given in Table 2.

Table 2. Values for the constants for the coefficients for kH, kV, αH, αV
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t:  temperature (°C), where mean temperature values can be obtained from maps
given in Recommendation ITU-R P.1510, when no adequate temperature data
are available.
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where p is the water-vapour density (g/m3).
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