3GPP TSG RAN WG1 #96bis 	 R1-1904725
Xi’an, China, 8th – 12th April, 2019
Source:	CMCC
[bookmark: OLE_LINK2][bookmark: OLE_LINK1]Title:	Discussion on procedure for two-step RACH
Agenda Item:	7.2.1.2
Document for:	Discussion and Decision
1. Introduction
In RAN#82 a new work item on “2-step RACH for NR” was agreed [1]. Channel structure and related procedure needs to be designed in RAN. Specifically, the procedure for 2-step RACH includes power control for MsgA, msg content for MsgA & MsgB, and fallback procedure from 2-step RACH to 4-step RACH. In RAN1 #96 meeting, the following agreements have been reached.
Agreements:
· For the relation of PRACH resources between 2-step and 4-step RACH, further study the following options (for possible down-selection or combination(s) of the options)
· Option 1: Separate ROs are configured for 2-step and 4-step RACH
· Option 2: Shared RO but separate preambles for 2-step and 4-step RACH
· Option 3: Shared RO and shared preambles for 2-step and 4-step RACH
Agreements:
· The beam association rule between SSB and RACH occasion of 4-step RACH is to be used for 2-step RACH
· FFS beam association for PUSCH
Agreements:
· At least open loop power control for PUSCH transmission in MsgA should be supported
· FFS PC for preamble vs. PC for PUSCH
In this contribution, we discuss the procedure for 2-step RACH.
2. [bookmark: OLE_LINK14][bookmark: OLE_LINK13]Procedure for two step RACH
In two-step RACH, MsgA includes the preamble (Msg1) and the data signal (Msg3), and MsgB combines the random access response (Msg2) and the contention resolution (Msg4), as shown in Fig.1.

[bookmark: _Ref534728109]
Figure 1 2-Step RACH procedure.

2.1 RACH Fallback Procedure
For 2-step RACH procedure, due to potential lower detection success probability for MsgA, it is beneficial to allow the fall back procedure from 2-step RACH to the 4-step RACH. There are different cases for the detection results for the msgA at the gNB:
Case 1): Both preamble and PUSCH are detected successfully;
Case 2): Both preamble and PUSCH detection fail;
Case 3): Preamble is detected successfully, but the PUSCH detection fails;
Case 4): Preamble detection fails, but the PUSCH is detected successfully.
Case 4) is not discussed here, as the probability is very little. For case 1), if the UE detects the MsgB successfully, then the RACH procedure is considered to be completed. For case 2), the UE would not detect the msgB successfully, as no response is transmitted. Then, the UE would re-start the RACH procedure if needed.
For case 3), there are different options to follow.
Opt 1: The gNB does not transmit any response, and then the UE would re-start the procedure of 2-step RACH;
Opt 2: The fallback mechanisms can be considered. As the preamble detected in this 2-step RACH is actually same as that in 4-step RACH, 4-step RACH procedure can be reused in the following steps. That is, gNB sends Msg2 to the UE, indicating the detected preamble ID, the allocated temporary UE-ID, and timing advance (if needed) etc. Then, Msg3 and Msg4 will follow the regular 4-step RACH procedure.
From our perspective, Opt 2 would be a better choice as Msg2 would guarantee a more robust transmission of Msg3, since the PUSCH resource and MCS are scheduled by the gNB and the closed-formed power control could be reused. Furthermore, the fallback procedure would reduce the transmission latency, since the UE does not need to wait for another RACH occasion. Note that the gNB could also support Opt 1 by implementation. That is, the gNB would not transmit any response by the scheduler even if the preamble in MsgA is detected.
Proposal 1: If the gNB detects a preamble, but is unable to decode the MsgA data, then the gNB transmit the RAR following the 4-step RACH directly.
2.2 Distinguish between Msg2 and MsgB
If above Opt 2 is supported, the UE may receive MsgB (Case 1) or Msg2 (Case 3) after sending MsgA. From the UE’s perspective, different types of message should be monitored. The gNB needs to indicate the UE the type of the transmitted message. Three ways can be considered to distinguish the message type. One way is to use different RA-RNTI for MsgB from Msg2, which is used for the computation of the scrambling sequences for the DCI (for the RAR scheduling). Specifically, RA-RNTI for MsgB could be designed based on the UE ID transmitted in the msgA. Then, through de-scrambling operation, the message type can be identified. The 2nd way is that use the reserved bits in the DCI (for the RAR scheduling), to indicate the type, as shown in Table 1. Now, there are up to 16 reserved bits for the DCI, and enhanced function can be also considered. Note that the RA-RNTI for Msg2 and the MAC subheader for RAR can be reused in this case. Alternatively, the type can be indicated by MAC-CE subheader or MAC-CE payload (e.g., utilize the first reserve bit).
Table 1 DCI Format 1-0（RA-RNTI scrambled）
	Function fields
	Bit number

	Frequency domain resource assignment
	

 is the size of CORESET 0

	Time domain resource assignment
	4 bits

	VRB-to-PRB mapping
	1 bit

	MCS
	5 bits

	TB scaling
	2 bits

	Response type indicator
	1 bit;
[bookmark: OLE_LINK5]0 indicates that the scheduled message is Msg2;
1 indicates that the scheduled message is MsgB.

	Reserved bits
	15 bits

Proposal 2: Consider RNTI, reserved bits in DCI, or MAC-CE to indicate the MsgB.
2.3 Resource sharing for 2-step and 4-step RACH
Another question is whether the 2-step RACH and 4-step RACH could share the same resource for the RACH occasion. One scenario is that Rel-15 and Rel-16 UEs has different capability of supporting 2-step RACH. The advantage for resource sharing is obvious that much resource for the RACH occasion could be saved if both 2-step RACH and 4-step RACH are supported at the same time. Also, as discussed in the fallback procedure, gNB could transmit the RAR based on the detection results of preamble and PUSCH. From our perspective, both shared and separate RACH resource can be supported for 2-step RACH and 4-step RACH depending on gNB’s configuration.
Proposal 3: Both shared and separate RACH resource for 2-step RACH and 4-step RACH are supported by configuration.
2.4 Monitoring Window for MsgB
To response a PRACH transmission in 4-step RACH, a UE attempts to detect a DCI format 1_0 with CRC scrambled by a corresponding RA-RNTI during a window controlled by higher layers. The window starts at the first symbol of the earliest control resource set the UE is configured to receive PDCCH for Type1-PDCCH common search space that is at least one symbol, after the last symbol of the PRACH occasion corresponding to the PRACH transmission. In 2-step RACH, one minor modification would be that the window starts at the earliest control resource set at least one symbol after the last symbol of the PUSCH occasion corresponding to the PUSCH transmission. And considering the processing time for detecting the PUSCH, a gap may be needed.
Proposal 4: The RAR monitoring window starts at the earliest control resource set at least one symbol after the last symbol of the transmission of the PUSCH in msgA.
2.5 Beam Association for PUSCH
We know that in 4-step RACH, the Msg3 has used the beam association with the preamble. For 2-step RACH, we propose that the PUSCH, same as Msg3, use the same QCL as the preamble included in the same msgA, as least for the idle and inactive state.
Proposal 5: PUSCH uses the same QCL as the preamble included in the MsgA, as least for the idle and the inactive state.
2.6 Power Control for PUSCH
Open power control mechanism could be used for the power control of PUSCH, as no close-loop PC parameter is transmitted. It is our understanding that there are two options to proceed. One is to identify power offset between preamble and PUSCH, which can be presented as follows.

 (1)
Alternatively, we could identify the power of PUSCH by the following equation

 . 		(2)

The physical meaning of each parameter can be found in TS38.214. Also note that no re-transmission is considered in (1) and (2). . By comparing (1) and (2), we see that (1) and (2) are same when is set as 1. While (1) may loss some flexibility of adjusting the factor of PL. Thus, we propose that (2) can be considered as a starting point for power control mechanism design.
Proposal 6: Taking (2) as a starting point for power control mechanism design.
3. Conclusion
In this contribution, we have discussed the procedure for 2-step RACH. The following proposals are given:
[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Proposal 1: If the gNB detects a preamble, but is unable to decode the MsgA data, then the gNB transmit the RAR following the 4-step RACH directly.
Proposal 2: Consider RNTI, reserved bits in DCI, or MAC-CE to indicate the MsgB.
Proposal 3: Both shared and separate RACH resource for 2-step RACH and 4-step RACH are supported by configuration.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Proposal 4: The RAR monitoring window starts at the earliest control resource set at least one symbol after the last symbol of the PUSCH occasion corresponding to the PUSCH transmission in msgA.
[bookmark: _GoBack]Proposal 5: PUSCH uses the same QCL as the preamble included in the MsgA, as least for the idle and the inactive state.
Proposal 6: Taking (2) as a starting point for power control mechanism design.
References
[1] [bookmark: _Ref534726084]RP-182894, “New work item: 2-step RACH for NR”, 3GPP RAN#89
[2] [bookmark: _Ref534962049]RP-172021, “New SID on NR-based Access to Unlicensed Spectrum”
[3] R1-1902327, “Discussion on procedure for 2-step RACH”, 3GPP RAN1#96

4/4
image1.emf
MsgA: Preamble + PUSCH

Msg1 + Msg3

MsgB: RA Response

Msg2 + Msg4

UE gNB

[TA]

RAR

[Monitoring

Window]

Microsoft_Visio_2003-2010___1.vsd
MsgA: Preamble + PUSCH
Msg1 + Msg3

MsgB: RA Response
Msg2 + Msg4

UE

gNB

[TA]

RAR

[Monitoring
Window]

image2.wmf
é

ù

)

2

/

)

1

(

(

log

BWP

DL,

RB

BWP

DL,

RB

2

+

N

N

oleObject1.bin

image3.wmf
BWP

DL,

RB

N

oleObject2.bin

image4.wmf
(

)

PUSCH

10RB

PRE_

min

,

10log2

CMAX

u

TF

DeltamsgA

P

PM

P

=

D+D

ì

í

++

î

g

oleObject3.bin

image5.wmf
(

)

PUSCH

10RB

O_PRE_

min

,

10log2

CMAX

u

TF

deltamsgA

P

PMPL

P

a

=

D++D

ì

í

++

î

gg

oleObject4.bin

image6.wmf
PREO_PRE

PPPL

=+

oleObject5.bin

image7.wmf
a

oleObject6.bin

