Page 8
Draft prETS 300 ???: Month YYYY
[bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: _Toc120549591]3GPP TSG RAN WG1 Meeting #92bis R1-1805266
Sanya, China, April 16th – 20th, 2018

Source: 	CMCC
[bookmark: Title]Title:	Discussion on remaining issues for time domain resource allocation
Agenda item:	7.1.3.3.1
[bookmark: DocumentFor]Document for:	Discussion & Decision
1. Introduction
This is the revision of R1-1804101.
In the previous RAN1 meetings, the issue of time domain resource allocation after RRC connection has reached some agreements, however, resource allocation before RRC connection e.g. scheduling of RMSI/OSI/Msg2/Msg3/Msg4 has not been fully discussed. Some agreements towards time domain resource allocation without RRC signalling are summarised as follows:

RAN1 #90bis Agreements:
· For both slot and mini-slot, the scheduling DCI can provide an index into a UE-specific table giving the OFDM symbols used for the PDSCH (or PUSCH) transmission
· starting OFDM symbol and length in symbols of the allocation
· FFS: one or more tables
· FFS: including the slots used in case of multi-slot/multi-mini-slot scheduling or slot index for cross-slot scheduling
· FFS: May need to revisit if SFI support non-contiguous allocations
· At least for RMSI scheduling
· At least one table entry needs to be fixed in the spec
RAN1 #91 Agreements:
· NR supports a DCI format having the same size as the DCI format 1_0 to be used for scheduling RMSI/OSI, for Paging, and for random access.
RAN1 #92 Agreements:
· Request RAN2 to introduce possibility for providing the RRC-configured table in RMSI to configure PDSCH and PUSCH symbol allocation for PDSCH/PUSCH scheduling after RMSI, where the RRC-configurable table via dedicated signaling was previously agreed in RAN1
· Draft LS in R1-1803474 (Karri, Nokia), which is approved and final LS in R1-1803510

[bookmark: _Hlk510454693]In this contribution, we will further discuss the issue of resource allocation before RRC connection, especially, we focus on the time domain resource allocation for RMSI scheduling as well as RMSI payload size.
2. Discussion on time domain resource allocation for RMSI
In RAN1 #92 meeting, some possible offline consensus has been made towards time domain resource allocation which is captured in R1-1803504:
Possible offline consensus
· Define separate fixed time domain resource allocation values for each RMSI CORESET multiplexing pattern 1/2/3 for PDSCH scheduled by 0/0a/2 CSS
· Total of 3 tables, one per pattern
· Define at least one set of fixed time domain resource allocation values for other PDSCH scheduled by 1/3 CSS or USS, until RRC-configured table is received
· Define at least one set of fixed time domain resource allocation values for PUSCH until RRC-configured table is received
It has been agreed that NR supports a DCI format having the same size as the DCI format 1_0 to be used for scheduling RMSI/OSI, for Paging, and for random access. For this DCI format where there is no RRC configuration, at least the time domain resource table for RMSI should be predefined. The resource allocation issue for RMSI is related to the configuration of SS/PBCH block. The different SSB configurations for different frequency band ranges and subcarrier spacings are summarized in section4.1[TS 38.213]:
-	Case A - 15 kHz subcarrier spacing: the first symbols of the candidate SS/PBCH blocks have indexes of {2, 8} + 14*n. For carrier frequencies smaller than or equal to 3 GHz, n=0, 1. For carrier frequencies larger than 3 GHz and smaller than or equal to 6 GHz, n=0, 1, 2, 3.
-	Case B - 30 kHz subcarrier spacing: the first symbols of the candidate SS/PBCH blocks have indexes {4, 8, 16, 20} + 28*n. For carrier frequencies smaller than or equal to 3 GHz, n=0. For carrier frequencies larger than 3 GHz and smaller than or equal to 6 GHz, n=0, 1.
-	Case C - 30 kHz subcarrier spacing: the first symbols of the candidate SS/PBCH blocks have indexes {2, 8} + 14*n. For carrier frequencies smaller than or equal to 3 GHz, n=0, 1. For carrier frequencies larger than 3 GHz and smaller than or equal to 6 GHz, n=0, 1, 2, 3.
-	Case D - 120 kHz subcarrier spacing: the first symbols of the candidate SS/PBCH blocks have indexes {4, 8, 16, 20} + 28*n. For carrier frequencies larger than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
-	Case E - 240 kHz subcarrier spacing: the first symbols of the candidate SS/PBCH blocks have indexes {8, 12, 16, 20, 32, 36, 40, 44} + 56*n. For carrier frequencies larger than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8.
[bookmark: _Hlk510452231]Moreover, three different SS/PBCH Block and RMSI CORESET multiplexing patterns are working assumption of RAN1 #91:
· “Pattern 1” refers to the multiplexing pattern that SS/PBCH block and RMSI CORESET occur in different time instances, and SS/PBCH block TX BW and the initial active DL BWP containing RMSI CORESET overlap
· “Pattern 2” refers to the multiplexing pattern that SS/PBCH block and RMSI CORESET occur in different time instances, and SS/PBCH block TX BW and the initial active DL BWP containing RMSI CORESET do not overlap
· “Pattern 3” refers to the multiplexing pattern that SS/PBCH block and RMSI CORESET occur in the same time instance, and SS/PBCH block TX BW and the initial active DL BWP containing RMSI CORESET do not overlap
· Note: The following figure is for information purpose only.
According to TS 38.213, SS/PBCH block and RMSI CORESET multiplexing pattern 1 can be applied to all RMSI SCS, while multiplexing pattern 2 can be used for RMSI scheduling with 60kHz and 120kHz SCS, multiplexing pattern 3 can be used only for RMSI scheduling with 120kHz SCS.
[image:]
Figure 1: SS/PBCH block and RMSI CORESET multiplexing patterns
For multiplexing pattern 1: take 2.5ms(DDDDU)+2.5ms(DDDUU) periodicity semi-static UL/DL assignment with 30kHz SCS as an example, the RMSI cases and possible candidate positions can be calculated according section 13 in TS 38.213. For more clear description, Figure.2 illustrates the various RMSI positions. In Figure.2, 8 SS/PBCH blocks are expected to be transmitted in the first four slots in the 2.5ms periodicity1, and the slots with different color from row 1 to row 8 represent the candidate slots for RMSI transmission with different configurations. Besides, the numbers in the slots are the number of the RMSI transmitted in the corresponding candidate slots.

In order to achieve better coverage performance, AL=16 is expected to be applied to RMSI CORESET, hence totally 96 PRBs with configuration {=48 and =2} are needed for RMSI search space monitoring. Consequently, we can conclude that at least 4 cases should be taken into consideration when defining the time domain resource allocation tables:
Case 1: 1 RMSI transmission occasion in the full downlink slot (the third sub-figure in figure.2);
Case 2: 1 RMSI transmission occasion in the downlink dominant slot (the third sub-figure in figure.2);
Case 3: 2 RMSI transmission occasion in the full downlink slot with RMSI CORESET occupying symbol #0~3 for FR1 (the second sub-figure in figure.2) or symbol #0,1 as well as symbol #7,8 for FR2;
[bookmark: _Hlk510452097]Case 4: 2 RMSI transmission occasion in the downlink dominant slot with RMSI CORESET occupying symbol #0~3 for FR1(the second sub-figure in figure.2) or symbol #0,1 as well as symbol #7,8 for FR2.
Therefore, the time domain resource allocation table for SS/PBCH block and RMSI CORESET multiplexing pattern 1 should at least include the following entries. Index #0 is used for case1, #1/#2 could be used for case 1 or case 2, #3 is used for case 4 where the second RMSI transmission occasion could not be transmitted, #4/#5/#6#7 are used for case 3 or case 4 where the second RMSI transmission occasion could be transmitted. Moreover, considering RMSI or other PDSCH transmission in special slot, #8 with smaller {S, L} is included to fit different configuration of special slot. Furthermore, it has not come to consensus whether the time domain resource allocation table for RMSI can be also used for OSI/Paging/RAR/Msg4, and if so, #9~#12 could also be included in the default table.
[image:]
[image:]
[image:]
Figure 2: RMSI candidate positions in 2.5ms(DDDDU)+2.5ms(DDDUU) semi-static assignment
Table 1: Resource allocation for PDSCH scheduled using CORESET #0 and multiplexing pattern 1
	i
	PDSCH mapping type
	K0
	S
	L

	0
	Type A
	0
	2
	12

	1
	Type A
	0
	2
	10

	2
	Type A
	0
	2
	8

	3
	Type B
	0
	4
	7

	4
	Type B
	0
	4
	4

	5
	Type B
	0
	8
	4

	6
	Type B
	0
	9
	4

	7
	Type A
	0
	2
	4

	8
	Type A
	0
	1
	3

	9
	Type A
	0
	1
	13

	10
	Type A
	0
	1
	11

	11
	Type A
	0
	3
	11

	12
	Type A
	0
	3
	9

[image:]
Similarly, SS/PBCH block and RMSI CORESET multiplexing pattern 2 & 3 are described in Figure 3 and Figure 4, hence the resource allocation tables should at least include the following cases:
[image:]
[image:]
[bookmark: _Hlk510557247]Figure 3: RMSI candidate positions for SS/PBCH block and RMSI CORESET multiplexing pattern 2
[image:]
Figure 4: RMSI candidate positions for SS/PBCH block and RMSI CORESET multiplexing pattern 3
Table 2 Resource allocation for PDSCH scheduled using CORESET #0 and multiplexing pattern 2

	i
	PDSCH mapping type
	K0
	S
	L

	0
	Type A
	0
	2
	2

	1
	Type B
	0
	4
	2

	2
	Type B
	0
	6
	2

	3
	Type B
	0
	8
	2

	4
	Type B
	0
	10
	2

	5
	Type A
	1
	2
	2

	6
	Type B
	1
	4
	2

	7
	Type A
	0
	2
	4

	8
	Type A
	1
	0
	4

	9
	Type A
	1
	2
	4

	10
	Type B
	0
	4
	4

	11
	Type B
	1
	4
	4

	12
	Type B
	0
	6
	4

	13
	Type B
	0
	8
	4

	14
	Type B
	0
	10
	4

[image:]
Table 3: Resource allocation for PDSCH scheduled using CORESET #0 and multiplexing pattern 3
	i
	PDSCH mapping type
	K0
	S
	L

	0
	Type B
	0
	4
	2

	1
	Type B
	0
	6
	2

	2
	Type B
	0
	8
	2

	3
	Type B
	0
	10
	2

	4
	Type B
	0
	4
	4

	5
	Type B
	0
	6
	4

	6
	Type B
	0
	8
	4

	7
	Type B
	0
	10
	4

	8
	Type B
	0
	4
	7

	9
	Type B
	0
	6
	7

[image:]
Proposal 1: Time domain resource allocation combinations for RMSI scheduling that proposed in table 1~3 towards different CORESET & SS/PBCH block multiplexing patterns needs to be included. The other values can be further discussed to fully exploit the 4 bits DCI for resource allocation.
3. Discussion on RMSI payload size
The RMSI size is very important to decide RMSI structure, but till now, no consensus has been reached. In LTE, the maximum TBS for SI, RAR, and Paging were limited to 2216 bits when using DCI format 1A, and 1732 bits when using DCI format 1C. In the last meeting, RAN1 send an LS to RAN2 to note that numerous companies proposed 3000 bits maximum TB size for RMSI. RAN2 estimate for the maximum size of RMSI is approximately 1700 bits including both L1 parameters and L2 parameters. Therefore, RAN1 need to confirm whether NR can support RMSI transmission of 1700 bits in one TB in all cases. In this part, we will further discuss the RMSI payload size, taking all the SS/PBCH block and RMSI CORESET configurations into consideration.
The supported maximum RMSI payload size has a lot to do with the resource allocation for RMSI. The frequency domain resource allocation for RMSI depends on the RMSI CORESET. For time domain resource allocation, from the conclusion of the above part, we can see that the duration of PDSCH for RSMI will at least include 4-symbol with SCS and 2-symbol when SCS 60kHz.
Moreover, the supported maximum RMSI payload size is also related to the used MCS. In LTE, only QPSK is used for SIB modulation and it has not reached a conclusion in NR. In order to achieve better coverage performance, we expect that only QPSK is enabled for RMSI modulation. According to the MCS table in TS 38.214, the supported maximum code rate for QPSK is 679/1024 = 0.663 with MCS index 9. Under the assumption of QPSK/0.663 code rate and 1 symbol DMRS occupying the first symbol of scheduled PDSCH, we can summarize the supported maximum RMSI payload size for PDSCH mapping type B as follows:
Table 1: Maximum RMSI size (bit) for PDSCH mapping type B
	maximum RMSI size(bit)
	RMSI duration (symbol)

	
	2
	4
	7

	RMSI coreset(RB)
	48
	764
	2291
	3819

	
	96
	1527
	4583
	7638

From table 1, we can conclude that:
1) Even with RMSI CORESET of 96 PRB bandwidth and the maximum supported code rate for QPSK, 2-symbol PDSCH scheduling for RMSI is not enough for 1700 bits RMSI transmission in one TB. Hence at least for RMSI with 60kHz SCS of multiplexing pattern 2 and 120kHz SCS of multiplexing pattern 3, CORESET with 96PRB bandwidth should be supported;
2) If RMSI CORESET of 96 PRB bandwidth is supported, at least around 200 bits RMSI size reduction is needed. We should note that lower code rate should be used for RMSI coverage, therefore RMSI should be compressed to an even smaller size;
3) If it is hard to compress RMSI payload size, it is proposed to support the possibility of a complete RMSI transmission by two transmission opportunities.
Observation 1: RMSI transmission with 1700bits in one TB can be not supported in some resource allocation cases, e.g., RMSI with 60kHz SCS of multiplexing pattern 2 and 120kHz SCS of multiplexing pattern 3.
Proposal 2: For RMSI scheduling with 60kHz SCS of multiplexing pattern 2 and 120kHz SCS of multiplexing pattern 3, CORESET with 96 PRB bandwidth should be supported.
Proposal 3: RAN2 is expected to compress RMSI payload size to less than 1500 bits or split the transmission RMSI into two transmission opportunities.
4. Conclusions
In this contribution, time domain resource allocation for RMSI scheduling as well as RMSI payload size are discussed, and the following proposals are made:
[bookmark: _GoBack]Proposal 1: Time domain resource allocation combinations for RMSI scheduling that proposed in table 1~3 towards different CORESET & SS/PBCH block multiplexing patterns needs to be included. The other values can be further discussed to fully exploit the 4 bits DCI for resource allocation.
Table 1: Resource allocation for PDSCH scheduled using CORESET #0 and multiplexing pattern 1
	i
	PDSCH mapping type
	K0
	S
	L

	0
	Type A
	0
	2
	12

	1
	Type A
	0
	2
	10

	2
	Type A
	0
	2
	8

	3
	Type B
	0
	4
	7

	4
	Type B
	0
	4
	4

	5
	Type B
	0
	8
	4

	6
	Type B
	0
	9
	4

	7
	Type A
	0
	2
	4

	8
	Type A
	0
	1
	3

	9
	Type A
	0
	1
	13

	10
	Type A
	0
	1
	11

	11
	Type A
	0
	3
	11

	12
	Type A
	0
	3
	9

Table 2 Resource allocation for PDSCH scheduled using CORESET #0 and multiplexing pattern 2

	i
	PDSCH mapping type
	K0
	S
	L

	0
	Type A
	0
	2
	2

	1
	Type B
	0
	4
	2

	2
	Type B
	0
	6
	2

	3
	Type B
	0
	8
	2

	4
	Type B
	0
	10
	2

	5
	Type A
	1
	2
	2

	6
	Type B
	1
	4
	2

	7
	Type A
	0
	2
	4

	8
	Type A
	1
	0
	4

	9
	Type A
	1
	2
	4

	10
	Type B
	0
	4
	4

	11
	Type B
	1
	4
	4

	12
	Type B
	0
	6
	4

	13
	Type B
	0
	8
	4

	14
	Type B
	0
	10
	4

Table 3: Resource allocation for PDSCH scheduled using CORESET #0 and multiplexing pattern 3
	i
	PDSCH mapping type
	K0
	S
	L

	0
	Type B
	0
	4
	2

	1
	Type B
	0
	6
	2

	2
	Type B
	0
	8
	2

	3
	Type B
	0
	10
	2

	4
	Type B
	0
	4
	4

	5
	Type B
	0
	6
	4

	6
	Type B
	0
	8
	4

	7
	Type B
	0
	10
	4

	8
	Type B
	0
	4
	7

	9
	Type B
	0
	6
	7

Observation 1: RMSI transmission with 1700bits in one TB can be not supported in some resource allocation cases, e.g., RMSI with 60kHz SCS of multiplexing pattern 2 and 120kHz SCS of multiplexing pattern 3.
Proposal 2: For RMSI scheduling with 60kHz SCS of multiplexing pattern 2 and 120kHz SCS of multiplexing pattern 3, CORESET with 96 PRB bandwidth should be supported.
Proposal 3: RAN2 is expected to compress RMSI payload size to less than 1500 bits or split the transmission RMSI into two transmission opportunities.
References
[1] RAN1 Chairman’s notes, RAN1 #90bis, October 2017.
[2] RAN1 Chairman’s notes, RAN1 #91, December 2017.
[3] RAN1 Chairman’s notes, RAN1 #92, Feburary 2018.

oleObject1.bin

image3.wmf
CORESET

symb

N

oleObject2.bin

image4.emf
2.5ms periodicity 2

DL

2.5ms periodicity 1

DL DL DL

2.5ms periodicity 1

subframe 1mssubframe 1mssubframe 1ms

8

7

3 2 1 0

subframe 1mssubframe 1ms

DL DL UL

5 6

7 2 3

DL DL DL DL UL

4 5 6

0,1 2,3 4,5

2.5ms periodicity 2

subframe 1mssubframe 1ms subframe 1mssubframe 1mssubframe 1ms

SFN mod 2 = 0

6,7

5

0

0,1

3

4

6

7

0 1 2

3

2,3 4,5

0,1

4 5 6

2,3

0 1

1 5 6

5 6

4,5 6,7

1 2 0

0 1 2 3

0 1

3

image5.emf
0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213

6

2.5ms periodicity 1

slot 0 slot 1 slot 2 slot 3 slot 4

DL DL DL

RMSI 0,1 RMSI 2,3 RMSI 4,5 RMSI 6,7

CORES

ET0

CORES

ET1

RMSI

PDSCH

RMSI

PDSCH

CORES

ET2

CORES

ET3

RMSI

PDSCH

RMSI

PDSCH

CORES

ET4

CORES

ET5

RMSI

PDSCH

RMSI

PDSCH

CORES

ET6

CORES

ET7

RMSI

PDSCH

RMSI

PDSCH

image6.emf
0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213

7

CORES

ET0

CORES

ET0

CORES

ET0

CORES

ET0

2.5ms periodicity 1

slot 0 slot 1 slot 2 slot 3 slot 4

RMSI PDSCH RMSI PDSCH RMSI PDSCH RMSI PDSCH

DL DL DL

RMSI 0 RMSI 1 RMSI 2 RMSI 3

image7.emf
RA(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

10

11

12

CORESET for RMSI 1

CORESET for RMSI 2

RMSI 1

RMSI 2

Note: RMSI 1 and RMSI 2

are used for case that 2

RMSI are scheduled in a

slot

image8.emf
60K slot 0

CORE

SET

CORE

SET

CORE

SET

CORE

SET

PDSCHPDSCH PDSCHPDSCH

0 1 2 3 4 5 6 7 8 910111213

120K slot 0 slot 1

image9.emf
910111213

120K slot 0

SSB SSB SSB SSB SSB SSB SSB SSB

0 1 2 3 4 5 6 7 8

CORE

SET

CORE

SET

PDSCHPDSCH PDSCH

PDSCH

910111213

120K slot 0

 slot 2 slot 3

0 1 2 3 4 5 6 7 8

CORE

SET

CORE

SET

PDSCH PDSCHPDSCH

CORE

SET

CORE

SET

CORE

SET

CORE

SET

PDSCH

240K slot 0 slot 1

image10.emf
8 9 10 11 12 13

SSB SSB SSB SSB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7

CORESET PDSCH CORESET PDSCH

CORESET PDSCH CORESET PDSCH

120K slot 0 slot 1

image11.emf
120K slot 0 120K slot 0

slot 1 240K slot 0

SSB

SSB

SSB SSB

SSB

SSB

SSB

SSB SSB

SSB

SSB SSB 3

120K slot 0 slot 1

13

CORESETCORESET

PDSCH PDSCH

CORESETCORESET

PDSCH PDSCH

10 11 12 12 13 0 1 0 1 2

SSB

9 10 11 12 13

60K slot 0

240K slot 0 slot 1 slot 2

0 1 2 3 4 5 6 7 8

SSB 48 49 50 51 52 53 54 55

slot 3

0 1 2 3 4 5 6 7 SSB SSB SSB SSB 24 25 26 27 28 29 30 31 SSB SSB

4 5 6 7

CORESET CORESET CORESET PDSCH PDSCH PDSCH PDSCH

CORESET CORESET CORESET CORESET PDSCH PDSCH PDSCH PDSCH CORESET

8 9 10 11 12 13

120K slot 0 120K slot 0

120K slot 0 slot 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3

13

CORESETCORESET CORESETCORESET

10 11 12 12 13 0 1 0 1 2 3

9 10 11 12 13

60K slot 0

PDSCH PDSCH

0 1 2 3 4 5 6 7 8

 slot 2 slot 3

0 1 2 3 4 5 6 7 SSB SSB SSB SSB 24 25 26 27 28 29 30 31 SSB SSB

5 6 7 8

55

CORESET CORESET

CORESET

CORESET PDSCH PDSCH CORESET CORESET

CORESET

CORESET PDSCH PDSCH

SSB SSB 48 49 50 51 52 53 54

13

120K slot 0 120K slot 0

PDSCH PDSCH

240K slot 0 slot 1 slot 2 slot 3

4 5 6 7 8 9 10 11 12 9 10 11 12 13 0 1 2 3 0 1 2 3 4

48 49 50 SSB SSB SSB 24 25 26 27 28 29 0 1 2 3 4 5 6 7 SSB

12 13 0 1 2 3 0 1 2 3 4 5 6 7 8

51 52

CORESET CORESET CORESET CORESET PDSCH PDSCH CORESET CORESET PDSCH

30 31

27 28 29 0 1 2 3 4 5 6 7 SSB

13

PDSCH PDSCH PDSCH

240K slot 0 slot 1 slot 2 slot 3

4 5 6 7 8 9 10 11 12 9 10 11

CORESET CORESET CORESET CORESET PDSCH PDSCH PDSCH PDSCH CORESET

CORESET

CORESET CORESET PDSCH PDSCH

7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8

51 30 31 SSB SSB SSB SSB 48 49 50 SSB SSB SSB 24 25 26

9 10 11 12 13

120K slot 0 120K slot 0

120K slot 0 slot 1

0 1 2 3 12 13 0

0 1 2 3 4 5 6

10 11 12 13

CORESETCORESET CORESETCORESET

1

PDSCH

9 10 11 12 13

60K slot 0

PDSCH PDSCH PDSCH PDSCH

0 1 2 3 4 5 6 7 8

52 53 54 55

53 54 55

SSB SSB SSB SSB

index

i= 0

in table 2

index

i= 1

in table 2

index

i= 3

in table 2

index

i= 4

in table 2

index

i= 2

in table 2

index

i= 5

in table 2

index

i=6

in table 2

index

i= 7 in table 2

index

i= 13 in table 2

index

i= 12 in table 2

index

i= 10 in table 2

index

i= 8 in table 2

index

i= 11 in table 2

index

i= 14 in table 2

index

i= 9 in table 2

image12.emf
SSB SSB

SSB SSB

SSB SSB

CORESET CORESET

120K slot 0 slot 1

6 7

CORESET PDSCH CORESET PDSCH

CORESET PDSCH CORESET PDSCH

8 9 10 11 12 13

SSB SSB SSB SSB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5

CORESET

120K slot 0 slot 1

SSB

SSB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 8 9 10 11 12 13

PDSCH

PDSCH

3 4 5 6 7

CORESET

CORESET

CORESET

120K slot 0 slot 1

SSB

SSB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 8 9 10 11 12 13

PDSCH PDSCH

3 4 5 6 7

120K slot 0 slot 1

SSB

SSB

0 1 2 3 4 5 6 7

CORESET

CORESET

8 9 10 11 12 13

PDSCH PDSCH

0 1 2 3 4 5 6 7 8 9 10 11 12 13

index

i= 0

in table 3

index

i= 1

in table 3

index

i= 2

in table 3

index

i= 3

in table 3

index

i= 4 in table 3

index

i= 5 in table 3

index

i= 6 in table 3

index

i= 7 in table 3

index

i= 9 in table 3

index

i= 8 in table 3

image1.png
Pattern 1

image2.wmf
CORESET

RB

N

