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1 [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
[bookmark: _Ref129681832]In Rel-15 NR Non-orthogonal Multiple Access (NOMA) SID, the following objectives have been identified for the study of NoMA receivers [1]
1.2 Receivers for non-orthogonal multiple access: [RAN1, RAN4] 
· MMSE receiver, successive/parallel interference cancellation (SIC/PIC) receiver, joint detection (JD) type receiver, combination of SIC and JD receiver, or other receivers
In this contribution, we discuss a general iterative structure for NoMA receivers. Under this structure, we will discuss different types of (multi-)user-detectors and different ways of interference cancellation that iterates information between the (multi-)user detectors and channel decoders, as well as their complexity and implementation concerns. 
2 General Receiver Structure for NoMA
All of the advanced receivers proposed for NoMA [2][3][4][5] use a common structure that iterates data between a (multi-)user detector (frontend) and a channel decoder (backend) to cancel interference, as shown in Figure 1. Different types of (multi-)user detectors may be combined with different types of interference cancellation but with different performance. 
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	(a) SU detector + SIC
	(b) MU detector +  PIC


[bookmark: figure1]Figure 1: General iterative receiver structure for NoMA.
A SU (single-user) detector may be a MF (matched filter) or SU-MMSE (single user minimum mean square error). A  MU (multi-user) detector may be a MPA (message passing algorithm), ESE (elementary signal element), MU MMSE (multi user minimum mean square error), and EPA (expectation propagation algorithm), and etc.
SIC (successive interference cancellation) means to feedback one stream a time from the channel decoder (backend) to the SU detector (frontend), while PIC (parallel-interference-cancellation) can feedback multiple streams in the same round to the MU detector. The content of one stream can be binary bits (hard) of the successfully decoded UE/layer or the soft LLR (log likelihood ratios) values for the non-successfully decoded UE/layer. A combination, known as hybrid (soft and hard) SIC/PIC, is also illustrated in Figure 1 (the blue dashed line represents hard SIC/PIC, and the orange dashed line represents soft SIC/PIC). 
Observation 1: Different NoMA receivers adopt a common iterative structure that iterates between the SU/MU detector and the FEC decoders to separate mutually interfered UEs at the receiver.
The performance of the iterative NoMA receiver can be closely related to the number of iterations between the frontend and the backend, also known as outer-loop iterations. Note that such outer-loop iterations are different from the iterations in some of the MU detectors such as MPA, which relate to the data passing between different modules and also involve the reconstruction of the signals. 
To show the necessity of an iterative receiver, we apply an advanced receiver to CB-OFDMA (contention-based OFDMA). In Figure 2, the BLER performance improves along with the increased number of outer-loop iterations until the performance is converged. Moreover, the more the multiplexed users/layers are, the larger the number of iterations is needed for convergence. The detailed parameters to generate the figure are listed in the Appendix.
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	a) 4UEs, 6RBs, 60bytes, 2Rx, OL 0, 1, 2, 3
	b) 6UEs, 6RBs, 60bytes, 2Rx, OL 0, 1, 2, 3


[bookmark: figure2]Figure 2: BLER performance of CB-OFDMA with different number of outer-loops.
Observation 2: An iterative receiver can improve the BLER performance of the NoMA transmissions. The higher the number of users, the more iterations may be needed.
Proposal 1: Iterative advanced receiver with configurable number of outer-loop iterations between MU detector and channel decoders is supported for NoMA transmissions.
3 Candidate MU Detectors
Following the proposal 1, we focus on MU detectors in this section, including MPA, ESE, MMSE, and EPA. Some details can be found in the Appendix. 
3.1 MPA 
MPA (Message passing algorithm) [7] is a type of iterative MU detector which has near ML (Maximum likelihood) detection performance. It passes conditional probability between every FN (function node, representing RE) and VN (variable node, representing data layer) edge on the factor graph representing the NoMA transmission. To distinguish from the outer-loop iterations, the iteration within MPA is called inner-loop iteration. Each inner-loop iteration updates FN and VN respectively. After a number of iterations, LLRs for the coded bits are calculated based on the codeword probability and serve as the input to the channel decoder thereafter [2].
MPA has an arithmetic complexity order of O  per iteration (inner loop), where Mp denotes the number of projection points on the constellation for log2M bits mapping (M≥Mp, e.g., M=8, Mp =4; M=16, Mp =9; M=64, Mp =16) and df   denotes the number of layers colliding over each FN. This complexity order can be further reduced by restricting the maximum number of layers to be , reducing the complexity order from  to . This MPA is called SIC-MPA in [2] and [8]. Though the complexity could be high in the case of very high overloading, MPA is numerically stable from base station implementation aspect. Furthermore, MPA is a good divider-and-conquer scheme that divides a heavy computation task into a number of sub-tasks, which supports full parallelism. 
Observation 3: The implementation of MPA supports full parallelism and its complexity can be greatly reduced by low projection in constellation design and ordered group SIC decoding.
3.3 ESE  
ESE (elementary signal estimator) [5] simply approximates the inter-user interference plus noise as Gaussian.  Such Gaussian approximation can be implemented in different ways. If a base-station performs matched filtering, the approximation is a scalar Gaussian variable. If a base-station treats all receive antennas jointly, the approximation is a joint Gaussian vector, i.e., multivariate Gaussian. Moreover, ESE must rely on a number of outer-loop iterations to achieve an acceptable detection performance. 
In the high spectrum efficiency and high overloading case, the number of outer-loop iterations may be very large, which could be quite challenging for base station implementation with low latency requirement.
Observation 4: ESE-PIC receiver heavily relies on the coding gain from the FEC and thus may have slower convergence, especially at high spectral efficiency and high overloading. 
3.3 MMSE 
MMSE approximates the prior distribution of the signal as Gaussian whose mean and variance are computed via the soft values fed back by the FEC decoder (under the soft outer-loop structure), or a Gaussian approximation with zero mean and variance scaled by the signal power (if the soft feedback is not available) [6]. A spreading-based NoMA scheme with SF (spreading factor) of L can have two implementations. A chip-by-chip MMSE is performed on each RE (resource element) independently. Or a block-wise MMSE is performed jointly on the L REs. 
Matrix inversion dominates the MMSE complexity. A chip-by-chip MMSE needs to inverse Nr-by-Nr complex-valued covariance matrix. A block-wise MMSE needs to inverse Nr×L-by-Nr×L complex-valued covariance matrix. As a result, block-wise MMSE has much higher complexity, i.e.,  than chip-by-chip MMSE, i.e., , especially when the spreading factor L is large. While in base station implementations, higher order of matrix inversion could be less stable and harder to perform parallelization. 
Observation 5: A Block-wise MMSE has much higher complexity than a chip-by-chip MMSE.
3.4 EPA 
EPA (expectation propagation algorithm) employs the classic approximate Bayesian inference technique that has long been used in machine learning [10][11][12]. It projects the true posterior distribution of the transmitted symbols into a family of Gaussian distributions by iteratively matching the means and variances with the true posterior distribution. 
EPA can be regarded as a type of Gaussian approximation of MPA but with consideration of the non-Gaussian nature of the transmitted symbols as well. It can also be viewed as an enhancement of ESE by iteratively refining the Gaussian approximation of the prior distribution. It has linear complexity with respect to M (Mp if low projection mapping is used) and df (ds if SIC-EPA is used), while it provides nearly the same performance as MPA in most scenarios of interest [4][9]. The implementation of EPA can also employ the divider-and-conquer method and supports full parallelism.
The fundamental principles and detailed algorithms of EPA receiver are provided in the Appendix. We compare the performances of different receivers under the general iterative NoMA receiver structure. Specifically, we set up CB-OFDM as an example for transmitter processing and adopt iterative hybrid PIC shown in Figure 1(b). We investigate MPA, EPA, and ESE in a chip-by-chip manner. Details of simulation parameters are listed in the Appendix. As shown in Figure 3, EPA can achieve similar performances as MPA in many scenarios, while ESE has some performance loss and slower convergence rate compared MPA, especially when the load gets higher.
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(a) 4UE, CB-OFDM, SE=0.2			                (b) 6UE, CB-OFDM, SE=0.2
Figure 3: BLER performances with different receivers
Observation 6: EPA can achieve similar performance as MPA in many cases of interest with lower complexity and has better convergence performance compared with ESE.
4 Summary
We summarize the MU detector discussion in Table 1.  
[bookmark: table_MU_summary]Table 1: Brief Summary of various MU detectors
	MU Detector
	Basic Principle
	Properties

	MPA
	SP (Sum-product) message passing performed on the factor graph of NoMA transmission
	· Near ML detection performance
· Comparatively high complexity at high overload
· SIC-MPA as a low-complexity variant

	ESE
	Interference plus noise is approximated as Gaussian
	· Comparatively low convergence rate at high overload and high SE

	MMSE
	The prior distribution is directly approximated as Gaussian
	· Block-wise MMSE has much higher complexity than chip-by-chip MMSE

	EPA
	Gaussian approximation of MPA
	· Fast convergence
· Nearly the same performance as MPA



Together with the discussion of the IC method and the common iterative structure between the MU detector and the channel decoder, we have the following proposals.
Proposal 1: The iterative receiver structure with configurable number of outer-loop iterations between MU detector and channel decoders is supported for NoMA transmissions.
Proposal 2: Further study the performance limits, application scenarios, and the implementation costs of the iterative NoMA receivers with different MU detectors and different IC methods.
5 Conclusions 
In this contribution, we discussed the common iterative receiver structure for NoMA transmissions and the design principles, complexity, as well as implementation concerns of different types of MU detectors. From the discussions, we obtained the following observations and proposals. 
Observation 1: Different NoMA receivers adopt a common iterative structure that iterates between the SU/MU detector and the FEC decoders to separate mutually interfered UEs at the receiver.
Observation 2: An iterative receiver can improve the BLER performance of the NoMA transmissions. The higher the number of users, the more iterations may be needed.
Observation 3: The implementation of MPA supports full parallelism and its complexity can be greatly reduced by low projection in constellation design and ordered group SIC decoding.
Observation 4: ESE-PIC receiver heavily relies on the coding gain from the FEC and thus may have slower convergence, especially at high spectral efficiency and high overloading. 
Observation 5: A Block-wise MMSE has much higher complexity than a chip-by-chip MMSE.
Observation 6: EPA can achieve similar performance as MPA in many cases of interest with lower complexity and has better convergence performance compared with ESE.
[bookmark: _GoBack]Proposal 1: The iterative receiver structure with configurable number of outer-loop iterations between MU detector and channel decoders is supported for NoMA transmissions.
Proposal 2: Further study the performance limits, application scenarios, and the implementation costs of the iterative NoMA receivers with different MU detectors and different IC methods.
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Appendix A – Parameters
Table A-1: Evaluation parameters for Figure 2.
	Parameters 
	Values or assumptions 

	NoMA scheme
	Contention based OFDMA

	Carrier frequency
	700 MHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	6RB

	TBS 
	60 bytes

	Channel coding
	NR LDPC 

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	4, 6

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receiver
	EPA with PIC



Table A-2: Evaluation parameters for Figure 3.
	Parameters 
	Values or assumptions 

	NoMA scheme
	Contention based OFDMA

	Carrier frequency
	2 GHz

	Numerology 
	14 OS slot, 2 OS DMRS overhead

	Transmission Bandwidth 
	4RB

	Target spectral efficiency 
	Per UE spectral efficiency: 0.2 bps/Hz 

	Channel coding
	LTE Turbo

	BS antenna configuration 
	2 Rx 

	UE antenna configuration 
	1Tx 

	Transmission mode 
	TM1 (refer to TS36.213) 

	SNR distribution of Multiple UEs 
	Equal SNR

	Number of Multiplexed UEs
	4, 6

	Propagation channel & UE velocity 
	TDL-A 30ns, 3km/h

	Advanced receivers
	MPA, EPA, ESE, all with PIC




Appendix B - EPA algorithm
B.1 Design Principle 
EPA is a well-known approximate Bayesian inference technique which approximates the target distribution  with a simpler exponential family distribution, where the Kullback-Leibler divergence  is minimized [10]. It has already been widely used in the field of machine learning [11][12]. Conceptually, as shown in Figure B-1, EPA can be viewed as an operation to project the target distribution  into the exponential family distribution set Φ, i.e.,  
[bookmark: Projection]  		     					()
If , then the projection reduces to an identity mapping. However, in general,  and hence such a projection is nontrivial. 
[image: ]
[bookmark: fig3][bookmark: figure4]Figure B-1: Basic principle of EPA.
It has been proved that the optimal solution to (1) can precisely match the sufficient statistics of target distribution. For example, if  is Gaussian distribution, then the mean and covariance of  will equal to the mean and covariance of the true distribution, respectively. 
For the problem of MU detection, the target distribution usually comprises a product of factors in the form of
[bookmark: p_product]  									()
where  is normalization constant. EPA approximates (2) by a product of factors 
   									()
where each factor   corresponds to one of the factors  in the target distribution , and  is a normalizing constant.  If each factor   comes from the exponential family, the product of factors will be also from exponential family and thus can be described by a set of sufficient statistics.  Since direct solving (1) is usually intractable, EPA optimizes each factor iteratively. Specifically, it starts by initializing all the factors, and then cycles through the factors by refining one factor at a time. For example, suppose  is to be refined, we first remove it from  and obtain. Then, the new approximate distribution  is calculated by minimizing. As a result, the refined factor   can be calculated as . After a number of iterations, the approximate distribution  is obtained as the product of the refined factors.
B.2 Factor Graph Model 
The system model of NoMA can be represented with a factor graph as shown in Figure B-2. From the perspective of factor graph, EPA can be iteratively realized in a message passing way as MPA. 
Assume that K UEs transmit on a group of L resource elements (RE), and each UE has single transmit antenna. For spreading-based NoMA schemes, L is referred to as spreading factor. For NoMA schemes without spreading, . Assume gNB has   receive antennas. The received signal of the -th antenna can be written as
[bookmark: y_nr],                                                            ()
where  is the received symbol vector,  is the channel coefficient vector between user  and -th antenna,  is the transmitted symbol vector of user , is the associated additive white Gaussian noise with the power of . Suppose the modulation size is  and the codebook is , then  and the cardinality of the codebook is . 
For linear spreading schemes, the effective channel  takes into account both the channel response of -th receive antenna  and the user-specific spreading sequence , i.e., , where  denotes component-wise multiplication, while  is a  times repetition of transmitted symbol , i.e., . For schemes based on bits-to-symbols mapping, the effective channel  is the channel response of -th receive antenna and  is a -dimentional transmitted symbol vector selected from a predefined codebook. If sparse pattern is applied, some elements of   are fixed to be zero all the time. In matrix form, the overall observations from  receive antennas can be written as 
[bookmark: y_mat][bookmark: SLM_Block][bookmark: Overall_model]    		                                                        ()
where, ,  and is the overall effective channel matrix. 
The general factor graph representation for NoMA is shown in Figure B-1, which contains  variable nodes (VNs)  and  likelihood factor nodes (FNs) , and  prior FN . The VNs represent the transmitted symbols ,  and the prior FN represents the prior distribution  of , which can be computed via the feedback LLRs from the FEC decoder. The likelihood FN  represents the likelihood probability distribution, where  is the observation vector at the -th RE.  Note that the FN  has connection with  if and only if the th element of , . For ease of notation, let  denote the neighboring FNs of VN , and  denote the neighboring VNs of the FN  for each receive antenna. The cardinalities of   and  are assumed to be ， respectively. As a result, the variables nodes connected with FN  can be represented as a vector   . The linear observation equation corresponding to FN  is 
[bookmark: chip_observation_model]()
where   and  are the corresponding channel matrix and additive Gaussian noise vector, respectively. Then the likelihood probability distribution  can be written as 
[bookmark: chip_model]()


[bookmark: fig4][bookmark: figure5]Figure B-2: A general Factor Graph of NoMA.
B.3 EPA Procedure
In this subsection, the basic procedure of EPA is briefly described. There are two steps for each round of iteration: FN update and VN update, respectively. For the VN update at the -th iteration, the message  from VN  to FN  is computed, and for the FN update, the message   of the opposite direction is computed. According to the principle of EPA, the messages are updated as follows 
[bookmark: v2f_def]			()
[bookmark: I_l2k_def]	 		()
where 
[bookmark: pt_xk]			()
[bookmark: post_prb_def][bookmark: qt_xk]			()
If the projection set is chosen to be Gaussian distribution, then the messages  and  reduce to Gaussian distribution which can be fully characterized by its mean and covariance. That is why this algorithm called expectation propagation.  As a result, the computational complexity is significantly reduced. Moreover, from (5) and (6), since the -th likelihood factor node is only related to , the messages of  and  can be further simplified to scalar complex Gaussian distributions, i.e., , and , respectively. 
Specifically, at the -th iteration, if the message , i.e., , from the likelihood FN   to VN  is circularly complex Gaussian with mean  and variance , i.e.,
 	                                                       ()
With (11), we can compute  as  
[bookmark: post_prb_approx]  			()
Then, to compute the message from VN  to FN , the  is projected to a Gaussian distribution  by matching the mean  and the variance  with respect to (w.r.t.) . That is, the mean  and the variance  are computed w.r.t the approximated posterior probability  in (13),


where  is an -dimensional vector and  is the th element of -dimensional vector .
From (9), we can compute the message  as
[bookmark: I_l2k_GA]	 		()
where
[bookmark: var_v2f][bookmark: V2F_mean]	 		 ()
[bookmark: mean_v2f][bookmark: V2F_var]	 		()
Next, the message computation from FN to VN is described. Given the Gaussian messages  from VN to FN in (16), it can be easily shown that  in (11) is also Gaussian which is denoted by  . Moreover, the mean and variance  are precisely the linear MMSE estimates of  over a linear observation equation (6), where the message  can be viewed as the prior Gaussian distribution of. Specifically, at the -th RE, the prior mean and covariance matrix of  can be denoted as  and , respectively, then the posterior mean  and covariance  of   can be calculated as 


The diagonal elements of  are the posterior variances of : . 
The messages  in (9) are also Gaussian, i.e., , whose mean and variance are given by
[bookmark: F2V_mean]	    		()
[bookmark: F2V_var]	                                	 	 ()	
Till now, the -th iteration is completed. In practice, after multiple iterations, the log-likelihood-ratio (LLR) for coded bits can be calculated based on the approximated posterior probability  in (13). After subtracting the prior LLRs, the extrinsic LLRs serve as the input to the FEC thereafter. 
B.4 EPA Algorithm Summary
The EPA for NoMA detection is summarized in Algorithm1, where the number of iterations is . 
-------------------------------------------------------------------------------------------------------------------------------
Algorithm1 – EPA for NoMA 
-------------------------------------------------------------------------------------------------------------------------------
1. Initialization
(1) Given the prior LLRs fed back from the FEC decoder, compute the prior probability  of   for each user. If there is no prior LLRs  fed back from the FEC decoder,  is simply initialized as , . 
(2) Initialize the mean and variance values from FN to VN as , . 
2. Iterations
Start with. While, Do
(1) VN Update: For  and     
a. Compute  and  as  and 
b. Compute the mean  and variance  as  (17) and (18)
(2) FN Update: For :
c. Perform chip-by-chip MMSE as  and 
d. For : Compute the mean  and variance  as (21) and (22).
3. LLR Calculations
Compute the extrinsic LLRs. 
-------------------------------------------------------------------------------------------------------------------------------
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