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Introduction
In RAN1#89 meeting, the following decision was made to evaluate benefits of Early Termination ‎[1]:
Email discussion until Thursday 1st June to align calculation methods for latency and complexity with early termination. 

Following RAN1#89, an offline email discussion ‎[2] was launched to align calculation methods for latency and complexity between companies. Unfortunately, the discussion did not result in any agreements or common ground for evaluation. Furthermore, most propositions in ‎[2] took an overly simplistic approach, that might miss essential features of the polar decoder. 
In this contribution, we propose an approach that uses a simple recursive algorithm that tracks the complexity and latency of the decoder based on a short list of parameters and code configurations. The algorithm is based on Tsofun experience in analysis and hardware verification of its existing polar code – based decoder products. Since the SCL and simplified SCL decoding algorithms are recursive in nature, this approach provides better approximations of complexity/latency than using ratio of complexities and latencies between frozen and non-frozen bits.
[bookmark: _GoBack]We further demonstrate the significance of efficient processing of rate-1 blocks for low-latency decoders. As a consequence, modeling their impact on latency is important for having realistic assessment of early termination gains. Finally, we propose an easy extension for the simplistic non-frozen/frozen complexity ratio latency modeling approach that better reflects that feature.

[bookmark: _Ref485654428]SCL / SSCL Decoding Recursive Construction 
SCL algorithm ‎[3] or Simplified SCL (SSCL) ‎[4]‎[5]‎[6] have both recursive flow that takes advantage of the recursive structure of polar codes. We propose a model implemented by an algorithm that tracks the decoding flow and attaches “price tags” on different operations. The parametrized nature of the model allows companies to set those parameters in way that matches their implementation. We believe that this simple algorithm may reflect more precisely the behavior of the SCL and SSCL decoders.
In terms of terminology, we see the decoding algorithm as composed of the following three basic steps:
· LLR calculations (f/g operations), also named in our document “forward operation”.
· Re-encoding – takes a binary decision and encodes it by applying the basic operation of . Such operation is named in our document “backward operation”.
· Decision making: based on LLR calculations, it is decided which decoding path outcomes are continued. We consider three cases: 
· All-frozen block – an outer-code consisting entirely of frozen bits
· Rate-1 block – an outer-code consisting entirely non-frozen (and possibly shortened) bits
· Base decoding unit – an outer-code for which dedicated decoding method is applied for decoding the bits simultaneously).

In the implementation that follows, we used the following assumptions for simplicity of the description:
a. Re-encoding (backward operation) complexity was neglected.
b. All-frozen block processing complexity was also neglected.
c. Additional overheads of pipeline processing were also neglected.
d. Complexity and latency of CRC and PC-frozen bit computation were not taken into account as they have negligible effect on the results.  
e. We assumed maximum and constant list size L throughout the decoding (instead of keeping into account list size growth before reaching the maximum in the beginning of the decoding algorithm). 
All the above simplifications can be easily adjusted and adapted.
Latency is measured in number of clock cycles (“clocks” in short), complexity is measured in number of arithmetic operations (“operations” in short). 

Input Parameters to Latency and Complexity Model
The model has the following latency parameters:
	Parameter Name
	Explanation

	L
	Maximum list size.

	[bookmark: _Hlk488673835]NPE_FWRD
	Number of processing elements (PEs) for forward operation. A PE for forward operation is a circuit that can calculate f and g (i.e. LLRs).  

	NPE_BKWRD
	Number of processing elements (PEs) for backward operation. A PE for backward operation is a circuit that re-encodes, i.e. performs .

	[bookmark: OLE_LINK115][bookmark: _Hlk488674996]FrozenBlk_Norm_Latency
	[bookmark: OLE_LINK116]Number of clocks for processing a frozen block, normalized by the frozen block length (namely, number of clocks for processing a single bit in a frozen block).
Note: fractional or zero value is not precluded.

	Rate1_Norm_Latency
	Number of clocks for processing a rate-1 block, normalized by the rate-1 block length (namely, number of clocks for processing a single bit in rate-1 block), not including decision making.
Note: fractional value is not precluded.

	Rate1_Decision_Latency
	Number of clocks for selection of L decoding paths at the end of processing a rate-1 decoding unit.

	Base_Decoding_Unit_Size
	Number of bits that are decoded by specialized decoder in simplified SCL. 
Referred to as a base decoding unit size.

	[bookmark: OLE_LINK119][bookmark: OLE_LINK120]Base_Decoding_Unit_Latency
	Number of clock cycles for processing a base decoding unit, including decision making.


Table 1 Latency parameters

In addition to the latency parameters above, the model shall receive the following complexity parameters:
	Parameter Name
	Explanation

	FWRD_Norm_Complexity
	Number of operations for calculating LLRs (single PE application of f or g).

	Rate1_Norm_Complexity
	Number of operations for processing a single bit in rate-1 block, not including decision making.

	Rate1_Decision_Complexity
	Number of operations for selection of L decoding paths in rate-1 decoding unit.

	Base_Decoding_Unit_Complexity
	Number of operations for processing a base decoding unit, including decision making.


Table 2 Complexity Parameters

Furthermore, the timing and latency model function shall receive the code construction details, specifically:
	Parameter Name
	Explanation

	N
	Mother code length (before rate matching)

	M
	Code length after rate matching (shortening / puncturing)[footnoteRef:2] [2:  For repetition, it is assumed that after an initial LLR combining, M=N] 


	RM_Mode
	Determines the rate matching applied.

	Frozen_Bit_Inds
	Indicator vector, having ones on indices of bits that are frozen.


[bookmark: _Ref488662258]Table 3 Code parameters

Latency and Complexity Model Definition 
Assume the following signature for the latency/complexity model:
[chanIndices, latencyVec, complexityVec] = latency_complexity_model(codeParams);
Here chanIndices is a column vector containing indices of binary channels, for which intermediate latency and complexity values are calculated; latencyVec and complexityVec are column vectors such that latencyVec(i) and complexityVec(i) are the number of clocks and operations (respectively) until completing decoding of binary channel index chanIndices(i). codeParams is a structure that contains as fields the code parameters described in Table 3. Note that codeParams changes throughout the calculation recursion, as it corresponds to the structure of the outer-code currently being recursively processed.

For example, for code length 16, we may have the following latency and complexity results:
chanIndices = [8; 12; 16]				latencyVec = [4; 11; 20]					complexityVec = [50; 60; 90],
Meaning that until finishing decoding , the decoder spent 4 clock cycles and 50 operations, until finishing decoding  11 cycles and 60 operations, and until finishing decoding , it spent 20 cycles and 90 operations.
Figure 1 provides a flow diagram specifying the recursive structure. Specification of the blocks follows.
[image: ]
[bookmark: _Ref484109377]Figure 1 Flow diagram for latency and complexity tracking algorithm

(A) Calculate complexities and latencies for forward and backward operation[footnoteRef:3] [3:  The calculations below are valid at least for bit-reversed shortening / puncturing – based rate-matching] 

A1. Compute latency/complexity for forward operation:
latencyFWCalc 		= ceil[ codeParams.M * L / (2*NPE_FWRD) ];
complexityFWCalc 	= codeParams.M * L * FWRD_Norm_Complexity;
A2. Compute latency for backward operation:
latencyBWCalc 		= ceil[ codeParams.M * L / (2*NPE_BKWRD) ];

(B) Calculate complexities and latencies for each one of the outer-codes by recursive calls to latency_complexity_model
B1. Calculate the structures codeParams1 and codeParams2, corresponding to the 1st and 2nd constituent outer-codes of current code (for instance, codeParams1.N = codeParams2.N =  ½codeParams.N).
B2. Compute latency/complexity for decoding 1st outer-code (defined by codeParams1):
[chanIndices1, latencyVec1, complexityVec1] = latency_complexity_model(codeParams1);
B3. Compute latency/complexity for decoding 2nd outer-code (defined by codeParams2):
[chanIndices2, latencyVec2, complexityVec2] = latency_complexity_model(codeParams2);

(C) Update the latencies and complexities of (B) by including the latencies and complexities of (A).
C1. If 1st outer-code is not all-frozen: add to latencyVec1 and complexityVec1 latencyFWCalc and complexityFWCalc, respectively.
C2. Add to latencyVec2 and complexityVec2 latencyFWCalc and complexityFWCalc, respectively.
C3. Add to latencyVec2(end) the value latencyBWCalc.

(D) Merging values of latencies and complexities of the two outer-codes into unified structures
D1. Construct chanIndices output vector by merging chanIndices1 and chanIndices2 vectors:
chanIndices 		= [ chanIndices1; chanIndices2 + ½  codeParams.N ];
D2. Construct latencyVec output vector by merging latencyVec1 and latencyVec2 vectors:
latencyVec 		= [ latencyVec 1; latencyVec2 + latencyVec1(end) ];
D3. Construct complexityVec output vector by merging complexityVec1 and complexityVec2 vectors:
complexityVec 	= [ complexityVec1; complexityVec2 + complexityVec1(end) ];

(E1) Compute complexity and latency for frozen block
chanIndices		= codeParams.N;
latencyVec		= ceil( FrozenBlk_Norm_Latency * codeParams.M * L);
complexityVec 	= 0;

(E2) Compute complexity and latency for rate-1 block
chanIndices		= codeParams.N;
latencyVec		= ceil( Rate1_Norm_Latency * codeParams.M * L ) + Rate1_Decision_Latency;
complexityVec 	= ceil( Rate1_Norm_Complexity * codeParams.M * L ) + Rate1_Decision_Complexity;

(E3) Compute complexity and latency for base decoding unit
chanIndices		= Base_Decoding_Unit_Size 	= 	codeParams.N;
latencyVec		= Base_Decoding_Unit_Latency;
complexityVec 	= Base_Decoding_Unit_Complexity;
Examples Latency Results
Main Parameters
From our experience, the following parameters are most important in their influence on decoder latency and complexity:
· NPE_FWRD, often referred to as NPE (Number of Processing Elements) is the factor with most pronounced impact on decoding latency (note that decoding complexity does not depend on NPE).
· Design of the Base Decoding Unit: both the size (in bits) of the processed block, the number of decoding paths that can “expand” from each input path, and the efficiency of the sorting algorithm all contribute to the values of Base_Decoding_Unit_Latency/Complexity.
· Efficient processing of special blocks (all-frozen and rate-1). 

Simulation Defaults
In the results shown in this contribution, unless otherwise stated, we used the following defaults for latency simulations:
· L 									= 8
· NPE = NPE_FWRD 				= 32
· NPE_BKWRD 					= 2*NPE
· Base_Decoding_Unit_Size  	= 4 bits
· Rate1_Norm_Latency 			~ 
· FrozenBlk_Norm_Latency 		= 0

Details of codes used for profiling:
· CA-Polar, 19-bit CRC (in addition to K information bits)
· Information / frozen bit mapping using PW sequence
· Bit-Reversed shortening (where applicable)



Dependency on Main Parameters
The figures below illustrate the dependency of polar decoder latency on a few major parameters. Each curve in the figures corresponds to a different polar code. The horizontal axis in all figures corresponds to NPE, the number of forward processing units, while the vertical axis is the normalized decoding latency, namely the number of clocks per decoding a frame, divided by the codeword length. 
The two sub-plots in Figure 2 below depict the decoding latency dependency on NPE, for several codes with K=32 / K=64:

 [image: ][image: ]
[bookmark: _Ref488678573]Figure 2. Decoding latency dependency on NPE

Figure 3 illustrates the decoding latency dependency on maximal list size:
[image: ]
[bookmark: _Ref488679044]Figure 3. Decoding latency dependency on List size, K=96, M=576


[bookmark: OLE_LINK127][bookmark: OLE_LINK128][bookmark: OLE_LINK130]
Figure 4 illustrates the decoding latency dependency on the efficiency (latency) of Rate-1 processing:.
[image: ]
[bookmark: _Ref488679050][bookmark: OLE_LINK126]Figure 4. Decoding latency dependency on Rate-1 decoding efficiency, K=96, M=192
As we can see in this example, lack of efficient rate-1 processing can degrade decoding latency by roughly ~50-80%. As blind decoding of eMBB DL control channels poses a tight latency challenge, we believe that a typical polar decoder for NR employs fast rate-1 processing.
Other leading companies with expertise in polar decoder implementation also reported rate-1 dedicated processing ‎[7]‎[8], acknowledging the use in practical decoders of either rate-1 processing, or even more aggressive (and latency-efficient) decoding methods of selective path extension ‎[9], where blocks having high-reliability bits are ML-decoded without list expansion and sorting.
[bookmark: OLE_LINK56]Observation 1: Efficient processing of rate-1 blocks is beneficial to meet the tight latency requirements of eMBB control

Figure 5 illustrates the decoding latency dependency on the latency of the Base Decoding Unit (BDU):
[image: ]
[bookmark: _Ref488679056]Figure 5. Decoding latency dependency on Base Decoding Unit latency

[bookmark: OLE_LINK2]Analysis of Early Termination Gains
In this section, we analyse the latency and complexity gains achievable with Early Termination (abbreviated ET below). We concentrate on the relative fractional savings (with 1 indicating a full 100% gain, and 0 indicating a zero saving), depending on the location where ET occurred. The gains obtained per each ET location are therefore valid under the assumption that ET occurs with 100% probability in that specific location.
[bookmark: OLE_LINK131]Figure 6 and Figure 7 illustrate the latency gains of two sample codes, depending on NPE value. Note that complexity gains are not plotted here, as decoding complexity does not depend on NPE. In the left sub-plot of each figure, the horizontal axis corresponds to the non-frozen bit index where decoding terminates; while in the right sub-plot, the horizontal axis corresponds to the termination location in overall polar information word (Arikan encoder input).
Note that the non-uniform location of markers in the figure corresponds to locations where decoding termination is possible. As some locations correspond to bits located in the middle of base processing or rate-1 processing units (that are processed in parallel), termination may actually take place only upon decoding finish of these blocks.
Observation 2: ET Latency gains show weak dependency on NPE, and it is enough to analyse them for some representative NPE value.
Based on this observation, we will proceed the analysis assuming NPE=32 as baseline.
[image: ]
[bookmark: _Ref488684083]Figure 6. Latency gains for misc. NPE values, K=64, M=192

[image: ]
[bookmark: _Ref488684088]Figure 7. Latency gains for misc. NPE values, K=48, M=288

Early Termination Gains Assessment
Appendix A provides additional examples of latency and complexity gains results for representative codes for eMBB DCI. It can be seen from the results that regardless of the code characteristics (codeword and information size, code-rate etc), ET latency and complexity gains demonstrate similar behavior.
[bookmark: OLE_LINK33][bookmark: _Hlk485654785][bookmark: OLE_LINK132][bookmark: OLE_LINK57]Observation 3: ET Latency and complexity gains present similar behavior.
As a rough approximation:
· If decoding is terminated within ~5÷10% of the non-frozen payload, ET gains above ~85-90% can be reached;
· If decoding is not terminated after ~10% of the non-frozen payload, ET gains drop below ~60-70%;
· If decoding is not terminated after ~25% of the non-frozen payload, ET gains drop below ~35-55%;
· If decoding is not terminated after ~50% of the non-frozen payload, ET gains drop below ~10-25%;
· If decoding is not terminated after ~66% of the non-frozen payload, ET gains drop below ~10%;

Observation 4: Early Termination gains sharply deteriorate with increase of information bit index where termination occurs. 
Immediate conclusion from the above is that significant ET gains can only be achieved if termination occurs (on average) very early in the decoding process.

[bookmark: OLE_LINK1]Simplified Assessments
In the offline email discussion ‎[2], though multiple views were presented, many shared the same outline for a simplified assessment of latency / complexity of a polar decoder:
· Most companies assumed zero latency / complexity cost of processing frozen bits before the 1st information bit
· Most companies assumed some constant approximated ratio of latency / complexity cost of processing non-frozen (information and CRC) bits to frozen bits. The ratio proposed by Huawei was using a ratio of 4:1, and we took it as reference for analysis.
We believe that this modeling suggests an overly simplistic approach that misses essential features of the polar decoder. Since the SCL and simplified SCL algorithms are recursive in nature, our approach provides better approximations of complexity/latency than using ratio of complexities and latencies between frozen and non-frozen symbols. 
[bookmark: OLE_LINK55]To illustrate our claim, in Figure 8 and Figure 9, the green dashed curves depict the ET gains obtained using the simplified method (assuming non-frozen / frozen processing ratio of 4). 
[image: ]
[bookmark: _Ref488746044]Figure 8. Incorrect ET gains predicted by the simplified approach, K=64, N=512

[image: ]
[bookmark: _Ref488746049]Figure 9. Incorrect ET gains predicted by the simplified approach, K=80, M=240

It can be clearly seen from the figures, that the simplified assessment significantly overestimates ET gains. The discrepancy is especially pronounced in the disputed area of “late termination” (namely, ET occurrence at late locations in the non-frozen payload, which often happens for Distributed-CRC ‎[10]), where the estimated gains are roughly 4 times higher than the real-life gains. The main explanation to this mismatch is the fact that the simplified approach assumes all information bits require an equal amount of processing, while in reality, many of the information bits concentrated in the end of polar information form “rate-1” blocks, that can be processed in a much more efficient way in a realistic optimized decoder.
Furthermore, the dashed blue and red curves in Figure 8 and Figure 9 depict the gains obtained by Tsofun model, for the hypothetic case where efficient rate-1 processing is disabled. Even if we could accept the claim made by Nokia [2] that rate-1 is processed using regular SCL, it can be clearly seen that the simplified gain assessment still significantly exceeds the accurate one.
[bookmark: _Hlk485654783]Observation 5: The simplified assessment overestimates real-life ET gains by a factor of ~4, and yields inflated assessments even for SCL-like decoder architecture.
[bookmark: OLE_LINK48]Observation 6: Using a simplified timing model that is not based on SSCL – like decoding architecture may lead to highly imprecise results and misleading conclusions regarding ET gains.

Simplified Assessment Considering Rate-1
As discussed above, the main reason for the discrepancy in the simplified assessment results is not taking into account efficient rate-1 processing. This insight leads us to consider the following modification to the simplified model: 
· Give different weight to non-frozen bits that belong / do not belong to a rate-1 block
· Use two ratios (instead of one): 
· Latency / complexity ratio between non-frozen bit outside of rate-1 blocks to frozen bit (as before)
· Latency / complexity ratio between processing an entire rate-1 block to frozen bit (new ratio)

The figures in Appendix A contain ET gain assessments made using this modified simple model, depicted by cyan dashed curves. The rates used were 4 (for non-frozen non-rate-1 bits) and 10 (for rate-1 blocks). As can be observed from the figures, for low code rates, despite some deviations in the early region of information locations, the modified simple calculation provides rather accurate assessments of ET gains in the relevant locations (mainly in the second half of the non-frozen payload).
[bookmark: OLE_LINK58]Observation 7: A modified simplified assessment taking into account efficient rate-1 processing can yield accurate estimates of ET gains, for low code-rates.

Proposal 1: For realistic assessment of ET gains, use models that take into consideration efficient rate-1 processing.









Conclusions
Observation 1: Efficient processing of rate-1 blocks is beneficial to meet the tight latency requirements of eMBB control
Observation 2: ET Latency gains show weak dependency on NPE, and it is enough to analyse them for some representative NPE value.
Observation 3: ET Latency and complexity gains present similar behavior.
Observation 4: Early Termination gains sharply deteriorate with increase of information bit index where termination occurs. 
Observation 5: The simplified assessment overestimates real-life ET gains by a factor of ~4, and yields inflated assessments even for SCL-like decoder architecture.
Observation 6: Using a simplified timing model that is not based on SSCL – like decoding architecture may lead to highly imprecise results and misleading conclusions regarding ET gains.
Observation 7: A modified simplified assessment taking into account efficient rate-1 processing can yield accurate estimates of ET gains, for low code-rates.

[bookmark: OLE_LINK59]Proposal 1: For realistic assessment of ET gains, use models that take into consideration efficient rate-1 processing.
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Appendix A: Early Termination Latency & Complexity Gains

The figures below provide several examples of latency and complexity gains results (blue and red curves, respectively) obtained with the analysis scheme presented in this contribution. All Polar codes were constructed using PW sequence; the rate – matching scheme (where applicable) was bit-reversed shortening. 
In addition to Tsofun analysis results, the green curves in the figures depict ET gains obtained using the simplified approximate calculation of ‎[2] (with assumed processing ratio of 4 between non-frozen to frozen bit), with the cyan curves depicting the elaborated approximation, taking efficient rate-1 processing into account (with assumed processing ratio of 10 between rate-1 block to frozen bit).
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