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1 Introduction

In 3GPP RAN1#86 meeting, advanced CSI reporting and interference measurement were discussed and the following was agreed:
· Specify CSI feedback enhancement with the following advanced CSI feedback framework:

· Reduced space (eigenvectors)/W1 is constructed based on one of the following alternatives (TBD RAN1#86bis):

· Alt1. Orthogonal basis (e.g. orthogonal DFT matrix)

· Alt2. Non-orthogonal basis (e.g. Rel.13 Class A W1 for rank-1 and/or 2)

· Reduced space representation/W2 is to further combine selected beams

This contribution analyzes whether orthogonal basis or non-orthogonal basis should be selected for space reduction, from a mean square error perspective. Firstly the formulation of reduced space generated by each basis is provided. Then the MSE performance is analyzed. 
2 Discussion
2.1 Reduced space
Space reduction can be based on orthogonal basis or non-orthogonal basis as discussed in the following.
· Case 1 - Non-orthogonal basis: The reduced space is spanned by W1 in LTE Rel-13, which is a set of selected oversampled DFT vectors. In the case 1D antenna layout, the basis vector can be exemplarily expressed as
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where M is the number of antennas, S is an integer to denote the oversampling rate, 
[image: image2.wmf]}

1

,...,

2

,

1

,

{

-

+

+

+

Î

O

k

k

k

k

l

is the index of the selected oversampled DFT vector, 
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is an integer to denote the first index for W1, and 
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 is the number of the selected oversampled DFT vectors.
· Case 2 - Orthogonal basis: The reduced space is spanned by a subset of column vectors from a regular, non-oversampled DFT matrix. The basis vector may be represented by
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where 
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, and A is an orthogonal DFT subset. The reduced space is spanned by the DFT vectors, and 
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is a common phase shift for the reduced space.

When 
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in case 1, the reduced space is the whole complex vector space of dimension M; 
When 
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 in case2, the reduced space is also the whole complex vector space of dimension M.
When 
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in case1, the reduced space is a subset of the complex vector of dimension M; 
when 
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in case 2, the reduce space is a subset of the complex vector of dimension M. 

In case 1, the reduced space is generated by a set of oversampled DFT vectors with continuous indices. In case 2, the reduced space is generated by an index subset A selected from 
[image: image12.wmf]}

1

,...,

2

,

1

,

0

{

-

M

.
We have the following theorem from [1].
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Theorem 1: Assume the channel model can be represented by
                                                                                                                                                              （3）
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The eigenvectors of 
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 can be represented by a linear combination of
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Proof: note that we can assume
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Then
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where 
[image: image20.wmf]]

,...,

,

[

1

*

1

1

*

1

0

*

0

-

-

=

L

L

v

v

v

V

a

a

a

. 
Obviously, 
[image: image21.wmf]H

H

*

has the eigenvalue decomposition as following, where 
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is the eigenvector space of non-zero eigenvalues, 
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Therefore
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Then that is the end of the proof.
Based on above analysis, if the reduced space by W1 generates the same space as the subspace generated by
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, the reduced space can represent the eigenvectors.
2.2 MSE analysis
Given the precoding vector 
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 at UE side, the coefficients according to different bases and the associated MSE performance is given below. 
Case 1: In this case, the basis set is a set of column vectors of oversampled DFT vectors, denoted by
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where
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Assuming the estimated precoding vector is given by
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represents the estimation noise Gaussian distributed with variance
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where 
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is the eigenvalue of matrix 
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(or square of singular value of 
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, and from Schur-Horn inequalities[2] we have 
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is ill-conditioned, therefore MSE is large. The condition number is defined as the division of maximal and minimal non-zero singular value, which is usually as criterion to measure the degree of ill-condition for a given matrix.  The following numerical results show condition numbers for a W1 constructed with continuous beams.
Table 1 Condition Number

	Length of DFT vector
	Oversampling Rate
	Number of vectors in W1
	Condition Number of G

	4
	8
	4
	1684.6

	8
	8
	4
	1051.5

	16
	8
	4
	963.3


Case 2: In this case, the basis set is a subset of column vectors of non-oversampled DFT matrix denoted by
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where 
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Based on above analysis, non-orthogonal basis in case 1 enlarges the noise depending on the distribution of the eigenvalues, but orthogonal basis doesn’t have such an issue. 
For this reason, orthogonal basis is preferred, and the reduced space should be determined accordingly based on the orthogonal basis.
3 Conclusion
Based on above analysis, orthogonal basis should be selected for CSI feedback. The reduced space can be determined further.
Proposal: Orthogonal basis for the reduced space should be selected for UE CSI feedback.
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