	
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3GPP TSG RAN WG1 #86bis	R1-1609065
Lisbon, Portugal, 10th – 14th Oct. 2016
[bookmark: Source]Agenda item:	8.1.3.1
Source: 	Samsung
Title: 	Length-Compatible Quasi-Cyclic LDPC Codes
[bookmark: DocumentFor]Document for:	Discussion and Proposal
Introduction
In [1], [2], Samsung proposed a quasi-cyclic (QC) LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. Furthermore, Samsung proposed a lifting method to support variable code block and LDPC-encoded block sizes with fine granularity.
In this contribution, we present details of the proposed lifting method and show the coding performance of LDPC codes obtained by the lifting method in terms of code block sizes and rates.
Flexible LDPC Codes Based on Lifting
1
2
Quasi-cyclic LDPC code
Let be the matrix given by

where are exponent indices of permutation matrices, and are the numbers of column and row blocks, respectively. is just the circulant permutation matrix which shifts the identity matrix to the right by times for any integer , . For simple notation, we denote the zero matrix by. When has full rank, we can assign information bits to some column blocks. (For our convenience, we call these column blocks information column blocks). Then the code with is referred to as a QC LDPC code. Furthermore, let be the expoment matrix of given by

An example of a parity-check matrix for a QC LDPC code with and is given by

Proposal for Lifting
When adjusting the size of circulant permutation matrices according to the target code block size, each exponent indices can be easily calculated by the specified formula. For example, we can obtain the exponent matrix for the parity-check matrix from the exponent matrix for the parity-check matrix as follows:
[Lifting]

Here, is the parity-check matrix consisting of circulant permutation matrices and/or zero matrices for given integer and is an integer function of and .
[image:]
Figure 1. Lifting technique for length compatibility

We propose the lifting function as follows:

where means a modulo operation . Note that for , the exponent matrices have exactly the same integer entries. Therefore, if , a given exponent matrix for can create exponent matrices corresponding to parity-check matrices.
For example, consider the following exponent matrix for .

From the proposed lifting function, we can obtain the exponent matrix for as follows:

Consequently, total parity-check matrices of size , can be obtained from the above one exponent matrix.
Note that -modulo operation can be easily implementable by picking the last bits of the binary representation of an entry in for . For example, applying -modulo operation to an entry is equivalent to picking the last 7 bits, .
Performance of QC LDPC codes based on the proposed lifting
To evaluate the performance of QC-LDPC codes obtained by the proposed lifting, we conduct simulations based on the QC LDPC code with , , , and whose exponent matrix was defined in [2]. We apply the proposed lifting method to the given exponent matrix by modulo- and transform the exponent matrix into additional 7 exponent matrices. Finally, we generate parity-check matrices from the 8 exponent matrices and evaluate the coding performance in terms of code block sizes and code rates. Note that the puncturing of parity bits is applied to support higher code rates and furthermore, the information bits corresponding to the first two column blocks of the parity-check matrices are always punctured.
In Figure 2, for both the proposed QC LDPC and LTE turbo codes, we present the required SNRs for achieving block error rates (BLER) 10% and 1% in terms of code block size. In many cases, we can see that both coding schemes provide a stable coding performance as the code block sizes increase. However, LTE turbo code, the higher code rate becomes, the more unstable performance is. For example, in Figure 2, we can observe a considerable fluctuation of the required SNR curve at code rate 8/9 for LTE turbo code.
[bookmark: _GoBack]
LDPC code: Layered scheduling, 15 iterations, Sum-product algorithm
Turbo code: No window decoding (ideal scheduling), 6 iterations, log-MAP algorithm

[image:]
[image:]
[image:]
Figure 2. Performance of proposed QC LDPC and LTE turbo codes (R=8/9, 2/3, 1/3)

Observation 1: The proposed length-compatible QC LDPC code support a stable performance in terms of code block sizes and code rates.
Proposal 1: To support the length-compatibility of QC LDPC codes comparable to LTE turbo code, the lifting technique should be adopted.

Observations and Proposals
In this contribution, we present the following observations and proposal for efficient implementable LDPC codes.

Observation 1: The proposed length-compatible QC LDPC code support a stable performance in terms of code block sizes and code rates.
Proposal 1: To support the length-compatibility of QC LDPC codes comparable to LTE turbo code, the lifting technique should be adopted.

References
[1] R1-166769, Samsung, "Discussion on Length-Compatible Quasi-Cyclic LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[2] R1-167889, Samsung, "Design of Flexible LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[3] 3GPP, TS 36.213, E-UTRA; Physical Layer Procedures (Release 10)
image2.png
——LDPC BLER 10%
—LDPCBLER 1%
—Turbo BLER 10%

—Turbo BLER 1%

NN N

v

2000 3000 4000 5000 6000 7000 8000
Information Length

image3.png
——LDPC BLER 10%
—LDPC BLER 1%
—Turbo BLER 10%
—Turbo BLER 1%

4 ,
Amaae—— =S e = St —
3 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Information Length

image4.png
—LDPCBLER 10%
—LDPCBLER 1%

Turbo BLER 10% ||
—Turbo BLER 1%

Req. SNR

w*’\ W.-Z: Y
™ —
1000 2000 3000 4000 5000 6000 7000 8000

Information Length

image1.emf
P

a33

P

a34

P

a3(n-

1)

P

a3n

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

P

y

0 0 P

a3

I

... ... I

P

a11

P

a12

P

a13

P

a14

P

a1(n-1)

P

a1n

P

a21

P

a22

P

a23

P

a24

P

a2(n-1)

P

a2n

.

.

.

.

.

.

P

am1

P

am2

. . .

. . .

Z

3

Z

1

L

2

Z

1

Lifting

One parity check matrix to support variable code length

P

a11

P

a12

P

a13

P

a14

P

a1(n-1)

P

a1n

P

a21

P

a22

.

.

.

.

.

.

P

am1

P

am2

. . .

P

am(n-

1)

P

amn

P

x

0 P

am

... 0

P

a33

P

a34

P

a3(n-1)

P

a3n

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

P

y

0 0 P

a3

I

... ... I

P

a11

P

a12

P

a13

P

a14

P

a1n

P

a21

P

a22

P

a23

P

a24

P

a2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

P

am1

P

am2

P

am3

P

am4

P

amn

. . .

. . .

. . .

. . .

Z

2

Z

1

