Page 1
3GPP TSG-RAN WG1 #85 	R1-164704
23th – 27th May 2016
[bookmark: _GoBack]Nanjing, China

[bookmark: Source]Agenda item:	7.1.5.1
Source: 	Qualcomm Incorporated
Title: 	Channel coding evaluation assumptions - performance and complexity
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
In RAN#71, the technology study item for 5G new RAT (NR) has been approved [1]. One important aspect is the physical layer channel coding design to support many of the use cases and services envisioned for NR, such as scaling to larger bandwidths and lower latencies within existing mobile broadband services, while expanding the network to additional more challenging communications services such as URLLC.
The purpose of this document is provide more detailed discussion on channel coding performance and computational complexity tradeoffs which was first mentioned [2]. Although performance is an important metric which is evaluated as part of the previous RAN #84b agreement, the computation complexity needed to achieve such performance gains as well as their tradeoffs need to be considered.
Computational Complexity
The decoding algorithms for the candidate NR codes for EMBB are evaluated below by analysis of the operations per iteration. This provides a computational cost per iteration of decoding and per information bit of transmitted information, and thus will directly scale up with the throughput at the application layer. Comparison of these metrics do not necessarily directly translate to area, but they are fundamental indicators of the computation complexity between coding techniques and can provide insight into further power savings and area savings observations seen [3].
LTE Turbo Codes
Following computations (BCJR algorithm) are required in each of the MAP stages [4]: Branch metric computation
Forward metric computation
Backward metric computation
LLR computation
Extrinsic information computation

(1) 
Path-metric computation [Eqn. (1)], 
(2) 
FSM computation [Eqn. (2)], 
(3) 
RSM computation [Eqn. (3)], 
(4) 
LLR computation [Eqn. (4)], 
(5) 
Extrinsic computation [Eqn. (5)], 












Table 1 Complexity calculations for Turbo MAP decoder per half-iteration
	Eq.
	ADD/SUB
	MUL by ±1
	Max*

	(1)
	

	

	--

	(2)
	

	--
	


	(3)
	

	--
	


	(4)
	

	--
	


	(5)
	2
	--
	--

	Total per info bit
	

	

	


	LTE Turbo code
	83
	48
	30


M = # of memory of the component code. The  # of trellis state is 2^M
n is such that 1/n is the code rate of component convolutional code
LDPC Codes
LDPC decoding is typically performed using layered belief propagation (LBP), and the use of offset (scaled) min-sum has been identified an efficient implementation which can achieve performance close to belief propagation [5]. Note that in terms of complexity layered vs. flooding have the same overall complexity for the same total iteration count. It is also observed that layered requires roughly half the number of total iterations than flooding, which we have observed from simulations. In this sense, it is advantageous to perform layered decoding. 
Following operations are performed at the i-th variable node, j-th check node, l-th layer (l{0,1,…,L-1}):
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Figure 1 Layered belief propagation

										Table 2 LDPC LBP complexity of operation
	Eq.
	ADD/SUB
	ABS
	Sign()
	MIN
	MUL by 


	(I)
	(E/L).L
	--
	--
	--
	--

	(II)
	--
	--
	E
	--
	--

	(III)
	2M
	E
	--
	2E-3M
	2M

	(IV)
	(E/L).L
	--
	--
	--
	--

	Total
	2E+2M
	E
	E
	(2E-3M)
	2M

	Total per info bit 
	
(2(+(1-R))/R)
	
(/R)
	
(/R)
	
((2-3(1-R))/R)
	
2*()/R















E is the total number of edges in the graph, L is the number of layers, M is the number of check-nodes in the LDPC code, dv is the average variable node degree in the bipartite graph, R is the code-rate.
Polar Codes
Polar codes are decoded using successive cancelation (SC) decoding and SC-list (SC-L) decoding. The latter has been considered to obtain superior performance at the cost of increased complexity. Key challenge with implementing SC-L decoding is the added complexity and the reduced throughput achievable [6]. SC decoding on the other hand is capable of achieving much higher throughputs, albeit, it cannot perform as well as traditional codes such as LDPC, Turbo. There are key operations performed in decoding polar codes which can be decomposed into:
(1) Single-parity check (SPC) decoding – known as f() operation in literature [7]
(2) Repetition decoding – known as g() operation in literature [7]
(3) Path-metric (PM) calculation (while traversing the tree for L-SC)
(4) Sort operations to pick the best-L from 2 sets of L pre-sorted metrics. Note that 2 options are possible:
a. Higher latency operation: 2L clock cycles are needed for this operation
b. Low latency operation: sorting of 2L metrics done in ~1 cycle
i. Complexity is much higher (shown in GREEN)

Table 3 Complexity of polar SC-L decoding
	Component
	ADD/SUB
	ABS
	Sign()
	MIN  [lower-latency]
	MUL by 


	SPC
	0.5*N*log(N)*L
	--
	0.5*N*log(N)*L
	0.5*N*log(N)*L
	0.5*N*log(N)*L

	REP
	0.5*N*log(N)*L
	--
	0.5*N*log(N)*L
	--
	--

	PM
	L*N
	L*N
	--
	--
	--

	Sort
	L*N*R
	--
	--
	(2*L)*log(2*L)*N*R ,    [ ]*N*R
	--

	Total
	L*N*(log(N) + 1),
L*N*log(N) + L*N*R
	L*N
	L*N*log(N)
	L*N*0.5*log(N) + (2L)*log(2L)*N*R,   
L*N*0.5*log(N) +  *N*R
	0.5*N*log(N)*L

	Total per info bit 
	L*(log(N) + 1)/R,
L*(log(N) + 1)/R +L
	L/R
	L*log(N)/R
	L*0.5*log(N)/R + (2L)*log(2L),
[L* 0.5*log(N)/R + ]
	0.5*L*log(N)/R




















Note that even with “lower latency” construction, the throughput is limited to maximum of 1 info-bit/clock cycle. For a Fclk=1GHz, this will amount to 1 Gbps which is still much lower than the LDPC peak Tput that can be achieved with the same clock. 2r bit joint processing has been proposed in literature [8] to improve throughput by factor of r, however the complexity of these schemes are 22r larger and which suggests that chip area may scale by a much larger amount (this is mainly due to increase in sorting complexity). Hence the cost for achieve EMBB throughputs with polar decoders seems prohibitively large.
Performance Comparison
In this section we compare complexity vs. performance to attain 1% BLER. Number of iterations (LDPC, Turbo)/list-sizes (polar) are varied to showcase the tradeoff between complexity and performance. Each of the dots in the plot below correspond to different iterations/list-sizes translated to absolute total number of nominal operations. LDPC decoder assumes “flooding”, while turbo assumes max-log-MAP. Max*-log-MAP will improve performance at the cost of complexity.
As can be seen from the plots below, there is a crossover point in terms of LDPC complexity/performance vs. polar wherein LDPC is better than polar for higher # of iterations. Latency/throughput is not considered here, and in this respect, polar definitely has a disadvantage as will be shown in next section.

    
Proposal 1: The performance and computation complexity tradeoff should be considered when evaluating and selecting channel codes for NR.
Further Discussion
From the above results, we find that new code architectures can outperform existing LTE turbo code in both performance and computational complexity. This can translate into more efficient implementations in terms of hardware or power savings. For future study, it is important to also consider other aspects to channel code which are important for forward compatibility and overall system design.
Decoding Latency
It is equally important to address decoding latency per codeblock as well as throughput. For example, in the case of Polar codes, the decoding latency for each code block on the SC actually limits the peak throughput that can be achieved for short bursts, even though there are methods in literature to pipeline blocks to efficiently address extremely large packet sizes. Moreover, when considering SC-L decoding, optimized hardware designs implemented and published for Polar codes seem to at best achieve 1-2 Gbps decoding [6]. 
LDPC on the other hand can achieve very high throughputs (e.g. 20 Gbps) as it lends itself well with parallelizability and also building low-area decoders. 
Turbo decoder is in the middle of the pack (e.g. 2-3 Gbps), as though it has limitations in parallelizability which have been addressed by interleaver design to reduce memory conflicts amongst MAPs, the code design itself is fundamentally inefficient since it achieves the rate compatibility through puncturing a large fraction of bits.
Proposal 2: Code block decoding latency should be considered when evaluating and selecting channel codes for NR.
Implementation Area
In order to address low decoding latency and high throughput, the the hardware implementations associated with each coding technique should also be considered. As has been pointed out in previous contributions (e.g., [3]), the area of existing implementations for the EMBB coding candidates can be different and may favour LDPC for support both high throughput as well as low decoding latency, and the routing complexity associated with quasicyclic parity matrix structures has evolved to be both computational and hardware efficient. 
For polar codes, it was mentioned in an earlier section that the sorting may be implementable across a many-cycle algorithm, or be implemented in hardware to speed up latency. Both cases offer tradeoffs which may be prohibitive when applying to EMBB.
Conclusions
Proposal 1: The performance and computation complexity tradeoff should be considered when evaluating and selecting channel codes for NR.
Proposal 2: Code block decoding latency should be considered when evaluating and selecting channel codes for NR.
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LDPC, Turbo, Polar QPSK Rate 0.2 AWGN K=2000 targetBLER = 0.01

LDPC	1157.9999999999998	1736.9999999999998	2315.9999999999995	3473.9999999999995	5789.9999999999991	9263.9999999999982	11579.999999999998	-1.2584	-2.29	-2.8285999999999998	-3.3595999999999999	-3.6713999999999998	-3.8250000000000002	-3.8435999999999995	Turbo 	386	772	1544	2895	4825	9650	0.28401999999999999	-1.6694	-2.6324999999999998	-3.0173000000000001	-3.1151	-3.2014999999999998	Polar	1002.1398665684615	2068.2797331369229	4392.5594662738458	-3.0928	-3.2409999999999997	-3.3474999999999997	complexity (operations)


SNR (dB)




LDPC, Turbo, Polar QPSK Rate 0.33 AWGN K=2000 targetBLER = 0.01

LDPC	682.80712807128066	1024.210692106921	1365.6142561425613	2048.421384213842	3414.0356403564033	5462.4570245702453	6828.0712807128066	1.0317700000000001	9.7230000000000011E-2	-0.31919000000000003	-0.74090999999999996	-1.0226999999999999	-1.1409	-1.1502000000000001	Turbo 	322.00096000960008	644.00192001920016	1288.0038400384003	2415.0072000720006	4025.0120001200012	8050.0240002400024	2.4731999999999998	0.47027000000000002	-0.54400000000000004	-0.92249999999999999	-1.0499000000000001	-1.1029	Polar	283.56843817742987	583.13687635485974	1230.2737527097195	2716.5475054194389	-0.32366	-0.54343999999999992	-0.71564000000000005	-0.78927999999999998	complexity (operations)


SNR (dB)




LDPC, Turbo, Polar QPSK Rate 0.5 AWGN K=2000 targetBLER = 0.01

LDPC	445.19999999999993	667.8	890.39999999999986	1335.6	2226	3561.5999999999995	4452	2.7772000000000001	2.1400999999999999	1.7822	1.5057	1.3266	1.2053	1.1959599999999999	Turbo 	290	580	1160	2175	3625	7250	4.6298000000000004	2.7448000000000001	1.7964	1.5235000000000001	1.3855	1.3735999999999999	Polar	183.52097998526921	383.04195997053841	830.08391994107683	1916.1678398821537	1.9814000000000001	1.7626999999999999	1.5891	1.5201	complexity (operations)


SNR (dB)




LDPC, Turbo, Polar QPSK Rate 0.75 AWGN K=2000 targetBLER = 0.01

LDPC	286.79999999999995	430.19999999999993	573.59999999999991	860.39999999999986	1433.9999999999998	2867.9999999999995	5.4519000000000002	5.0173000000000005	4.7888999999999999	4.6268000000000002	4.4942000000000002	4.4735000000000005	Turbo 	268.66666666666669	537.33333333333337	1074.6666666666667	2015.0000000000002	3358.3333333333335	3358.3333333333335	6716.666666666667	7.3940000000000001	5.8281999999999998	5.0186999999999999	4.6872999999999996	4.6395	4.6395	4.6192000000000002	Polar	119.42943532400777	119.42943532400777	254.85887064801554	573.71774129603114	573.71774129603114	1403.4354825920623	5.2730000000000006	5.2730000000000006	5.0368000000000004	4.8794000000000004	4.8794000000000004	4.7877999999999998	complexity (operations)


SNR (dB)




LDPC, Turbo, Polar QPSK Rate 0.83 AWGN K=2000 targetBLER = 0.01

LDPC	255.12114048456195	382.68171072684294	510.2422809691239	765.36342145368587	1275.6057024228096	2040.9691238764956	2551.2114048456192	6.681	6.1901999999999999	5.9984999999999999	5.8791000000000002	5.7774999999999999	5.7553000000000001	5.7460000000000004	Turbo 	264.40015360061443	528.80030720122886	1057.6006144024577	1983.0011520046082	3305.0019200076804	6610.0038400153608	8.3754000000000008	6.8796999999999997	6.1421999999999999	5.8449	5.7695999999999996	5.7599	Polar	107.12247349005936	230.24494698011873	524.4898939602374	1304.9797879204748	6.4340999999999999	6.1901999999999999	6.0589000000000004	5.9741	complexity (operations)


SNR (dB)




LDPC, Turbo, Polar QPSK Rate 0.88 AWGN K=2000 targetBLER = 0.01

LDPC	237.29966587541767	355.94949881312652	474.59933175083535	711.89899762625305	1186.4983293770883	2372.9966587541767	7.4698000000000002	7.0602999999999998	6.8818000000000001	6.7713999999999999	6.6718000000000002	6.6440000000000001	Turbo 	262.0040054456058	524.0080108912116	1048.0160217824232	1965.0300408420435	3275.0500680700725	6550.100136140145	10.571899999999999	8.1415000000000006	7.2557999999999998	6.9955999999999996	6.8853	6.8738999999999999	Polar	100.10163681497447	216.20327362994894	496.40654725989788	1248.8130945197956	7.2925000000000004	7.0826000000000002	6.9611999999999998	6.8746	complexity (operations)


SNR (dB)
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