

3GPP TSG RAN WG1 Meeting #85		R1-164357
[bookmark: _GoBack]Nanjing, China, 23rd - 27th May 2016

Source:	Ericsson
[bookmark: Title]Title:	Analysis of Candidate Code Types for Short Block Length
[bookmark: Source]Agenda Item:	7.1.5.1
[bookmark: DocumentFor]Document for:	Discussion and Decision

Introduction
In RAN#71, a new study item, “Study on New Radio Access Technology,” has been approved. The initial work of the study item is expected to focus on fundamental physical layer signal structure for new RAT, of which channel coding schemes is listed as an area to investigate.
In RAN1#84bis, the following was agreed on channel coding candidates for NR:
	Agreements:
· Candidates for 5G new RAT data transmission are identified as the following
· LDPC code
· Polar code
· Convolutional code (LTE and/or enhanced convolutional coding)
· Turbo code (LTE and/or enhanced turbo coding)
· Note: It is RAN1 common understanding that combination of above codes is not precluded
· Note: Outer erasure code is not precluded
· Selection of 5G new RAT channel coding scheme(s) will consider,
· Performance
· Implementation complexity
· Latency (Decoding/Encoding)
· Flexibility (e.g., variable code length, code rate, HARQ (as applicable for particular scenario(s)))

In this paper, we discuss the channel coding candidates for transmissions requiring smaller information block sizes only.

Application and Requirements
For transmission using relatively smaller information block sizes K, the NR application includes eMBB, mMTC, and URLLC. The eMBB application includes a wide range of sizes K, ranging from K100 bits to K8000 bits. The mMTC and URLLC applications are expected to have smaller K only, roughly K1000 bits. Since eMBB design is expected to emphasize larger K, the discussion of code candidates for smaller K should prioritize mMTC and URLLC applications.
In addition to data channels, control channels have info blocks of small K, e.g., K<100 bits, that are protected by channel coding techniques. One difference compared to data channel is, for downlink control channel, the UE is expected to perform numerous blind decodings. In LTE, the total number of blind decodings expected from a UE can range from 44 to 1548 blind decodings per subframe, depending on the number of carrier aggregation cells and support of UL MIMO. For downlink control channel in NR, blind decoding is expected to be used as well. Hence channel coding candidate selection for control channel needs to consider the potentially high number of blind decodes.
Code Types for Short Block Length
TBCC
In LTE, a tail-biting convolutional code (TBCC) is defined, where the code has 64 state and rate 1/3. TBCC is used for error correction coding of downlink control channel. TBCC is also used for protecting all downlink data channel of NB-IoT, where the info block size K is relatively small (16K680 bits).
In terms of performance, TBCC is known to provide performance better than turbo code and LDPC code for small K. While the exact break-even point depends on the code rate and code design, a very rough estimate of K where LTE turbo code and TBCC performance cross each other is K=250 bits, below which TBCC performs better than turbo code.
In terms of flexibility, TBCC, together with the LTE rate matching design, is robust and flexible for any (K, N) required. This is an important design benefit for both control channel and data channel.
In terms of decoder complexity, regular Viterbi decoder is the most widely used method for decoding convolutional code. Mature and efficient decoder implementation exists for regular Viterbi decoder. For one information bit in one iteration, the Viterbi decoder complexity is:
· Branch metric calculation: 2n additions, where n is the number of output bits for a input bit, i.e., code rate R = 1/n;
· 2v 2 additions for state metric branches; for a code with 2v states, and 2 branches per state;
· State metric update (i.e., selection step): one comparison/selection per state, for a total of 2v comparison/selection (equivalent of addition);
At a high level, the alpha (or beta) processing of turbo code max-log-MAP decoder is equivalent to the Viterbi decoding of convolutional code. Hence, roughly speaking, assuming the same K and the same number of states in the trellis, complexity of one turbo decoder max-log-MAP iteration is 4 times the complexity of one iteration of convolutional code.
If performance better than Viterbi decoding is desired, then list Viterbi decoder can be considered for decoding TBCC. The performance of list Viterbi decoder improves as list size L increases, at the price of increased memory and implementation complexity. In this sense, decoder of varying levels of {complexity, performance} combination exist for TBCC, and it provides design flexibility for implementation. Simulation study shows that List-Viterbi with L=16 achieves most of performance benefit [5].
Turbo code
Similar to TBCC, LTE turbo code, together with the LTE rate matching design, is robust and flexible for any (K, N) required by other system design considerations. This is a highly desirable trait to keep especially for small K, since a small number of bits could make a big difference in BLER performance.
In terms of performance, turbo code performance is worse than TBCC for very small K, and better than TBCC for larger K. As a reference, considering the balance of performance of decoding complexity, in LTE NB-IoT, the uplink data channel is protected by turbo code, where 16K1000 bits, while the down link data channel is protected by convolutional codes
When compared to LDPC code, turbo code achieves better performance for small information block size K [3][4][6][7], especially with lower code rate. At lower code rate, LDPC decoder has no complexity advantage over turbo decoder either. As discussed in Section 2, mMTC, URLLC, and downlink control channel relies on codes with {small K, low R}. Hence for these applications, turbo code is preferred over LDPC codes.
LDPC code
As can be observed from LDPC code adopted in other standards [3], LDPC code has very limited (K, R) flexibility. For applications requiring small info block sizes, it is undesirable to have code design with sparse set of K, since this means unnecessarily high zero-padding overhead.
In terms of code performance, the strength of LDPC code lies in the realm of high info block size and high data rate, where the error floor of turbo code is visible above BLER=10-4. For the combination of {small K, low R}, LDPC code performance is inferior to that of turbo code and convolutional code. For example, [4] shows that the {K=192, R=1/3} LDPC code is about 0.8 dB inferior to its LTE turbo code counterpart at low SNR, and it starts to outperform the turbo code counterpart starting only at BLER<10-6.
Hence for error correcting codes of mMTC, URLLC, and downlink control channel, LDPC code is not desirable.
Polar code
Polar code is also a competitive coding candidate for small info block sizes. However our investigation shows that there are several issues with Polar codes when applying it to a complicated real-life system like NR.
· Code length N is inflexible. The original codeword length is limited to power-of-2 only, N0 = 2x.
· Polar code design is sensitive to the number of bits being punctured. It is unclear if there exists a simple, flexible, and robust rate matching algorithm for Polar codes, as those defined in LTE for TBCC and turbo codes. In general, when going from a Polar with N code bits to a punctured Polar code with N0 code bits, i.e., puncturing (N0-N) bits, the info set needs to be re-designed. Otherwise the code performance may degrade substantially, including severe error floor around BLER=10-2 if catastrophic puncturing pattern occurs. An example is shown in Figure 1, where catastrophic puncturing pattern leads to unacceptable error floor. In the example, puncturing is applied to a (K=88, N=256, R=1/3) Polar code, to obtain a (K=88, N=117, R=3/4) code.
· Polar code design is sensitive to channel quality experienced by the code bits. Thus, a new code may need to be designed for different modulation type, different channel condition (e.g., AWGN, ETU, EPA, new 5G channel model), and different MIMO techniques.
· For short info block lengths, Polar code needs list decoder to achieve reasonably good performance. However, there is no clear performance advantage of Polar code with list decoding compared to TBCC with list-Viterbi decoding, as shown in [5]. Additionally, list decoder is more complex and requires substantially larger amount of memory [8], compared to, e.g., Viterbi decoder for TBCC or turbo decoder.

[image:]
[bookmark: _Ref395015271]Figure 1. Error floor of punctured Polar codes.

Conclusion

In this contribution, we discuss the channel coding candidates for relatively small information block sizes. Based on the discussion, we have the following proposal:

1. For control channel and data channel with short info block length, the channel coding candidate is either tail-biting convolutional code or turbo code.
0. For mMTC, URLLC, and downlink control channel, tail-biting convolutional codes and turbo codes are preferred over LDPC codes and Polar codes.

References
[bookmark: _Ref442441852][bookmark: _Ref441562466]RP-160671, “New SID Proposal: Study on New Radio Access Technology,” NTT DOCOMO, 3GPP TSG RAN Meeting #71, Göteborg, Sweden, 7.-10. March, 2016.
3GPP TS 36.212 v13.0.0.
R1-163232, “Performance study of existing turbo codes and LDPC codes,” Ericsson.
T.-Y. Chen, D. Divsalar, J. Wang, R. D. Wesel, "Protograph-Based Raptor-Like LDPC Codes for Rate-Compatibility with Short Blocklengths". IEEE Global Communications Conference. Houston, TX, December 2011.
R1-164356, “Performance Evaluation of TBCC and Polar Codes,” Ericsson.
R1-164358, “Performance Evaluation of Turbo Codes and LDPC Codes at Lower Code Rates”, Ericsson.
R1-164359, “Performance Evaluation of Turbo Codes and LDPC Codes at Higher Code Rates,” Ericsson.
R1-164360, “Analysis of Candidate Code Types for Long Block Length,” Ericsson.

image1.emf
4 6 8 10 12 14 16 18 20

10

-2

10

-1

10

0

SNR [dB]

Block Error Rate

SC Decoder

List Decoder (L=32)

