3GPP TSG RAN WG1 Meeting #85	R1-164040
Nanjing, China, May 23rd - 27th, 2016

Agenda Item:	7.1.5.1
Source:	Huawei, HiSilicon
Title:	On latency and complexity
Document for:	Discussion and Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
Polar Code, LDPC, Turbo Code, and (TB) Convolutional Code are considered to be candidates for NR. This contribution provides an analysis in terms of computational complexity and latency of these channel coding schemes.
Discussion
Complexity of Polar Decoder
As in [1], a Polar decoder is categorized to SC (successive-cancellation) and (CA)-SCL (CRC-aided successive-cancellation list). Both types of the decoders share the same encoder. A SC decoder can be regarded as a special case of the SCL decoder. A SC decoder has much lower complexity with poorer performance than a (CA)-SCL.
The difference between a SC decoder and (CA)-SCL decoder is that a (CA)-SCL decoder keeps a given number of possibilities (called paths) at each information bit level (List decoding), whereas a SC decoder always keeps the most probable possibility at each level. At the end of the successive cancellation, a SCL decoder has two choices to determine the best path from a number of survival paths: CRC-aided selection or metric-based selection. The former is called as CA-SCL decoder, and the later is SCL decoder. Clearly, the CRC-check stage is not on the critical path for either complexity or latency of a CA-SCL decoder. In order to constraint the computational complexity of a SCL algorithm, the number of the possibilities is limited under a maximum value, L, denoted as List Size.
In the following analysis, we denote:
N – size of power-of-two codeword
R - code rate
K – size of information block
L – List size
Complexity and Latency
A (CA)-SCL decoder consists of two core parts: successive-cancellation and path-selection. Evidently, there’s no path-selection operation in a SC decoder that keeps only one path at all stage.
Successive-Cancellation
Computational complexity:
The computational complexity of the successive-cancellation operation can be further divided into the computation of f and g functions (addition operation) and that of partial-sum (1-bit xor operation). At each path, their computation complexity is given as:
f/g function computation: O(N*log2(N)) ([4])
partial-sum computation: O(N-1)
The total computational complexity of a single-path SC decoder is: O(N*log2(N)) + O(N-1)

Path Selection
Computational complexity:
SCL decoder needs to extend and prune the path tree for each information bit i.e. stage. At each information stage, L father nodes will yield 2*L children nodes. The decoder has to select the most reliable L nodes from these 2*L children nodes. The path selection needs to sort these 2*L node candidates in function of their path metrics.
There are several methods to perform a sorting operation. Different sorting algorithm has different computational complexity and time-complexity (and implementation cost). Herein, we use a quick-sorter that request an average O(2*L*log2(2*L)) computational complexity.
A SCL decoder has a total computational complexity of O(L*N*log2(N)) + O(L*(N-1)) + K* O(2*L*log2(2*L)).
0. Analysis of Implementation Latency
SCL Decoder
In a real implementation of a SCL decoder, we will use N=4 decoder as basic unit to the decoder and deploy them in a maximum parallel. The red dash-line in the figure below is a critical path on each path. There are L critical paths in parallel. The only node that all of these critical lines come cross is the path-selection (RFAU, rank-flag-address-unit).
[image:]
Figure 1. N=4 SCL decoder with L paths
In hardware implementation, each of the steps on a critical path except path selection can be completed in one cycle time. If we take a bitonic sorter and bi-group-ranker (most of data copy or data routing can be avoided by our re-addressing technique) in the path selection, it would take ~4 cycles for L=32 if they are information bits. The total cycles of a N=4 decoding unit is about 27 cycles (TN4). If they are all frozen bit, the latency of this N=4 decoder is 11 cycles. We use this N=4 decoding unit to build any other code size. For example, a N=8 decoder is built as:
[image:]
Figure 2. N=8 SCL decoder from two N=4 decoders on one path
A N=8 decoder is built with 2x N=4 decoders with 4 extra steps (cycles), that is TN8 = 2 *TN4 + 4. Similarly, the number of the stages (cycles) of N=16 decoder is TN16 = 2 *TN8 + 4. For a given N, the number of the stages is TN = (N/4)*TN4 + (N/4-1)*4. Note that this is the worst case in which all bits are assumed as information bits. For N= 2048 and code rate R=0.5 (L=32), the cycle number can be estimated as: TN = R*(N/4)*27 + (1-R)*(N/4)*11 + (N/4-1)*4, the total latency is 11,772 cycles. It is possible to close the timing to 1GHz, that is 1-ns per cycle. This latency would be sufficient to support the self-contained low latency of NR URLLC. Note that this is the latency estimation without some latency-reduction methods introduced below.
SC Decoder and smaller-List decoder
SC decoder and small-list decoder can be implemented totally different from the SCL decoder above. As Fast-SSC in [7], several bits are combined together into one symbol and the successive cancellation is performed on the symbol level other than bit level. The decoder architecture can be unrolled to implement a deep pipeline to reach very high decoding throughput (237Gbps in [7]). ML(Maximum-likelihood)-SSC can be used to treat four bits together (i.e. N=4 decoder is reduced into one node with 1~2 cycle TN4 for example) to increase decoding throughput.
Methods to Reduce Complexity & Latency
There are some methods that can effectively reduce the computational complexity and latency without significant performance loss. Some of them can reduce the complexity and latency; some reduce the latency by increasing the computational complexity. Trade-off shall be made for different scenario and application target.
Selective-Path-Extension
As the complexity and latency of a SCL decoder is largely dependent of the sorter, the selective-path-extension method is targeted to reduce the chance of sorting. The reduction is based on the fact that the reliability (mutual information metric) of one information bit is known and different from each other. For the bits with higher reliability metrics, it is unnecessary to extend the paths from L to 2*L but keeps the strongest path. For example of N=2048 and K=1024, nearly 75% percentage of the information bit can be regarded as “good” bits without BLER performance degradation so that there’s no path extension and selection on them. Therefore, both the computation complexity and latency are reduced:
Complexity: O(L*N*log2(N)) + O(L*(N-1)) + (1-0.75)*K* O(2*L*log2(2*L))
Frozen- Header-Skipping
Because the reliability metrics on the beginning portion of an information block is much lower than the rest portion, these positions are usually allocated to the frozen bits and tend to form an all-frozen-bit-header. A decoder can directly skip any successive-cancellation operation and path-selection operation for this entire frozen-header. For example of N=2048 and K=1024, this frozen-header takes 256-bit. Thus, the computation complexity and latency are reduced.
Complexity: O(L*0.875*N*log2(N)) + O(L*(0.875*N-1)) + (1-0.75)*K* O(2*L*log2(2*L))
where 0.875 = (1-256/N)
Bitonic Sorter
If the design target is short latency, some fast sorter can be efficiently implemented. A bitonic sorter is one of them: O(2*L*log2(2*L)^2) computational complexity and O(log2(2*L)^2) delay. For example of L=32, compared with a quick-sorter, the computational complexity of a bitonic sorter increases from O(384) to O(2304), whereas the delay decreases from O(384) to O(36).
The latency is reduced but the computation complexity is increased to:
Complexity: O(L*0.875*N*log2(N)) + O(L*(0.875*N-1)) + (1-0.75)*K* O(2*L*log2(2*L)^2)
Bi-Grouped-Ranker
It is highlighted that a SCL decoder doesn’t care about how to sort 2*L nodes but how to pick up the more reliable L path nodes from 2*L candidates (ranking). In this sense, a complete 2*L sorter is redundant. Furthermore, a complete 2*L sorter doesn’t assume the incremental-metric relationship from the father node to its children nodes.
To further reduce the latency, we propose a bi-group-ranker. This method firstly divides the father nodes into two groups: higher reliable group (Hi-Group) and lower reliable group (Lo-Group) in term of their path metrics. And it sorts the two L-children-node groups respectively and in parallel. Then it picks up a given number (T) of lowest reliable nodes from the Hi-Group and the same number of highest reliable nodes from the Lo-Group, selects the T most reliable entries among them, and pushes them to the survival set. One of the advantages is to hide the latency of the first-step sorting operation in term of the father nodes’ metric; the other one is that the Hi-group and Lo-Group sorting can be performed in a parallel.
The latency is reduced and the computation complexity (assuming bitonic sorter) is slightly reduced to:
Complexity: O(L*0.875*N*log2(N)) + O(L*(0.875*N-1)) + (1-0.75)*K* [O(L*log2(L)^2) + 2*O(L*log2(L)^2) + O(2*T*log2(2*T)^2)]
List-Reduced Decoder
Because the reliability metric is not uniformly distributed over an entire block, a general tendency of polarization is having lower reliability on the beginning part and higher reliability on the further part. This polarization becomes more and more along with the codeword length. To make use of this property, several CRC bits can be inserted in the middle of a block so that a SCL decoder can decrease list size (L) when decoding one block without big performance loss. This is particularly useful for large block length. For example of N=2048 and K=1024, if L=32 is applied to first half of the information block and L=16 is applied the second half of the block, computation complexity (assuming bitonic sorter) and latency are reduced .
Complexity: O((0.5*L+0.5*L/2)*0.875*N*log2(N)) + O((0.5*L+0.5*L/2)*(0.875*N-1)) + (1-0.75)*K/2* [O(L*log2(L)^2) + 2*O(L*log2(L)^2) + O(2*T*log2(2*T)^2)] + (1-0.75)*K/2* [O(L/2*log2(L/2)^2) + 2*O(L/2*log2(L/2)^2) + O(2*T*log2(2*T)^2)]
A summary of complexity reduction methods are illustrated in Figure 3. Note each method from left to right is incremental meaning that the one inherits from previous method on its left side. The calculation considers code length N=2048, information bits K=1024, LIST = 32, 75% of selective-path-extension.
[image:]
Figure 3. Reduced computational complexity for N=2K and R=0.5 with different methods

Computational Complexity of LTE Turbo Decoder
Based on [5], the computational complexity of LTE turbo decoder (Max-Log-Map) consists of additions & MAX operations: Imax*O(16*K*2m) and Imax*O(8*K*2m) respectively, where N is for code length, m is for memory length of component code of turbo, Imax is number of iteration number.
0. Computational Complexity of LDPC Decoder
Based on [5], the computational complexity of LDPC Belief-propagation decoder consists of additions & LUT operations: Imax*O(2*N*dv +M*(2*dc-1)) and Imax*O(M*dc) respectively, where N is for code length, M is for number check matrix, dc for average check degree of LDPC parity check matrix, dv for average variable degree of LDPC parity check matrix, Imax is number of iteration number.
Computational Complexity of LTE TBCC decoder
Assume LTE-TBCC with 1/3 code rate, S is the number of states, K is information bits, m is memory length of the component, and L is list size.
At each step, LVA (list-viterbi) has 8 possible branches to yield total 16 addition operations. Based on these branches, the LVA decoder needs to compute the metric on 2*S*L paths, resulting into 2*S*L addition operations. Then the decoder conduct the path selection that chooses L paths from the 2*L path for each state. Therefore, the computational complexity consists of the path metric calculation (K+m)*O(2*S*L+16) and path selection (K+m)*S*L. The path metric on each branch can be in a parallel. The path metric on the next stage cannot be started until the path selection is done, which means that the latency of the path selection cannot be hidden.
In case of Trellis-Termination CC, the computational complexity and latency are:
Complexity: (K+m)*O(2*S*L+16) + (K+m)*S*L
In case of Tail-biting CC, the LVA decoder needs to find the initial state. Based on [3], the received sequence is extended to be 3-time long and the Viterbi decoder is used to find this initial state, which has the complexity of 3*K*O(3*S+16). Moreover, the ensuing LVA operation cannot be started until the state is found.
 Complexity: 3*K*O(3*S+16) + K*O(2*S*L+16) + K*S*L

Comparison of Different Channel Codes
eMBB cases: Polar, Turbo, and LDPC
As an example we consider code length N=1944 for turbo and LDPC, and N=2048 for polar. This is similar to the codes considered in [5].
	Code
	Parameters
	Total computational complexity
	Complexity Ratio to Turbo decoder

	Turbo Code
	N=1944, Imax = 8, R = 0.5, K = 972
	1,492,992
	100%

	LDPC
	N = 1944, Imax = 15, R = 0.5 dv = 3.58, dc = 7.17
	1,030,514
	69.0%

	Polar
	N=2048, R= 0.5, L =32 SCL decoder without any reduction method (qsort)
	1,179,616
	79.0%

	Polar
	N=2048, R= 0.5, L = 4 SCL decoder without any reduction method(qsort)
	122,876
	8.2%

	Polar
	N=2048, R= 0.5, L = 2 SCL decoder without any reduction method(qsort)
	57,342
	3.8%

	Polar
	N=2048, R= 0.5, SC decoder
	24575
	1.6%

0. Small-Block: Polar vs TBCC
As an example we consider K=55, R=0.76, N=128 (Polar mother code),L=32,m=6,S=64
	Code
	Parameters
	Total computational complexity
	Complexity Ratio to LVA-TBCC

	TBCC
	N=72, R = 0.76, K=55, L=32, m=6,S=64
	373,120
	100%

	TTCC
	N=72, R = 0.76, K=55, L=32, m=6,S=64
	375,760
	100.7%

	Polar
	N=72 (from 128), K=55, L =128 SCL decoder without any reduction method (qsort)
	243,584
	65.3%

	Polar
	N=72 (from 128), K=55, L =32 SCL decoder without any reduction method (qsort)
	53,856
	14.4%

	
	
	
	

If both TBCC-LVA decoder and Polar SCL decoder have the same list size, the computational complexity of SCL decoder is less than 15% of TBCC-LVA. Or in another word, for a given computational complexity, the complexity of a LVA-4 TBCC is comparable to that of SCL=32 decoder. However, as the simulation results show in [6], SCL-32 decoder has over 1.0dB gain over LVA-4 TBCC decoder.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Conclusion
A SC decoder has very low computational complexity, less than 2% of Turbo decoder, which makes it very energy and area efficient for very large blocks.
The computational complexity of a SCL decoder depends on the list size. For a list size of 32, its computational complexity without any reduction scheme is still lower than an 8-iteration Turbo decoder but with better BLER performance.
The computational complexity of a SCL decoder can be further reduced by many possible methods and their combinations. It is believed that it can be reduced to less than 30% of the original one without significant performance loss.
The latency of a SC decoder or small-list decoder can be dramatically reduced by an unroll method as [7].
The latency of a SCL decoder can be reduced by using other known methods.
The computational complexity of a LVA for TBCC is much higher than that of a SCL decoder for a given list size (LVA keeps much more survival paths at each stage than SCL decoder).
 References
1. [bookmark: _Ref367787843][bookmark: _Ref383190669]R1-164039, “Polar Codes: Encoding and Decoding,” Huawei, HiSilicon, RAN1#85, May 2016.
1. R1-164377, “Performance of channel coding schemes for eMBB scenario,” Huawei, HiSilicon, RAN1#85, May 2016.
M. Mohammad, H. Ramchandran, J.-H. Jong, C. Ravishankar, and C. Barnett, “Comparing List Viterbi Algorithms with and without tail bits,” MILCOM, Nov 2008.
K.Niu, K.Chen, J. Lin, and Q.T.Zhang, “Polar Codes: Primary Concepts and Practical Decoding Algorithms”,
R1-162897 “Performance and complexity of Turbo, LDPC, and Polar Codes” Nokia, Alcatel-Lucent Shanghai Bell
1. R1-164378, “Performance of channel coding schemes for mMTC and URLLC scenarios,” Huawei, HiSilicon, RAN1#85, May 2016.
P.Giard, G.Sarkis, C.Thibeault, W.Gross “a 237Gbps Unrolled Hardware Polar Decoder”.

Computational Complexity Ratio Related to Turbo Decoder
Ratio to Turbo	N=1944, Imax = 8, R = 0.5, K = 972	N = 1944, Imax = 15, R = 0.5 dv = 3.58, dc = 7.17 	N=2048, R= 0.5, L =32 SCL (qsort)	N=2048, R= 0.5, L = 4 SCL(qsort)	N=2048, R= 0.5, L = 2 SCL(qsort)	N=2048, R= 0.5, SC	Turbo Code	LDPC 	Polar 	1	0.69023410708161859	0.79010202331961599	8.2301847565157751E-2	3.8407439557613242E-2	1.646023555384088E-2	
Computational Complexity Ratio to LVA-32 of TBCC
N=72, R=0.76, K=55, L=32, m=6, S=64	N=72, R=0.76, K=55, L=32, m=6, S=64	N=72(128), R=0.76, K=55, L=128(qsort)	N=72(128), R=0.76, K=55, L=32(qsort)	TBCC	TTCC	Polar	1	1.006999999999995	0.65300000000000291	0.14400000000000004	image3.emf

image1.emf

On Path-1

On Path-2

On Path-L

image2.emf

