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Introduction
In RAN1 #84bis, the following agreement was made [1],
“Study enhanced massive MIMO analog/digital/hybrid beam-forming”
As explained in [2], key features for NR MIMO and possible items for studies can be summarized as follows:
· User interference cancellation at transmitter: precoding/postcoding design
· CSI reporting with higher resolution
· Investigation on impact of realistic assumptions on channel reciprocity ( i.e., mismatches in RF circuit characteristics between TX and RX)
· RS design, including SRS, to reduce pilot contamination
In this contribution, we explain key technology enables for NR-massive MIMO and discuss the number of multiplexes required to achieve the target spectral efficiency.
Time reciprocity for NR Massive MIMO
In Rel. 13 MIMO, Channel State Information (CSI) feedback is used to design a precoder at the transmitter. However, in Multi User Multiple Input Multiple Output (MU-MIMO) using a massive MIMO array, higher resolution for CSI feedback is required for effective inter user interference (IUI) cancellation. 
Codebooks as feedback information from RX are not informative enough for IUI cancellation at TX. Imperfect IUI cancellation may fail to meet the target peak data rate. Explicit channel feedback is impractical since the amount of information for feedback grows as the number of antennas increases.  CSI-IM can be used, but it may not be sufficient to cancel IUI that arise in massive MIMO systems. Moreover, additional introduction of new types of reference signals or increasing the number of reference signals in a subframe is not a preferred solution in NR since pilot contamination is a concern [3] in massive MIMO.
Time reciprocity is an attractive property in time domain duplex (TDD) since estimated uplink channels can also be used as downlink channels. Thus, significant reduction in reference signals can be achieved if time reciprocity is available. Thus, NR should incorporate uplink reference signal (RS)design which takes advantage of reciprocity in the channel. However, precise calibration between TX and RX is needed to establish symmetric downlink and uplink channels [4, 5, 6, 7]. Two types of calibration can be considered. One of them is the self-calibration based technique [6] where the TX receives the RS which was transmitted by TX itself. The returned RS is analyzed at TX to check for reciprocity. Another genre of techniques is based on calibration “on the air” where channel estimates at downlink (DL) and uplink (UL) are compared. In either case, as shown in the example in [4], non-reciprocal channels may exist. In the NR study, effect of calibration and impact of imperfect analog components at TX and RX should be considered. A functionality to check time reciprocity should also be considered in the study. Uplink RS oriented design may be required in NR massive MIMO. Moreover, RS designs for “time reciprocity mode” and “non time reciprocity mode” should be considered since two modes will be designed based on contrasting design principles: one focusing heavily on UL sounding another based on balanced DL and UL RS designs.

Observation 1: Functionality to check time reciprocity is needed for NR massive MIMO
Observation 2: NR massive MIMO should support two modes for efficient operation: reciprocity mode and non-reciprocity mode

Nonlinear precoding for NR Massive MIMO
Linear precoding (LP) scheme is a conventional approach to realize MU-MIMO. Block diagonalization (BD) is a well-known technique to create prescribed nulls for UEs except for the target UE in order to mitigate inter-user interference (IUI). BD works well in a spatially-uncorrelated scenario and simplifies receiver designs. However, by consuming degrees of freedoms in MIMO systems to create perfect nulls for non-target UEs, a tradeoff between interference mitigation and achievable spatial diversity arises. Moreover, IUI mitigation performance of LP degrades considerably in ill-conditioned or spatially-correlated channels, resulting limited throughput.
Alternatively, nonlinear precoding (NLP) achieves near-capacity and establishes robust links over MU-MIMO downlink transmission even in spatially-correlated or ill-conditioned channels. As illustrated in Figure 1, NLP can equivalently produce null spots at UE reception points by canceling IUI signal at TX in advance. In a typical NLP scheme, a combination of feedforward and feedback functionalities at TX is required, where the former is LP, and the latter is realized by IUI-precancellation (PC). Unitary matrix based LP can easily be realized by block triangulation (BT). Through BT, a structure similar to the innovation based structure [8] is created in the processed signal at TX to obtain spatial diversity gain. Subsequently, NLP can be used to cancel IUI in the processed signal. Thus, using a combination of LP and NLP spatial diversity and IUI-free signal can be obtained simultaneously.
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[bookmark: _Ref450900327]Figure 1: An example of nonlinear precoding

Observation: A combination of NLP and LP can simultaneously yield spatial diversity and IUI free transmission. 

To realize low-PAPR IUI cancellation at the transmitter, modulo operation is a well-known method to compress signal constellation at IUI-PC output. Combined with modulo operation, BT and IUI-PC enable power efficient NLP with reasonable complexity. This configuration is generally known as Tomlinson-Harashima precoding (THP) [10]. The transmitter structure with NLP and LP is shown in Figure 2. In the figure, ,  and  denote the number of substreams, users and transmit antennas. The number of substreams for the  user is denoted by .
As shown in Figure 3, although use of modulo operator at TX obliges all UEs to have the same modulo operator, its impact on hardware implementation can be kept low. In Figure 3,  denotes the number of RX antennas for the ith user. Note from Figure 3, that no interference cancellation is needed at UE since IUI has been canceled at TX. In practice, THP is known for its ability to reduce interferences within the transmitted signal. For example, THP was adopted as the part of IEEE 802.3an standard for 10GBASE-T currently in-use, for mitigation of far-end crosstalk (FEXT) over copper twisted-wire pair cables [9]. 
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[bookmark: _Ref450917793]Figure 2 MU-MIMO transmitter diagram with NLP and LP
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[bookmark: _Ref450917749]Figure 3 Receiver diagram using modulo operator

Figure 4 shows the CCDF of relative TX array output power, where the TX array consists of 16 antennas. Here the abscissa is normalized by average power in LP (BD). Due to NLP, channel variation may lead to extremely high TX array output power without modulo operation: more than 30 dB at CCDF of 10-3. In contrast, it is noticeable from Figure 4 that applying modulo operation to NLP significantly reduces TX power to the level equivalent to LP (BD). It should also be noted that relative array output power of NLP with modulo operation is several dBs lower than that of LP (BD) at CCDF=10-3.

Observation 3: Increased TX power due to NLP can be lowered by modulo operation in massive MIMO
[image: F:\VE13442\Desktop\3GPP_MMIMO\CcdfArrayOutput.wmf]
[bookmark: _Ref450582691]Figure 4: CCDF of instantaneous TX array output power,

Figure 5 and Figure 6 demonstrate CDF of sum-rate spectral efficiency (throughput) performance in MU-MIMO downlink transmission, where we have 16 subarrays at BS with each subarray consisting of 8x8=64 elements and 8 UEs of which each has 2 antennas. In total 16 substreams are transmitted from BS. As for user distribution, distance between a pair of UEs and degree of spatial correlation of channels the UEs experience are changed. 
Compared with LP (BD), higher spectral efficiency can be obtained by using NLP. At the 10th percentile, 90 bps/Hz can be achieved by using NLP whereas 65 bps/Hz is obtained by using LP (BD). It is clear by comparing Figure 5 and Figure 6 that improvement by NLP is significant in a spatially-correlated scenario. 

Observation 4: NLP can increase throughput when spatial correlation exists in channels experienced by UEs
[image: F:\VE13442\Desktop\3GPP_MMIMO\CdfThroughput_0.75_random.wmf]

[bookmark: _Ref450664823]Figure 5: CDF of spectral efficiency, UEs with weak spatial correlation
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[bookmark: _Ref450583037][bookmark: _GoBack]Figure 6: CDF of spectral efficiency, UEs with strong spatial correlation


Number of multiplexed layers for NR

In [11], the target spectral efficiency is set at 30bps/Hz. In Figure 7 and Figure 8, average sum-rate curves for two configurations with different normalized fading rates are shown. In the simulation, i.i.d channels with ideal channel estimation are assumed whereas channels vary during the time interval between the precoding weight matrix determination and the actual DL transmission. In Table 1, target SNR to achieve 30bps/Hz is shown. At high SNR, at the maximum spectral efficiency of 4bps/Hz per layer, at least 8 layers are required to reach the target value. If the number of layers is increased, the maximum spectral efficiency per layer and required SNR to reach the target value can be decreased. It should also be noticed from Figure 8 that 16-layer multiplexing brings more tolerance to the Doppler spread to yield 30bps/Hz. Thus, in NR massive MIMO, up to 16-layer multiplexing should be considered for MU-MIMO to meet the target spectral efficiency of 30bps/Hz.


[bookmark: _Ref450845174]Figure 7 : Sum rate vs. SNR for 8 stream multiplexing



[bookmark: _Ref450845173]Figure 8 : Sum rate vs. SNR for 16 stream multiplexing, 2 streams per UE and 8 UEs

[bookmark: _Ref450763079]Table 1 : Required SNR with 16 received antennas
	Number of multiplexed layers　L
	Average efficiency per layer for 30bps/Hz [bps/Hz]
	Target average SNR
for 30bps/Hz [dB]

	8
	3.75
	21

	16
	1.875
	12



Observation 5: The target spectral efficiency of 30bps/Hz can be satisfied with 16-stream multiplexing at SNR=12dB

Conclusion
In this contribution, we discussed possible topics that can be discussed for NR massive MIMO. The following observations and proposals have been made in this contribution. 

Observation 1: Functionality to check time reciprocity is needed for NR massive MIMO
Observation 2: NR massive MIMO should support two modes for efficient operation: reciprocity mode and non-reciprocity mode


Proposal 1: Consider time reciprocity in NR Massive MIMO

Observation 3: Increased TX power due to NLP can be lowered by modulo operation in massive MIMO
Observation 4: NLP can increase throughput when spatial correlation exists in channels of UEs who are close to each other

Proposal 2: Study effectiveness of nonlinear precoding for NR Massive MIMO
Proposal 3: Consider reference signal designs and channel feedback schemes for nonlinear precoding in NR massive MIMO

Observation 5: The target spectral efficiency of 30bps/Hz can be satisfied with 16-stream multiplexing at SNR=12dB

Proposal 4: Increase the number of multiplexed layers up to 16 
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